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We consider the solution of the fully-coupled equations of electromagnetics with fluid flows and struc-
tures. The electromagnetic effects are governed by the general Maxwell’s equations, the fluid flows by the
Navier–Stokes equations, and the solids and structures by the general Cauchy equations of motion. We
present an effective general finite element formulation for the solution of the Maxwell’s equations and
demonstrate the coupling to the equations for fluids and structures. For the solution, we can use the elec-
tric field and magnetic field intensities, or the electric and magnetic potentials, with advantages depend-
ing on the problem solved. We give various example solutions that illustrate the use of the solution
procedure.
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1. Introduction

During the recent years, an increasing emphasis has been
placed on the solution of multiphysics problems [1]. While the
solution of problems considered separately in solids and struc-
tures, in fluid flows, and in electromagnetics (EM) has been pur-
sued for decades – and widely-used quite powerful computer
programs are now available – the solution of problems in which
general structures interact with fluid flows and electromagnetic
waves has hardly been tackled and presents special difficulties. In-
deed, only specific problems have been solved in which the solu-
tion techniques have been developed specifically for the physical
problem considered, see for example, refs. [2–11].

Considering the analysis of solids and structures coupled with
fluid flows, many publications have recently appeared, and numer-
ous applications are found, in particular, in biomechanics and the
automotive and airplane industries. The next step for general mul-
tiphysics solutions is clearly that electromagnetic effects should
also be included. In today’s time, electrical devices are used daily
by almost everybody in a multitude of applications, and to reach
optimal designs the structural, fluid and electromagnetic fully-cou-
pled effects would ideally be considered. These coupled effects can
be particular important, for example, in problems of magneto-solid
and fluid mechanics, in medical applications and biomedical engi-
neering, metal processing, and plasma physics, see ref. [12] and the
references therein.
Numerous publications are also available on the numerical
solution of electromagnetic field problems. In the most general
cases, the general Maxwell’s equations are considered. However,
while finite element solutions have been obtained for some dec-
ades, the earliest attempts frequently showed spurious modes
and in that sense were not reliable [13,14]. Thereafter, special fi-
nite element schemes were designed, and in particular the edge-
based elements [15]. These elements are more reliable but have
the shortcomings that the edge degrees of freedom are difficult
to couple with the usual nodal degrees of freedom used in the fi-
nite element analyses of fluid flows and structures, divergence-free
conditions are considered, the convergence is not optimal, and the
elements do not directly fit into the usual post-processing schemes
used. In more recent research, various discontinuous finite element
schemes and meshless methods have been proposed, see for exam-
ple, Nicomedes et al. [16] and Badia and Codina [17], but these pro-
cedures are computationally quite costly or contain artificial
numerical factors for general practical analyses.

Our objective in this paper is to present a novel finite element
scheme for the solution of the general Maxwell’s equations specif-
ically developed to solve for electromagnetic effects coupled with
fluid flows, solids and structures, while keeping our philosophy
for the development of finite element procedures in mind [18].
Since we amply published on our solution procedures for fluid
flows with structural interactions previously [19–22], we focus in
this paper on the solution of Maxwell’s equations, to couple with
the governing equations of fluids and structures. We consider the
static and harmonic solutions of the Maxwell’s equations, includ-
ing the solution of high-frequency problems, and present a general
uniform procedure for solution in which either the primitive
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variables of electric and magnetic fields are used (E and H), or the
scalar electric and vector magnetic potentials (/ and A) are em-
ployed. The finite elements used are similar to those we proposed
for the solution of the Navier–Stokes equations, and the full cou-
pling between the different physical phenomena is achieved as in
the schemes for fluid-structure interaction analysis [20–22].

In the next sections, we first review the general Maxwell’s
equations and the form in which we use these equations for our
discretization scheme. We pursue static and harmonic solutions,
and give some attention to the boundary conditions that arise in
practice. Since we consider the solution using primitive variables
and potentials, and two- and three-dimensional analyses, the use
of the appropriate formulation can be important. Finally, we pres-
ent the results of some fluid and structural problems with electro-
magnetic effects that illustrate the procedures proposed in this
paper.
2. The electromagnetic governing equations

In this section we first summarize the original first-order Max-
well’s equations, and then focus on the reformulation of the equa-
tions to the form in which we are solving them using a novel finite
element scheme for electromagnetics (but previously published for
fluid flows [19]). In a typical analysis, we consider the electric,
magnetic, fluid and structural domains, possibly with heat transfer.

The computational domain can be two- or three-dimensional,
and in total may consist of an electric domain Xe and/or magnetic
domain Xm. In general, the coupled analysis also includes the
structural domain, Xs, and the fluid domain, Xf. These domains
may be partially or fully coincident, as illustrated in Fig. 1.

In the following we focus on the electromagnetic effects, but
also discuss how these effects are coupled into the structural and
fluid flow phenomena. For the solution of the fluid flows and struc-
tural responses, the discretizations used and the coupling proce-
dures, we refer to refs. [19–23].

2.1. Original Maxwell’s equations

The original first-order full Maxwell’s equations [24], in general
static or time-varying fields, can be written as Faraday’s law

r� E ¼ �K ð1Þ

and Ampère’s law with the Maxwell term

r�H ¼ J ð2Þ

where E and H are the electric and magnetic field intensities, and J
and K are electric and magnetic current density source terms given
below.
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Fig. 1. Schematic diagram of physical domains that can be considered; the domain
disks can be moved and any one of the domains may not be present.
The additional equations are the Gauss law applied to the elec-
tric and magnetic fields

r � D ¼ q0 ð3Þ

r � B ¼ 0 ð4Þ

where

D ¼ eE; B ¼ lH ð5Þ

and e, l are the permittivity and permeability, respectively, of the
material in the fields, and q0 is a charge density source (the value
being dependent on the equation).

Here we have

J ¼ J0 þ rEþ @D
@t

K ¼ K0 þ
@B
@t

ð6Þ

where J0 and K0 are the imposed electric and magnetic current den-
sities respectively, and r is the electric conductivity of the medium.

In the above equations, we do not point out the domains in
which the variables are computed, because the context itself will
imply where the variables are applicable. For the same reason,
we also do not specify the individual computational domains in
the following.

We consider the harmonic and static cases. In a harmonic anal-
ysis, all variables are expressed as Re(f⁄eixt) with a prescribed
angular frequency x, f⁄ = fr + ifi where i is the imaginary unit, and
we have in phasor form

J ¼ J0 þ ixe�E
K ¼ K0 þ ixB

where e⁄ = e � ir/x.
In static analysis, naturally, all time-dependent terms vanish

and all imaginary components are not present.
We should also note that, once the complex response has been

calculated, the actual solution is given by

f ¼ fr cos xt � fi sin xt

In our numerical solutions we solve for fr and fi using real
arithmetic.

2.2. E–H formulation of Maxwell’s equations for finite element solution

The second-order equation system is obtained by applying the
operator r� to Eqs. (1) and (2) to obtain

r�r� E ¼ �r� K ð7Þ

r �r�H ¼ r� J ð8Þ

Introducing as additional solution variables

p ¼ r � E� q0=e
� ð9Þ

q ¼ r �H ð10Þ

Eqs. (7) and (8) can be written as

r � ððpþ q0=e
�ÞI�rEþ I� KÞ ¼ 0 ð11Þ

and

r � ðqI�rH� I� JÞ ¼ 0 ð12Þ

where I is the identity tensor.
Eqs. (11), (12), (3), and (4) form the E–H mathematical formu-

lation that we use for our finite element solution. This formulation
is specialized to specific cases, when appropriate, by omitting cer-
tain equations. We note that we use the divergence form of the
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governing equations to directly satisfy conservation in our formu-
lation like in the FCBI formulation of fluid flows [19–22], and in-
deed to solve these equations we employ the same weight and
interpolation functions and control volumes as in the fluid flow
formulations (but, of course, without introducing upwinding be-
cause there are no convection terms).

Of course, this second-order equation system is equivalent to
the first-order system, if proper boundary conditions are used
(see Section 3). With the E–H formulation, we calculate the Lorentz
force and Joule heating rate directly (to couple into the structural
and fluid flow response) without further differentiation. However,
the formulation may not be convenient if we only know potentials
as boundary conditions, in which case the use of a potential formu-
lation is more direct.

2.3. A–/ potential formulation of Maxwell’s equations for finite
element solution

As is standard, we introduce the electric and magnetic poten-
tials / and A [24]

E ¼ �r/� @A
@t

B ¼ r� A
ð13Þ

and assume

r � A ¼ gA ð14Þ

where

gA ¼
0 Coulomb gauge approximation
�ilex/ Lorenz gauge approximation

�

Eqs. (1) and (4) are then automatically satisfied (assuming K0 = 0),
and Eqs. (2) and (3) become, respectively, in harmonic analysis

r � ð�e�ðr/þ ixAÞÞ ¼ q0 ð15Þ

r � ðl�1r� AÞ ¼ J0 � ixe�ðr/þ ixAÞ ð16Þ

Eq. (16) can be written in conservation form

r � ððr þ l�1gAÞI� l�1rAÞ ¼ J0 � ixe�ðr/þ ixAÞ ð17Þ

where

r ¼ l�1ðr � A� gAÞ ð18Þ

As for the E–H mathematical formulation, these equations are spe-
cialized to specific cases, as appropriate, by omitting certain equa-
tions, and are solved using the approach of the fluid flow solution
scheme [19]. The potential-based A–/ formulation is more appro-
priate than the E–H formulation when we know potentials as
boundary conditions. However, the physically interesting field
quantities E and H are then computed by differentiation, which
introduces numerical errors. A specific advantage of the potential-
based formulation is that we solve in three-dimensional analyses
only for 5 (A,/,r) and 10 unknown components in static and har-
monic analyses, respectively, compared with 8 (E, H, p, q) and 16
unknown components in the E–H formulation.

2.4. Scales for non-dimensionalization

Before a discretization is performed, it can be important to re-
cast the governing equations (of course, including the boundary
and interface conditions) to the use of non-dimensional variables.
We have found it effective to use the following variable scales:
the length (L⁄), permeability (l⁄), permittivity (e⁄) and magnetic
field intensity (H⁄) with
E� ¼ H�
ffiffiffiffiffiffiffiffiffiffiffiffi
l�=e�

q

r� ¼ L�1
�

ffiffiffiffiffiffiffiffiffiffiffiffi
e�=l�

q
q0� ¼ E�e�=L�
J0� ¼ H�=L�
K0� ¼ E�=L�
x� ¼ 1=ðL�

ffiffiffiffiffiffiffiffiffiffi
l�e�

p
Þ

A� ¼ l�H�L�
/� ¼ E�L�

ð19Þ

It is sometimes more efficient to choose the conductivity r instead
of e as an independent scale. In this case, we use the permittivity
scale as e� ¼ l�ðL�r̂Þ

2 where r̂ is a typical value of conductivity in
the model.

3. Boundary and interface conditions

A particularly important aspect of electromagnetic analysis is
the imposition of the proper boundary and interface conditions.
These conditions should be satisfied for both field intensities, E
and H, and, if used, potentials A and /.

3.1. Boundary conditions

Considering first the essential boundary conditions of prescrib-
ing values (the Dirichlet boundary conditions) we have

v ¼ vb ðv ¼ E;H;A;/Þ ð20Þ

on all components of the variable v.
This type of boundary condition may be applied only to the nor-

mal component of a vector variable (called also ‘normal condition’)

n � v ¼ vb ðv ¼ E;H;AÞ ð21Þ

or only to the tangential components of a vector variable (called
also ‘parallel condition’)

n� v ¼ vbd ðv ¼ E;H;AÞ ð22Þ

where n is the outward unit normal to the boundary and d is the
specified direction.

Electric and magnetic boundary conditions are frequently com-
bined in practical applications. For example, in the odd symmetry
condition, we impose n � H = 0 and n � E = 0, and in the even sym-
metry condition we impose n � E = 0 and n � H = 0.

Further, we also have the two equivalent impedance conditions
in harmonic analysis,

n� E ¼ �Zsn� ðn�HÞ ð23Þ

and

n�H ¼ Z�1
s n� ðn� EÞ ð24Þ

applicable to E and H respectively, in which Zs is the surface imped-
ance (a complex number).

The impedance condition for the magnetic potential A is

n� ðr� AÞ ¼ �lZ�1
s n� ðn� ðr/þ ixAÞÞ ð25Þ

This type of boundary condition covers some other practical cases.
One of them is the finite conductivity condition that is used to mod-
el good conductors. In this case, d ¼ 1

2 xlr
� ��1

2 and the impedance is
given by

Zs ¼ ð1þ iÞðdrÞ�1 ¼ ð1þ iÞðxl=ð2rÞÞ
1
2 ð26Þ

Another one is the lumped RLC-boundary condition used to model,
for example, a lumped resistor or inductor.
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Fig. 2. Schematic of shell structure, thickness = 1.25 mm, in fluid flow in an electromagnetic pump.

Table 1
Material properties in driven electromagnetic pump.

EM properties
Permittivity (e)[F/m] e0

Permeability (l)[H/m] l0

Electric conductivity (r)[S/m] 100

Fluid properties
Density [kg/m3] 1000
Viscosity [kg/m–s] 0.1

Solid properties
Young’s modulus [Gpa] 70
Poisson’s ratio 0.3
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The impedance condition can also be used for simulating cer-
tain absorbing boundary conditions, as illustrated in the example
in Section 6.4.

In addition, since we solve the second-order Maxwell’s equa-
tions, we also have to impose the first-order Eqs. (1) to (4) when
necessary, as natural boundary conditions.

Finally, the variables p and q are imposed to be zero on all
boundaries.

3.2. Interface conditions

On a material interface, the following interface conditions need
special attention in the computational procedure

n� EL ¼ n� ER

n�HL ¼ n�HR

n � ðe�EÞL ¼ n � ðe�EÞR
n � ðlHÞL ¼ n � ðlHÞR

ð27Þ
Fig. 3. Velocity field in an intersection plane of th
where (�)L and (�)R represent the variables on the two sides of the
interface respectively.
4. Finite element discretization of governing equations

Considering Eqs. (11) and (12), and the boundary conditions, a
close resemblance to the Navier–Stokes equations of incompress-
ible fluid flows without the convective terms is noticed [23].
Hence, we solve these equations using the finite element interpo-
lations that we use for fluid flow solutions, see refs. [19–23]. Of
course, the p and q variables are special but the interpolation ap-
proach is directly applicable, and used similarly as for the pressure
in fluid flows [23].
5. Coupling to structures and fluids

The coupling occurs for domains in which the structural, fluid
and electromagnetic variables are active. In these domains, the
Maxwell stresses and Joule heating rate are calculated and added
to the stresses and the energy sources, respectively, for the struc-
tural and fluid flow solutions, meaning that, in general, heat trans-
fer conditions are also solved for in the structural and fluid flow
domains [4]. The coupling is achieved like in coupled fluid-flow,
heat transfer, structural interaction solutions [20–22].

The coupled fluid and structural solutions can be obtained in
steady-state and transient analyses, irrespective of the analysis
type for the electromagnetic model. In a static electromagnetic
analysis, the electromagnetic force and heat source are constant
for the fluid flow and structural models. On the other hand, if the
electromagnetic solution corresponds to a harmonic analysis, then
VELOCITY
TIME 1.000

1.876

1.750
1.500
1.250
1.000
0.750
0.500
0.250

e flow domain of the electromagnetic pump.
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Fig. 4. Pressure distribution in an intersection plane of the flow domain of the electromagnetic pump.

Fig. 5. Structure tip displacement as function of electric and magnetic field
intensities.

Fig. 7. Buckling and large displacement response of the beam due to Lorentz force.
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averaged electromagnetic forces and Joule heating (over one peri-
od, see below) are usually used.

5.1. Lorentz force and Maxwell stresses

The Lorentz body force fem
b per unit volume, used in our formu-

lation as a body force, can be expressed in terms of the Maxwell
stresses

fem
b ¼ r � Tem þ Tem

b ð28Þ
10

Compressive Lo
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Y

Z

X

Fig. 6. Beam subjected to com
where the Maxwell stresses Tem and Tem
b are

Tem ¼ Te þ Tm

Te ¼ DE� 1
2
ðD � EÞI

Tm ¼ BH� 1
2
ðB �HÞI

Tem
b ¼ �

@D� B
@t

ð29Þ
rentz force 0.2

Electromagnetic material:

μ = 1.25 x 10-6 H/m
σ =  1.0 x 106 S/m

ters

pressive Lorentz force.
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Fig. 8. Schematic figure of the bimetallic beam and the plates carrying the imposed
AC current; the diameter of the modeled domain is 1.2 m.

Table 2
Material properties of the bimetallic beam.

Properties Layer a Layer b Plates Outer space

Density [kg/m3] 8000 7800 - -
Young’s modulus [Gpa] 141 210 - -
Poisson’s ratio 0 0 - -
Thermal expansion coefficient [1/K] 10-6 4 � 10-5 - -
Thermal conductivity [W/m–K] 10 30 - -
Specific heat [J/kg–K] 500 1000 - -
Electric conductivity (r)[S/m] 6 � 107 6 � 107 107 0
Permeability (l)[H/m] l0 l0 l0 l0

Permittivity (e)[F/m] e0 e0 e0 e0
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In the E–H formulation, the calculated variables are directly used in
Eq. (29), while in the A–/ formulation, the field intensities are cal-
culated using Eq. (13) and then used in Eq. (29).

Of course, if only the electric field is active, then Tm and Tem
b are

omitted, and similarly, if only the magnetic field is active, Te and
Tem

b are omitted.
5.2. Joule heating rate

The heat source generated by electromagnetic variables is cal-
culated as

qem
b ¼ r�1J � J ð30Þ

in which J is given by Eq. (6).
Fig. 9. Mesh for electromagnetic analysis spann
5.3. Coupling effects in harmonic analysis

In harmonic analyses, the Maxwell stress and Joule heating rate
are time-varying, so they can be directly computed at any specified
time. According to the definitions in Eqs. (29) and (30)

Te ¼ ReðDeixtÞReðEeixtÞ � 1
2

ReðDeixtÞ � ReðEeixtÞI

Tm ¼ ReðBeixtÞReðHeixtÞ � 1
2

ReðBeixtÞ � ReðHeixtÞI

Tem
b ¼ x½ReðDeixtÞ � ImðBeixtÞ þ ImðDeixtÞ � ReðBeixtÞ�

ð31Þ

and

qem
b ¼ r�1ReðJeixtÞ � ReðJeixtÞ ð32Þ

However, the time-averaged values (over one period) are actually
frequently used in solutions

�f ¼ 1
2p

Z 2p

0
f dðxtÞ ð33Þ

Then Eqs. (29) and (30) become, respectively,

Tem ¼ Te þ Tm

Te ¼ 1
2
ðDrEr þ DiEiÞ �

1
4
ðDr � Er þ Di � EiÞI

Tm ¼ 1
2
ðBrHr þ BiHiÞ �

1
4
ðBr �Hr þ Bi �HiÞI

Tem
b ¼ 0

ð34Þ

and

�qem
b ¼

1
2
r�1ðJr � Jr þ Ji � JiÞ ð35Þ
Z

I0

beam

I0

X
Y

ing over the beam, plates, and far domain.
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Fig. 12. Beam transverse displacement for different imposed currents and f = 60 Hz. Fig. 13. Temperature in beam as a function of imposed current, for different
frequencies.
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Fig. 14. Tip displacement of beam as a function of imposed current, for different
frequencies.
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Fig. 15. Schematic figure of the continuous microwave heating system.

Table 3
Dimensions of the waveguide and the flow duct (in meters).

L W H L1 W1 H1 a d

1.212 0.248 0.124 0.99 0.105 0.15 0.038 0.0001

Table 4
Flow and electromagnetic properties of water.

Properties Values

Density [kg/m3] 981.7
Thermal conductivity [W/m–K] 0.7
Specific heat [J/kg–K] 4185.8
Viscosity [kg/m–s] 0.69 � 10-3

Permittivity (e)[F/m] 6.336 � 10-10

Electric conductivity (r)[S/m] 0.165
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6. Illustrative example solutions

In this section we present various problem solutions to
illustrate the applicability of the solution schemes. In the example
solutions we use the free space permeability l0 = 1.25 � 10�6H/m
and permittivity e0 = 8.854� 10�12F/m, and the frequency f = x/(2p).
If not explicitly mentioned, q0, J0, and K0 are zero.

6.1. Thin structure in a Lorentz force driven electromagnetic pump

We consider a cantilevered thin shell structure in a channel of
an electromagnetic pump, see Fig. 2. The fluid flow in the pump
is driven by the Lorentz force from the electromagnetic fields. A
similar problem was solved in refs. [21,25], where no electromag-
netic effects were included. In this problem, the Lorentz body force,
Maxwell stress balance the fluid stress and drive the fluid flow.
Fig. 2 shows the directions of the magnetic and electric field inten-
sities across the domain and the driven flow direction in the elec-
tromagnetic pump. The electromagnetic, fluid and solid material
properties are listed in Table 1.

The electromagnetic computational domain corresponds to the
union of the fluid and solid domains. The boundary conditions are
that the electric field intensity E is prescribed on the bottom sur-
face in the vertical direction from 0 to 10 V/m, n � E = 0 on the
top surface, and n � E = 0 on the rest of the bounding surfaces; H
is prescribed in the X-direction at the fluid inlet (left) surface from
50,000 A/m to 100,000 A/m, n � H = 0 on the front and back sur-
faces, and n � H = 0 on the rest of the external surfaces. For the fluid
variables, zero ambient pressure is prescribed at the inlet (left) and
outlet (right) surfaces, and the no-slip wall condition is imposed at
the channel walls.

The electromagnetic variables E–H are solved for using 8-
node elements; the shell structure is modeled using 27-node
solid elements; and the fluid flow is modeled using 8-node
FCBI-C elements [21,22]. In this problem, the magnetic Reynolds
number is small and hence the fluid flow has little effect on the
electric and magnetic fields. On the other hand, since the flow
Reynolds number is high, we use the k–e turbulence model
for the fluid flow.

Figs. 3 and 4 show typical velocity field and pressure distribu-
tions in a cross section for the X-direction view. As expected, the
wake fluid field behind the shell structure and the pressure discon-
tinuity across the shell structure are present. Fig. 5 shows the
structure tip displacement as a function of the applied electric
and magnetic field intensities. The figure clearly shows that, as also
expected, the shell structural displacements become nonlinearly
larger as the electric and magnetic field intensities increase.

6.2. Beam buckling due to Lorentz force

Here we consider the buckling and large displacement response
of a beam subjected to an applied Lorentz body force, see Fig. 6 for
the geometric dimensions and material properties. A constant
magnetic field intensity and varying electric field intensity result
in an almost linear increase of the Lorentz body force. The static
E–H formulation is used for the electromagnetic computational do-
main which is coincident with the structural domain.

The beam, as shown in Fig. 6, is fixed at its left end. The struc-
ture is modeled using 9-node two-dimensional solid elements. E is
prescribed in the negative vertical direction on the bottom from 0
to 0.0015 V/m, n � E = 0 at the top, and the natural boundary con-
ditions are applied to the left and the right ends of the computa-
tional domain; the magnetic field intensity HX (it is a scalar in
this case) is prescribed as 2.09 � 106 A/m at the left end and the
natural boundary conditions are applied everywhere else on the
boundary.
An analytical solution of the buckling load due to a spatially
constant but increasing body force is given in ref. [26]. Fig. 7 shows
the numerically calculated response due to the electromagnetic
force and the analytical value of the buckling load. The numerical
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Fig. 16. Calculated real Y-component of the electric field intensity.

Fig. 17. Calculated real Y-component of the electric field intensity and analytical
solution.

Fig. 19. Calculated imaginary Y-component of the electric field intensity and
analytical solution.

K.J. Bathe et al. / Computers and Structures 132 (2014) 99–112 107
solution is very close to the analytical buckling load. To reach large
displacements an increase in load is needed.

6.3. Bimetallic beam bending due to induction heating

Induction heating is utilized extensively in many industries, for
example, for the heat treatment of metals. Here we model a beam
in two-dimensional conditions subjected to induction heating, see
Fig. 8. The cantilevered beam is made of two layers of different
X

Y

Z

Fig. 18. Calculated imaginary Y-compo
metallic materials and is situated between two plates that carry
an AC current. The structure is subjected to induction heating from
the eddy currents.

The computational electromagnetic domain includes the two
layers of the beam, the two plates onto which the current is im-
posed, and the outer space. The electromagnetic and solid material
properties of the bimetallic beam are listed in Table 2. We use the
magnetic potential-based formulation to solve the two-dimen-
sional problem, with the solution variable, a scalar, AX. The
EFI-IY
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nent of the electric field intensity.
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Fig. 20. Calculated real component of the magnetic field intensity vector.

Fig. 21. Calculated real X-component of the magnetic field intensity and analytical
solution.

Fig. 23. Calculated imaginary X-component of the magnetic field intensity and
analytical solution.
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imposed current is defined as I0 =
R

S J � dS where I0 is the total cur-
rent in the plate and S is the plate cross-section [27].

Zero potential is prescribed on the outer boundary of the elec-
tromagnetic domain. For the heat transfer in the beam, convection
boundary conditions are imposed on all free sides of the beam,
with the heat convection coefficient 10 W/m2–K and the
X

Y

Z

Fig. 22. Calculated imaginary component
environmental temperature 20 0C. The same temperature is pre-
scribed at the fixed end and set as initial condition as well. A high
thermal conductivity is used for the metal materials, and hence the
thermal diffusion time is small and the temperature is almost uni-
form throughout the beam.

Fig. 9 shows the 4-node element mesh used for the electromag-
netic solution. The beam is modeled using 9-node solid elements.
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of the magnetic field intensity vector.
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Fig. 24. Calculated real Y-component of the electric field intensity.

Fig. 25. Comparison of the real Y-component of the electric field intensity with
pseudo-1D solution.
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Fig. 26. Calculated imaginary Y-component of the electric field intensity.

Fig. 27. Comparison of the imaginary Y-component of the electric field intensity
with pseudo-1D solution.
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Fig. 28. Calculated real component of the magnetic field intensity vector.

Fig. 29. Comparison of the real X-component of the magnetic field intensity with
pseudo-1D solution.

Fig. 31. Comparison of the imaginary X-component of the magnetic field intensity
with pseudo-1D solution.
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Fig. 30. Calculated imaginary component of the magnetic field intensity vector.
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Fig. 32. Temperature distribution in the cross-section of the duct at the mid-plane of the wave guide.
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In Figs. 10 and 11 we show the real and imaginary X-components
of the magnetic vector potential on the whole domain with insets
of the sub-domain containing the beam. In Fig. 12 we give the
beam displacement response as a function of the applied electric
current at f = 60 Hz. Figs. 13 and 14 give the temperature and the
tip displacement of the beam, respectively, as a function of the
magnitude of the imposed current, at different frequencies.
Fig. 33. Averaged water temperature in the duct along flow direction for different
inlet velocities V0.
6.4. Continuous microwave processing of materials

Microwave heating is extensively used for food processing, such
as cooking, thawing, tempering and pasteurizing, for ceramics
heating, for polymer syntheses, mineral processing, for ablation
of human tissues, and other events. In contrast to conventional
ways of heating, microwaves heat material samples volumetrically
and lead to a faster heat transfer rate and shorter processing time.

We consider the multiphysics analysis of water flowing through
a duct in which the water is heated by a guided microwave at the
frequency of 915 MHz. Fig. 15 shows the system schematically. The
electromagnetic domain is composed of the rectangular waveguide
and the duct flow domain. The dimensions of the waveguide and
duct are listed in Table 3, the material properties of water are listed
in Table 4, and air is assumed to exist in the waveguide. The prob-
lem is solved using the E–H formulation for the electromagnetic
response. The water is modeled using the Navier–Stokes equations
for incompressible fluid flow.

The waveguide is excited with a 5kW power input through an
incident plane wave, which is equivalent to an imposed surface
magnetic current density Ks = 1.277 � 104exV/m [28]. In this anal-
ysis, we model the power input by imposing a source K0 = Ks/d in a
thin region of thickness d, at the location 0.0001m from the right-
end boundary.

At the right end of the waveguide, in order to eliminate the
reflection effect, the impedance condition with Zs = 377V/A is ap-
plied (to simulate an absorbing boundary condition [29]). On the
other enclosing boundaries of the waveguide, perfect electric con-
duction conditions are assumed.

At the inlet of the fluid flow, the velocity is prescribed, varying
between 0.015 m/s and 0.06 m/s, and the temperature is pre-
scribed at 293 K. At the outlet, zero pressure and zero heat flux
are specified. The sides of the duct are modeled as no slip adiabatic
walls.
In the first part of this study, we solved for the electromagnetic
response when the duct is fully extended across the waveguide in
the X-direction, that is a = W. For this essentially one-dimensional
problem an analytical solution can be obtained. Figs. 16–23 show
that the calculated real and imaginary components of the electric
and magnetic field intensities using the E–H formulation are quite
close to the analytical solution. This demonstrates that the direct
E–H formulation presented in Section 2.2 can be used for this
high-frequency application.

In the second part of the study, the actual flow duct was mod-
eled. Figs. 24–31 show the real and imaginary components of the
electric and magnetic field intensities along the centerline of the
waveguide. The response is compared with the pseudo-solution
mentioned above. It can be seen, from the comparisons, that the
flow duct dimensions change the electromagnetic scattering pat-
terns considerably, for both the phases and the magnitudes of
the fields. Fig. 32 shows the water temperature at the mid-section
plane of the flow duct; we note that the microwave heating is inho-
mogeneous due to the electromagnetic scattering in the water.
Fig. 33 shows how the averaged temperature of the water increases
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along the flow duct due to the microwave heating for different in-
let velocities.

7. Concluding remarks

The objective in this paper was to present a finite element for-
mulation to include and fully couple electromagnetic effects in the
analysis of structures and fluid-structure interactions. The specific
attributes of the formulation are that it does not contain spurious
solutions, is stable and the finite elements are described by degrees
of freedom that can directly be coupled to fluid flow and structural
discretizations.

We have illustrated the use of the formulation in the solution of
some multiphysics problems. However, the field of electromag-
netic analysis is very large and is characterized by numerous differ-
ent phenomena at varying length and time scales, in particular
when these phenomena are coupled to structures and fluid flows.
The finite element formulation given here provides a good founda-
tion for studies of some of these phenomena and for further devel-
opments to solve with this approach increasingly more complex
multiphysics problems.
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