
Josef, Programming for Everybody

Ivan Tomek
Acadia University

Wol fv i l l e , Nova Scotia, Canada

Abstract

The author believes that everybody should be
introduced to programming but that standard gen-
eral purpose languages are not sui table for this
purpose, mainly because they do not provide an
environment o f fer ing natural problems. Another
character is t ic which makes them unsuitable for the
purpose is that they are a l l more or less bur-
dened by res t r i c t ions imposed by leg i t imate con-
cerns of professional programmers with securi ty
and economical aspects of programming. This paper
b r i e f l y considers the general features that a pro-
gramming language intended for the introduct ion of
an average non-programmer should have and de-
scribes some aspects of one such language devel-
oped by the author.

The Need for a Special Programming Language

Most chi ldren now play e lectronic games and
are progressing from games t~wards computers.
Today's f i ve year olds w i l l not only be required
to learn about computers when they reach the mid-
dle of the i r compulsory education but, i f the
atmosphere is conducive, w i l l be eager to learn
about computers on the i r own i n i t i a t i v e . Are we
prepared to o f fe r them a programming environment
which w i l l sat is fy the i r interest?

The question is not only whether we can make
programming easier but also, and foremost, whether
we can make the reward for wr i t ing a program suf-
f i c i e n t l y a t t rac t i ve to make the e f f o r t worthwhile.
My opinion is that t rad i t i ona l programming lang-
guages f a i l to o f fe r a st imulat ing environment.
The v is ib le reward that they o f fe r is minimal -
why would an average person bother to learn what
is a real array just to be able to wr i te a program
which sorts a sequence of numbers or a s imi lar
routine and rare ly encountered problem of l i t t l e
general interest? On the other hand, to wr i te a
program in one of these languages, which does some-
thing that an average person finds in terest ing re-
quires an inordinate e f fo r t . There is, of course,
a hidden reward in a l l programming, pa r t i cu la r l y i f
you are new to i t , the i n te l l ec tua l sa t is fac t ion
derived from having solved a d i f f i c u l t problem, but
before th is reward can be f e l t there must be a
f i r s t stimulus to arouse the potent ia l programmer's
in terest in programming. I f the f i r s t stimulus is
missing the student w i l l not even s tar t thinking
about the task. And this necessary st imulat ion is

Permission to copy without ~ e all or part of this material is granted
provided that the copies are not made or distributed ~ r direct
commercial advantage, the ACM copyright notice and the title of the
publication and i~ date appear, and notice is given that copying is by
permission of the Association ~ r Computing Machinery. To copy
otherwise, or to republish, ~qui~s a ~e and/or specific permission.

© 1982 ACMO-89791-067-2/82/O02/0188 $00.75

188

lacking in Pascal, BASIC, or any other general
purpose programming language. They do not eas i ly
lead to the kind of problems that an average per-
son finds in terest ing.

In addi t ion to the lack of mot ivat ion, gen-
eral purpose programming languages make the l i f e
of a beginning programmer unnecessarily d i f f i c u l t
by rules imposed on them by the j u s t i f i a b l e con-
cerns of professional programmers (usual ly a t t r i -
butable to the concern for secur i ty and correct-
ness) and the i r wi l l ingness to accept various re-
s t r i c t ions due to h is to r i ca l machine l im i ta t i ons ,
speed, l imi ted capacity of memory, etc. Al l these
influences are ref lected in s t r i c t rules requir ing
declarat ion of a l l var iables, res t r i c t ions on the
length of var iables, l imi ted f l e x i b i l i t y of use of
b u i l t - i n data types, etc. These s t r i c t l y enforced
res t r i c t i ons , per fect ly in order in professional
environments but essent ia l l y un jus t i f ied in
" le isure programming", only add to the boring en-
vironment that such languages appear to present to
an ordinary novice programmer. The resul t is the
rare ly admitted fact that for most people pro-
gramming is unat t ract ive and d i f f i c u l t .

Must programming be unat t ract ive and d i f f i -
cult? Programming is a form of problem solving
and most people are happiest when they can solve
problems - play games, read detect ive s tor ies,
spend hours ro tat ing Rubik's cube, etc. I f we
could recast programming into a game which pro-
duces quick sa t is fac t ion and int r igues even the
novice, i t would gain instant popular i ty and, with
proper a t ten t ion , develop into a pastime at least
as a t t rac t i ve as any other i n t e l l e c t u a l l y stimu-
la t ing game. My premise is that we want to ach-
ieve such state of a f fa i r s and I w i l l describe my
approach to achieving this goal.

The f i r s t condit ion for programming to become
a t t r a c t i v ~ t h e e xiszence of a programming lang-
uage and environment which offers a st imulat ing
set of r e a l i s t i c , understandable, and natural
problems and allows an average person to solve
them and to obtain a perceptual ly g ra t i f y ing re-
sponse from the computer. The obvious answer to
the search for such an environment is to create a
language which allows the proorammer to do some-
thing in te res t ing , preferably~dynamic, with the
screen. This is , of course, an old proposit ion
which has been successfully applied in par t i cu la r
in the Logo Turt le (I) . The Turt le essent ia l l y
allows the programmer to use the screen as a draw-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801366&domain=pdf&date_stamp=1982-02-01

ing board and drawing is one of the most natural
human ac t i v i t i e s . There are a number of s imi lar
natural environments which can exp lo i t the screen
of the computer terminal and the next section de-
scribes one of them.

The second condit ion for programming to be-
come a t t rac t ive has to do with the philosophy of
the language. A toy language designed for fun or
introductory programming rather than for profes-
sional "production environments" does not have to
be bu i l t on the same pr incip les as standard gen-
eral purpose programming languages. The purpose
of such a toy language is to f a c i l i t a t e the com-
munication between the user and the computer. The
most natural communication does not have to be
concerned with securi ty, speed (as long as i t re-
mains within reasonable l im i t s) , guaranteed and
r igorously enforced non-ambiguity and s imi lar
c r i t e r i a whic.h are essential for programs control-
l ing large amounts of money, dangerous weapons,
etc. Our ordinary communication is a somewhat
inaccurate and redundant process in which there is
usually room to correct misunderstandings before
they cause a disaster, in which fau l ty formula-
t ions can be rec t i f i ed , and strategies reformu-
lated. Simi lar considerations, within the l imi ts
of our present technical, a b i l i t i e s , should apply
to toy programming languages.

Much of the above applies in varying degrees
to the Logo language and Karel (2), the language
developed at Stanford University to teach Pascal.

The fol lowing section describes another
system which attempts to f u l f i l l the needs out-
l ined above.

Josef

Josef is a robot simulated on the screen of
an ordinary computer terminal. The screen is a
map of Josef's world and he can execute commands
referr ing to i t . He has a small b u i l t - i n vocabu-
lary, somewhat l i ke the Tur t le , which the user
can extend by programming new words. The main
differences between Josef and the two languages
to which i t is related (Turt le and Karel) can be
summarized as fol lows:

I. In comparison with the Turt le, Josef's lang-
uage more closely resembles orginary program-
ming languages. I t is quite r ich in structures
and operations. This possibly makes the lang-
uage somewhat more powerful and sui table for
an introduct ion to "serious programming".
In comparison with Karel, Josef- is (much
l i ke the Tur t le) , r e l a t i v e l y free in syntax
and not t ied to any exist ing programming
language.

2. Unlike Turtle and Karel, Josef allows t ru ly
top-down problem development. This makes the
language suitable for natural formulation of
solutions and easier to understand.

3. Unlike the Turtle, Josef works on an ordinary
CRT terminal. This is because Josef's world
is essentially a discrete orthogonal world
while Turtle's world is basically continuous.

4. In comparison with Karel, Josef'slanguage is

quite r ich. I ts purpose is not to introduce
the user to some other programming language
but to provide a su f f i c i en t l y r ich environment
to keep the user interested. Josef is a goal
in i t s e l f , not a prelude to something else.

5. Josef's world is s imi lar to the world of an
ordinary human. I t is not an oversimpl i f ied
geometrical abstract ion. At the same time i t
is f l e x i b l e enough so that i t can be treated
as a simple geometrical system as wel l .

The above statements can best be demonstrated
by a simple example. Assume that Josef's map is
as in Figure 1 (the user can define any number of
his own maps i f he wants to) and that we want to
teach him a new command (declare a program) to go
around the block Sherwood, Main, Orchard, and
Pleasant, co l lec t a l l coins, mark locations with
coins by l e t t e r C, return to his i n i t i a l locat ion,
and report whether he found any coins. (This pro-
gram, which is probably too d i f f i c u l t for a com-
plete novice, is given here to demonstrate the
environment in a nutshel l .)

The program could be

NEW BLOCK
BEGIN
MAIN -- Go to Main Street co l lec t ing coins
LEFT -- Turn l e f t
ORCHARD -- Go to Orchard Avenue co l lec t ing coins
LEFT
PLEASANT
LEFT
SHERWOOD
REPORT

END

None of the words used in this commented pro-
gram, with the exception of LEFT, are in Josef's
basic vocabulary and the system w i l l automatical ly
prompt us to declare them. (This is the promised
f a c i l i t y of top-down development.) We could have

NEW MAIN
BEGIN
DO 13 TIMES MOVE GET

END

or, with less e f f o r t and more genera l i ty ,

NEW MAIN
BEGIN

REPEAT MOVE GET
UNTIL BLOCKED
-- Here we are taking advantage of the fact that
-- on this map Josef cannot move o f f the street

END

MOVE GET is not in Josef's vocabulary e i ther .
I t could be

NEW MOVE GET
BEGIN
MOVE
IF SEE('PENNY') THEN GET MARK('PENNY')

-- Objects are essen t ia l l y st r ing constants
IF SEE('NICKEL') THEN GETMARK(NICKEL')
etc.

END

189

Command GET-MARK could be

NEW GETMARK(COIN) -- Note the user of parameter
-- COIN

BEGIN
GET(COIN)-- GET is in Josef's basic vocabulary
MARK('C')-- MARK is also a b u i l t - i n word

END

As the last example, l e t us declare command
REPORT used in the "main program":

NEW REPORT
BEGIN

IF HAVE('PENNY') THEN SAY('I found a penny')
IF HAVE('NICKEL') THEN SAY('I found a n icke l ')
etc.

END

The word HAVE is a b u i l t - i n command. To com-
mand Josef to execute the complete program we just
type i t s name. Typing a word from Josef's current
vocabulary makes him execute the corresponding pro-
gram. BLOCK and a l l the other declared words can
be made part of Josef's permanent vocabulary.

Josef can do a number of other things. For
several examples of b u i l t - i n words and a few sample
programs which give a general idea, read the appen-
dices. In addit ion to the l i s ted special words
Josef has a f u l l s late of control statements,
ar i thmet ic, var iables, and procedures and functions
with parameters (as p a r t i a l l y demonstrated above).

I t is my experience from a br ie f use of the
language in teaching computer l i t e racy to high
school teachers and non computer science univers i ty
students that the language provides a natural en-
vironment which most people understand very eas i ly
and f ind a t t rac t i ve and st imulat ing, pa r t i cu la r l y
because of the immediate response of the screen to
the i r commands. The language is designed and imple-
mented to be r e l a t i v e l y free of syntax res t r i c t ions
to sat is fy the second requirement formulated in the
previous section. Two examples of this aspect of
Josef are the demonstrated ease of top-down pro-
gramming and the free use of "overloading" of iden-
t i f i e r s (the use of the same word in several d i f -
ferent meanings without ambiguity), a feature
strongly discouraged in serious programming lang-
uages but very natural in ordinary communication.
As an example, MARK can be used in two meanings:

MARK(' C')

means

Mark the current locat ion with l e t t e r C

but MARK without parameter is a character function
which returns the character with which Josef's cur-
rent locat ion is marked.

The use of overloading allows us to r es t r i c t
the size of the vocabulary of the language which
makes i t easier to learn and use i t , without in t ro -
ducing ambiguity. Another example of the l ibera-
t ion of the language from t rad i t i ona l res t r i c t ions
is that the same i d e n t i f i e r can be used to hold
d i f f e ren t data types in the same program or even
to al low the same data to be interpreted d i f f e r -

ent ly in d i f f e ren t parts of the program. This is
again a very natural aspect of human communication
s t r i c t l y forbidden in most "serious" languages.
This feature, unacceptable in the production en-
vironment, appears to be very natural and desir-
able in a toy language as i t was argued before.
Th~s is par t icu lary true i f res t r i c t ions may be
imposed i f the programmer wishes.

Concludin 9 Remarks

Josef ils growi~ng in stages. The f i r s t module
(13) has been about 60 percent completed on a Cyber
171 at Acadia and used in two courses. I t is now
being rewri t ten to re f l ec t the changing speci f ica-
t ions and converted into a microcomputer implemen-
ta t ion which is expected to become avai lab le in
ear ly sping 1982. This module contains most of
the essential features of standard programming
languages with the notable exception of data struc-
tures. They and other features w i l l be implemented
in the second module which is la rge ly at the stage
of conceptual development.

In i ts en t i re ty the language should include
most concepts found in modern programming lang-
uages, plus the means to eas i ly perform toy - l i ke
functions on the screen as indicated in the above
example. I t is my be l i e f that th is language
should be appropriate for a natural , enjoyable,
st imulat ing, and yet serious introduct ion to pro-
gramming, sui table for use at almost any scholas-
t i c level - possibly a f te r modif icat ions resul t ing
from f i e l d experience. I t appears that the lang-
uage, which allows very easy manipulation of the
screen, could be even useful for certain special-
ized functions in serious programming, part icu-
l a r l y in programs designed for the manipulation of
screens.

Appendix I . Some Words From Josef's B u i l t - i n
Vocabular~

BLOCKED Boolean function which returns TRUE when
Josef cannot move.

comment, everything on l ine fo l lowing two minus
signs -- .

CORNER Boolean function which returns TRUE i f
Josef's current locat ion is a meeting point of
two d i f f e ren t streets.

DIRECTION character function which returns U, D,
R, L depending on Josef's current d i rec t ion.

ERASE replaces mark placed by Josef by the or ig-
inal map symbol.

GET makes Josef get the object whose name is
given as text parameter. In other words, trans-
i t i on of the specif ied object from SEE to HAVE.

HAVE Boolean function which returns TRUE i f Josef
has the object specif ied as the text parameter.
Complement of SEE.

LEAVE makes Josef leave the object specif ied as
text parameter. The inverse of GET, performs
t rans i t ion from HAVE to SEE.

LEFT makes Josef turn l e f t by 90 degrees.
LISTEN makes Josef read input displayed in the
communication area and save i t in the var iable

given as parameter. Mul t ip le parameters.
LOCATION returns name and number of Josef's cur-
rent locat ion in i t s two parameters.

MAP requests t rans i t ion to a map stored in a f i l e
whose name is the parameter of the command.

190

MARK makes Josef mark his present l oca t ion wi th
the character given as i t s parameter. In case
of longer parameters only the f i r s t character
is used.

Can also be used as character funct ion with no
parameter. I t then returns the mark character
of the current l oca t i on , the nul l character "
i f not marked by Josef.

MOVE makes Josef move to the next l oca t ion i f
such a move is possible in the d i r ec t i on in
which he is present ly fac ing.

PAUSE when used wi th parameter makes Josef
pause fo r the spec i f ied number of i n te rna l
un i ts of t ime before proceeding to the next com-
mand. When used wi thout parameter, the command
makes Josef pause un t i l the user types GO. In
the parameterless mode the user may type any num-
ber of commands which Josef w i l l execute before
re turn ing to the in te r rup ted program by GO.

RIGHT makes Josef turn r i gh t by 90 degrees.
SAY makes Josef d isp lay the spec i f ied tex t para-
meter(s) in the communication area. Parameters
are expressions.

SEE Boolean funct ion which returns TRUE i f the
ob ject spec i f ied as i t s t ex t parameter is in
Josef 's current loca ion but not in his possess-
ion.

SPEED is a command whose s ing le parameter spec-
i f i e s the speed at which Josef executes MOVEs.
The value must be an in teger number between one
(slow motion) and ten (fas t motion). When used
wi thout parameter SPEED is a numerical funct ion
which returns Josef 's current speed.

Appendix 2. A Few Sample Program ~

A program to move Josef to the end of the
s t ree t by using recurs ion;

NEW TO END
BEGIN -

IF NOT BLOCKED THEN
BEGIN
MOVE TO END
END

END

A program to make Josef go to a loca t ion marked
'X' or the end o f the s t ree t and return to the
i n i t i a l l oca t ion :

NEW GO RETURN
BEGIN
MARK('*') - - Mark i n i t i a l po in t
WHILE NOT (BLOCKED OR MARK:'X') DO MOVE
AROUND -- Turn around, must be declared
- - Now return to the marked i n i t i a l l oca t i on
WHILE NOT MARK='*' DO MOVE
-- F i n a l l y clean up and assume i n f t i a l pos i t i on
ERASE
AROUND

END

A v a r i a t i o n on the same problem:

NEW GO-COUNT
BEGIN

COUNT:=~ FOUND:=FALSE
WHILE NOT (BLOCKED OR MARK='X') DO
BEGIN
MOVE
COUNT:=COUNT+I
IF MARK='X' THEN FOUND:=TRUE
END

AROUND
DO COUNT TIMES MOVE -- Josef counted steps
AROUND
IF FOUND THEN SAY (' I found the mark')

ELSE SAY('I have not found the mark')
END
Find the bug ~n th is program and cor rec t
A useful funct ion to get the required answer:

NEW ANSWER(AI,A2)
BEGIN
REPEAT
BEGIN
SAY('Please answer ' , A I , ' or ' ,A2)
LISTEN(RESPONSE)
END

UNTIL (RESPONSE=A1) OR (RESPONSE=A2)
RETURN(RESPONSE)

END

A possib le use fo r th is new word is

IF ANSWER('LEFT','RIGHT')='LEFT' THEN LEFT
ELSE RIGHT

or

IF ANSWER('* ' , '+ ')= '* ' THEN MARK('*')
ELSE MARK('+')

As a f i n a l example, the fo l l ow ing procedure wi th
parameters w i l l move Josef to the desired address
on the present s t ree t i f the address is there, or
return him to the i n i t i a l pos i t i on i f i t is not:

NEW GO_TO(NAME, NUMBER)
BEGIN
COUNT:=~ FOUND:=FALSE DONE:=FALSE
WHILE NOT DONE DO

BEGIN
LOCATION(NAM, NUM)
IF NAM=NAME AND NUM=NUMBER THEN
BEGIN DONE:=TRUE FOUND:=TRUE
END

DONE:=BLOCKED
IF NOT DONE THEN
BEGIN
MOVE COUNT:=COUNT+I
END

END
IF NOT FOUND THEN
BEGIN
AROUND
BACK(COUNT) - - Assuming that we declared word

- - BACK to return
- - Josef COUNT steps

AROUND
END

END

191

A possible use of this new word is

GO TO('Main',17)

References

(1) Seymour Papert; Mindstorms, Children, Computers,
and Powerful Ideas, Basic Books, Inc., 1989.

(2) Richard Pat t is ; ~rel the Robot, Wiley, 1981.

(3) Ivan Tomek; The Fi rs t Book of Josef, to be
published by Prent ice-Hal l .

PPPPVPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
S 0
S 0
SKK 0
S 0
S 0
S 0

DDDDS 0
S OXXXXXXXXXXXXXXXX
S 0
S 0

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
A
A

Figure I . A sample map for Josef. Individual
le t te rs represent locations that Josef can access.
In th is example, S is Sherwood Drive, M is Main
Street, 0 is Orchard Drive, P is Pleasant Street.
The other streets are not important. Josef is
shown as V (to indicate his current or ienta t ion
which is down) at the top of Sherwood Drive, po-
s i t ioned to go down. Command MOVE makes him go
to the next locat ion, i f he can, LEFT and RIGHT
change his or ienta t ion.

192

