Josef, Programming for Everybody

Check for
Updates

Ivan Tomek
Acadia University
Wolfville, Nova Scotia, Canada

Abstract

The author believes that everybody should be
introduced to programming but that standard gen-
eral purpose languages are not suitable for this
purpose, mainly because they do not provide an
environment offering natural problems. Another
characteristic which makes them unsuitable for the
purpose 1S that they are all more or less bur-
dened by restrictions imposed by legitimate con-
cerns of professional programmers with security
and economical aspects of programming. This paper
briefly considers the general features that a pro-
gramming language intended for the introduction of
an average non-programmer should have and de-
scribes some aspects of one such language devel-
oped by the author.

The Need for a Special Programming Language

Most children now play electronic games and
are progressing from games trwards computers.
Today's five year olds will not only be required
to learn about computers when they reach the mid-
dle of their compulsory education but, if the
atmosphere is conducive, will be eager to learn
about computers on their own initiative. Are we
prepared to offer them a programming environment
which will satisfy their interest?

The question is not only whether we can make
programming easier but also, and foremost, whether
we can make the reward for writing a program suf-
ficiently attractive to make the effort worthwhile.
My opinion is that traditional programming lang-
guages fail to offer a stimulating environment.

The visible reward that they offer is minimal -

why would an average person bother to learn what
is a real array just to be able to write a program
which sorts a sequence of numbers or a similar
routine and rarely encountered problem of little
general interest? On the other hand, to write a
program in one of these languages, which does some-
thing that an average person finds interesting re-
quires an inordinate effort. There is, of course,
a hidden reward in all programming, particularly if
you are new to it, the intellectual satisfaction
derived from having solved a difficult problem, but
before this reward can be felt there must be a
first stimulus to arouse the potential programmer's
interest in programming. If the first stimulus is
missing the student will not even start thinking
about the task. And this necessary stimulation is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/002/0188 $00.75

188

lacking in Pascal, BASIC, or any other general
purpose programming language. They do not easily
lead to the kind of problems that an average per-
son finds interesting.

In addition to the lack of motivation, gen-
eral purpose programming languages make the Tife
of a beginning programmer unnecessarily difficult
by rules imposed on them by the justifiable con-
cerns of professional programmers (usually attri-
butable to the concern for security and correct-
ness) and their willingness to accept various re-
strictions due to historical machine Timitations,
speed, Timited capacity of memory, etc. All these
influences are reflected in strict rules requiring
declaration of all variables, restrictions on the
length of variables, Timited flexibility of use of
built-in data types, etc. These strictly enforced
restrictions, perfectly in order in professional
environments but essentially unjustified in
"leisure programming”, only add to the boring en-
vironment that such languages appear to present to
an ordinary novice programmer. The result is the
rarely admitted fact that for most people pro-
gramming 1S unattractive and difficult.

Must programming be unattractive and diffi-
cult? Programming is a form of problem solving
and most people are happiest when they can solve
problems - play games, read detective stories,
spend hours rotating Rubik's cube, etc. If we
could recast programming into a game which pro-
duces quick satisfaction and intrigues even the
novice, it would gain instant popularity and, with
proper attention, develop into a pastime at least
as attractive as any other intellectually stimu-
lating game. My premise is that we want to ach-
jeve such state of affairs and I will describe my
approach to achieving this goal.

The first condition for programming to become
attractive 35 the existence of a programming lang-
uage and environment which offers a stimulating
set of realistic, understandable, and natural
problems and allows an average person to solve
them and to obtain a perceptually gratifying re-
sponse from the computer. The obvious answer to
the search for such an environment is to create a
language which allows the programmer to do some-
thing interesting, preferably dynamic, w1th @he
screen. This is, of course, an old proposition
which has been successfully applied in par?lcu]ar
in the Logo Turtle (1). The Turtle essentially
allows the programmer to use the screen as a draw-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F953051.801366&domain=pdf&date_stamp=1982-02-01

ing board and drawing is one of the most natural

human activities. There are a number of similar

natural environments which can exploit the screen
of the computer terminal and the next section de-
scribes one of them.

The second condition for programming to be-
come attractive has to do with the philosophy of
the language. A toy language designed for fun or
introductory programming rather than for profes-
sional "production environments" does not have to
be built on the same principles as standard gen-
eral purpose programming languages. The purpose
of such a toy language is to facilitate the com-
munication between the user and the computer. The
most natural communication does not have to be
concerned with security, speed (as long as it re-
mains within reasonable limits), guaranteed and
rigorously enforced non-ambiguity and similar
criteria which are essential for programs control-
1ing large amounts of money, dangerous weapons,
etc. Our ordinary communication is a somewhat
inaccurate and redundant process in which there is
usually room to correct misunderstandings before
they cause a disaster, in which faulty formula-
tions can be rectified, and strategies reformu-
lated. Similar considerations, within the limits
of our present technical abilities, should apply
to toy programming languages.

Much of the above applies in varying degrees
to the Logo language and Karel (2), the language
developed at Stanford University to teach Pascal.

The following section describes another
system which attempts to fulfill the needs out-
Tined above.

Josef

Josef is a robot simulated on the screen of
an ordinary computer terminal. The screen is a
map of Josef's world and he can execute commands
referring to it. He has a small built-in vocabu-

lary, somewhat 1ike the Turtle, which the user
can extend by programming new words. The main

differences between Josef and the two languages
to which it is related (Turtle and Karel) can be
summarized as follows:

1. In comparison with the Turtle, Josef's Tang-
uage more closely resembles orginary program-
ming 1angu§ges. It is quite rich in structures
and operations. This possibly makes the lang-
uage somewhat more powerful and suitable for
an introduction to "serious programming" .

In comparison with Karel, Josef is (much
like the Turtle), relatively free in syntax
and not tied to any existing programming
Tanguage.

2, Unlike Turtle and Karel, Josef allows truly
top-down problem development. This makes the
language suitable for natural formulation of
solutions and easier to understand.

3. Uniike the Turtle, Josef works on an ordinary
CRT terminal. This is because Josef's world
is essentially a discrete orthogonal world
while Turtle's world is basically continuous.

4. In comparison with Karel, Josef'slanguage is

189

quite rich. Its
the user to some
but to provide a
to keep the user
in itself, not a

purpose is not to introduce
other programming language
sufficiently rich environment
interested. Josef is a goal
prelude to something else.

5. Josef's world is similar to the world of an
ordinary human. It is not an oversimplified
geometrical abstraction. At the same time it
is flexible enough so that it can be treated
as a simple geometrical system as well.

The above statements can best be demonstrated
by a simple example. Assume that Josef's map is
as in Figure 1 (the user can define any number of
his own maps if he wants to) and that we want to
teach him a new command (declare a program) to go
around the block Sherwood, Main, Orchard, and
Pleasant, collect all coins, mark locations with
coins by letter C, return to his initial location,
and report whether he found any coins. (This pro-
gram, which is probably too difficult for a com-
plete novice, is given here to demonstrate the
environment in a nutshell.)

The program could be

NEW BLOCK
BEGIN

MAIN -- Go to Main Street collecting coins
LEFT ~-- Turn left

ORCHARD -- Go to Orchard Avenue collecting coins
LEFT

PLEASANT

LEFT

SHERWQOD

REPORT
END

None of the words used in this commented pro-
gram, with the exception of LEFT, are in Josef's
basic vocabulary and the system will automatically
prompt us to declare them. (This is the promised
facility of top-down development.) We could have

NEW MAIN

BEGIN

DO 13 TIMES MOVE GET
END

or, with less effort and more generality,

NEW MAIN

BEGIN

REPEAT MOVE GET

UNTIL BLOCKED

-- Here we are taking advantage of the fact that

-- on this map Josef cannot move off the street
END

MOVE_GET 1is not in Josef's vocabulary either.
It could be

NEW MOVE_GET
BEGIN

MOVE

IF SEE('PENNY') THEN GET MARK('PENNY')

-- Objects are essentially string constants

IF SEE('NICKEL') THEN GET MARK(NICKEL')

etc.

END

Command GET-MARK could be

NEW GET_MARK(COIN) -- Note the user of parameter
-- COIN
BEGIN
GET(COIN)-- GET is in Josef's basic vocabulary
MARK('C'}-- MARK is also a built-in word
END

As the last example, let us declare command
REPORT used in the "main program":

NEW REPORT
BEGIN
IF HAVE('PENNY') THEN SAY('I found a penny')
IF HAVE('NICKEL') THEN SAY('I found a nickel')
etc.
END

The word HAVE is a built-in command. To com-
mand Josef to execute the complete program we just
type its name. Typing a word from Josef's current
vocabulary makes him execute the corresponding pro-
gram. BLOCK and all the other declared words can
be made part of Josef's permanent vocabulary.

Josef can do a number of other things. For
several examples of built-in words and a few sample
programs which give a general idea, read the appen-
dices. In addition to the Tisted special words
Josef has a full slate of control statements,
arithmetic, variables, and procedures and functions
with parameters (as partially demonstrated above).

It is my experience from a brief use of the
language in teaching computer literacy to high
school teachers and non computer science university
students that the language provides a natural en-
vironment which most people understand very easily
and find attractive and stimulating, particularly
because of the immediate response of the screen to
their commands. The language is designed and imple-
mented to be relatively free of syntax restrictions
to satisfy the second requirement formulated in the
previous section. Two examples of this aspect of
Josef are the demonstrated ease of top-down pro-
gramming and the free use of "overloading" of iden-
tifiers (the use of the same word in several dif-
ferent meanings without ambiguity), a feature
strongly discouraged in serious programming lang-
uages but very natural in ordinary communication.
As an example, MARK can be used in two meanings:

MARK('C")
means
Mark the current location with letter C

but MARK without parameter is a character function
which returns the character with which Josef's cur-
rent Tocation is marked.

The use of overloading allows us to restrict
the size of the vocabulary of the language which
makes it easier to learn and use it, without intro-
ducing ambiguity. Another example of the Tibera-
tion of the Tanguage from traditional restrictions
is that the same identifier can be used to hold
different data types in the same program or even
to allow the same data to be interpreted differ-

190

ently in different parts of the program. This is
again a very natural aspect of human communication
strictly forbidden in most "serious" languages.
This feature, unacceptable in the production en-
vironment, appears to be very natural and desir-
able in a toy language as it was argued before.
This 1is particulary true if restrictions may be
imposed ir the programmer wishes.

Concluding_Remarks

Josef is growing in stages. The first module
(3) has been about 60 percent completed on a Cyber
171 at Acadia and used in two courses. It is now
being rewritten to reflect the changing specifica-
tions and converted into a microcomputer implemen-
tation which is expected to become available in
early sping 1982. This module contains most of
the essential features of standard programming
languages with the notable exception of data struc-
tures. They and other features will be implemented
in the second module which is largely at the stage
of conceptual development.

In its entirety the Tanguage should include
most concepts found in modern programming lang-
uages, plus the means to easily perform toy-like
functions on the screen as indicated in the above
example. It is my belief that this language
should be appropriate for a natural, enjoyable,
stimulating, and yet serious introduction to pro-
gramming, suitable for use at almost any scholas-
tic level - possibly after modifications resulting
from field experience. It appears that the lang-
uage, which allows very easy manipulation of the
screen, could be even useful for certain special-
ized functions in serious programming, particu-
Jarly in programs designed for the manipulation of
screens.

Appendix 1. Some Words From Josef's Built-in
Vocabulary
BLOCRED Boolean function which returns TRUE when

Josef cannot move.

comment, everything on Tine following two minus
signs --.

CORNER Boolean function which returns TRUE if
Josef's current location is a meeting point of
two different streets.

DIRECTION character function which returns U, D,
R, L depending on Josef's current direction.

ERASE replaces mark placed by Josef by the orig-
inal map symbol.

GET makes Josef get the object whose name is
given as text parameter. In other words, trans-
ition of the specified object from SEE to HAVE.

HAVE Boolean function which returns TRUE if Josef
has the object specified as the text parameter.
Complement of SEE.

LEAVE makes Josef leave the object specified as
text parameter. The inverse of GET, performs
transition from HAVE to SEE.

LEFT makes Josef turn left by 90 degrees.

LISTEN makes Josef read input displayed in the
communication area and save it in the variable

given as parameter. Multiple parameters.

LOCATION returns name and number of Josef's cur-
rent location in its two parameters.

MAP requests transition to a map stored in a file
whose name is the parameter of the command.

MARK makes Josef mark his present location with
the character given as its parameter. In case
of Tonger parameters only the first character
is used.

Can also be used as character function with no
parameter. It then returns the mark character
of the current location, the null character "'
if not marked by Josef.

MOVE makes Josef move to the next location if
such a move is possible in the direction in
which he is presently facing.

PAUSE when used with parameter makes Josef
pause for the specified number of internal
units of time before proceeding to the next com-
mand. When used without parameter, the command
makes Josef pause until the user types GO. In
the parameterless mode the user may type any num-
ber of commands which Josef will execute before
returning to the interrupted program by GO.

RIGHT makes Josef turn right by 90 degrees.

SAY makes Josef display the specified text para-
meter(s) in the communication area. Parameters
are expressions.

SEE Boolean function which returns TRUE if the
object specified as its text parameter is in
Josef's current locaion but not in his possess-
ion.

SPEED is a command whose single parameter spec-
ifies the speed at which Josef executes MOVEs.
The value must be an integer number between one
(slow motion) and ten (fast motion). When used
without parameter SPEED is a numerical function
which returns Josef's current speed.

Appendix 2, A Few Sample Programs

A program to move Josef to the end of the
street by using recursion;

NEW TO_END

BEGIN

IF NOT BLOCKED THEN
BEGIN
MOVE TO END
END

END

A program to make Josef go to a location marked
‘X' or the end of the street and return to the
initial location:

NEW GO_RETURN
BEGIN
MARK('*') -- Mark initia) point

WHILE NOT (BLOCKED OR MARK='X') DO MOVE

AROUND -- Turn around, must be declared

-- Now return to the marked initial location
WHILE NOT MARK='#*' DO MOVE

-- Finally clean up and assume inftial position
ERASE

ARQUND
END

A variation on the same problem:

191

NEW GO-COUNT
BEGIN

COUNT:=@ FOUND:=FALSE

WHILE NOT (BLOCKED OR MARK='X') DO
BEGIN

MOVE

COUNT :=COUNT+1

IF MARK='X"' THEN FOUND:=TRUE

END
ARQUND

DO COUNT TIMES MOVE
AROUND

IF FOUND THEN SAY ('I found the mark')

ELSE SAY('I have not found the mark')

-- Josef counted steps

END
Find the bug in this program and correct
A useful function to get the required answer:

NEW ANSWER(A1,A2)
BEGIN
REPEAT
BEGIN
SAY('Please answer
LISTEN(RESPONSE)
END
UNTIL (RESPONSE=AT) OR (RESPONSE=A2)
RETURN(RESPONSE)
END

",A1,' or ',A2)

A possible use for this new word is

IF ANSWER('LEFT','RIGHT')="LEFT" THEN LEFT
ELSE RIGHT

or

IF ANSWER('*®,'+')="'*"' THEN MARK('*")
ELSE MARK('+")

As a final example, the following procedure with
parameters will move Josef to the desired address
on the present street if the address is there, or
return him to the initial position if it is not:

NEW GO _TO{NAME, NUMBER)

BEGIN

COUNT:=@ FOUND:=FALSE DONE:=FALSE
WHILE NOT DONE DO

BEGIN

LOCATION(NAM, NUM)

IF NAM=NAME AND NUM=NUMBER THEN
BEGIN DONE:=TRUE FOUND:=TRUE
END

DONE:=BLOCKED

IF NOT DONE THEN
BEGIN
MOVE COUNT:=COUNT+1
END

END

IF NOT FOUND THEN

BEGIN

AROUND

BACK(COUNT) -~ Assuming that we declared word

-~ BACK to return

-- Josef COUNT steps
AROUND
END

END

A possible use of this new word is
GO TO('Main',17)
References

(1) Seymour Papert; Mindstorms, Children, Computers,
and Powerful Ideas, Basic Books, Inc., 1980.

(2) Richard Pattis; lrel the Robot, Wiley, 1981.

(3) Ivan Tomek; The First Book of Josef, to be
published by Prentice-Hall.

PPPPVPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

S 0

S 0

SKK 0

S 0

S 0

S 0
DDDDS 0

S OXXXXXXXXXXXXXXXX

S 0

S 0
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

A

A

Figure 1. A sample map for Josef. Individual
letters represent Tocations that Josef can access.
In this example, S is Sherwood Drive, M is Main
Street, 0 is Orchard Drive, P is Pleasant Street.
The other streets are not important. Josef is
shown as V (to indicate his current orientation
which is down) at the top of Sherwood Drive, po-
sitioned to go down. Command MOVE makes him go
to the next location, if he can, LEFT and RIGHT

change his orientation.

192

