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Guide to the Reader

These notes presuppose the theory of complex
semisimple Lie algebras through the classifica-
tion, as may be found, for example, in the books
of E. B. Dynkin, N. Jacobson, or J.-P. Serre, or
in the notes of Séminaire Sophus Lie. An appen-
dix dealing with the most frequently needed
results about finite reflection groups and root
systems has been included. The reader is
advised to read this part first. This he

can do rather quickly.
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Lectures on Chevalley Groups

S$1. A basis farét

. We start with some basic properties of semiéimple Lie
algebras over Qf,. and establish some notation to be used
throughout. The aséertions not proved here are proved in the
standard books on Lie algebras, e.g., those of Dynkin? Jacobson
or Sophus Lie (Séminaire). |

Let ;5 be a sémisimple Lie algebra over Qi , and fLé
a Cartan subalgebra of tif . Then flﬁzis necessarily Abelian

and ;f ::~;Q/C) E ;Zz where o ef;{* and ;fz
= {X egfl [H,X] = a(H)X for all H eﬁ¥/ Note that f£(= ;f; .

The a's are linear functions on ik(, called roots. We adopt

the convention that >€Y = if y is not a root. Then
L ,;fé] C Qfa+8 . The rank of ;f dim fzf—-& , say. The

roots generate fzﬁk as a vector space over QTT

Write V for‘fif(g , the vector space over Q generated
by the roots. Then dimQ V=4. Let y eV . Since the
Killing form is nondegenerate there exists an H; e<j¥/such that
(H,H;) = v(H) for all He ‘A . Define (y,5) =(H;,Hg) for
all vy, 8 e V. This is a symmetric, nondegeneratez positive
definite bilinear form on V .

Denote the collection of all roots by £ . Then £ is a

subset of the nonzero elements of V satisfying:

(0) ¥ generates V as a vector space over Q .



(1) ceZf= ~-aet and ka ¢ £ for k
an integer # 1.
(2) 2(a,B)/(B,B) e Z for all a, BeX.

(Write < a,p > = 2(a,p)/(8,8) . These are called

Cartan integers).

(3) ¥ is invariant under all reflections
wa(a e ¥) (where w, is the reflection in the
hyperplane orthogonal to a , i.e.,

WV =Y - 2(v,a)/(a,a) a) .

Thus ¥ 1is a root system in the sense of Appendix IT.
Conversely, if ¥ is any root system satisfying condition (2},
then ¥ 1is the root system of some Lie algebra.

The group W generated by all W, is a finite group

(Appendix I.6) called the Weyl group. If {al, ceey a{} is

a simple system of roots (Appendix I.8), then W is generated

by the w (i =1, ..., n) (Appendix I.16) and every root is
i

congruent under W to a simple root (Appendix I.15).

Lemma 1: Fecr each root o« , let H; € a¥‘ be such that
T
(H,H ) = a(H) for all He . Define H = 2/(c,a) H  and

H, = H, (i=1, ..., ¢) . Then each H, 1is an integral linear
i

combination of the Hi .

Proof: Write Wy for W, € W .. Define an action of W on ikﬁ
i

i Hi - < a.,0, > H? .

J J J 1 1

I

by WiH

T T T s ST T 3T IR (T T T e




Then
w.H. = 2 w. H
i7] _(aj,aji
2(a.,a.)
2 2 i’ '
== H - . —
iaJ,aJﬁ J (aj,ajS (aikaii i
o 5 2(ai,aj) o
j (o 0] (aj,aj7 i
= Hj - < ai,aj > Hi
= H
W. Q.
1)
Then since the Wi generate W , ij is an integral linear

combination of the Hi for all we W. Now if o 1is an
arbitrary root then o = waj for some we W and some Jj .

Then H_ = H = wH = wH. = an integral linear combination
(o} WQ . a j

J J
of the H. .
i

For every root a choose X, eLZfa , X, #0 .

If o + B #0 define by [Xa,XB] =N, g & . Set

No,p 8 Totg

N =0 if o + B 1is not a root.
a,B

If o and B are roots the a=-string of roots through

B

is the sequence 8 - ra, ..., B, ..., B + qz where B + ia
is a root for - r <i<aq but B - (r+l)a and B + (q+1)a

are not roots,

Lemma 2: The Xa can be chosen so that:



(a) [XCL,X-'C'C]": HO: .

(b) If o and B are roots, B # o, and |-

B - rd, eeey By ¢+o. B+ qo 1is the a-string of

roots through @ then Ni,B = q(r+l)|a+B|2/|B[2 .

Proof: See the first part of the proof of Theorem 10, p. 147 in

Jégdbson, Lie Algebras.

Temma 3: If o, B and o + B are roots, then. q(r+l)|a+5|2/[g[2

Proof': We use two facts:

() r-q=<28,a>.

(For w, maps 8 -ra to B +aqa so B+ qa = wa(B - ra) =

B -ra - 2(B - ra,a)/(a,a)a =B - < B,a > ¢ + ra) .

(**) In the a-string of roots through B at

most two root lengths occur.

(For if Vv is the vector space over Q generated by « and

B and ' =NV , then > is a roAt ‘system and every root
in the a-string of roots through B belongs to Z? . Now

v is two dimensional; so a system of simple roots for Zq

has at most two elements. 3Since every root in Zv is conjugate‘
under the Weyl group of Zq to a simple root, 2? and hence

the a-string of roots through B has at most two root lengths).




We must show that q|a+8|%/[8|° =r + 1 . Now by (%):
r+1-qlet8|?/|gl% =q+<ma>+1 - q (atp,0+B)/(8,8)
| _ 12112
=< g, >+ 1 -qla|/[B]* ~ g< a,B>
= (< By >+ 1)1 - qlal?/]8]%) .

Set A =< B,a >+ 1 and B =1 - q]a[z/lalz.;
Wé must show A =0 or B =0, _

1r lof > [B] then [<p,a>| =2[(p,a)]/|a|? <
2|(B,a)|/|5|2==|< a,p > . By Schwarz?s'inequality |
< B,a > < a,p>=k (a,B)z/[QIIBI < 4 with equality if and only
if a =kB . Since a and B are roots and a« # * B we
have a # kB so < B,a > < a,B >< 4 ,l Then since
< B,a >< | <a,8 > we have < B,'ja >=-1,0, or 1. If
<B,a>=-1 then A=0. If <B,a> >0 then
[B + 2a| > {Bb+ al > |p| . Since there are only two root léngths
B+ 21 is not a root and hence q =1 . Since |B + a| > |a]
and |B + al > |B| and at most two root lengths occur [al = [BI .

Hence B =0 .

If o] < || , then [a + B] < |B| (since otherwise three

root lengths would occur). Hence (a,8) <0 so <a,B><O0.

Then [B - af > |B| > |d|= So B - a -is not a root and hence r =0 ,
As above <a,p><B,o><h and [< a,Bl >| < [< B,a > so
<a,p>=-1,0, or 1 . Hence <a,B >=-1. Then by (%)
Q=-<B,a>=<B,a><Ka,p>= IB|2/|a[2 . Hence B =0.




We collect these results in:

The Hy (i=1, 2, s.., 2) chosen as in Lemma 1 together
jwlth the Xa chosen as in Lemma 2 form abasis for ;Zf relative to
hich the equations of structure are as follows (and, in particular,

re integral):

i
O

X 1=x a0, >X

(¢) [X,,X_J =H = an integral linear combination

of the 'Hi .
(a) [Xa’XB] = + (r+l)Xa+B if a+p 1is a root.

(e) [Xa’XR] =0 if a + B #0 and o+p is not a roet.

3

Proof: (a) holds since fL( is abelian. {(b) holds since
[HB,Xa] = a(HB)Xa =< a,p >X . (c) follows from the choice of
the Xa and the Hi and from Lemma 1. (d) follows from

Lemma 2(b) and Lemma 3, . (e) holds since [Jf;,;(%] =0 if

a+p 1is not a root.

Remarks: (é) Such a basis is called a Chevalley basis. It is

unique up to sign changes and automorphisms of ;i?.

(b) Xa, Xua and Hq span a 3-dimensisnal subalgebra

isomorphic to st, (2x2 matrices of trace O).



X <—> |0 1 X <—10 0 H <—> |1 0
a -a a _
0 0 11 0 0 -1
(c) As an example let ;Zf = 8,40 -
Then fx('= {diagonal matrices}] is a Cartan subalgebra.
For i, =1, vee, 241 , i #3j , defitne o =al(i,j) by
a(i,j): diaglay, .oy @y q) —> a; - aj . Then the a(i,j) are

the roots. Let E, j be the matrix unit with 1 in the (i,3)

’

position and 0O elsewhere, Then

=By g0 Fa T Eya 0 By T By 5 - By g oand Hy =8 - Bay e

Exercise: If only one root length occurs then all coefficients

Hin (d) of Theorem 1 are Y 1 . Otherwise To and T 3 can occur.

§2. A basis for 7L

Let Ei? be a Lie algebra over a field k and ’ZL an associa-

tive algebra over k . We say that o : ;f —> 424 is a homomorphism

if:
(1) o is linear.

(2) wlX,Y] = o(X)o(Y) - o(T)e(X) for all X, Y e.L .

A universal enveloping algebra of a Lie algebra ;Zf is a
couple (?Q,@) such that:

(1) ﬁZL is an associative algebra with 1.

(2) ¢ is a homomorphism of ;tf into<ZZ .



§2. A basis for ﬂ

Let ;x? be a Lie algebra over a field k and ?ZL an associa-

tive algebra over k . We say that o : )f —_ ch is a homomorphism

if:
(1) ¢ is linear.

(2) olX,Y] = o(X)o(Y) - o(Y)o(X) for all X, ¥ ef .

A universal enveloping algebra of a Lie algebra ;Z? is a

couple (QQ,@) such that:

(1) /zé-is an associative algebra with 1.

(2) o® is a homomorphism of sz into/ZZ .




(3) If () is any other such couple then there exists

a unique homomorphism © :?Q——> (L such that © o = |

and 8 1 =1 .

For the existence and uniqueness of (?Q,;w) see,. e.g., Jacobson,

Lie Algebras.

Birkhoff-Witt Theorem: Let ;ti be a Lie algebra over a field k

and (?l,w) its universal enveloping algebra. Then:

(a) @ is injective.

(b) 1If JC is identified with its image in 4 and if
Xl’XZ’ ey Xr is a linear basis for';z? , the

k k k
monomials Xll X22 ...er form a basis for éZZ,

(where the ki are noanegative integers).

The proof here too can be found in Jacobson.

Theorem 2: Assume the basis elements {Hi,Xa} of ;i? are as

in Theorem 1 and are arranged in some order, For each choice of

numbers ng, m, N/ (i =1,2, ..., 2 ; o ex) form the product,
H. m

in ﬁQL, of all (;nl ) and Xaa/maf according to the given order,

i
The resulting collection is a basis for the :zz—algebra /Zé
generated by all Xg/m! me Z¥ ; aex)

Remark: The collection is a QT—basis for ﬁ&i by the Birkhoff-Witt

Theorem.
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The proof of Theorem 2 will depend on a sequence of lemmas.

Lemma 4: Evéry polynomial over Qir in 4  variables ‘Hl’ e H&

which takes on inteégral values at all integral values of the

variables is an integral combination of the polynomials

% i | +
17 0 where n; e Z and n, < degree of the polynomial
i=1 i
in H; (and conversely, of course).
Proof: Let f ©be such a polynomial. We may write
r H£
f= T 1. ) , each fj being a polynomial in Hl’ ceey HL-l .

j=o I 3

We replace H, by H, + 1 and take the difference. If we do this

1 1
r times we get fr . Assuming the lemma true for polynomials in

£-1 variables (it clearly holds for polynomials in no variables),
H

4
r\r ) from f and

hence for f., we may subtract the term f

complete the proof by induction on r .

Lemma 5: If a 1is a root and we write X, Y, H for

X , X H , then

' min(m,n) | ) H-m-n+2] .
(X"/mt) (¥/n1) = T (Yn'J/(n-j)¥)<i\ o ET (m-5) 1)
J

j=o

Proof: The case m=n =1, XY =YX + H , together with

induction on n yield X(Y%/n?) = (Y"/n?)X + (Yn"l/(n-l)!)(H—n+l) .

This equation and induction on m yield the lemma,
H

o ‘
Corollarz: EBach . \> is:h1<2€2z.
n
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Proof: Set wmw=n in Lemma 5, write the right side as

g\ neloo H-2n+2j) .
<~ )4— S (Y (n-j) 1) ‘ (X*"J9/(n-j)1) , then use induction
J

n Jj=o

on n and Lemma 4.

Lemma 6: Let ;fzzh@ the j%GSpan of the basis {Hi,Xa} of ;fj.
Then under the adjoint representation, extended to ﬁLﬁ, every

Xg/mi preserves % and the same holds for ;fz@ Z:ZGD cee

Z)
any number of factors,

Proof: Making Xg/mf act on the basis of ;i:zywe get

(Xg/mi)-XB =T (r+1)(r+2) . . . (r+m—1)/m§XB+m if B # -«

(see the definition of r = r{a,p) in Theorem 1),

_ 2/0).% = b, = |
Ko kle = Hy o (Xa/z) o =%y Xy =-<aa; 2K,

a
and O 1in all other cases, which proveS;€-7'is preserved. The

second part follows by induction on the number of factors and:

Lemma 7: Let U and V be ;flmodules and A and B additive
subgroups thereof, If A and B are preserved by every Xg/mf

then so is A®B (in U®V)

Proof: Since X acts on U®V as X®1+1@X it follows from
the binomial expansion that X"/m! acts as ¢ Xj/ji @X™ I/ (m-3) 1

whence the lemma.

Lemma 8: Let S be a set of roots such that (a) ae S =>-a ¢ 5
and (b) a, BeS, a+Be=>a+peS (e.g. the set of

m
positive roots), arranged in some order. Then | TT Xaa/mai Ima > 0}
aeS
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is a basis for the .ZZ-algebra sz generated by all Xg/mE
(@ e S ; m>0)

Proof: By the Birkhoff-Witt Theorem applied to the Lie algebra for
which {Xala e S} 1is a basis we see that every A e(:Z is a
complex combination of the given elements. We must show all co-
efficients are integers. Writé A=cTT X:a/mai + terms of at
most the same total degree. We make A act on ;Zf();iba’ <o

(T m, copies) and look for the component of A‘Qg) X_Q,GD- . "SDX_Q

m, copies
in ik%@jx[ﬁb‘ - + . Any term of A other tham the first leads to
a zero component since there are either not enough factors (at least
one is needed for each X-a) or barely enough but with the wroﬁg
distribution (since XB'X—a is a nonzero element of fh( only if

=qa) , while the first leads to a non-zero component only if

the Xa?s and the X_a?s are matched up, iﬁ all possible permu-
tations. It follows that the component sought is cH, - ¢ - OH, -
Now each H, 1s a primitive element onZ?ZZ (to see this imbed «a
in a simple system of roots and then use Lemma 1). Since A
preserves ;fzz§>z?zzﬁ>- . - by Lemma 6 it follows that c¢ e Z ,

whence Lemma 6.

H, - k
Any formal product of elements of &ZZ,of the form n

or Xg/m3 (m, ne EZ+ ;'k € /) will be called a monomial and the

total degree in the X's its degree.
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Lemma 9: If 8, ye ¥ and m, n e Z% , then (X?/m!)(xg/nf) is
an integral combination of (XS/nY)(X?/mY) and monomials of lower

degree.

Proof: This holds if B =y obviously and if B = - y by Lemma 5,
Assume B # ¥ Y . By Lemma 8 applied to the set S of roots of the
form iy + jp (i, j e':Z%), arranged in the order B8, v, B + Y, ...
we see that (X?/m?)(Xg/n?) is an integral combination of terms of
the form (Xg/o1)(X(/ct)(Xg,,/d1) * « . The map X —> o (o e S)
leads to a grading of the algebra_cz with values in the additive
group generated by S . The left side of the preceding equation

has degree nB + my . Hence so does each term on the right,

whence b, ¢, - . . are restricted by the condition bp +.cy

+ d(g+y) + - + - =nB +my , hencealsoby b+c+2d+ .+ ¢« =n-+m.
Clearly b+ c¢c +d + . . . , the ordinary degree of the above term,

can be as large as n +m only if b +c=n+m and d=-+ + - =0

by the last condition, and then b =n and ¢ =m by the first,

which proves Lemma ©.

Lemma 10: If ¢ and 2 are roots and {f is any polynomial, then

N2

n —
X, f(HB) = f(H gl 1%,

1

5 - na (H

Proof: By linearity this need only be proved when f is a power

of H, and then it easily follows by induction on the two exponents

B

starting with the equation XaHR = (H, - a(HP))Xa

8

Observe that each «a(H is an integer.

B)
Now we can prove Theorem 2. By the corollary to Lemma 5
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each (jii) is:ul/ZéZZ, hence so is each of the proposed basis
elements., We must show that each element of’/Zﬁzz.is an integral
combination of the latter elements, and for this it suffices to
show that each monomial is. Any monomial may, by induction on the
degree, Lemma 9, and Lemma 10, be expressed as an integral combina-
tion of monomials such that for each «a the. Xa terms all come
together and in the order of the roots prescribed by Theorem 2,
then also such that each o is representea at most once, because
(X/m1) (X"/n7) =:<m:n> XM/ (m4n)s . The H terms may now be
brought to the front (see Lemma 10), the resulting polynomial
expressed as an integral combination of TT'( 1) s by Lemma 4,

n.
1

each H; term shifted to the position prescribed by Theorem 2,
and Lemma 4 used for each Hi separately, to yield finally an
integral‘combination of basis elements, as required.

Let aZ? be a semisimple Lie algebra having Cartan subalgebra
jk(. Let V be a representation space for ;f . We call a

vector v e V a weight vector if there is a linear function X\

on f}%(such that Hv = »N(H)v for all H €%1(, If such a v # 0

exists, we call the corresponding X\ a weight of the representation.

—

Lemma 11: If v 1is a weight vector belonging to the weight X\ ,
then for o a root we have XOV is a weight vector belonging

to the weight A +a , if X v #0 .

Proof: If H éﬁk{, then HXaV =X (H+ o(H))v = (N + a)(H)Xav .

ol
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Theorem 3: If Zzi is a semisimple Lie algebra having Cartan

subalgebra TE{—, then

(a) Every finite dimensional irreducible é(i-module v
contains a nonzero vector v+ such that V+ is a
weight vector belonging to some weight A and

Xav+=0 (¢ > 0)

(b) It then follows that if 7V, is the subspace of V

A
consisting of weight vectors belonging to A , then
dim VN =1 . Moreover, every weight u has the form
A - Xa , where the a's are positive roots. Also,

V=3V, (¢ a weight).

h

(c) The weight A and the line containing v’ are

uniquely determined.

(d) A(H) eZ. v for a>o0.

(e) Given any linear function A satisfying (d), then there
is a unique finite dimensional :tf-module V in which

A is realized as in (a).

Proof: (a) There exists at least one weight on V since jA( acts
as an Abelian set of endomorphisms. We introduce a partial order
on the weights by < v if v - # =%a (o a positive root).
Since the weights are finite in number, we have a maximal weight X\ .
+

Let v be a nonzero weight vector belonging to A . Since

AN+ a 1is not a weight for o > 0, we have by Lemma 11 that

XOLV+ =0 (a > 0)
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(b) and (c) Now let W'=:Q:v+ + ¥ V. . Let ;ti’ (Qif)

s

<N T
be the Lie subalgebra of 26. generated by Xa with o < 0 (a > 0) .

- 0 +
Let /ZL , ﬁbi, , and ¢Z(, be the universal enveloping algebras
of X7, A, and At respectively. By the Birkhoff-Witt

o
theorem, ﬂQL‘ has a basis { [ Xg(a)} ,ﬁLL has a basis
a <0

1 .
(17 H?l} ,KZL+' has a basis | [T Xg(q)} , and‘?z, the

i=1l a > 0
universal enveloping algebra of Ji , has a basis
+

{ TT'O Xg(a) T%ini Xg(a)} where m(a) , n; , pla) € Z .
o < i=

Hence,62[-=¢2<:.1quZZf- Now W is invariant underﬂ&tﬂ . Also,
V =<&Lv+==7{-QLO v’ =:7(~ v’ since V is irreducible,‘2L+v+ =0,

‘and ﬁLLOv+ = QE v’ . Hence V = W and (b) and (c) follow.

(d) H0 is in the 3-dimensional subalgebra generated by

H, X X . Hence, by the theory of representations of this

e’ Ta’ T-a.

subalgebra, k(HO) eZZﬁ- (See Jacobson, Lie Algebras, pp. 83-85.)

(e) See Séminaire "Sophus LIE," Exposé n° 17.

Corollary: If » 1is a weight and a a root, then y(Ha) e /.

Proof: This follows from (b) and (d) of Theorem 3 and

B(Ha) =< B,a > e for ¢, BeX.

Remark: A, vt are called the highest weight, a highest weight

vector, respectively.

By Theorem 2, we know that the ZZ—algebraﬁzzzz;generated
by Xg/m! (o e T, m €'Zlf) has a-Zifbasis




Xm(a)

20 m%ai? .TT n% I 5%577 m(e) , n; , pla) e 77"
a i= ;

- + 0
Now if uz ) u , and %Z denote the Z—algebras generated by
H.

1

Xg‘/m! (a < 0) , ng/ml’ (e > 0) , and respectively,

then 7/1 u Z Z Z

Lemma 12: TIf wu e/Q—Z and v' is a highest weight vector, then

n.
1

+ . + . +
the component of uv in C v is nv for some n eZ .

: + .
Proof': We know that IZ/{,Z v+ = (0 and /ZC v c =z v .

1"

o< N

Hence the component is nonzero only if u e’Z(,Z . Now

H, N
1] acts as an integer on Cv by Theorem 3 (d), so

W v =2Zs

Lemma 13: Let P be a point of Z% and S a finite subset
of Z_L not containing P . Then there is a polynomial f in £

variables such that:

Proof: 1ILet P (pl, Py , py) with p GZ., i=1, 2, , 4
L [ Hi-p.+ Xk “H, + p, +k
Set  f (Hy, Hy, ..., H)) = ;Eg
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We see that fk(P) =1 and fk takes the value zero at all other
points of Zlé within a box with edges 2k and center P . For
k sufficiently largé, this box contains S .

If V is a véctor space over Qf and M is a finitely
generated (free Abelian) subgroup of V which has a /7 -basis
which is a Qr—basis for V, we say M is a lattice in V .

We can now state the following corollaries to Theorem 2.

Corollary 1:

(a) Every finite dimensional ;fimodule V contains a

lattice M invariant under all Xg/m? (e e £, m e'ZZ+)

7z

ib) Every such lattice is the direct sum of its weight

i.e., M is invariant under /2{

components; in fact, every such additive group is.

Proof: (a: By the theorem of complete reducibility of representa-
tions of semisimple Lie algebras over a field of characteristic O

(See Jacobson, Lie Algebras, p. 79), we may assume that V 1is

irreducible. Using Theorem 3, we find v" and set M =:72.ZZV+ .

M is finitely generated over jzz since only finitely many monomials

Z

in 72;2 fail to annihilate v+ . Since ﬁlé-v+ = V. and since i&f
spans w over QC , Wwe see that M spans V over QC'. Before
completing the proof of (a), we will first show that if

Zeyvy = 0 with o Al v e M and v, # 0, then there exist

n, e ZZ, ny # 0, such that egn, = 0 . To see this, let

. + .
ue ZKZZ be such that the component of uv; in d:'v is nonzero.
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Then Zciuvi = 0 1implies Zcini = 0 where 'niv+ is the component
of wuv, in C+v" . We nave n; € 7. by Lemma 12 and ny #£0 by
choice of u . Finally, suppose a basis for M is not a basis for
v . Le 12 be minimal such that there exist vy, ..;, v, e M
linearly independent over 'Zi but linearly dependent.over d:.
Suppose iél c;v; = 0 . Then there exist n; e Y n; #0 such

L 1

Y ¢.v. = ¥ c.(n vy

L
that 2 c.n., =0 . We see that 0O = A ) 5 (ng - nivl) .

n
j=p 1 1
Since ny vy - D3V i=2, 3, ..., + are linearly independent over ZZ ,

we have a contradiction to the choice of Vi Vos eees Vo Hence,

M is a lattice in V ,

(b) Let M be any subgroup of the additive group of V
invariant under i&ézz . If g is a weight, set ¢
P, = (m(Hl), u(Hz), cees a(H%)) € ZZ{'. For a fixed g 1let

S ={P [N a weight, N# s} . Let f be as in Lemma 13 with

»P = Pﬂ . If u= f(Hl, cees H&) then u e 2[22:, and u acts
on V 1like the projection of V onto V# . Thus, if v e M, the
projection of v to VM isin M, and M is the direct sum of

its weight components.

Corollary 2: Let ;ii be faithfully represented on a finite dimensional

vector space V . Let M be a lattice in V invariant under U .
2., Z £

Let be the part of which preserves M. Then 26 is a

lattlce, and Z = EZX + .i/zwhere ﬁ%( {H e%(] +{H) e

for all weights g of the given representatlon}. In particular,
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'Zfzz is independent of M . {(But, of course,agzZ is not inde-

pendent of the representation. )

Proof: We revall that associatecd with the representstion on V ,
there 15 a representation on the dual space V' of V called

1o

the - contragredient representation given by < x, &y > = - < &x,y\ >

=l
e

where xeV , v 2V . L e Rf and where < x,y% > denotes the

A g
pad

value of the linear function y at x . If M is the dual

lattice in V' oor M ; i.e., <M, M > C']Z_ thicn cicas y L e Qf

preserves M  if and only if < preserves M . We know that
¥V @ V'  is isomorphic with End(V! and that the tensor product
of the two represesntations corresponds to the representation

L A > [4,AT "2 ¢ Qf, L 2 BEad{¥)) of <;f in End(V) (See Jacobeon,

b
>

Lie Algebras, p. #2). HNow End(M) ~¥ @ M is

attice in Fnd(V)

vl

since the tensor vprcauct oI two lattices is a lattice. Also, ;Z?ZZl

is a lattice in <Zf since ;Z? , C End(M‘ and dim ;f7i> dim
Z= - z*7% e

because &l F. anw. X ava in Since ﬁLﬁ preserves
: 0 EZ
vif" M and ™" i’L{LW preserves M3 M~ by Lemma 7, and hence‘zz.Zz
o preserves tne lattice -. - =v <4 urder the adjoint representation.
s X p
By Coroilary o (v, X —y= T (Z x (1.2 ) + 4
A a yA 7

2 . : 72
ow oo ol implier I e X r’)XZ ir X /n

C i
. 2 =
spans @xcﬁ,a_,z over / for n e Z , n>1, then

d(Xfa/ZS)(Xa/n) = X~a/n e ;jzz . Hence -~ (ad Xa/n)2 (X~a/n)
= 2 Xa/n3 s'Zfzz . Thus, Z/n3 e (1/n) Z which implies 2/n2 e
and n =1, Hence, Z?X (7;flﬁ:= Z?X .

a L (04

T

DB s ol e b £ oy L
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Example: Let Z be the 3 dimensional Lie algebra generated by

X, Y, and H with [X,Y] =H, [H,X] =2X, and [H,Y]=- 2Y.
et V= z and let M be the lattice in af spanned by X, Y,
and H . Then since the only weights of the adjoint representation
are '-'-_oc,O with a(H)zz,f =ZX+ZY+Z(H/2). Now Zf

?
is isomorphic with K = si, on a 2 dimensional vector space v

Here H corresponds to [é ’_g] and the weights are - ,u,O

with u(H) =1 . Hence xi = /X + ZY +ZH and fz#rsz

We are now in a position to transfer our attention to an
arbitrary field k . We have already defined the lattices
M, fz, WZ, Mﬂ = V//_ ﬂ M, and Z ch . Considering these
lattices as Z-modules and considering k as a /Z -module,

we can form the tensor products, V~ =M Ozk ik I @Z k,

W@Zk o=, @k, and xS = 2%, @,k . Ve

then have:

- Corollary 3:

k Vk:dw‘m v

k' n - @ ot

k
(b) K = ZkXé{ +i}/k (direct sum), each

Xg # 0, dimkﬁ{k = dim C%(’ and d:'Lmk%k = dimC;f.

Proof: This follows from Corollaries 1 and 2.

(a) V =2Vi(, (direct sum) and dim
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1 § 3. The Chevalley groups. We wish to study automorphisms of Vk

of the form exptX (t e k, ¢ € £) , where

: < .nen
exptX —-nzo t Xa/n?
. The right side of the above expression is interpreted as follows.
gince Xg/n? e:‘ZLZ?, we have an action of Xg/n! on M. Thué,
‘we get an action of hnXg/nF on ]W@DZZZZEKJ . i}nce Xg acts
‘as zero for n- sufficiently large, we see that E hnXg/nf acts
on M @ZZ [A] and hence on M @ZZ[M @;;O Following this
last action by the homomorphism of M (:)ZZZZ[AJ (:)sz c\_)into
VK =M (:)sz given by A => t , we get an action of T tnXg/n!
on Vk . =0

We will write l:a(t) for exptX —and ){; for the group
{jca(t)lt e k} (clearly jca(t) is additive in t). Our main
object of study is the group G generated by all 9{ o (¢ e T) .

We will call it a Chevalley group.

co H
Exercise: Interpret ¥ to N Uie;flczz, t ek, t #-1).

n=0
Lemma 14: Let CZC be an associlative algebra, A € CZ, and let

d, be the derivation of (/. , dy, =%, - r, where

A

B = AB, rAB =BA, Be CZ .  Suppose exp dA’- exp &A, exp Ty,

Y
and exp A have meaning and that the usual rules of exponentiation

apply. Then exp d, =1 (= conjugation by exp A).

exp A Texp(-A)

Proof: exp d, = exp ¢, exp(-r,) = Texp A Texp(-A)




22

Lemma 15: Let a, B be roots with a + 8 # 0 . Then in the ring

of formal power series in two variables t, u over’Z[Zz,‘?zzz[Et,u]] ,

we have the identity

. N — 1.J
(exp X, expquB) TT exp Cijt u Xia+j8

where (A,B) = aBa~1p-1 , Wwhere the product on the right is

taken over all roots idia + jR (i,j e ZL%) arranged in some fixed
order, and where the cij's are integers depending on a, B, and

the chosen ordering, but not on t or wuw . Furthermore Cll = Na B
b

Proof: In ﬁbb[[t,u]] set f(t,u) =

(exp tX_, exp uXB) TT exp (-cijtluJ Xia+jB)

where cij € GC . We shall show that we may choose the cij‘s

in /Z such that f(t,u) =1 .
d —
We note that t T (exp tXa) =t Xa exp tXa .

Thus, using the product rule we get

d _
t 3 f(t,u) =t Xa f(t,u)

+ exp(t Xa)exp(u XB)exp(—t Xa)exp(—u XB

. - 1,3
TT expf Cijt u Xia+jR

+ ¥ (exp tX , exp u XB)

. i.J . k ¢
TT exp(-c. .ttudx ) (~cp gkt uX

ia+ip 1) ia+3jR
>ko+4B

ka+&5)

i3]
'Il exp{-c. .t u'X. . ..)
ia+3iB 1J ia+jR

<ka+ip
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. . y k ,
We bring the terms -tXa and («)—ckth u%Xka+&B to the front

using, e.g., the relations

(exp u XB)(QtXa) = (exp ad u XB)(-t X,) exp u XB

(see Lemma 14) and

(exp ad u XB)'(-tXa) = - tX - NB’atu Xa+B - e

We get an expression of the form A f(t,u) with A G:Zf[[t,u]] .
Because f(t,u) is homogeneous of degree O relative to the
grading t —=> -0ao , u-=> -8 , XY -y , A 1is also, and from
formulas such as those above we see that Crp 1s involved in the
term (%) above but otherwise only in terms of degree > k + 4

. _ k 4 .
in t and u . Thus A = %\l ('Ck% + pki)t u Xka+&3 with p, ,
y Y

a polynomial in cij‘s for which 1 + j <k + ¢ .

Now we may inductively determine values of ck& € Q:

using the lexteagraphic ordering of the cinS such that A =0 .
Then t %E f(t,u) =0 implies f£(t,u) = f(0,u) =1.

To show that the Ciqu are integers, we examine the
coefficient of t*ud in the definition of f(t,u) . This co-

efficient is -c.. X. ..  + (terms coming from exponentials of
ij Tia+iB

multiples of Xk0+%B with k + £ < i + j) . Using induction, we
see that 5 Xia+jB € ¢ZC;Z_. Hence, i3 e /., by Theorem 2.
If i =3 =1, the coefficient is - Cqq XG+B + Na,B Xa+B R

so that cll = NQ,B .
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Examples: (a) If « + B is not a root, the right side of the
formula in Lemma 15 is 1 . (b) If o + B8 1is the only root of the
' ‘ . I
. o, B , and Na,B = - (r+1) ,
with r =r(a,8) as in Theorem 1. ({c) If all the roots have one

form ia + jB , the right side is exp N tu

length, the right side is 1 in case (a) and exp(f tu) in case (b).

Corollary: If exp tXa , etc. in the formula in Lemma 15 are replaced

by )Ca(t) , etc., then the resulting equation holds for all t, u e k .

We call a set S of roots closed if o, B e S, a +B e X
. implies o + B € S . The following are examples of closed sets of
roots: (a) P = set of all positive roots. (b) P - {al , a a
simple root. (c) P, = fa|ht « >r, r>1.

We shall call a subset I of a closed set S an ideal if

ael, BeS, a+PBeS implies o + B e I . We see that

(a), (b) and (c) above are ideals in P .

Lemma 16: Let I be an ideal in the closed set S . Let EES and

}fl denote the groups generated by all ){a (. e S and a e I,

respectively). If o e S implies - o ¢ S, then }EI is a normal

subgroup of B{S .
Proof: This follows immediately from Lemma 15.

Lemma 17: Let S be a closed set of roots such that o € S implies

.,
- a é S , then every element of BtS can be written uniquely as

ﬁ TT- j(a(ta) where tu e k and the product is taken in any
- a e S

fixed order.




" ideal in S . Hencé -}(S = }éal j% 5-{a

Lemma 18: Let %? be a group with subgroups 561 ,;{2, ...,E%j
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Proof: We shall first prove the lemma in the case in which the
ordering is consistent with heights; i.e., ht ¢« < ht 8 implies a < B .
If oy is the first element of S, then S - {al} is an

] Using induction on
1

the size of S, we see >€S = TT .%ia .

Now suppose v e }{S , v =1T x,(t,) . Since Xgl #£0 ,

there is a weight vector v e M corresponding to a weight A such
that Xal v#0. Now yv=v+ talXalv + 2z where velV, ,

ta X v e'VA&a , and 2 is a sum of terms from other weight

1% 1
gspaces. Hence t, € k 1is uniquely determined by y . Since

1
,_ -1 .
X (e ) y € ){ , Wwe may complete the proof of this
a; oy S-{a

case by induction,

1}

The proof Lemma 17 for an arbitrary ordering follows immediately

from:
r
such that: _
(a) }E=: }(i 352 e >6r’ with uniqueness of expression.
(b) Bii ?Ei+l... BEI, is a normal subgroup of X for

i=1, 2, ..., r.

If p 1is any permutation of 1, 2, ..., r then ){ ::BiFﬂ-3£'p2'.. pr

with uniqueness of expression.
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Proof: (Exercise) Consider }(,/}sr and use induction.

Corollary 1: The map t -> )Ca(t) is an isomorphism of the

additive group of k onto }fa .

Corollary 2: Let P be the set of all positive roots and let

U= )€P . Then U =:TT'}€Q with uniqueness of expression, where

the product is taken over all o € P arranged in any fixed order.

Corollary 3: U is unipotent and is superdiagonal relative to an

appropriate choice of a basis for vE Similarly, U™ = }E; P

is unipotent and is subdiagonal relative to the same choice of basis.

Proof: Choose a basis of weight vectors and order them in a manner

consistent with the following partial ordering of the weights:’

g precedes v if p - v is a sum of positive roots.

Corollary 4: If i > 1 1let Ui be the group generated by all ‘}Ea

with ht a > i . We have then:

(a) Ui is normal in U .

(b) (U,Ui) cu in particular, (U,U) C U, .

i+l
(c) U 4is nilpotent.

Corollary 5: If P =QUR with Q and R closed sets such
that QNR =@ , thHen U = %QiR and \fQﬂ}{R ~1 .

(e.g.,

if a is a simple root, one can take Q = {a} and R =P - {a}
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Example: If 26 = S&L+1 , Wwe have seen that the roots correspond

to pairs (i,j) i # j , the positive roots to pairs (i,j) i< 3 ,
and that we may take Xij = Eij , the usual matrix unit. Thus,
Xﬁj(t) =1 + tEij‘. We see that U = {all unipotent, superdiagonal

matrices}, U~ = [all unipotent, subdiagonal matrices}, and that:

G 1is SL£+1 , the group of 1 4+ 1 square matrices of determinant 1.

Thé nontrivial commutator relations are: (Dfij(t) s )Cjk(u))

= Xik(tu) if i,j,k are distinct.

Lemma 19: For any root o and any t e k' define

— -1 _ -1
w (t) = X (t)x (-t77)2 (t) and h (t) =w (t)w (1)7° .
Then:
-l_ -<_B,0.>
(a) wa(t)XB Wd(t) = ct %waﬁ where
¢ = cla,p) = T s independent of

t,k and the representation chosen, and
c{a,8) =cl{a, -B)

k . ! k

(b)) If v e Vﬂ there exists v e Ve,

) ' a

/1.
~

independent of t such that
- <ﬂ.,o,>vY

(c) h (t) acts "diagonally® on V?

, as multiplication
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(Note that w, 1is being used to denote both the defined
automorphism and the reflection in the hyperplane orthogonal

to a).

Proof': We prove this assuming k = Q\. The transfer of coeffi-

cients to an arbitrary field is almost immediate,

We show first that wa'(t)Hwa(t)"1 = waH for all H e 3&1
By linearity it suffices to prove this for Ha , for if
a(H) = 0 then X, commutes with H so that both sides equal H .
If H= Ha , the left side, because of Lemma 2 and the defini-
tions of tia(t) and wa(t) , 1is an element of the three
dimensional algebra < Xa’ Ya’ Ha > whose value depends on

calculations within this algebra, not on the representation

chosen. Taking the usual representation in séz , we get
1 0 1 ¢ 1 o1 ¢ [ o ¢
Ha = and w_ (t) = -1 =) -1
0 -1 ¢ o 1|{-t7m 1} o 1 -t7 0

L— — .

so that the desired equation follows.
We next prove (b). From the definitions of ﬁca(t)

and wd(t) it follows that if

(o]

Vi o= wa(t)v , then v = 5 t'v, where v, eV

=0 JamKed

(the sum is actually finite since there are only finitely many

weights). Then for H e X, Hv' = Hwo(t)v = 1/\r(1(t)w/\ra(t)_1 de(t)v =
wq(t) (WQH)V = M(waH)v" = (Wcﬂ)(H)V" . Hence v" corresponds
to the weight W= - <, > oo, Thus the only nonzero term

in the sum occurs for i = - < r,a > .
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By (b) applied to the adjoint representation

<B, o>,

Xw 3 where ¢ e C and is independent
e '

1 -
Wa(t) XBw&(t) = ¢t

of t and of the representation chosen. Now w (1) is an

automorphism of EZ?EZ and XY is a primitive element of ¢Zf;Z

_ + . _ -1 _
fo? all y so ¢ =21 . Finally Hwaﬁ —-wd(l)Hde(l) =
-1 -1+ " ,
[w, (1) Xde(l) ;o wy (1) X_Bwa(l) 1 =cla,?)c{c,-8) HWO(B
so cla,B) = cl(e¢,-B) , which’proves (a).
-1 . _ -1
Note that wd(t) —-wd(—t) so that ha(t) = wa(~t) Wa(_l)
{ ¢ - I3
By (b) w (~t)v = (-t)” <% y' and o (-1)v = (-1)7 0T
Hence Wa(-t)_l w6(~l)v = <02y , proving (c).
Lemma 20: Write @, for wd(l) .  Then:
-1 _ )
t = =
(a) “)ahﬁ( )Q)u _ thB(t) an expression as a
product of h's , independent of the representation
space.

= X, B(ct) with ¢ as in
o

Proof: To prove (a) we apply both sides to v e V

1 <Wqﬂ,ﬂ> -1

Cuahe(t)UJa V=gt W,V (by Lemma 19 (c) applied




<wau,B>

<ﬂ,WdB>
/I) :t 'V:t

v =h (t) v . By

w_A
0

Lemma 19(a) UJQXecugl = cX .  Exponentiating this gives (D).

, w. B
By Lemma 19(c) applied to the adjoint representation
<B,a>

hOL(t)XBhOL(‘c,)"l =t X, . Exponentiating this gives (c).

Denote by (R) the following set of relations:

(R1) X, (t)x (u) = x (¢t +u) .

(x2) (3,06), Xa() = TT 3,45 (o55670)) (@ + 8 #0)
with the cij as in Lemma 15.

(R3) W (t) = 3 (£)%__ (-t71)x (t) .

(RA) h,(t) = w (thw (1)1 |

(R5) w, = (1) .

(R6) Loahe(t)uJ&l ~ some expression as a product of

h's (independent of the representation space).

-1
(R7) UJQTCB(t)QDQ =X (ct) ¢ as in Lemma 1G(a).

WOLB

(RE) h_(£)3, (u)h (£)7F = X (5P %%y

al

Since all the relations in (R) are independent of the
representation space chosen, results proved using only the

relations (R) will be independent of the representation space
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chosen. Such results will be labeled (E) (usually for existence).
Results proved using other information will be labeled (U)

(usually for uniqueness).

Lemma 21: Let U be the group generated by all }{o (¢ > 0) ,
H the group generated by all ha(t) and B the group generated
by U and H . Then:

(a) U is normal in B and B = UH . (E)

(b) UnH =1, (U)

Proof: Since conjugation by ha(t) preserves ¥ (by (R8)) U

. B
is normal in B and (a) holds. Relative to an appropriate
basis of V any element of UnH is both diagonal and unipotent,

hence = 1 .

Example: In SL = H = {diagonal matrices}, U = {unipotent

superdiagonal matrices}, B = [superdiagonal matrices}.

Lemma 22: Let N be the group generated by all wa(t), H be
the subgroup generated by all ho(t)’ and W the Weyl group.
Then:

(a) H is normal in N . (E)

(b) There exists a homomorphism o of W onto N/H

such that ¢(wd) = Hwa(t) for all roots a . (E)

(¢) @ is an isomorphism. (U)
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Proof: Sincevby (R6) conjugation by w, preserves H and by

(R4) and (R5) wd(t) ==ha(t)c»a , (a) holds. Since

Hwa(t) = Hwa(t) W (:L)"l wa(l) = Hwa(l) , Hwa(t) is independent

a
Yo adel A — { i o
of t . Write W de\t) . Then since Wa(l) e W, and
A . AR s A2 _
wd(-l) ew , l=w (l)wa(—l) €W Hence () W 1.
Also @ =w. (1) e W, so w w w ¥ e wn it
8 8 B a B a a B a
{ —l -l
But W, W Wy uﬁXB(l)X-B("l)XB(l)ooa (by (R3))
c
=X (c)x (-c)x (c) (by (R7)) = w e w .
WaB -waB de WaB WaB
9 AAA] A ) .
Thus ‘(-) LAV --wwo_B By Appendix IV. 4O the relations
(*) form a defining set for W . Thus there exists a homo-

morphism ¢ : W —=> N/H such that qw = Qa =Hw (t) . o is

clearly onto.

Suppose we ker o . If w=w_ w eee , a preduct of
1 %2
reflections, then w_ (1)w. (1) ... =h e H . Conjugating X
aq o, a
by wdl(l)waz(l) ... we get )fwa and ConJugatlﬁg by h we
get ¥ . Hence ¥ =3  for all roots o . Since wa =a

a wQ a

for all o dimplies w = 1 the proof is completed by:

Lemma 23: If o and B are distinct roots then ch7£>§3'

Proof: We know that }Ea is nontrivial. If o and B8 have
the same sign, the result follows from Lemma 17. If they have
opposite signs, then one is superdiagonal unipotent, the other

subdiagonal (relative to an appropriate basis), and the result
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again follows.

Convention: If n e N represents we W (under ¢ : W ~—> N/H)

we will write wB (Bw) in place of nB (Bn)

Lemma 24: If o 1is a simple root then

B vBwB is a group. ‘ (E)

Proof: Let S =B BwaB . Since B 1is a group and
w(wa) = m(wa)'l, S is closed under inversion, and since

82 Q,BB v BdeB u BwaBB G BwanaB CSwv BwandB it suffices to

show w.Bw C S . We first show that ¥ _ CS. If 1#yeX

then there exists t e k  such that y = X-a(t)

— -1 -1 -1
= Xa(t )wd(-t )Xd(t ) € Bw B . Hence ¥ o C S . Now let P
1

be the collection of all positive roots. Then w Bw = wan;

— -1 _ -1 - -
= W XafP-{&} Hw,™ = wa)éawa waXP-{a}wal- Yo Hwal = X—G¥P-{a} H

(since w_ preserves P-{a} by Appendix I.11) C SB =38 .

Lemma 25: If we W and a is a simple root, then:

(a) If wa >0 (i.e. if N(wwa) = N{w) + 1

(see Appendix II.17)) then BwB-deB C wadB . (E)

- ~(b) In any case BwB-Bw_ B C Bww B v BuwB . (E)
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Proof: (a) BwB-Bw,B =Bw ¥_ ¥P-{Q}HWQB =

1 -1y -1 _
Bw ¥aw ww_ W XP._{G}WGWOL Hw B = Bww B

-1 -1 _ ~1
(for w‘¥faw C B, Wy, };L{a}wd C B and Wy, de C B) .

(b)) If wa >0 (a) gives the result. If wa < O set
w' = ww, . Then W o >0 and w = wgwa . By (a) BwB.Bw B =

? ? ?
Bw waB-deB = Bw B-deB-BwaB =Bw B (B v deB) (by Lemma 24) =

ngB u Bwvde = BwB u wadB N

Corollary: If we W and w = wde .+« 1s an expression of
minimal length of w as a product of simple reflections then

BwB = Bw_BBw B*** .,
a B

Lemma 26: Let G be the Chevalley group (G =< yfalall a> ).

Then G 1is generated by all X&L, w, for a a simple root. (E)

\»;1 =X . Since the simple reflections

B W B

gene}ate W and every root is conjugate under W to a simple root

Proof: We have c»a¥

the result follows.

Theorem 4: (Bruhat, Chevallej)

(a) U BuB=2¢ . (E)
weW
(b) BwB =Bw B = w = w' . (U)

Thus any system of representatives for N/H is alse

a system of representatives for B\G/ B-.
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proof: (a) By Lemma 26 U BwB contains a set of generators
weW

for G . Since U BwB is closed under multiplication by these
well

generators (by Lemma 25) and reciprocatioen it is equal to G .
|
(b) Suppose BwB = Bw B with w, W e W,

We will show by induction on N{w) that w = W (Here N(w)

is as in the Appendix II.) If N{(w) =0 then w=1 so w e B .
Then wBw T =B so wP=P and w? =1 (see Appendix II.23).
Assume N(w) > O and choose a simple so that N(wwd) < N(w) .

9 9
Then ww_ e BwYBBwaB C Bw'B o Bw w B =DBwB v BwwB . Hence

1
by induction wW, =W or WW, T WW, . But Wi, =W implies
? ?

W, = 1 which is impossible. Hence WW, =W W S0 W=w .

Remark: The groups B, N forma B - N pair in the sense of
J. Tits (Annals of Math. 1964). We shall not axiomatize this
concept but adapt certain arguments, such as the last one, to the

present context.

¥
Theorem 4 : For a fixed w e W choose w  representing w in N .

Set Q=P n W~l(—P) , R=Pn WP (as before P denotes the
set of positive roots). Write U for *EQ . Then:
(a) BwB = B w, Uw . (E)

(b) Every element of BwB has a unique expression

in this form. : (U)
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Proof: (a) BwB = Bwf¥%ﬁfQH (by Lemma 17 and Lemma 21)
-1 _ - -1 _
= Bw%w w¥ H = BW%QH (since WXRW C B) =B wwa .

‘ R ?
(b) 1If b:uwx =b w X then

-1
-1.¢ v -
b L' = WX W 1 . Relative t@ an appropriate basis this is both
superdiagonal and subdiagonal unipotent and hence =1 .
Thus b = b? y X = X9 .

Exercise: (a) Prove B is the normaliger in G of U and

also of B . (b) Prove N is the normalizer in G of H if

k has more than 3 elements.

Examples: Let ';€'= s&n - so that G = SLn , and B, H, N

are respectively the superdiagonal, diagonal, monomiél.subgroups,
and W may be identified with the group of permutations of

the coordinates. Going to G = GLn for convenience, we get from
Theorem 4: (*) the permutation matrices S, form a system of
'representatives for B\G/B . We shall give a simple direct proof

Assume given x e G .

of this., Here k can be any division ring./ Choose b e B to
maximize the total number of zeros at the beginnings of all of

the rows of bx . These beginnings must all be of different
lengths since otherwise we could subtract a multiple of some row
from an earlier one, i.e., modify b , and increase the total
number of zeros. It follows that for some w e Sn , wbx 1is

1

. - ]
superdiagonal, whence x ¢ Bw "B . Now assume BwB = Bw B
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with w, w e Sn . Then wlbw is superdiagonal for some b e B.
Since w, wY are permutation matrices and the matric positions
where the identity is nonzero are included among those of b ,

we conclude thét wle'  is superdiagonal, whence w = W ,

which proves (%) . Next we will give a geometric interpretation
of the result‘just proved., Let V be the underlying vector space.

A flag in V 1is an increasing sequence of subspaces

Vl C V2 C «se C Vn , Wwhere dim Vi =1 , Associated with the

chosen basis {vl, ee., v.} of V there is a flag F L C ot CF

n n

defined by Fi =<V, e, v, > called the standard flag. Now

G acts on V and hence on flags. B is the stabilizer of the
standard flag, so B\G/B is in one-to-one cofrespondence
with the set of  G-orbits of pairs of flags. Define a simplex
to be a set of points {p;, ..., p;} of V such that

dim < Pys «+e5 Py >=n . A flag Vl C +«+= C Vn is said to be

incident with this simplex if V., =<p_4, «.., p 3 > for some

Ti
T € Sn . Hence there are n! flags incident with a given simplex.
It can be shown, by induction on n (see Steinberg,
T.AM.S. 1951), that (*) given any two flags there is a simplex

incident with both, Thus associated to each pair of flags
there is an element of Sn , the permutation which transforms
one to the other. Hence B\ G/B corresponds to S, . Thus
(%) 1is the geometric interpretation of the Bruhat decomposi-

tion.
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(b) Consider ;€.= (X ¢ s{m|XA + AYY = 0}

where A 1is fixed and nonsingular (i.e., consider the invariants
of the automorphism X => A(;Xt)Aml) . If m=2n and A is
skew this gives an algebra of type Cn , if m=2n and A is
symmetric this gives an algebra of type Dn , and if m = 2n+l

and A 1is symmetric this gives an algebra of type B, . If we
i 3

take A = 1 in the first case

and A = . in the second and third cases an element

y € Rf is superdiagonal if and only if ady preserves z Qfa
>0

(with the usual ordering of roots). Exponentiating we get the
invariants of X <> AX71Y 47l (that is XAX® = A) . In the first

case we get G ( Spm , 1in the second and third cases G ( SOm

(relative to a form of maximal index). (For the proof that equality
holds see Ree, T.A.M.S. 1957.) The automorphism o above pre-
serves the basic ingredients B , H , N of the Bruhat decomposi-
tion of SLm . From this a Bruhat decomposition for Spm and

SOm can be inferred. By a slight modification of the procedure,

we can at the same time take care of unitary groups.
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(c) If ;i is of type G, it is the derivation algebra
of a split Cayley algebra. The corresponding group G is the
group of automorphisms of this algebra.

Since the results labelled (E) depend only on the relations
(R) (which are independent of the representation chosen) we may

extract from the discussion so far the following result.

?
Proposition: Let G be a group generated by elements labelled

x (t) (e egx, te k) such that the relations (R) hold and let

.. bé defined as in G .

?
(1) Every element of U can be written in the
]

form ] =x_ (t_ )
wo * ¢

b4

(2) For each w e W write w = Wy Wg s oo

? T ]

a product of reflections. Define w = uéacuB coe

-
-

?
(where w, = w (1)) . Then every element of G

? ? 9 v
can be written u h WV

T ? T ? T
(where u e U h € H v € UW) .

3

: 7
Corollary 1: Suppose G is as above and ¢ 1s a homomorphism

of G onto G such that @(x;(t)) = x,(t) for all « and t .

Thens:

(a) Uniqgueness of expression holds in (1) and (2) above.
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(b) ker o C center of G C Hq

q f
Proof: (a) Suppose TT xa(ta) =TT x,(t,) . Applying o we

get T x (t, ) = T x,(t ) and by Lemma 17 t =t  for all a

? 7

Hence cplUY is an isomorphism. Now if u'h u); v' ==%fﬁvco; v
T ? g ~? vt ~ 1
by applying ¢ we get o(u Jo(h Jw  olv ) =olu Jo(h )w oV )
bl ? 1

By Theorem 4 and Lemma 21 of(u ) =o(d ) and m(vf) = m(vv) .

? et ? ot [ ~Ee v ot
Hence u =u and v =7V so h W = h &uw so h =h .

- ? Tt T 9

(b} Let x =uh w v e ker ¢ . Then

T % ¢ ? %
1 = o(u )o(h )guww(v ) € Hew U 5 so w=1,w =1, o(u ) =1,

? g
o{(v ) =1 . Hence u = v = 1 so x' = h? = TT h;(ta) . Then

I
(u)x 1= xg(TT téB’a> u) by (R8). Applying © we see
i a

that TT tiB’a> = 1 , Hence x commutes with xé(u) for

all B(xand u , so is incenter of G . To compléte the proof

it is enough to show that center of G C H (for we have shown

ker o C Hq). If x = uhcuwv € center of G and w# 1

then there exists o > 0 such that wa < 0 . Then xxa(l) = xa(l)x
which contradicts Theorem 4' . Hence w=1 so x = uh ,

Let W, be the element of W making all positive roots negative,

-1

= W
Then x W quw
0 o)

is both superdiagonal and subdiagonal. Since

h 1is diagonal, u is diagonal, and also unipotent,
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Hence u =1 and x=heH .

Corollary 2: Center G C H .-

Corollary 3: The relations (R) and those in H on the ha(t)

form a defining set of relations for G .

o~ ?
Proof: If the relations in H are imposed on H then ¢ in

Corollary 1 becomes an isomorphism by (b).

Cerollary 4: If G? is constructed as G from Zf, Ky «on

but using a perhaps different representation space V7 in place
of V , then there exists a homomorphism ¢ of ‘Gq onto G
such that w(x;(t)) = xa(t) if and only if there exists a
homomorphism 6 : Hq —> H such that 8 h;(t) = hq(t) for all

a and t .

Preof: Clearly if ¢ exists then © exists. Conversely assume
8 exists. Matching up the generators of H7 and H , we see
that the relations in H? form a subset of those in H . By
Corollary 3 and the fact that the relations (R) are the same

for G and G , the relations on x;(t), .e. in G' form

a subset of those on xa(t), ««« in G . Thus o exists.
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So far the structure of H has played a minor role
in the proceedings. To make the preceding results more precise
we Will now determine it.

We recali thaf H is the group generated by all

h,(t) (@ e T, t e k) and (%) h_(t) acts on the weight space V

as multiplication by t< /a0 > . Also, we recall that by
Theorem 3(e), a linear function on.flé is the highest weight of
some irreducible representation provided < 2, a > ==ﬂ(Ha) € 2&+

for all o > 0 . Clearly, it suffices that < g, s > € ZZ+

for all simple roots oy . Define ki, i=1,2, «.., ¥ Dby

< Ki, aj > = Bij . We see that Ki occurs as the highest weight

of some irreducible representation, and we call Aoa fundamental

weight.
Lemma 27:

(2a) The additive group generated by all the weights of
all representations forms a lattice L1 having {ki} as

a basis.

\ (b) The additive group generated by all roots is a sub-

lattice LO of L Moreover, (< @5 Oy >) i, =1, 2, ...

1 -
is a relation matrix for Ll/Lq , Which is thus finite.
(c) The additive group generated by all weights of a
faithful representation on V forms a lattice LV between

L and L

0 1-
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Proof: Part (a) is immediate from the definition of the fundamental

weights. (b) If a; 1is a simple root and a; =3 45 kj(cij e C)

then <a,, ap >=cy, and a; =% <a., oy > (c) If «a

is a root, then since Xa # 0 there exists 0 #v e VF for some

weight u© with 0 # X,ve Vﬂ+a . Hence a = (g +a) - pely

and Ly C Ly C Ly .~

"Remark: All lattices between Ly and L, can be realized as
in Lemma 27 (c) by an appropriate choice of V . 1In particular,
Ly =-'LO if V corresponds to the adjoint representation, and

Ly =L if V corresponds to the sum of the representations

1
having the fundamental weights as highest weights.

Lemma 28 (Structure of H):
(a) For each a , ha(t) is multiplicative as a function of t .

(b) H is an Abelian group generated by the h,(t)'s

(with h.(t) =h (t))

Q.
1
1
(¢c) 7T h.(t.) =1 if and only if
i=1 *
L < 1250y >
TT ti =1 for all g e Ly .
i=1

L

L < B,ai >
(d) The center of G = T hi(ti)].TT t =
i=1 i=1

. =]
i
for all B e LO} , hence is finite.

Proof: (a), (b), and (c¢) follow from (*) above. (a) and (c) are
< »(H_) £(Zn.H.)
Boa > a ivi

immediate and (b) results from t t =t

Eni < /ey >
=t if Ha = Zn; H. . For (d), we note
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z { < B,ai>=
that T hi(tr) commutes with XB(u) if and only if .TTiti
i=1 1=

1

by Lemma 19(c).

Corollary:

e

(a) If Ly =1 then every h e H can be written uniquely

l )
2 .
as h = itIlhi(ti) , by ek

(b) If Ly =1Ly, then G has center 1.

Corollary 5 (To Theorem 47): Let G be a Chevalley group as

?
usual and let G  be another Chevalley group constructed from

?
the same X and k as G but using V in place of V . If

. ?
LV'Q'LV , then there exists a homomorphism ©: G —> G such

R
that o(x (t)) = xa(t) for all a, t and ker o C Center of G ,

?

R

Qa
s

where xa(t) corresponds to xa(t) in G . If L_V =1

AAN
then © 1is an isomorphism.
i
Proof: There exists a homomorphism © : H —> H such that
?
th(t) = hi(t) by Lemma 28(c). If a is any root and

n.
Hy, =Z njH; , n; e Z |, then ha(t) =TT hi(t) 1‘ and similarly

for h;(t) . Hence eh;(t) = ha(t). By Corollary 4 to Theorem 47 ,
@ exists. By Corollary 1, ker ¢ C Center of G? . If L_=1
we have a homomorphism V¥ : G —> G such that ¢(xa(t)) = Xa(t) .

Hence, Voo = idsr : ®ol = id, , and @ is an isomorphism.
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We call the Chevalley groups GO and G1 corresponding
to the lattices LO and L1 the adjoint group and the universal
group respectively., If G = GV is a Chevalley group corresponding

to the lattice

homomorphisms a and

We call ker o

8 such that

ker B center of G

Qa

: G

1 - G

v

LV , then by Corollary 5, we have central

and B

the fundamental group of G , and we see

: GV-%> G

Exercise: The center of the universal group, i.e., the fundamental

group of the adjoint group is isomorphic to Hom(Ll/Lo’ 1.

E.g., if k = C , the last group is isomorphic with Ll/LD .

Also in this case the

fundamental group of

Center of GV

Gy = Ll/LV .

= Ly/Ly »

and the

In the following table, we list some information known

about the lattices and Chevalley groups of the various Lie

algebras Ji:

Type oiJgi Ll/LO EQ_
Ay L¥S) PSLyt
By z, P30, 141=
c, z, PSp,,
Dontl Z, PSOpn+2
D2n ZZX z2 PSOLpn
Eg 2,
£y %
g z, Go
F, z, Gy
G2 Z, Co

S

g

02441

SLin

Sping,iq

S24
Spinhn+2
Spinhn

O L]
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Here Gy 1is a Chevalley group other than GO and Gy
;z,n is the cyclic group or order n , SOn is the special orthogonal
group, Spinn is the spin group, Spn is the simplectic group, and

PG denotes the projective group of G .

To obtain the column headed by Ll/LO one reduces the
relation matrix (< Ay Oy >) to diagonal form., To show, for
example, that SLn is the universal group of c;f = st of type

A, » we let w, be the weight w, : diag(al, cesy @) > ag .

Then if Ay = @)+, 4+ Ly, 1<1i<n-1, we have

ki(Hj) =Ny (Ejj - Ej+l,j+l) = Sij . Hence the fundamental weights

are in the lattice associated with this representation. Since the
center of SLn is generically cyclic of order n , it follows that
Ll/LC is isomorphic to ;Z n in this case.

Exercise: If G is a Chevalley group, Gl, G2, ey Gr subgroups

of G corresponding to indecomposable components of ¥ , then:

‘(a) Each Gi is normal in G and G =:G1G2 se Gr .

(b) G 1is universal (respectively adjoint) if and only if

each Gi is,

(c) In each case in (b), the product in (a) is direct.

Corollary 6: If a is a root, then there exists a homomorphism

1 ¢t 1 O
9, - SL2 —>‘<§¥;,3f_d?> such that ?, [Q l] = xa(t) )y Oy [t l}
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i

[ 0 “t 0 |
X_a(t]) wa\:l =a and @, {P t--}:= ha(t)'. Moreover,

ker o = {1} or {+ 1} so that‘<§{é,'3f_é>> is isomorphic to

cither SL

1o =

2 or PSL2 .

- Proof: Let ;Zil be of rank 1 spanned by X, Y and H with
(X, Y]=H, [H, X] =2X and [H, Y] =- 2Y . Now ;f; has a

0 1 O O 1 O
. ... representation X —> o ol ¥ 1 0 H—=> 5., |28 st, ona

. ‘
vector space V and a representation X -> Xa ,y ¥ => X‘a , H —=> Ha

on the same vector space V as the original representation of ;Zf.
Since SL2 is universal, the required homomorphism ¢ exists and

has ker o C {+ 1} by Corollary 5.

Exercise: If G is universal, each ®, 1s an isomorphism.

gh. Simplicity of G . The main purpose of this section is to

prove the following theorem:

Theorem 5 (Chevalley, Dickson): Let G be an adjoint group and
assume ;Zi is simple (£ indecomposable). If |k| =2 , assume ;i?
is not of type Al, Bz, or G2 . If |k|] =3, assume ;Zf is not
of type Ay . Then G is simple.

Remark: The cases excluded in Theorem 5 must be excluded. If

|k| =2 , then G has CZ3 , ng s -SU3(3) as a normal subgroup

TRV ST ST e ey e
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of index 2 if ;(i is of type Al’ BZ’ Gé respectively. If
k| =3 and QZT is of type Ay, then CZA_ is a normal subgroup
of G of index 2. Here CZZ denotes the alternating group.

A broof of Theorem 5 essentially due to Iwasawa-andvTits

will be given here in a sequence of lemmas.

Lemma 29: Let G Dbe a Chevalley group, If we W, w= wde e

is a minimal expression as a product of simple reflections, then

Wy s Wgs +ee € G, , the group generated by B and wBwl .

Proof: We know wla< 0 by the minimality of the expression

(see Appendix II.19 and II.22). Hence if B = - wlas>o0 , then

-1 _ i
6, 2 w¥Bw = XWB X_ . Thus, w, e G . Since
wawa'lw&l C G, and since length w,w < length w , we may complete

the proof by induction.

Lemma 30: If G again is any Chevalley group, if @7 1is a subset
of the set of simple roots, if Wﬁ is the group generated by all

w,aewm, and if G = N  BwB , then
a m
' weWﬁ

(a) G 1is a group.

(b) The 2t groups so obtained are all distinct.

(c) Every subgroup of G containing B is equal to one of them,

Proof: Part (a) follows from BwB-Bw B B ww B \.J BuB .

(b} Suppose T |, T are distinct subsets of the set of simple
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roots, say a e 7! a é w . Now w, o =-a and wa =ao + T CBB
, Bem

if we Ww . Thus W, o # wo , since simple roots are linearly

independent. Hence, w_ ¢ W, W, # W, and G, #G_ since

‘distinet eléments of the Weyl group correspond to distinct double
cosets., (c¢) Let A Dbe any subgroup containing B . Set

7 = {d|a simple, w, € A} . We shall show A =G_ . Clearly,
AD GW . Since G= \J BwB and A 2 B, we need only show

' weW
H we A implies we G  toget ACG . Let wed,

w= wde .eey @ minimal expression of w as a product of simple

reflections, By Lemma 29, wa, Way «ss € A . Hence, a, B, ... €

W d we G_,
weW , an e G

A group conjugate to some Gw is called a parabolic
subgroup of G ., We state without proof some further properties

of parabolic subgroups which follow from Lemma 29,

(1) No two G _'s are conjugate.

(2) Each parabolic subgroup is its own normalizer.

(3) Gw 8 Gw‘ - Gw(\w‘

(4 BUBWB (we W) is a group if and only if w=1 or w

is a simple reflection.

Example: If G = SLn , then g corresponds to a partition

of the n x n matrices into blocks with the diagonal blocks being

n-1

square matrices, Clearly, there are 2 possibilities for such
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partitions.' Gw is then the subset of SLn of matrices whose

subdiagonal blocks are zero.

Lemma 31: Let ;(i.be simple and let G be the adjoint Chevalley
group. If N #1 1is a normal subgroup of G , then NB = G .

Proof: We first show N ¢ B . Suppose N CB and 1 # xe N R
'x>.-=uh,ueU,haH'.If u# 1, then for some

weW, wxw L ¢ B, a contradiction. If u = 1, then h #1 .
Since G is adjoint, it has center 1, and h xa(t)h—l = .xa(tv)

o v _ v
with t #t for some t, t ek, «e%T . Hence (h, x(t))

1 . \J i . .
x (t-t) e N, x (¢t -t) # 1 , and we are back in the first case.

We now prove the lemma. By Lemma 30(c), NB =G for
some m . We must show = contains all simple roots. Suppose it
does not. Since N @_B , We see ‘m #@¢ . Also since T is
indecomposable, we can find simple roots o«,B with o em , B &

and o not orthogonal to B . Let byw,b, € N, b, & B, then
. _ _ -1
bW, € N with b = byb; € B . Then Wg bwawB e N (BwawBB\_/BwaawB B)

by Lemma 25(b). - Hence either wWywy e W or wgwwe e W .
Now WaWyWg = W, where vy = Wgd =« -< a, B> B . Since
a, B> # 0, y is not a simple root and N(w WoWg % 1, so

that N(waawB)‘Z 3 by Appendix II.20. Hence WoWg and

wawaa are both expressions of minimal length. By Lemma 29,
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, a contradiction. Thus, o 1is the set of all simple roots

%

If ;Zi and G are as in Theorem 5, then G =G , the

erived group of G .

Before proving Lemma 32, we first show that Theorem 5
ollows from Lemmas 31 and 32, Let N # 1 be a a normal subgroup
of G. By Lemma 31, NB=G so G/N~*B/BNN. Now G/N equals
ts derived group and B/B ()N is solvable. Hence G/N =1

‘and N =G .

Instead of proving Lemma 32 directly, we prove the

3_f0110wing stronger statement:

*Lemma 327: If :zf is as in Theorem 5 then Gt = (G holds in any
group G in which the relations (R) hold, in fact in which the

- relations:
(A) (xgle), x () =TT x3q,5,0c; t7u)
(8) h (t) x (wh (£)7F = x (%)

Proof: Since G 1is generated by the afa's we must show that

¥
every ¥ q & G . We will do this in several steps, excluding as
we proceed the cases already treated. The first step takes us

almost all the way.

(a) Assume |k| > L . We may choose t e k t° £ 1.
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- Then (h (t) , xd(u)) = Xa((t27l)ul ; Since a and "u are

? ‘
arbitrary, everyv'}fa cCG .

By (a) we may henceforth assume that the rank 4 is
at least 2 and that lk[ =2 or 3 . By the corollary to
Lemma 15, we may write the right side of  (A) as.‘xB+Y(NB,Ytu) . TTi ,
the factor with i = j =1 having been isolated. We will use the

fact (*) that Né =+ (r + 1) ,withw r =r(B,y) as in

By,Y
Theorem 1, the maximum number of times one can subtract Yy from B

and still have a root.

(b) Assume that & is a root which can be written B + ¥
's0 that no other positive integral combination of B and y is
¥
‘a root and Ng #0 . Then Ef'a C G , as follows at once from
?

) .
(A) with J] =1 . This cévers the following cases:

(1) If all roots have the same length:

types A,, D,, E, .

(2) BL(L >3), a long ; Bz, a long, |k| =3.
(3) CL (£>3), o short; or a long and k] =3 .
(4) F, .

(5) G, , o long.

4 ' To see this we use the fact that all roots of the same
length are congruent under the Weyl group, imbed « inian
appropriate root system based on a pair of simple roots, and

use (*). In all cases but the second cases in (2) and (3)
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this system can be chosen of type A2 with B8 and ¥y roots
of the same length as o , while in those cases it can be chosen of

type B, with B agd Y short roots.

Because oi Uliie exclusions in the theorem, this leaves

the following cases:
(6} B,{¢+>2) , o short.
(7) G, , o short, lk| =3,
(8) €, {(£+23), o long, |k|=2.
, \ . ¥
(c} If (6) or (7) nolds, then ){a CG . TIn both of

*hese cases we can find roots B8, vy so that o =B+ vy , all
other roots ip + jy (i,j positive integers) are long, and

~

NBY# 0 : in (6) we can choose long and vy short, in (7)

both short. Then TTY belongs to Gv by cases already treated,
hence so dces ¥ o by (A).

(d) If (8) holds, then,-?ea C G' . Choose roots B, Y
with B 1lonz, Y short, and o =B + 2y . Since 36 B+Y C Gv

because B + Y is short, our assertion will follow from 012 % 0

in (A}, hence from the next lemma.

Lemma 33: If B and Y form a simple system of type B2 with

B long and vy short, then { XB(t), XY(u)) = Xgy XB+2Y(i tuz).

py (2 T
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oof: By Lemma 14, we have
x fu)X (u)“‘l = exp (ad uX_) X
SV I y! %

- .2

=Xg tully g Xo SN QN g /2 Xoroy -
ere N =+ 1 and N =+ 2 since f -~ is not a root. If
: Y’B - Y,Bty — : ) Y

. we multiply this equation by -t , exponentiate, observe that the

three factors on the right side commute, and then shift the first
of them to the left, we get Lemma 33.

The proof of Theorem 5 is now complete.

In the course of this discussion, we have establiched

the following result.

Corollary: If ¥ is indecomposable and of rank > 1 and if «
is any root, then there exist roots B and y and a positive
integer n such that o« =8 + ny and C1p, # 0 in the relations

# (A) of Lemma 32?

Corollary (To Theorem 5): If }kf > 4 and G 1is a Chevalley group
based on k , +theu every soivable noriwal subgroup of G is central

and hence finite,

Proof: Since the center of a Chevalley group is always finite
by Lemma 28{d;, we need only prove the first statement. Also we may
assume G = GO , the adjoint group, since by Corollary 5 to

?
Theorem 4 , there is a homomorphism ¢ of G onto GO ‘with
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ker ¢ C center of G and G, has center 1. Now we may write

G = Gl-G2 v v o Gr where Gi i=1, 2, «e., * 1is the adjoint
group corresponding to an indecomposable subsystem of £ . By
Theorem 5, each Gi _is simple. Thus any normal subgroup of G is
a product of some of the Gi's . If it also is solvable, the

product is empty and the subgroup is 1.
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§5. Chevalley groups and algebraic groups.

The significance of the results so far to the theory of semi-

B simple algebraic groups will now be indicated.

Let k be an algebraically closed field. A subset V C kO

is said to be algebraic if there exists a subset P (_:_ k[xl,...,%]

such that V= {v = (vl"'f’vn) € kn‘p(vl,...,vn) = 0 for all

p € fﬂ. The algebraic subsets of k" are the closed sets of
v - n n ~
the Zariski topology on k° . For V(C k' set I (V] =
{p € k[xl,...,xn][p(vl,...,vn) = 0 for all (vl,...,vn) e V} .

Let r = n° + 1 . Define D(x) € k[xo;xij]l <i, j<n by
-— 3

D(x) = 1 ~ X det(xij) . Then GLn(k) = {v e krlD(V) = 0} is an

algebraic subset of ¥ . G is a matric algebraic group if G

is a subgroup of GLn(k) for some n and some algebraically

2
closed field k , and G 1is an algebraic subset of K% *1 |

If ko is a subfield of k , G 1is defined over ko if Ik(G)

has a basis of polynomials with coefficients in 'ko .

Examples: (a) SLn(k), (b} Superdiagonal subgroup,

1t
(c) Diagonal subgroup, (d) = G, = additive group,
Mt o 01
(e) o -1 = G = multiplicative group, (f) 3p, >
(g) s L h) any finite subgroup.

The groups in (a) - (e) are defined over the prime field. Whether
szn, SOn are or not depends on the coefficients of the defining
forms, + The groups in (h) are not connected in the

Zariski topology, the others are.
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A map of algebraic groups ¢: G —=> H 1is a homomorphism

if it is a group homomorphism and each of the matric coefficients
¢(g)ij is a rational function of the gij .. A homomorphism

p: G —>H 1is an isomorphism if there exists a homomorphism

VY: H—>G such that oY = idy and Yo = idy . A homomor-
phism ¢+ G > H 1is defined over ko if each'of the rational

functions above has its coefficients in LI

Except for the last assertion, the following results are proved

in Seéminaire Chevalley (1956-8), Expose” 3.

(i) Let G be a matric algebraic group. Then the following
are equivalent:
(a) G 4is connected (in the Zariski topology).
(b) G is irreducible (as an algebraic variety).
(c) Ik(G) is a prime ideal.
_(ii) The image of an algebraic group undef a rational homo--
| morphism is algebraic.
(iii) A group'generated by connected algébraic subgroups is
algebraic and connected (e.g. (a) - (g) are con=
nected). It is defined over the perfect field k.

if each of the subgroups is.

If G 1is an algebraic group, the radical of G (rad G) .is

the maximal connected solvable normal subgroup. G is semisimple

if (1) rad G = {1} and (2) G 1is connected.



58
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Example: <) A & 8L j;has radical

A Lol <
! . o o "1 j
| | / | .

For the remainder of this sectibn‘wé assume that k is alge~

(a
e
1.0

1

1

t
0

N

braically closed, k  is the prime field, G is a Chevalley

in M is given by polynomials with integral coefficients we may

speak of & basis over M .)
‘Pheorem 6: With the preceding notations :
. (a) G is a semisimple algebraic group relative to M .
(b) B is a maximal connected solvable subgroup (Borel sub~-
{c) H. is a maximal connected diégbnalizable subgroup

(maximal torus).

(d) N is the normalizer of H and N/HEW .
(e) G, B, H, and N are all defined over k, relative to

M.

Remark: B and H are determined by the abstract group G

!

(a) B 1is maximal solvable and has no subgroups of finite
index.
(b) H 1is maximal nilpotent and every subgroup of finite index

" is of finite index in its normalizer.

Proof of Theorem 6: (a) Map Ga —_— a{a by x,t t -——>.xa(t) .

This is a rational homomorphism. So since Ga is a connected
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algebraic group so is %%L. Hence G 1is algebraic and connected.
Let R =rad G . Since R 1is solvable and normal it is finite
by the Corollary to Theorem 5. Since R 1is also connected
R =1, and hence G 1is semisimple.

(b and ¢} H is the image of G; under (tl;...,t&) —_—
£
>'rrhi(ti) and hence is algebraic and connected; so B = UH is
=1 . :
connected, algebraic, and solvable. Let Gl:D B . Then
G, DB W, B (some simple root a) , so G J <¥g; X_> » and
hence by Corollary 6 of Theorem L' G, is not solvable and hence
(b) holds. H 1is a maximal connected diagonalizable subgroup of
B (for ahy larger subgroup must intersect U nontrivially).
Hence H is a maximal connected diagonalizable subgroup of G

(by a theorem in Chevalley's Séminaire); 30 (¢) holds.

(d) is clear. To prove (e) it suffices by (iii) to prove:

Lemma 34: Let )fa = {xa(t)lt € k} and ‘ha = fh(t)[t e kK } .
Then: (a) %ﬁx is defined over kO and Xy Ga — ¥; is-

an isomorphism over kO .

(b) h, is defined over k_  and h i G ~=~>Vha is a

homomorphism over k0 .

Proof: Let {vi} be a basis of M formed of weight vectors.

Choose v, so that X v, # O, then write X v, = I ¢;5V4 » and
choose vy so that s ; # 0. If v, is of weight pg , then

. . . - 2R
vj is of weight x4 + a . Since xa(t) = 1 + X, + 7K /2 +

it follows that if 3, 5 is the (i,j) matric coordinate (i # j)
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function then aij(Xﬁ(t)) = Cijt . All other coefficients of

xa(t) are polynomials over ko in t , hence also in aij

This set of polynomial relations defines ){a as a group over

1 . . . . .
k, - Now Ezgaij' xa(t) > t is an inverse of X, , so the
map x, 1is an isomorphism over ko . The proof of (b) is left

as an excercise.

We can recover the lattices LO and L from the group G

. N, — A _
as follows. Let » & L . Define p: H > G by u(|]hi(ti)) =
TTti“(Hi) - This is a character defined over k_ . {£#] generates
”\
a lattice L , the character group of H . The "¥aYs are deter-
. mined by H as the unique minimal unipotent subgroups normalized
- -1 _ N
by H. If h = TThi(ti) then h xa(t)h = x,(a{h)t) /Yhere
Q(h) = TTtia(Hi) . @ is called a global root. Define LO =

A A FaS
the lattice generated by all o . Then LO CL.

A
Exercise: There exists a W-iscmorphism: L —~—> L such that
~ A A 74
LO —_— Lo’ uo—==>u , and a —> a (The action of W on L

is given by the action of N/H on the character group).
We summarize our results in:

Existence Theorem: Given a root system I , a lattice L with
L,CLCL (where L, and L, are the root and weight lattices,
respectively), and an algebraically closed field k , then there
exists a semisimple algebraic group G defined over k such that
L and L are realized as the lattices of global roots and char-

o}
acters, respectively, relative to a maximal torus. Furthermore

A
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G, %&,... can be taken over the prime field,

The classificatlon theorem, that up to k-isomorphism every
semisimple algebraie group over k has been obtained above, is

much more diffieult, (See Seminair Shewalley, 1956~8).

We recall that %LZ:’. = H-N LZ
= {H eWY|p(H) ¢ Z for all p e L} .

Lemma s Let k be algebraically closed, G a Chevalley group
' ' ) o ' 1

v for v e Vp . Then the map o3 Gé > H given by
P
1 1 1 ¢
(tyseserty) —> Tgb-(t.) is an isomorphism over k _  of alge~
j: J J (@]

braic groups.
t
Proof: Write H, = I niné, N 4 e 2Z . Given {tj} we can find
1 _ iJ ES .
{t;} such that tj = Erti (for det(nij) # 0 and k  is

1 1
divisible), Then TThj(tj) acts on V'u as multiplication by

t J
]“(Hj) e /’“’(Hi) . -
HtJ S'Erti , i.e. as 'TThi(ti) . This shows that o
maps Gm onto H . Clearly ©® 1is a rational mapping defined

over k . Let {pi} be the basis of L dual to {H

o 1

e i 1 ) 1
s {H.) = 8..) . VWrite p. = I n g . Then TT( t. J } H
Y +J * n e L # 7 T} J

= t. , SO w“l exists and is defined over kO

Theorem 7: Let k be an algebraically closed field and ko the
prime subfield. Let G be a Chevalley group parémetrized by k
and viewed as an algebraic gréup defined over ko as above.

Then:
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(a) UTHU is an open subvariety of G defined over LI
(b) If n is the number of positive roots, then the map

o K x K¢ x k' ——> UTHU defined by

CP(('ba)a <'O’(ti)l < i < /L’(ta)a > O) =

- ' . . .
a‘LlO xa(tanrrhi(ti)a'gro xa(ta) is an isomorphism of

of varieties over ko .

Proof: (a) We consider the natural action of G on /\nli

relative to a basis {Yi,Yz,...,Yr} over k_ = made up of products

1 !
of His and £, such that Yl

set  xY, = % aij(x)Yj and then d = azq s @ function on G over

/\Xa(cr.>O}. For x &G we

k, - We claim that x € UHU = U"B if and only if d(x) # 0 .

Assume x € UB . Since B fixes Y, up to a nonzero multiple

and if u & U~ then uXa e X, * K+ S KXB , it follows
ht (B) < ht{a)

that d(x) # 0. If xeU wB with we W, w# 1 , the same
considerations show that d(x) = 0 . If w_ eW makes all posi-
tive roots negative then by the equation on“ WwB=3BwWw B and
Theorem h' the two cases above are exclusive and exhaustive,
whence (a).

(b} The map ¢ 1is composed of the two maps‘

Y= (V1Yo W) (bg)y s g% (85) x (8 5 g—>U" x Hx U,
and 6: U x HxU-—>UHU . We will show that these are iso=
morphisms over ko . For ﬂjz this follows from Lemma 35. Con-
sider ﬂ/B . Let {vi} be a basis for V , the underlying vector

space, made up of weight'vectors in the lattice 1M , and fij the
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corresponding coordinate functions on End V . For each root a

choose i = i(a)}, J = j(a), n s = n{a) as in the proof of Lemma

34, Set x = TT XB(tB) . Ohoosing an ordering of the positive
g >0

roots consistent with addition, we see at once that f

i(a),i(a)®

n(a)t, + an intezral polynomial in the earlier +t!s and that
fij(x) is an integral polynomial in the t's for.all 1,
Thus q/B is an isomorphism over ko ) andlsimilarly for wjl .
To prove © 1is an isomorphism we order the Vi 8o that U™ ,H,U
consist respectively of subdiagonal unipotent, diagonal, super-
diagonal unipotent matrices (see Lemma 18, Cor. 3), and then we
may assume that they consist of all of the invertible matrices of
these types. Let x = u hu be in U HU and let the subdiagonal
entries of u” , the diagonal entries of h , the superdiagonal
entries of u Dbe labelled tij with 1> j, i =3, 1< J re-
spectively. We order the indices so that 1j precedes ki{ in
case 1<k, j<+% and 1ij # k@ ., Then in the three cases above
f..{x) =

resp. resp. t..t.. , increased by an

13%35 ij? 11%13

integral polynomial in t'!'s preceeding tij . We may now induc-

tively solve for the t's as rational forms over Z. 1in the
f1s , the division by the forms representing the tjj‘s being
justified by the fact that they are nonzero on U HU . Thus 8

is an isomorphism over k, and (b) follows.

Example: In SLn U HU consists of all (aij) such that the

a a
minors [all], all a12 s +«.. are nonsingular.
21 "22
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Remark : It easily follows that the Lie algebra of G is £F .

We can now easily prove the following important fact (but
will refer the reader to Séminaire Bourbaki, Exp. 219 instead).
Let G be a Chevalley group over €, viewed as above as an
algebraic matric group over @ , the prime field, and I the cor-
responding ideal over Z (consisting of all polynomials over Z
which vanish on G) . Then the set of zeros of I in any alge-
braically closed field k is just'the Chevalley group over k
of the same type (same root system and same weight lattice) as
G . Thus we have a functorial definition in terms of equations

of all of the semisimple algebraic groups of any given type.

Corollary 1l: Let k,ko,G,V be as above. Let Gf be a Chevalley

group constructed using Vt instead of V but with the same L .
1
Assume that ijj LV’ . Then the homomorphism o©o: G —> G

taking x_(t) > x'(t) for all o and t 1is a homomorphism

a a
of algebraic groups over ko
Proof: Consider first m|U—HU . By Theorem 7 we need only show
that @|H 1is rational over ko . The nonzero coordinates of

1
t .. . M (Hl) 1 . .
TT'hi(ti) are T © (ép) e Ly') . The nonzero coordinates
AR .
of TT hi(ti) are [T ts (# € Ly) . Bach of the former is a
monomial in the latter (because LVY C:LV) , and hence is rational
over ko . Now for w ¢ W,LJW (resp. u;w) can be chosen with

coefficients in k, (for wa(l) = xd(l)){ (ul)lia(l)) , so that

-l
W

=0,
oju . U B 1is rational over k, - Since BypB gyg;lU“B , We cone-

clude that o 1is rational over ko
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Corollary 2: The homomorphism @0 SL2 —— <’,¥a’¥-a> (of
Corollary 6 to Theorem 4') is a homomorphism of algebraic groups

over k
o)

Proof: This is a special case of Corollary 1.

Corollary 3: JAssume .f,V, and M are fixed, that V is uni-

versal, k (C X are fields and Gk and G are the corresponding

K

) = m
Chevalley groups. Then Gk GK GLM,k .

M, k . Suppose x € GK/\ GLM,k .
Then x = uhw v (see Theorem 4 ) with & ~ defined over the

prime field. We must show that xu);l € Gk , i.e. uhu e G

-1 . -
W _vw . Write uhu = x (b ) h. (t
v a L o % <}O G

Proof: Clearly G C:G N GL

i

where u~

with t,, t; € K . Aapplying w“l of Theorem 7, we get

(ta)a >0 X (ti) x (ta)a <o - Since uhu~ is defined over k
and @-l is defined over k_ , all t,, t; & k . Hence

uhu".e Gy -
Remark: Suppose k= ([ and G 1is a Chevalley group over k .
Then G has the structure of a complex Lie group, and all the
preceding statements have obvious modifications in the language
of Lie groups, all of which are true. For example, all complex

semisimple Lie groups are included in the construction, and o

in Theorem 7 is an isomorphism of complex analytic manifolds.




66

36. Generators and relations

In this section we give a presentation of the universal
Chevalley grou» in tgrms of generators and relations. If I
is a root System and k a field we consider the group generated
by the collection of symbols {x“(t)|a €L, te k} subject to
the following relations, taken from the corresponding Chevalley

.group83

(A) x,(t) is additive in t .
(B) If o and B are roots and a + B # Q , then (xd(t),xB(u)} =
TT Xia+jB(Cijtiuj) , where 1 and J are positive integers
and the Cij are as in Lemma 15.
(Bt) wa(t)xa(u)wu(at) = xna(mt"zu) for t & k' , where wd(t) =
] >k
Xa(t)xn@(”t )xa(t) for t e k .
(C) ha(t) is multiplicative in t , where hu(t) = w“(t)wd(ml)

e
P2

for t € k

The reader is referred to the lecturer's paper in (olloque Sur la

théorie des groupes algébrigﬁes, Bruxelles, 1962.

Theorem 8: Assume that I is orthogonally indecomposable. Then:

(a) The relations (R) (see §3) are consequences of (4)
and (B) if rank £ > 2 and of (i) and (B') if
rank T = 1 .

(b} In either case if we add the relation (C] we obtain a

~complete set of relations for the universal Chevalley

group constructed from I and k .
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The proof depends on a sequence of lemmas.

Throughout we let G‘ be the group generated by

{x;(f)la e L, t € k] subject to relations (a) and (B} if
rank % > 2 or (A) and (B') if rank £ = 1, G Dbe the uni-
versal Chevalley group constructed from % and k , and

Tl G —> G be the homomorphism defined by n(x;(t)) = xa(t)

for all o ez, t e k.
TLemma 36: Let S be a set of roots such that:

(a) o &S implies -a £ S .
(b) a, B eSS and o + B e L implies a + B e 35 .

Let ¥'s be the subgroup of G' generated by
1

{x,(t)|ax €3, t e k} . Then 7 maps '¥'s isomorphically onto

the corresponding group in G

-

Proof: Using (a) and (B) we can reduce every element of ¥'s

to the form J| x,(t_ )(t
a g3 R
every element of ¥s can be written uniquely in this form.

e k) , and we know by Lemma 17 that

Lemma 37: The following are consequences of (4) and (B) if
!

rank % > 2 and of (4) and (B ) if rank & =1 :

(a) w&(t)xé(u)w&(—t) = X;(Ctﬂ /3,a>u)
1 (b) w(;(t)w[;(u)w(;(-t) w;(ct" <B’a>)
| () wy()hg(uhu(~6) = By(et™® > Pupng(or™ Pre2)=h
where § = w B, ¢ = c(a,B) = Y1 is independent of t

! and u , and c(a,p) = c(a,-B)
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(d) hy(t)x 3< ujhy (6)7F = xg (659%y)
(e) by (6)wg(u)hy (8)70 = wg (<P %)
r-! I | <BLa> yp o <Bya>, -1
(£) g (t)hg(ulhy ()™ = ng (¢ Pu)ng (<0204
Proof: (a) assume a # XB . Let S be the set of roots of the

form ia + j8 where i and J are integers and j >0 . By

(B) *13 " is normalized by ¥' : )( .o, 2nd hence ‘by

w;(t) . Thus w’( )XB(u)w -t) )653 . By Lemma 36 we need
only prove that relation (a) holds in G . But in G (a) follows
from the relations (R) . Now assume a = B and rank > 2 .

In thisvcase we use the fact (see the Corollary to Lemma 33)

(*) There exist roots & and 71 and a positive integer j such

and ¢ ; £ 0.

Set T = {mwaé + nwavlm,n positive integers} . Transforming both
sides of the above equation by w;(t) and applying the case of
(a) already proved we see that the transform of every term except
1 J ? _ ?
x6+3‘7 13t u? %T . Hence w,(¢v )x6+3\7(C13t ul)w (~t) e *T ,
so by the earlier argument, with T in place of S , (a)} holds.
If a=pf and rank I = 1 then (a) holds by (Br). Since
w(;('c)"l = w;(at) ; the case a = -p follows from the case a = 8
!
(b) «(f) follow from (a) and the definitions of wa(t)
!

and ha(t)

Part (a) of Theorem 8 follows from parts (a) -~ (d) of Lemma 37.
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Lemma 38: Let ‘hé be the group generated by all h;(t),

1 t t
'ﬁi ='ha_ , and H  the group generated by all h& . Then:
i

(a) Each ‘h; is normal in H'

i 2 :
(b) H = TTH .
ile *

Proof: (a} follows from Lemma 37 (f)

(b] Let B be any root, and write B = wa, With @
simple and we W . Let w = wa... be a minimal eXpression for
W as a product of simple reflections. Set ¥= w,B . Then
hé(t) - w;(l)h%(c(nl)“<5’“>t)h}(c(-1)‘<5’“>)“lw;(n1) by Lemma
37 (c),; and hence by Lemma 37 (e)
ng(t) = hy(c(-1)"Pr®% ny(c(-1)™F %) ~hy (£7P2 %)) (1)
e'h%fB; . By induction on the length of w , (b) follows.

Proof of Theorem & (b): Let ¢" be the group generated by

{x;(t)la e L, t € k] subject to the relations (4), (B) if

rank £ >1 or (B!') if rank £ =1 , and (C) . Let

w;(t), h;(t),... be defined as usual in terms of the x;(t)

We wish to prove that q": G" ——> G 1is an isomorphism. Let

X € ker nn . By Corollary 1 of the proposition in §3, X € H" .
R

i < .
By Lemma 38 and' (C) =x =TT hi(ti) (ti e k') . Applying =« we

obtain 1

il

TT°hi(ti) . Since G is universal each t; =1 ,

so x = 1.

Remarls:  (a) In (4) and (B) it is sufficient to use as gen-

era SRR

erators xa(t) where @ 1is a linear combination of 2 simple
(3

roots and the relations (A) and (B) which can be written in
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terms of such elements.

~vxr

(b} It is sufficient to assume (C) for one root in

each orbit under W .

( Exercise: If ¢ 1is indecomposable, prove that it is sufficient
to assume (C) for any long root a .
We will now show that if k 1is an algebraic extension of a

finite field then (i) and (B} imply (C) .

T
Lemma 39: Let a be a root and GY as above. In G set

£(t,u) = h (t)h (u)h (tu)™ . Then:

(a) £(t,u®v) = £(t,u°)f(t,v)
(b) If t,u generate a cyclic subgroup of k* then
f(tau) = f(u:t)

(¢) If f(t,u) = f(u,t) , then f£(t,u°) =1 .

"

(d) If t,u# 0 and t +u=1, then f(t,u) =1,

t ‘ Proof: Since f(t,u}) € ker n, f(t,u) € center of Gr . Set

h,(t) = h(t) .

[0 4
(a) £(t,v) = h(u)£(t,v)h(w)"t
= h{w)h(t)h(v)h(tv) Th(u)™t
= h(tu®)h(u?) ™ (vu?)h(u®) Th (wP) R (suv) (by Lemma 37(f))
| = h’5u)h(u?) "t (vuf) h(tulv )t
’ 2
= f(t,uz)—lf(t,u v)

(b) Let t = vm, u = v with m,n € FZ . Then

b
h(v)"d with ¢, d € center G , since

jap
<r
i1
oy
<
=]

(¢
oy
-

i
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G' is a central extension of G ., Thus h(t), h(u) commute and
f(t,u) = flu,t) .
-1

(¢) h(t) = h{ulh(t)h(u)™ = n(tu*)h(v®)™  (by Lemma 37 (f)),

so that f(t,uz) =1 .

(d) Abbreviate Xy X_gs Wy By to X, y, w, h, respec-

tively. We have:

(1) wit)x(w)w(-t) = y(-t3u)

(2) wit)y(un(-t) = x(-t%u) (by (1))

(3) w(t) = x(v)y(-t"1)x(c)

(3') w(t) = y(-t™hx(e)y(-t™h (by (1), (2}, (3)).
Then h(tu)h(u)™’ = w(tu)w(-u] by definition of h
= x(t)x(=t)wltuw(-u) = x(t)wltu)y(t™u" % w(-ul (by (1))
= x(t)y(-t" o D) x(tw)y (-t Tu Ny (672 wi-u)  (by (37))
= x(t)y (-t ") x(bu)y (w2 )w)~u) (by (A)
for y(-tuhy () =y (1)) = vy

= x(t)y(-t_lu"l)w(au)y(—tu-l)x(-l) (by (1) and (2))
Ly x(=u)y (w0 y(=tu ) x (1) (by (31))
= x(t)y(~t"Tud (1t) )x(t-1)y (0™ (1~t) )x (1)

= x(t)y(~t y(u

= x(t)y(-t"l)x(t)x(—l)y(l)x(-l) = Ww(t)w(=1) = h(t) , proving (d).
Lemma LO: TIn a field k of finite odd order there exist elements

t,u such that t and u are not squares and t + u =1 .

Proof: If |k| = q there are (q+*l)/2 squares. Since
((a+l)/2Mq the squares do not form an additive group, so we can

find a,b,c so that a + b =c¢ where a and b are squares




72
and ¢ 1s not. Then take t = af¢, u= bj/c .,

Theorem 9: Assume that I is indecomposable and that k is an
algebraic extension of a finite field. Then the relations (A) .
and (B) (or (BT") ‘if rank % = 1) suffice to define the cor-
responding universal Chevalley group, i.e. they imply the rela-

tions (C)

Proof: Let t, u e k* . We must show f(t,u) =1 where f is
as iﬁ Lemma 39. By Lemma 39(b and c¢) if either t or u is a
square f(t,u) = 1 . Assume that both are not squares. By Lemma
40O (applied to the finite field generated by t and u)

2 2 . *
Tt =r tl’ u = sty with r, s € k , tl tuy o= 1, tl and Uy

2

not squares. -Then f(t,u) = f{t,s ul) = f{t,u,) = f(r2t

l) l’ul)

= £(t1,u7) =1 by Lemma 39(a and d).

Ekamgle: If n >3 and k 1is a finite field, the symbols

xij(t) (L<i, J<n, 1# 3, t e k) subject to the relations:

(A) xij(t)x..(u) = X, .(t+u)

1] 1J
(B) (Xij(t),xjk(u)) = xik(tu) if i,j,k are distinct,
(Xij(t)’xké(u)) =1 it ] % k, 1 % o,

define the group SLn(k)
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§7. Central extensions.

t
Our object 1s to prove that if =7, G , and G are as in
1 '
§6, then (mn, G ) is a universal central extension of G in a

sense to be defined. The reader is referred to the lecturer's

paper in Colloque sur la théorie des groupes algébriques,
Bruxelles, 1962 and for generalities to Schur's papers in J. Reine

Angew. Math. 1904, 1907, 1911.

!
Definition: A central extension of a group G is a couple (mn, G )

1 1
where G is a group, 7© 1is a homomorphism of G onto G, and

1
ker n C center of G .

Examples ¢

(a) = , G as in S6.

1 _ :
(b) n : G —> G the natural homomorphism of one Chevalley
group onto another constructed from a smaller weight
lattice. E.g., m : Slh —_— PSLn, T o: Spn-—-—:>PSpn y

and 7 Spinn —_— SOn .

(c) =n : G’——9>G a topological covering of a connected
topological groupy i.e., 7 1is a local isomorphism,
carrying a neighborhood of 1 1isomorphically onto one
of G. We note that n 1s central since a discrete
normal subgroup of a connected group 1s necessarlly
central. To see this, let N be a discrete normal
subgroup of a connected group G and let n & N. Since

the map G~ N given by g -;>gng"l, g = G, has a




T4
discrete and connected image, gng_l =n for all
g G-

Definition: A central extension (7n,E) of a group G is
' 1

1
universal if for any central extension (m ,E ) of G there

1 !
exists a unique homomorphism ¢ > E~—=>E such that =n ¢ =1 ,

i.e., the following diagram is commutative:

B ® —7ET
TE T
|
G

We abbreviate univeral central extension by u.c.e. We

develop this property in a sequence of statements.

(1) If a u.c.e. exists, it 1s unique up to isomorphism.

Proof: If (n,E) and (n',E?) are u.c.e. of G, let

7 ' 7 1 g
P : E—> E and @' :E —> E be such that m¢ =7 and
1
nciot = n? . Now ??? > E-~——E and n(@ @) = n. Hence tp'@
1s the identity on E by the uniqueness of ¢ 1in the definition

7 1
of a u.c.e. Similarly ®5 1s the identity on E .

(11) If (mn,E) is a u.c.e. of G then E = fJ E and hence

G = {JG, where JJH is the derived group of H.

Proof: Consider the central extension (n’,Er) where
E =ExE/JJE and = (a,b) = n(a), a €F, b @ E/JFE . Now if
?l(a) = (a,1l) and ?2(a) = (a,a+JdJ E), then n?@i =n,i=1,2,
and hence ¢ =¢, . Tws, E/JE=1 and E =/JE.
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(1i1) If ¢6=0G6 and (n,E) 1is a central extension of G,
then E = C. 0 E where C 1is a central subgroup of E on which

n  1is trivial. Moreover, LOE = I)2E .

Proof: We have n JE = J(xE) = JG = G. Hence, E = CJE where
C =ker n. Also, NE = H(cDE) =/°E.

(iv) If G =/G, then G possesses a u.c.e.

Proof: For each x & G we introduce a symbol e(x). Let F be
the group generated by {e(x),x E;G} sub ject to the condition
that e(x)e(y)e(xy)-l commutes with e(z) for all x,y,z& G .
If n ¢ e(x) — x, then by using induction on the length of an
expression in F, we see that n extends to a central homo-

morphism of F onto G.

(a) (m,F) covers all central extensions of G. To see

! !
this, let (E , = ) Dbe any central extension of G. Choose

?
! ' T 1

e (x) ©@E such that me (x) =x. Since =m is central, the

B | ) :

e (x)1s satisfy the condition on the e(x)1s. Hence, there is

1
a homomorphism ¢ : F—> E such that ge(x) = e (x), and

1
thus = p =T .

(b) If E = JJF and n also denotes the restriction of

n to E then (n,E) covers all central extensions uniquely.

2
By (ii1), we have that (m,E) covers all central extensions. If
Tt
(n,E') is a central extension of G and if n'@ =n=71g¢ ,
- 1 -
then @(X)@Y(x) 1 & center of E . Thus, "¥: x = olxlp (x) 1

is a homomorphism of E 1into an Abelian group. Since E = IBEQ

t
qP is trivigl and ¢ =¢ -
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Remark: Part (a) shows that if G is any group then there is

a central extension covering all others.

1 L
(iv) If (n,E) 1is a central extension of G which covers

all others and if E = [JFE, then (mn,E) is a u.c.e.

(vl If n:E~>F and ¥: F —>G are central extensions, then
so is "Pn : E—> G, provided E =JJE.

Proof: If a ker ¥ m, let ¢ be the map ¢ ! x —>(a,x) =
axa‘lx_l, x€E . Now o(x) € center of E, since

n(é,x) = (na,nx)_= 1 because = a g center of F. Now ¢ 1is

a homomorphism, so @ 1s trivial, and a & center of E.

(vi) Exercise: In (v), (n,E) is a u.c.e of F 1f and only

if (¥n,E) is a u.c. e. of G.

Definition: A group G 1is said to be centrally closed if (1d,G)

is a u.c.e. of G.

(vii) Corollary: If (wn,E) is a u.c.e. of G, then E 1is

centrally closed.

(viii) If E 1is centrally closed, then every central extension
“P: F—= E of E splitsy 1.ey, there exists a homomorphism

@ E —> F such that WF ® = id .

(ix) (mn,E) is a u.c. e. of G if and only if every dilagram

of the form E~--3E
\L \|/1
14 T
1
G ——> G
s

"im—,-u:--,.- Ve e . ———
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! g
can be uniquely completed, where (mn , E') 1is a central extension

A\
of G and ¢ is a homomorphism.

Proof: One direction is immediate by taking ¢ =G and 2 = id.
Conversely, suppos€ the diagram is given and (7}, E) is a u.c.e.
Let H be the subgroup of G x E , H = {(x,et) 1§ x= n‘e‘}. If
Vi H-—->G is given by "+’(x,e1) = x, then W 1s central. Since

(n,E) is a u.c.e. of G, there is a unique homomorphism

© : E—>H such that P 6 = n. Now the homomorphism ¢ 3 E—E' ,

o =V'e , where W' i H=s B 1s given by “F’(x,eq) =e ,
satisfies Cn = ?'\}19 _— \p’ 6 = n'cp . If Pmn-= n'gp’ , then
let ' :E—>H be given by © (e) = (n(e),@'(e)). Since‘ﬁ(6’==n,
we have © =6 and @! ='\V'9' ='YJ'G = ® , proving the uniqueness

of @ .

Definition: A linear (respectively projective) representation of

a group G 1s a homomorphism of G 1into some GL(V) (re-

spretively  PGL(V)).

Since GL(V) is a central extension of PGL(V) we have

the following result:

(x) Corollary: If (=m,E) 1is a u.c.e. of G, then every
projective representation of G can be lifted uniquely to a

linear representation of E.

(x2) Topological situation: If G 1is a topological group one

can replace the condition G =JJG by G is connected, the
condition (m,E) is a u.c.e. by (n,E) is a universal covering group

in the topological sense, and the condition G 1is centrally closed
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by G 1s simply connected in the above discussion and obtain similar

results.

Definition: If (n,E) is a u.c.e of the group G, then we call

ker » the Schur muitiplier of G.

If we write kerm = M(G) to indicate the dependence on G,
then a homomorphism. ¢ =TG-€>G" leads to a corresponding one
M(p) 2 M(G)—> M(G") by (1%).. Thus M is a functor from the
category of groups G such that G =JfJ G to the category of
Abelian groups with the following property: 1if ¢ 1is onto,, theﬁ

so is M(p).

Remark: Schur used different definitions fand terminology) since
he considered only finite groups but did not require that G = J[JG.
If G =4J9G our definitions are equivalent to his. One of Schur's
results, which we shall not use, is that if G 1is finite then so

is M(G).

- Theorem 10: Let £ be an indecomposable root system and k a

field such that |k| > 4 and, if rank I =1, then [k| 4 9.

If G 1is the corresponding universal Chevalley group

(abstractly defined by the relations (4),(B),(B'),(C) of §6), if
G' 1s the group defined by the relations (A),(B),(B’) (we use (B')
only if rank £ = 1), and if = 1s the natural homomorphism from

1 Y
G to G, then (#n,G) is a u.c.e. of G.

Remark® There are exceptions to the conclusion. E.g. SLZ(A) and

SL2(9) are such. Indeed SLz(h) ¥ PSIQ(5) and 812(5) is a central
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extension of PSIQ(S). For SL2(9) see Schur. It can be shown
that the number of couples (Z,k) for which the conclusion fails
is finite.

Proof: Since ]K].> 4L, G =G, G’ =¢DG',' and u.é-e. exlst
for both G and G‘. The conclusion becomes G‘ is centrally
closed,by the above remarks. We need only show that every central
extension (\P,E) of G splits, i.e., there exists © : GL-9>E
so that Y ® =1id , 3 i.e., the relations defining G can be

G
lifted to E.

We may assume E =JJ Es but then (n¥,E) is a central
extension of G by (v ). We need only show

(1) It ("WY,E) 1is a central extension of G, then the
relations (A),(B),(B') can be lifted to E.

Let C = ker ¥ , a central subgroup of E. We have:

(2) A commutator (x,y) with x,y € E depends only on
the classes mod C to which x and y belong.

_Choose a Ejk* so that ¢ = a® - 1# 0. Then in G

(na(a),xa(t)) = xa(ct) for all a &%, t € k. We define

Px, (t) EE (a € Z, t € k) so that Y o xa(t) = xa(t) and so
that

(3) (cpna(a), cpxa(t)) =(3°Xa(0t) and then ¢h's (and
later Y w 's) in terms of the P xS by the same formulas which
define the h's and the w's invterms of the x's. Note that
this choice is not circular because of (2). We shall show that

the relations (A),(B),(B') hold with ¢x?'s in place of x's.
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for all h&H, a &2,

Set hxa(t)hﬂl = xa(dt) with d & P Conjugating (3) by

-1

¢h, we get (c?na(a), P X (at)) = nh cpxa(ct)cp(n) , and the left

side equals o xa(cdt) = ¢(h ch( ct)n"l) by (3). Similarly we have

L") N @ x, (t)(tpn)-l = plnx, (t)n™ %)  for all n €N, a €L,

t €k .
(5) If o and B are roots, a+PB #O0, and a+ B 1is not

a root, then @ x (t) and ¢ xﬁ(u) commute for all t,u € k. Set

9 x,(t) goxB(u)qua(t)—l = f(t,u) o xB(u), t,uE k, f(t,u) €C. We

must show f(t,u) = 1. Clearly, from the definitions we have
(6) f 1is additive in both positions.

- (52) Assume a#8B8 . If (a,p) =0, then f(t,u)
= f(tvz,u)(vaéo) by Lemma 20(c) and by (4) with h = ha(V)' If
(a,B) > 0, then f(t,u) = f(tvd,u) where d = 4 - <@,B><p,a>
B(v'<B’°’>). In

both cass, f(t(l—vd),u) =1 by (6) for some d = 1,2, or 3.

Choose v so Vd-l # 0. Then we get f = 1.

by Lemma 20(c) and by (4) with h = na(vz) h

(5b) Assume a =B and rank £ > 1. If there is a root

¥  so that <a;\{\ > = 1 set h =nh (v} in the preceding

) \,3’\
argument and obtain (%) f(t,u) = f(tv,uv). Choose v so that

v - VZ#O and 1 = v + vzaé 0. By (%) and (6),

£t (v=v"),u) = £(t,u/ (v—v2)> = f(t,u/v)f(t,u/(l—~v)>: f(vt,u) f(1-v)t,u)

= f(t,u), whence ff&(1-v+v?),u) =1 and f = 1. If there is no
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such EC , then %. 1s of type Cn and a 1s a long root. In
this case, however, a = B+2 XN with B and XA roots. Thus,
(cpr(t), RN (w)) =gcpx'5+5,«(itu)cpx8+2x\ (ttu?) with g& c,
by Lemma 33. Since o xg (v) commutes with all factors but the

iast by (53), it also commutes with the last.

(5c) Assume o =B and rank ¥ = 1. At least we have
flt,u) = f(tv2,uv?), t,u €k, v € kK, using h = n (v) 1in the
argument above. We may also assume that ]K] is not a prime.

\

If it were, then Xa(t) and xa(u) would be powers of Xa(l)

and (5) would be immediate. Referring to the proof of (5p), we
see 1t will suffice to be able to choose v so that v, 1-v

are squares and V- v2 40, l-v+ve#0. If k 1is finite of
characteristic 2, this is possible since all elements of k are
squares. Otherwise, set v =Q2w/(1+w2))2 .  Then

1-v = <(l—vf2)/(l+w2))2 , and we need only choose w so that
1+w? £0, v-ve £ 0, and 1-v+ve+#£ 0. Since at most 13

values of w are to be avoided and |k| > 25 in the present case,

this too 1s possible. This completes the proof of (5).

(7) ¢ preserves the relations (4). Tne element
-1
)

—r

X:(T)X (tC
a

1 c?xa(uc”l) <c1n xa((t+u)c°l)> is in C, and hence

the transform of x by na(a) is x 1itself. However, by (3),

-1
(4),(5) this transform is also x P xa(t)cp xa(u) QP x, (t+u)
(8) ¢ preserves the relations (B). We have

)~ i

®xg (6] @ xg(u) g ()77 = £(6,u) e xy, oo tud) pxg ()

where f(t,u) € C. One proves f = 1 by induction on n, the
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number of roots of the form ia+ jB i, J Ej:Z* . If n =0, this
is just (5}. If n > 0, the inductive hypothesis and (7) imply

f satisfies (6), and then the argument in (5a) may be used.
‘ ? 1
(9) o preserves the relations (B ). This follows from (4 )

This completes the proof of the theorem.

Exercise: Assume [ is the original Lie algebra with coefficients

transferred by means of a Chevalley basis to a field k whose
characteristic does not divide any Na 8 # 0. Also assume <%
b4
is indecomposable of rank > 1. Prove:
(a) The relations [Xy>Xg] = Na,BXa+B , a+p 4 0, form a

defining set for Zi. Hint: define H_ = [Xa,X ]

a -Q

and show that the relations of Theorem 1 hold.
b) L =0 ii, the derived algebra of ;ﬁ .
(c) Every central extension of L splits.

Hint: parallel the proof of Theorem 10.

Corollary 1: The relations (A}, (B),(B') can be lifted to any

central extension of G.

Corollary 2:

1
(a) G is centrally closed. Each of its central extensions

splits. Its Schur multiplier is trivial. It yields the
u. c.e. of all the Chevalley groups of the given type,
and covers linearly all of the projective representations
of these groups.

(b) If k 4is finite or more generally an algebraic extension

1
of a finite field, then (a) holds with G replaced by G.
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Proof: This follows from various of the generalities at the

beginning of this section.

E.g., if k is finite, |k| > 4 and 812(9) is excluded,
then SLn(K), Spﬁ(k), and Spinn(K) all have trivial Schur
multipliers, and the natural central extensions SIh-—€>PSLn s
Sp, —>FSp, , Spin, —=> S50, are all universal.

Corollary 3: Assume G, G , and T® are as above. If k¥ 1is

infinite and divisible (W € k , n € 7 implies there exists
v €k with v" =u), then the Schur multiplier of Gj i.e.,

C = ker m , 1s also divisible.

Proof: Elements of the form f(t,u) = na(t)ha(u)nﬁ,(tu)'"l in G

@« € £ generate C. We have f(t,vw?) = £(t,v)f(t,w*) by Lemma

n
39(a). By induction, we get f(t,wzn) = f(t,wz) for arbitrary n.
on

’

Since for u € k. we can find w & k' such thet u = w the

proof is complete.

Corollary 3a: If k* is infinite and divisible by a set of primes

including 2, then C 1is also divisible by these primes.

Corollary 3b: If K™ is infinite and divisible, then any central

extension of G by a kernel which is a reduced group (no divisible

subgroups other than 1) is trivialy i.e., it splits.

Proof: Let (V,E) be a central extension of G with ker +

_ 1 .
reduced. Since (mn,G ) 1is a u.c.e. we have ® 3G — B so

il

that Y9 =7n . Since C = ker n 1s divisible, so 1s

» C(C ker Y . Hence ¢ C 1 and ker ® ) ker m « Thus, there

is a homomorphism © ! G—> E so that Bn =o. Therefore,»
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n

Ven=n on G and WO =1 on 0.

Corollary 3c: If k" 1is infinite and divisible, then any finite

dimensional projective representation of G can be lifted

uniquely to a linear representation.

Proof: Assume o ¢ G —>PGL(V). Since G =JfJ G, we have

o ¢ G ~>PSL(V). ILet f : SL(V) ~>PSL(V) be the natural
projection. Since dimV 1is finite, we have ker f is finite

and thus ker f is reduced. Consider the central extension
(W,E) of G where E={x,y)|ox=Fy,x€6G, yeSL V):C G x SL(V)
and VY (x,y) =x, (x,y) €E. Now ker WV =1 x ker ¢ 1is reduced,
so by Corollary 3b, we have O : G —>E with W& =1 on G.

Ir VY (x,y) =y, (x,y) €EE, then o =7VY'6:G6->SL(V)CGL(V)

with JOo-T = r_ﬂpte:o-\[Je:om
J

Example: Corollary 3c says,for example,that every finite
dimensional representation of SLn(Q:) can be lifted to a linear
one. (The novelty is that the representation is not assumed to be
continuous. )

JTheorem J1: Iif & 1is an 1naccomposable root system, if

(nd

char k= p % O, and if G =G (i.e. we exclude |K| =2, « of

k

type Al7 BZ’ o G2 and l)’

(n,G') uniquely covers all ccntral extensions of G for which

=3, L of type A then

the kernel has no p-torsion.

Proof: By Tneorem 10, we could assume |k| < 4 or |k| =9,
However, the proof does not use this assumption or Theorem 10.

If (W, E) 1s a central extension of G such that C =ker W




has no p-torsion, then we wish to show (A),(B), and (B ) can

AN

be lifted to E.

(1) Assume C 1is divisible by p. Choose cpxa(t) €E
. p

- e =~ f(g) - - -
so that W g X, b7 = x it and QpAa(t)) =l,a&=2,t k. We

claim relations (A),(B) and (Bi) hold on the ¢ xTs.

(la) If «,p are roots, a+p not a root, and a+B# O,
then ¢ x_(t} and Q:xﬁ(u) commute, t,u & k. We have
® X, (t)cpr(u) cpxa(t)—l = fcpxa(u) with f € C. Taking p-th
powers, we get 1 = P which implies f = 1 since C has no

p-torsion.

(1Ib) The relations (A) hold. Taking p-th powers of
cpxa(t);an(u) =f o (t+u), £ €C, weget f =1 as before.

(Lc) Exercises Relatious (B) and (BY) also hold.

(2)  General cass..

(2a) C can be embedded in a group Ct which is divisible by
p and has no p-torsion. We have a homomorphism © of a free
Abelian group r orto C. Now FQDZZQ is a divisible group, and we
can identify F wicth .FQQiiZX: FQ@TZQ . Hence
C =F/ker 8 CF® Q/ker 8 =D, say, and D 1is a divisible group.
Moreover, since éz_nas no p-~torsion, CN Dp = 1 where Dp is
the p-component of D. Thus, C projects faithfully into
D/Dp = ¢' which is divisible and has no p-torsion.

(2b) Conclusion of proof. Form E = EC , the direct

t 1
product of E and ¢’ with © amalgamated, and define Y i E—~=>G
§

by ¥ (ec') = Y(e), e € E, ¢ ec .
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to_t
Now (W ,E ) satisfies the assumptions of (1) so the relations

!
(A),(B),(B’) can be lifted to E . However, by Lemma 32 the

)

lJifted group is its own derived group and hence contained in E.

Corollary 1l: Every projective representation of G' in a field of

characteristic p can be lifted to a linear one.

Corollary 2: The Schur multiplier of G is a p—~group.

Proofs: These are easy exercises.
1
Since the kernel of the map n ¢+ G —>G above turns out to
be the Schur multiplier of G, its structure for k arbitrary is

of some interest. The result is:

" Theorem 12: (Moore, Matsumoto) Assume £ 1s an indecomposable

root system and k a field with J|k| > L4 . If G is the universal
Chevalley group based on ¥ and k, if G1 is the group defined
by (A),(B),(B'), and if =m is the natural map from G to G

with C = kerm, the Schur multiplier of G, then C 1is isomorphic
to the abstract group A generated by the symbols f(t,u) (t,u E:K*)

subject to the relations:

(a) f(t,u)f(tu,v) = £f(t,uw)f(u,v), £(1,u) = f(u,l) =1

(b) f(t,u)f(t,-u"t) = £(t,-1)
(c) f(t,u) =f@wl,t)

(d) f(t,u) = £(t, - tu)

(e) f(t,u) = £(t,(1-t)u)

and in the case I 1is not of type C_ (n > l)(C:L =Al) the
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additional relation:
(ab') f 1is bimultiplicative .

In this case relations (a) -(e) may be replaced by (ab') and
(c') £ is skew

(d') f£(t,-t) =1

(') f(t,1-t)=1.

The isomorphism is given by ¢:f(t,u)—€>ha(t)ha(u)ha(tu)"l , @ a

fixed long root.

Remark: These relations are satisfied by the norm residue symbol

'in class field theory, which is a significant aspect of Mooret's work.

Partial Proof:

(1) 1r ta is the group generated (in G') by all ha(t),
a a fixed long root, then C E;Ea . We know that
ha(t)na(u)na(tu)"l , aE L, t E:K*, form a generating set for C.
Using the Weyl group we can narrow the situation to at most two
roots a,B with o long, B short, and (a,B) > O. Hence,
<B,a> =1 and (_na(t),n (u)) = nB(tu)nB(t)“lnB(u)“l

a,B>) 1l<a,B>)—l

= na(t)na(dg na(t by Lemma 37(f). This shows a

will suffice.

(2) @ 1is a mapping onto C. This follows from (1).

(3) P 1is a homomorphism. We must show that the relations

nold if f(t,u) is replaced by na(t)na(u)na(tu)—l . The relations

(a) are obvious. A special case (u=1} of (e) has been shown
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in Lemma 39(d). The other relations (b),(c),(d) follow from

the commutator relations connecting the hts and the w's.

X a

(3') Assume X 1is not of type In this case

Cn-
there is a root ¥ so that <a,§ > = 1. Thus f(t,v)

1 )fl

= B (W2 (t,v)n 0 (w)7 n, (uv)n (buv) ™t =£ (5,0 "Lf (6,m)

¥
or f(t,uv) = f(t,u)f(t,v). By relation (c),fluv,t)=~Ff(u,t)f (v,t).

=h (tu)h (u
a a

(4) ® 1is an isomorphism. This is done by constructing an

explicit model for GT

Now let G be a cohnected topological group. A covering
of G 1s a couple (n,E) such that E 1is a connected topological
*group and n 1is a homomorphism of E onto G which maps a
nelghborhood of 1 in E homeomorphically onto a neighborhood of
1 in Gy 1i.e., which is a local isomorphism. A covering is
universal if it covers all other covering groups. If (id,G) 1is

a universal covering, we say that G 1s simply connected.

Remarks

(a) A covering (n,E) of a connected group is necessarily

central as was noted at the beginning of this section.

(b) If a universal covering exists, then it is unique and
each of its coverings of other covering groups is unique.
This follows from the fact that a connected group is

generated by any neighborhood of 1 .
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(¢c) If G is a Lie group, then a universal covering for
G exists and simple connectedness is equivalent to the
property that every continuous loop can be shrunk to a

point (See Chevalley,Lie Groups or Cohn, Lie Groups.)

Theorem 13: If G 1is a universal Chevalley group over L viewed

as a lie group, then G 1is simply connected.

Before proving Theorem 13, we shall first state a lemma

whose proof we leave as an exercise.

Lemma 413 If ty,tsyeee,t, are complex numbers such that
n
lt; | <€,i=1,2,...,n and %y ty =0, there exist t; and t,

such that [t;+ tjl <E.

Proof of Theorem 13: Let (n,E) be a covering of G. Locally =

is invertible so we may set o = 7t

on some neighborhood of 1
in G. We shall show that «¢ can be extended to a homomorphism
of G onto Ey i.e., (id,G) covers (=m,E). It suffices to show
that o can be extended to all of G so that the relations
(A),{B),(B'),(C) hnold on the gx!'s.

Consider the relations
(A) px, () px (u) = px (t+u) aE .
Since ® 1is locally an isomorphism, there is & > O suchthat

(A) holds for [t| <&, |ul<€. If tEk,t=2¢t, [t ] <&,
then set @:xa(t) = TT}an(ti). Using induction and Lemma 41, we

see that o x (t) is well defined. Clearly, (A) then holds for

all t,u & k. Alternatively, we could note that }(a is topolcgic—

ally equivalent to  and hence simply connected. Thus, p
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extends to a homomorphism of }éa into E and (&) holds.

Clearly the extension of w© to ¥-a is unique.

To obtain the relations (B), let a,B be roots a ¢ * 8,
let S be the set of roots of the form ia+ jp (i,jEZZfW, and
let )(S be the corresponding unipotent subgroup of G.
Topologically, ¥ g 1s equivalent to d:n for some n, and 1s
hence simply connected. As before ¢ can be extended to a
homomorphism of g into E, and the relations (B) hold.
This extension is consistent with those above, by the uniqueness

of the latter.

. B -1 ~
We now consider h (t) = x (t)x__(-t77)x (). w (-1) =
4 x_(=1) w_(-1)
x, (t-1)x_, (1~¢ 1) x (t-1 ° where x7 = y“l.xy'.
Hence, if t 1is near 1 in € , then Wtﬂx(t) is near 1 1n B.

Thus, @lla(t) is multiplicative near 1 and hence Abelian every-
where (recall that ™V 1is central). We then have

@na(u) = ?na(t)@na(u)mha(t)—l==@na(tzu)¢na(t2)_l by Lemma 37(f).
Since @ has square roots, we have oh = 1is multiplicative, i-.e.,

(C) hnolds.
Examples: SI{ C ), Sp,, ( €), and spin( C ) are simply
connected. These cases can also be proved by induction on n.

(See Chevalley, Lie CGroups, Chapter II.)

Remarks :
(a) If @€ is replaced by R in the preceding discussion,

then relations (A),(B) can be lifted exactly as before. Also

Ph is still multiplicative 1f one of the two arguments is
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positive. Further Xker m 1s generated by qf&z(ml)z, a a fixed
long root, and, if type C_ (n 2> 1) 1is excluded, then

n("(-»l)LF = 1 or wd(-al)8 = 1. Prove all of this.

(b} Moore has counstructed a universal covering of G and
has determined the fundamental group in case k 1s a p-adic field,
using appropriate modifications of the definitions (here G 1is

totally disconnected. )

[c) Let G be a Chevalley group over K, G’ the correspond-
ing universal group, and 7 Gi—€> G the natural homomorphism.
If kx 1is algebraically closed and if only appropriate coverings are
allowed, then (n,G') is a universal covering of G 1in the sense

of algebraic groups.

We close this section wit!: a result in which the coefficients
may come from any ring (associative with 1). The development is
based in part on a letter from J. Milnor. Let R be the ring,and
let GL(R) be the group of infinite matrices which are equal to
the identity everywhere except for a finite invertible block in
the upper left hand corner. Taus, GIL {R) CGL(R), n=1,2,... .Let E(R
be the subgroup of GL(R) generated hy the elementary matrices
is the usual matrix

1+tE . (¢t € R,145,1,7=1,2,...), where B

J 1]
unit. For example, if R 1is a field, then E(R) = SL(R), a
simple group whose double coset decomposition involves the infinite

symmetric group. Indeed, 1f R 1s a Buclidean domain, then

E(R) = SL(R).
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Lemma 42:
.(a) E(R) =0 GL(R)
(b)  E(R) = BE(R)

Proof: The relation (l+ tE 1+E, ) = 1+tE:. shows (b)

ik? kJ 1J

and hence also E(R) C JGL(R). If x,y< GL (R), then
XyX y Cj E (R) because in GLG(R) we have

1.1 )“1

Xyx "y 0 x 0 y O (yx 0

(1) _

i 0 1 o x1 0 y'l 0 yx

x 0 1 x 1 0 1 -1 1 0]

(2) | =
o xt o 1) [=x1t 1ylo 1} {1-x 1
1 x 1 en |

(3) = ﬂ Il (1+leElJ) if %= (xy )
0o 1 1=1 J=n+l

We call Kl(R) = GL(R)/E(R) the Whitehead group of R. This concept

is used in topology. The case in which R = J [G] 1is of particular
interest.

%X

Example: If R 1is a Euclidean domain, then K;(R) =R  , the

group of units. (See Milnor, Whitehead TOrsqu.)

By Lemma 42 and (iv), E(R) has a u.c.e. (m,U(R)). Set
KZ(R) = ker m . This notation is partly motived by the following

exact sequence.

1 — KZ(R) —> U(R) —= GL(R) -—>K1(R) —> 1.
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o

‘K2 is a functor from rings to Abelian groups with the following
H
property: if R -—2>1R is onto, then so is the assoclated map

)
KZ(R) --—>K2(R ).

Remark : K2 is known to the lecturer in the following cases:

(a) If R is a finite field (or an algebraic extension
4

of a finite field), then K, = 1.

(b) If R 1is any field, see Theorem 12.
(c) If R= Z, then ]K2l = 2.
Here (a) follows from Theorem 9 and the next theorem, and a proof

of (c) will be sketched aftar the remarks following the corollaries

to the next theorem.

Theorem 1L : Let U(R) be the abstract group generated by the

symbols Xij(t) (t€R, 143,41, =1,2,...) subject to the

relations

(4) xij(t) is additive in t.

x, 5(bu) if k=4 ,1#3.

(B) 6, (t),x ,{u))
He A3 1 if ktE L 1A

If =n : U(R)—> E(R) is the homomorphism given by xij(t)—€>l+'tEij,

then (=x,U(R)) is a u.c.e. for E(R).

Proof: (a) =n 1is central. If x & kerm, choose n large enough

so that x 1s a product of xinS with 3,]J < n. Let Pn be

the subgroup of U(R) generated by the x, 's (k# n, k = 1,2,...).

Now by (A) and (B), any element of P~ can be expressed as
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k

TT—xKn(t ). Since in E(R) this form is unique, =n|P, 1is an
isomorphism. Also by (A) and (B), x -1

iJ.(t) P, xij(t) CPp, 1if
n(x,y

1,j<n. Thus, x P xTEP . If yEP_, then ) =1,

and since n[Pr is an isomorphism we have (x,y) = 1. In
L

particular, x commutes with all x__(t). Similafly, x commutes

kn

with all x_, (t) and hence with all xij(t) = (xin(t);xnj(l)).

Thus, x is in the center of U(R).

(b) =n is universal. From (B), it follows that U(R)=SJU(R).
Hence it suffices to show it covers all central extensions. Lect
(Y,A) be a central extension of E(R) and let C be the center
of A. We must show that we can 1ift the relations (A) and (B)
to A. Fix 1,j i# J and choose p # i,j. Choose

yij(t) Ej\f'l xij(t) so that (%) (y. (t), yv_.(1)) =y._(t). We

ip pJ
will prove that the yt's satisfy the equations (4) and (B).
(bl) If 14 3, k# A, then yiK(t) and ypfj(u) commute.

Choose q# 1,j,k, # and write Y 4 J.(u) =2(yy q(u) (1)), c &€ cC.

b) yqj
ince vy, (t commutes up to an element o with vy u
S 1 () P 1 f c ¥, q( )

and yqj(l)’ it commutes with y;(j(ﬁ). Hence

(b2) vy

(b3) The relations (A) hold. The proof is exactly the

(t)}, 1i,j fixed, 1s Abelian.

same as that of statement (7) in the proof of Theorem 10.
(bk) vy, 5

If q#p,i,j,set w=y

(t) in (%) 1is independent of the choice of p.
ap (1) ypq(nl)yqz)(l). Transforming ()
by w and using (bl) we get (%) with q in place of p.

(b5) The relations (B) hold. We will use:

(x%) If, a,b,c are elements of a group such that a
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commutes with c¢ and such that (b,c) commutes with (a,b) and c

then (a,(b,c))=((a,b),c). Since a commutes with c,{a,{b,c))

=((a,b),(b,c)c). The other conditions insure ((a,b),(b,c)ec)=((a,b) c)

Now assume 1i,j,k are distinct. Choose q=< 1i,j,k, so that

J.(l)))= «yik(t),ykq(u)),y (1))

(yik(t) ’ij (u)) = (yik(t) ; (qu(uj) Y qJ

=

q

Yiq(tu),yqj(l)) = yij(tu) by (%), (), and  (bL).

This completes the proof of the theorem.

o A{t)

Let U_(R) denote the subgroup of U(R) generated by Vi

Corollary 1: If n > 5, then U (R) 1s centrally closed.

Corollary 2: If R 1s a finite field and n > 5 then Slh(R)

is centrally closed.

Proof: This follows from Corollary 1 and the equations

En(R) = SLn(R) = Un(R).

Remarks: (a) It follows that if R 1s a finite field and if
SLn(R) is not centrally closed, then either |R| =9, n =2 or
IR| < 4 and n < 4. The exact set of exceptions is : SI_(4]),

2
Mﬁ@),ﬁﬁQT,S%UJ,SHJﬂ.

% Exercise: Prove this.
(b) The argument above can be phrased in terms of roots, etc.
As such, it carries over very easily to the case in which all roots
have one length. The only other exception 1is Dh(z)'
(¢) By a more complicated extension of the argument, it can

also be shown that the universal Chevalley group of type Bn or Cn
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over a finite field (or an algebraic extension of a finite field)
is centrally closed 1f n 1is large enough. Hence, only a finite
number of universal Chevalley groups with ¥ indecomposable and

k finite fail to be centrally closed.

Now we sketch a proof that K2(7Z) is a group of order 2.
The notation U,U ,... above will be used. The proof depends on

the following result:

(1) For n > 3, Slh(ZZ) 1s generated by symbols

xij(i,j'= 1,2,...,ny 1 $ j) subject to the relations

fxij v k=4, 1473,
(B) '(xik,ij) = ' '

Ll ir k4 A, 143,

. _ -1 _ .. R 2 _
(c) If Wiy =Xgg X35 Xy, By =wj, then hf=1.

Identifying X 5 with the usual xij(l) and using

(t) = X5 -
those of Theorem 1l4. Since the last relation may be written

X 5 (l)t, we see that the relations (B) here imply

nij(-l)Z - nij(l) and * 1 are the only units of Z , we have
SLn(:Z) defined by the usual relations (AL(B),(C) of v§6.
Perhaps there are other rings, e.g., the p-adic integers, for
which this result holds. For the proof of (1) see W. Magnus,
Acta Math. 64 (1934), which gives the reference to Nielsen, who
proved the key case n = 3 (it takes some work to cast Nielsen's

result into the above form). The case n = 2, with (B) replaced by

1 o -
(B') Wi x12 wlé = X 2% , 1s simpler and is proved in an appendix
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to Kurosh, Theory of Groups.

Now let x refer to elements of Un(]Z_)-

130 130 M1
(2) 1If C, 1s the kernel of m ! Un(iz)v—-$> SLHQIZ) and

n2> 3, then C  is generated by hlg , and (hlg)2 = 1.
As usual, we only require (C) when i,j =1,2, and hlg Ean

Setting nlg = 1 amounts to dividing by <nl§>>, which thus equals

- ; -1 _ =1 .
C, - The relation n23n12n23 = hy, , which may be deduced from
(B) as in the proof of Lemma 37, then yields hlg = nig .

3) n5+1 if n2 3.

Assume not. There is a natural map U (Z) — U_(R),
X33 —> Jcij(l). This maps nlg onto nlz(—l)2 , which (see
Remark (a) after the proof of Theorem 13) generates the kernel of
Un(fR) —_— SLn([R). Thus SLn(R) is centrally closed, hence
simply connected. Since Slh(i?) can be contracted to S0,
(by the polar decomposition, which will be proved in the next section)
which is not simply connected since Spinn —_— SOn is a nontrivial

covering, we have a contradiction.
It now follows from (2), (3) and Theorem 14 that ]Kz(ZDI = 2.

By Corollary 1 above the same conclusion holds with SL{ Z)

replaced by any SLn(ZZ) with n > 5.

Exercise: Let SAn be Slh x translations of the underlying space,

k ~with k agaig a field. I.e., SA_ ~ 1is the group of all
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(n+l) x (n+l) matrices of the form ( X y] where x € bLn,'yEKn .
0 _

SA, 1is generated by x;.(t), t €k, 1 #J, 1 =1,2,...,n,

1]
f j=1,2,...,n+l.  Prove:

(1) If the relation

(c) nij(t) is multiplicative.

is added to the relations (A) and (B) of Theorem li, a
complete set of relations for SAn is obtailned.

(2) If k is finite, (C) may be omitted.

(3) If n is large enough, the group defined by (A) and (B)
is a u.c.e. for SAn .

(4) Other analogues of results for SL.

We remark that SAz(G:) is the universal covering group of the
inhomogeneous Lorentz group, hence is of interest in quantum

mechanics.
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_§ 8. Varignts of the Bruhat lemma. Let G be a Chevalley group,

k, B ... as usual. We recall (Theorems 4 and 4 ):
(a) ¢=(J BuB, a disjoint union.
weW
(b) For each we W, BuwB= BwU_ , with uniqueness of expression
on the right. Our purpose is to present scme analogues of (b} with

applications.

For each simple root. o we set Ga==<<§£1 ’>€-m> y a
group of rank 1, Ba:= B(\Ga , and assume that the representative

of w, in N/H , also denoted w, , is chosen in G, .

Theorem 15: For each simple root ao 1let Ya be a system of

representatives for B;\(Ga - Ba) , or more generally for ﬁ\gde .

For each w e W choose a minimal expression w = W, Wq «.. W5 as
a product of refiections relative to simple roots a, § ... . Then

BwB-= BYCYB -+. Y5 with uniqueness of expression on the right.

Proof: Since Ga - Ba = BawaBa , the second case above really

is more general than the first. We have
BwB = BwanawB (by Lemma 25)
= BWaBYB .o Y6 (by induction)

= BYaYB cee Yo (by the choice of Ya) .
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' P s t 9 . ?
Now assume byaYB e YYYS =b YaYB oo YYYS with b, b e B ,

T 7 U | T -1
etc. Then bya cee Yy T b Vg »o- YYYBYB . We have Vg¥s € B

or BWSB . The second case can not occur since then the left side
would be in BwwsB and the right side in BwB (by Lemma 25).

?
From the definition of Y6 it follows that Vg = Vg o and then

-

by induction that y. =1y

y VEREERE whence the uniqueness in

Theorem 15.

Lemma A43: Let Oy ¢ SLy, —=> Ga be the canonical homomorphism
(see Theorem hq , Cor. 6). Then Ya satisfies the conditions of

Theorem 15 in each of the following cases.
(a) Ya = wé;% a

(b) k ==Q:(respJ;3) and Y  is the image under o

of the elements of SU, (resp. 802) (standard compact forms) of
a -b

the form _ | with b > 0.
| b a

(c) If e 1is a principal ideal domain (commutative
with 1), e* is the group of units, k 1is the quotient field,
and Y  is the image under 0, of the elements of SL2(®) of
the form {i Z} with ¢ running through a set of representatives

for (e-0)/e" , and for each ¢ , a running over a set of

representatives for the residue classes of o mod c¢ .

Proof: We have (a) by Theorem L applied to G, . To verify

(b) and (c) we may assume that G, is SL, and B, the
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superdiagonal subgroup B2 since ker ?,, C B2 . Any element of
SLZ(() can be converted to one of SU2 by adding a multiple of
the second row to the first and normalizing the lengths of the

rows. Thus  SL,(C) ='B2(<C).SU2. Then BQ(Q’,)\SLz(GL)
P q
} € SLz(k)

with k as in (c). We choose a, ¢ in e relatively prime and

/\/(BZ«E)(“)SUz)\§U2 , whence (b). Now assume {

r S

such that pa + q¢c = 0 (using unique factorization), and then
b, d in e so that ad - bc =1 ., Multiplying the preceding

matrix on the right by [ﬁ b]we get an element of Bz(k) .

c d
Thus SL,(k) = Bz(k)SLz(e) , and (c) follows.

b4
Remarks: (a) The case (a) above is essentially Theorem 4 since

wa = wdaéa . wB3€B oo WBRSS in the notation of Theorem 15, by

Appendix II 25, or else by induction on the length of the expression.
(b) In (c) above the choice can be made precise in the following

cases:
(1) e =4 ; choose a, ¢ so that 0< a <c .

(2) o = F[X] (F a field); choose so that ¢ 4is monic

and dg a < dg c .

(3} o :;Zp (p-adic integers); choose ¢ a power of p

ﬁ and a an integer such that 0 < a<c.,.
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- In what follows we will give separate but parallel
developments of the consequences of (b) and (c¢c) above. In (b)
we will treat the case k =T for definiteness, the case k = TF?

being similar,

Lemma 4L4: Let ;Zf and {Xa’ Ha} be as in Theorem 1.

(a) There exists an involutory semiautomorphism o of ;57

(relative to complex conjugation of al ) such that

O;Xa = 'X-a and o;Ha = - Ha for every root o .

(6) on L the form I, Y] defined by (X, oY) in

terms of the Killing form is negative definite.

Proof: This basic.result is proved, e.g., in Jacobson, Lie

algebras, p. 147.

Theorem 16: Let G be a Chevalley group over (: viewed as a

Lie group over 7? .

(a) There exists an analytic automorphism o of G

such that o'xa(t) =x (-t) and Gha(t) = ha(E ~l) for all « and

-G

(b) The group K = Gg_ of fixed points of o is a
maximal compact subgroup of G and the decomposition G = BK

holds (Iwasawa decomposition).

Proof: Let 3 be o in Lemma 44 composed with complex

conjugation, and P the representation of :Z? used to define G .
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?
Applying Theorem 4 , Cor, 5 to the Chevalley groups (both equal to

G) constructed from the representations o and Pa ™ of ;f ,

we get an automorphigsm of G which aside from complex conjugation
satisfies the equations of (a), hence cemposed with conjugation
satisfies these equations, From Theorem 7 adapted to the present
situation (see the remark at the end of § 5) it follows that o
is analytic, whence (a). We observe that if G is defined by the
ajoint representation of ;Z?, then o is effected by conjugation

by the semiautomorphism o, of Lemma 44 .

Lemma 45: Let K =G_, K =KANG  for each simple root «c .

[
=~
i
RS
W
=

. 2o, SU, (see Lemma 43(b)), hence Ya CK, .

A
(b) B,o=H_=fheH| [*h)] =1 forall [el

(global weights)}
= (1T h,(t;) (see Lemma 28) |‘ |ti| = 1}

= maximal torus in K .

Proof: The kernel of 9, SL, > G, 1is contained in f+ 1} ,
and ¢ pulls back to the inverse transpose conjugate, say Gé ,
on SL2 . Since the equation 0h X = - X has no solutions

we get (a) . i
Since oh_(t) =h_(T 1) Pn (t)) = ¢4

b

(here p and ﬁ are corresponding weights on fg( and H) , i




10k

and the ha(t) generate H , we have ﬁ(c'h) = ﬁ(h) -1 for all
heH,sothat oh=h if and only if |#lh)| = 1 for all
. w{ H.

) A A H )
weights . If h = TT hi(ti) , then pth) = T 6y 1" . Since
there are < linearly independent weights ; , we see that if

~ : ‘
|e(h)|[ = 1 for all Q\, then [ti[n =1 for some n > 0 , whence

|ti| =1, forall i . If G 4is universal, then B_ is the
product of the <4 circles {h;(+)} , hence is a torus; if not,
we have to take the quotient by a finite group, thus still have a
torus. Now if h € Ho_ is general enough, so that the numbers
Q(h) (o € £Z) are distinct and different from 1 , then Gh , the
centralizer of h in G , is H , by the uniqueness in Theorem
h', so that H_ is in fact a maximal Abelian subgroup of G__,

which proves the lemma.

Exercise: Check out the existence of h and the property Gh = H
above.

Now we consider part (b) of Theorem 16. By Theorem 15 and
Lemmas 43(b) and 45(a) we have § = BK . By the same results
(BwB)O_g;BOKa...K6 , a compact set since each factor is (the
compactness of tori and SU, is being used). Thus K = Go‘ is
compact. (This also follows easily from Lemma L4(b)). Let K
be a compact subgroup of G, Kljg K . Assume X € Kl . Write
x = by with b € B, y € K, and then b = uh with u ¢ U,

h € H ; Since Kl is compact, all eigenvalues ﬁkhn)
(n = 0,f1,#2,...) are bounded, whence h & K by Lemma 45(b).

Then all coefficients of all u® are bounded so that u = 1 .
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Thus x € K , so that K 1is maximal compact

Remark: It can be shown also that KX 1is semisimple and that a
complete set of semisimple compact Lie groups is got from the

above construction.

Corollary 1: Let G' be of the same type as G with a weight
1 1
lattice containing that of G, K = G;_, and n: G -—> G the

!
natural projection. Then #«K = K .

Proof: This follows from the fact proved in Lemma 45 that K

is generated by the groups CpaSU2 .

Examples: (a) If G
(b) If G

SL,(C) , then K = SU_ .

il

SOn(QJ , then K fixes simultaneously

the forms £ x and ¥ x.X. , hence equals SOnUE) (com-

i*n+1-1i iTi
pact form) after a change of coordinates. Prove this.
(c) If G = szn(@) , then K fixes the forms
n
E(xiy2n+l=i - X5,47-5Y3) and I x;X. , and is isomorphic to

1
SUnﬂ¥» (compact form, Mt = quaternions). For this see Chevalley,

Lie groups, p. 22.

(d) We have isomorphisms and central extensions,
1ns IO SU, (H) ¥ SU () —> 80;R)
2
SUL(H) —> SO @) , SUL(D)™ —-=> SO, (IR

SUA(Q) —> SoéﬂR) (compact forms).

This follows from (a), (b), (c), Corollary 1 and the equivalences

2
Gy = A4) =By, Gy =By, 4y = Dy, Ay =Dy .
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Corollary 2: The group ‘K 1is connected.

Proof: As already remarked, K 1is generated by the groups

cpaSU2 . Since SU2 vis connected, so is K .

Corollary 3¢ If T denotes the maximal torus Ho’

, then T\K

is homeomorphic to B\@ under the natural map.

Proof: The map K > B\Q, k —> Bk , is continuous and con-
stant on the fibres of T\§ , hence leads to a continuous map of
TNK into B\g which is 1 - 1 and onto since T = BN K and

G = BK . Since T\g is compact, the map is a homeomorphism.

Corollary 4: (a) G 1is contractible to K ,

(b) If G 1is universal, then K is simply con-

nected.

Proof: Let A = f{h e H[Q(h) > 0 for all Q~s’£} . Then we have
H= AT , so that G = BK = UAK . On the right there is unique-
ness of expression. Since K 1s compact it easily follows that
the natural map UA X K —> G ié a homeomorphism. Since UA
is contractible to a point, G 1is contractible to K . If also
G is universal, then G 1is simply connected by Theorem 13]

hence so is K .

Corollary 5: For weW set (BwB)_= BwB /K = K, , and let

@,B,y...,8 be as in Theorem 15. Then K =\J}Kw and
W

Kw = TY@"'Yé , With uniqueness of expression on the right.

Proof: This follows from Theorem 15 and Lemma L43({b).




107

Remark: Observe that K, 15 essentially a cell since each T
is homeomorphic to @ (consider the values of a in Lemma 43(b)).
A true cellular decomposition is obtained by writing T as a
union of cells. Perhaps this decomposition can be used to give
an elementary treatment of the cohomology of K .

Corollary 6: B\G and T\g have as their Poincaré polynomials
2N (w)

Tt
wewW

They have no torsion.

Proof: We have B\BwB homeomorphic to WU, a cell of real
dimension 2N(w) . Since each dimension is even, it follows that
the cells represent independent elements of the homology group
and that there is no torsion (essentially because the boundary
operator lowers dimensions by exactly 1), whence Cor. 6. Alter-

nately one may use the fact that each ¥, 1is homeomorphic to @ .

Remark: The above series will be summed in the next section,
where it arises in connection with the orders of the finite

Chevalley groups.

Corollary 7: For weW let w=w,...Ws bea minimal expres—

sion as before and let S denote the set of elements of W each
of which is a product of some subsequence of the expression for

W . Then Kﬁ_ (topological closure) = k) K

_ w'es w'
Proof: If T, =TNK, , we have K = TQYQ\J'TQ by Lemma 45(a)
and TaYa = K, by the corresponding result in SU2 . Now
BwB = B*T Y ...TsTs Dby Lemma 43(b). Hence Ky = TeT Y oo Ts¥s s

a
so that K DO TK,...K; , and we have equality since each factor
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on the right is compact, so that the right side is compact, hence
i
closed. Since K K C K ,UK , if w €W and a is sim-
W - oow

W W
ple, by Lemma 25, Cor. 7 follows.

Corollary 8: (a) T = Kl -is in the closure of every Kw .

(b) K, 1s closed if and only if w =1 .

Corollary 9: The set S of Cor. 7 depends only on w , not on

the minimal expression chosen, hence may be written S(w) .
Propof: Because Kw doesn't depend on the expression.

Lemma L6: Let w, be the element of W which makes all positive

roots negative. Then S(wo) =W .

Proof: Assume w e W , and let w = Wy eeoW be a minimal expres-

n
sion as a product of simple reflections and similarly for

-1 _ _ -
w wO = wm+l...wn . Then wO = wl...wm...wn is one for wO
since if N is the number of positive roots then m = N(w),

n=0N=DNw) , and m+n=0N = N(wo) . Looking at the initial

segment of w_  we see that W ¢ S(wo)

Corollary 10: If w, 1is as above and w_ = W Wgee Mg 1s a

minimal expression, then

-«

(a) K = Ky -
o
KQK

(b) K K

i

B.' 6 .

Proof: (a) By Cor. 7 and Lemma L6.

(b) By (a) K = TKKK Kg - We may write T = 1T TX'

B
(Y simple), then absorb the TX'S in appropriate KXYS to

get (b).
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Exereise: If G 1is any Chevalley group and wo,a,B,... are as

above, show that G = BGQG G

geee 5
Remarks: (a} If (€ and SU, are replaced by K and 50, in
accordance with Lemma 43(b), then everything above goes through
except for Cor. 4, Cor. 6 and the fact that T is no longer a
torus. In this case each Ka; is a circle since 30, 1is. The
corresponding angles in Cor..lO(b), which we have to restrict

- suitably to get uniqueness, may be called the Euler angles iﬁ
analogy with the classical case:
G = SLy{R), K = S0;(R) ,
Ka’Kﬁ = {rotations around the z-axis, x-axis} ,

K=K,K Ky -

B
(b} If K, 1s replaced by BwB = BK_, in Cor. 7, the
formula for BwB is obtained. (Prove this.) If € (or R) is
replaced by any algebraically closed field and the Zariski topol-
ogy is used, the same formula holds. So as not to interrupt the

present development, we give the proof later, at the end of this

section.

Theorem 17: (Cartan). Again let G be a Chevalley group over

¢ or‘R, K = Go’ as above, and 4 {h € H|ﬁ(h) >0 for all
AN
L e L} .

(a) G = KAK (Cartan decomposition).

(b) In (a) the A-component is determined uniquely up to

conjugacy under the Weyl group.
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Proof: (a) Assume x € G . By the decompositions H = AT and
G = BK (Theorem 16), there exist elements in KxK /N UA
Given such an element y = ua , we write a = exp H (H ¢ -, ,
uniquely determined by a) , then set |a| = [H| , the Killing
norm in Jiﬂ{. This norm is invariant under W . We now choose
y to maximize |a| (recall that K is compact). We must show
that uw =1 . This follows from; (%} if wu $ 1 , then |a|
can be increased. We will reduce (%) to the rank 1 case. Write
u = g!; ug (ug € XB) . We may assume u, $ 1 for some simple
@: choose a of minimum height, say n , such that wu, 1,
then if n > 1 , choose f simple so that (u,B) > O and
ht wBa <n , then replace y by wB(l)wa(l)‘=l and proceed by
induction on n . We write u = uYua with u' e *'Pn{a} (here
P is the set of positive roots). Then we write a = exp H ,
choose ¢ so that H’ = H - CHa is orthogonal to HOL , set
a, = exp cH, & 4Gy, a' = exp H €4, a-= aaa' . Then a
commutes with Ga elementwise and is orthogonal to a, relative
to the bilinear form corresponding to the norm introduced above.
By (%) for groups of rank 1, there exist y, z € K, such that

M 1 1 1
yu,a,z = a, e aM G, and |a,| > la,| « Then yuaz = yuuga.a z

a’a
= yutymla;aY . Since G, normalizes )EPm{a} (since 3éa and
NF_Q do) , yufyml e U . Since [a;a'|2 = [a;[Z + [a’[2
> |aa|2 + 1at|2 = |aaat|2 = |a\2 , we have (%) , modulo the

rank 1 case. This case, essentially G = SLy will be left as

an exercise.
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(b) JAssume x €& G, x = kjak, as in (a). Then
oX = kla"lk2 , 8o that xox L = klaZkIl . Here o-a = a~t
S _ A A
since Z(o-a) = ﬁ(a) =-ﬁ(a l) for all 2 e L .

Lemma L7: If elements of H are conjugate in G (any Chevalley
group), they are conjugate under the Weyl group.

This easily follows from the uniqueness in Theorem h’ .

By the lemma x above uniquely determines a2 up to con-
jugacy under the Weyl group, hence also a since square-roots

in A are unique.

Remark: We can get uniqueness in (b) by replacing A by

N
A" = {a e Afa(a) » 1 for all @ > 0} . This follows from Appen-
dix IIT 33.

Corollary: Let P consist of the elements of G which satisfy

ox = x L and have all eigenvalues positive.

(a) ACP

(b) Bvery p € P is conjugate under K to some a € A
uniquely determined up to conjugacy under W (spectral theorem).

(c) G = KP , with uniqueness on the right (polar decom-

position).

Proof: (a) This has been noted in (b) above.

(b} We can assume p = ka € KA , by the theorem. Apply

1

&L p =ak - . Thus k commutes with a® , hence also with

a . {Since a 1is diagonal (relative to a basis of weight vec-

tors) and positive, the matrices commuting with a have a certain

H
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block structure which does not change when it is replaced by az.)
£k

Then K = 1 and k= a 2pa e P , so that k 1is unipotent by

the definition of P . Since K is compact, k=1 . Thus

p = a . The uniqueness in (b) follows as before.

(¢) If x e G , then x = kjak, as in the theorem, so

- R - -
that x = klk2 LZ ak, € KP . Thus G = KP . Assume klpl = k2p2
with ki e K and p; € P . By (b) we can assume that P, € A,
1

Then pq = k‘l”lkzp2 . As in (b) we conclude that kI

whence the uniqueness in (c).

ky = 1,

Example: If G = SL (€) , so that K = SU (@) ,
A = [positive diagonal matrices},
P = [positive-definite Hermitean matrices},

then (b) and (c) reduce to classical results.
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We now consider the case (c} of Lemma 43, The development
is strikingly parallel to that for case (b) just completed al-
though the results are basically arithmetic in one case, geometric
in the other; Throughout we assume that a,e*,k,Ya are as in
Lemma 43(c) and that the Chevalley group G under discussion is
based on k . We write Ge for the subgroup of elements of G
whose coordinates, relative to the original lattice M , all lie
in &

Lemma 48: If ¢ 1is as in Theorem 4', Cor. 6, then

9, SLy(e) C Gy

Proof: If e is a Buclidean domain then SLz(e) is generated
by its unipotent superdiagonal and subdiagonal elements, so that
the lemma follows from the fact that xa(t) acts on M as an
integral polynomial in t . In the general case it follows that
if p is a prime in e and ep is the localization of e at

p (all a/b € k such that a,b € © with b prime to p) then
waSLZ(e) C G, - Since f\ep = o , e.g. by unique factorization,
we have our result.

Remark: A version of Lemma 48 is true if e is any commutative

a

o S] is generically expressible as a polynomial

ring since o_[
in a,b,c,d with integral coefficients (proof omitted). The
proof just given works if e 1is any integral domain for which
e = /\ep (p = maximal ideal), which includes most of the inter-

esting cases.
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Lemma 49: Write K =G_, kK =G N K .

(a) BNK= (UNK)HNK) .
(b) UNK = {OLT;E) x, () g, e ol . o
(¢c) HNK = fh e H|Z(h) € & for all 4 e L]

| = {IT hi‘ti)‘ all t, 0} .
(d) waSLz(e) = K, . Hence Yd C X, -

Proof: (a) If b =uh € BN K, then its diagonal h , relative
to a basis of M made up of weight vectors (see Lemma 18, Cor.

3), must be in K , hence u must also.

(b) If wu = TT'x (t,) e UMK , then by induction on
heights, the equation xa(t) =1+ tXu + ... and the priﬁitivity
of Xa in End (M) (Theorem 2, Cor. 2) we get all ta's e .

(c) If he HNK , in diagonal form as above, then
ZXh) must be in e for each weight ﬂ\ of the representation
defining G , in fact in e since the sum of these weights is
O (the sum is invariant under W) . If we write h = TT'hi(ti)

e

and use what has just been proved, we get t? € o for some

n >0, whence t; ¢ e by unique factorization.

(d) Set S, = @aSLZ(e) . By Lemma 48, S, C K, . Since

G, = B,V B, Y, by Lemma 43(c) and ¥, CS, , the reverse inclu-
sion follows from: Baf\ KCS, . Nowif x = Xa(t)hm(t ) € Bd”TK,

e

then t € e and t € e by (a), (b), (c) applied to G, , so

that x € <xa(e), x (e)> = S, » whence (d)

Theorem 18: Let e,k,G and K = Ge be as above. Then G =

(Iwasawa decomposition).
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Proof: By Lemmas A43(c) and 49(d), BwB = BYQ....Y6 C BK for
every W €W , so that G = BK .
Corollary 1: Write Ky = BwB /1K .
(a) K= U Kw .
wWewW
(b) X,= (BNK)Y,....Ys , with BN K given by Lemma 49,

and on the right there is uniqueness of expression.

-Remark: This normal form in K = Ge has all components in G@

whereas the usual one obtained by imbedding Ge in G doesnt't,

Corollary 2: K 1is generated by the groups Ka .

Proof: By Lemma 49 and Cor. 1.

Corollary 3: If e is a Euclidean domain, then K is generated

by {xa(t)la € X, t ebs} .

Proof: Since the corresponding result holds for SLZ(e) , this

follows from Lemma 49(d) and Cor. 2.

Example: Assume o = Z, k = Q@ . We get that G is generated

/4

by {x, (1)} . The normal form in Cor. 1 can be used to extend -

Nielsen's theorem (see (1) on p. 96) from SL,(Z) to GZZ whenever

3
Z has rank > 2 , is indecomposable, and has all roots of equal
length (W. Wardlaw, Thesis, U. C. L. A. 1966). It would be nice

if the form could be used to handle SLB(Zﬂ itself since Nielsen's
proof is quite involved. The case of unequal root lengths is at
present in poor shape. In analogy with the fact that in the

earlier development K is a simple compact group if £ 1is in-

decomposable, we have here: Every normal subgroup of GZZ is
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finite or of finite index if Y is indecomposable and has

rank > 2 . The proof isn't easy.

Exercise: Prove that Giz/laG:Z is finite, and is trivial if
L 1is indecomposéble and not of type Al,BZ or G2 .

Heturning to the general set up, if p is a prime in e ,

we write | [_O for the p-adic norm defined by lOlp = 0 and
[x|p =27 if x=rpa/b with a and b prime to p

Theorem 19: (Approximation theorem): Let e and k be as

above, a principal ideal domain and its quotient field, S a
finite set of inequiyalent primes in e , and for each p € S,
tp e k . Then for any € > O there exists t & k such that

|t - tplp <& for all p e S and |t|$ <1 for all primes
afs

Proof: We may assume every tp € e . To see this write

tp = pra/b as above. By choosing s > =r .and ¢ and d so that
a = cpS + db and replacing a/b by d , we may assume b = 1 .

If we then multiply by a sufficiently high power of the product

of the elements of S , we achieve r >0 , for all p e S . If

we now choose n so that 277 < g, e = TT" pn, e = e/pn , then
pe y

f so that £ " + e =1, and finaliy v = I e t

p’ &p °° p? T Bp%p i £p°p"p

we achieve the requirements of the theorem.

Now given a matrix x = (aij) over k , we define

|x|.. = max|a, .| . The following properties are easily verified.
P 1J'p

(1) =+ yl, S max|x| ), [v],
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(2) [xy|, <

(3) If lxi[p = 1yi|p for i=1,2,...,n , then

A
ITT X; - 1T yilp < maxi|yl[p.... yi[p...;[yn]p[xi - yilp .

Theorem 20: (Approximation theorem for split groups): Let

e,k,5,€ be as in Theorem 19, G a Chevalley gfoup over k , and

xp € G for each p € S . Then there exists x € G so that

[x - xp|p <& forall p eS8 and |x[q <1 forall q ¢ S.

Proof: Assume first that all x, are contained in some ¥
X, = xa(tp) with tp ek . If x= xa(t), t € k , then

[xlq < max |t[q, 1 because xa(t) is an integral polynomial in
t and similarly \xx;l
[x - xp|P < [xp|p|t - tp b by (1) and (2) above. Thus our result

-1, < |6 = t], 5 so that

follows from Theorem 19 in this case. In the general case we

choose a sequence of roots @y y&yseee SO that xp = xplpo"'

wWith X, € ¥, forall p e S . By the first case there exists
i
in € %ai so that
|x; - Xpilp < pri‘p and € xpi'p/lxbl[p[poIp"'
if p e S and |xi[q <1 if q ¢85 . Weset x=xX....
Then the conclusion of the theorem holds by (3) above.

With Theorem 20 available we can now prove:

Theorem 21: (Elementary divisor theorem): Assume e,k,G, K = Ge

are as before. Let A+ be the subset of H defined by:

A o A
a(h) € ¢ for all positive roots a .
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(a) G = KATK (Cartan decomposition).

(b) The At component in (a) is uniquely determined
mod HM K , i.e. mod units (see Lemma 49); in other words,; the
set of numbers {ﬁ?h)|ﬁ\ weight of the representation defining
G} is. |
Example: The classical caée occurs when G = SL (k), X = SL_(e) ,
and A" consists of the diagonal elements diag(al,az,.;.,an)

such that a; is a multiple of a4 for i = 12,044 &

Proof of theorem: First we reduce the theorem to the local case,

in which e has a single prime, modulo units. Assume the result
ture in this case. Assume x € G . Let S be the finite set
of primes at which x fails to be integral. For p € S , we

write ep for the local ring at p in e , and define K_  and

p
A; in terms of ep as K and A+ are defined for e . By the
!
local case of the theorem we may write x = cpapcp with
cp, c; € Kp and a € A; , for all p € S . Since we may choose

ap so that ﬁ(ap) is always a power of p and then replace all
ap by their product, adjusting the <c¢'s accordingly, we may

+ .
assume that ap is independent of p , is in &4 , and is inte-

1.1 with a=a_ for

! .
ral tsid f S . Weh a
gral outside o e have cp cpx p

p €3 . By Theorem 20 there exist ¢, ¢' €G so that

|c - Cplp < |c for p e S and |c[q <1 for q ¢S ; the

plp t t Y
same equations hold for ¢  and c, » and |[cac x— - l|p <1 for

all p € S . By properties (1), (2), (3) of | |p , it is now
easily verified that [c| <1, |e | <1 and cac’x™ - 1] <1,
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whether p is in S or not. Thus ¢ € K, ct e K and
cac'x—l e K, so that x € KA+K as required. The uniqueness in

Theorem 21 clearly also follows from that in the local case.

We now consider'the local casé, p being the unique prime
in e . The proof to follow is qﬁite close to that of Theorem
17. Let 4 be the subgroup of all h & H such that all 2(h)
are powers of p , and redefine At » casting out units, so that

in addition all 4G(h) (@ > 0) are nonnegative powers of p

Lemma 50: For each a € A there exists a unique H ¢ A ’
the Z-module generated by the elements Ha of the Lie algebra
L , such that 'Q(a) = p”(H) for all weights g .

n .
Proof: Write a = h, (c p “) with c e e, n, € Z. Then
n ,'.c(Ha

ﬁ(a) = TT(CaP <) . Since ﬁka) is a power of p the c  ,

a

being units, may be omitted, so that a) = Pﬂ(H) with
H=1Z naHa . If Hf is a second possibility for H , then
vu(H’) = u(H) for all u , so that H = H .

If a and H lare as above, we write H = logpa, a = pH s
and introduce a norm: |a| = |H| , the Killing norm. This norm
is invariant under the Weyl group. Now assume x € G . We want
to show x € Ki'K . From the definitions if T = H/MK then
H = AT . Thus by Theorem 18 there exists y = ua € KxK with

ueU, aed . There is only a finite number of possibilities

H

for a: if a =p , then {u(H)|z a weight in the given rep-

resentation} is bounded below (by -n if n is chosen so that

the matrix of pnx is integral, because {pp(h)} are the
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diagonal entries of ¥y) , and also above since the sum of the
weights is O , so that H is confined to a bounded region of
the lattice 7*2’. We choose y = ua above so as to maximize
la] « If u=T]u, (u, e ¥ ) , we set supp u = {aju, $ 1}
and then minimize supp u subject to a lexicographic ordering
of the supports based on an ordering of the roots consistent
with addition (thus supp u < supp u' means that the first a
in one but not in the other lies in the second); We claim

u=1, Suppose not. We claim (=) u, ¢ K and a1

gaa £ K for
a € supp v ., If u, Were not in XK , we could move it to the

extreme left in the expression for y and then remove it. The
new terms introduced by this shift would, by the relations (B},

correspond to roots higher than « , so that supp u would be

diminished, a contradiction. Similarly a shift to the right
yields the second part of {(*}, Now as in the proof of Theorem

17 we may conjugate y by a product of wB(l)'s (a1l in K} to
- get  ug + 1 for some simple a , as well as (%). We write

a = pH , choose ¢ so that H' = H - cHQ is orthogonal to H,  ,

a
CHQ ' g R
set a, = p ya =p ,a=aa . We only know that

Rc = <H,H > € Z , so that this may involve an adjunction of
pl/2 which must eventually be removed. If we bear this in mind,
then after reducing (*) to the rank 1 case, exactly as in the
proof of Theorem 17, what remains to be proved is this:
Lotk ]
‘ L . with 2c e Z, t & k,

Lemma 51: Assume y = ua = , - -
o]l e
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t £ e and tp-20 t e . Then c can be increased by an ihteger

by multiplications by elements of K .

ate
e

I with e e o . Then n € Z, n >0 and

Proof: Let t = ep”

) n + 2c¢c > 0 by the assumptions, so that ¢ + n > ¢, c + n > =¢

n
po e
and |c + n| > |c| . If we multiply y on the left by [; -1 J .
- = ~ 0
. 1 0 . {bc+n 0)
on the right by ~1 n+2c , both in K , we get | —oen | ?
- " p 1 L0 p

which proves the lemma, hence that u =1 . Thus y = a€i, so
that x € KAK . Thus G = KAK . Finally every element of A is
conjugate to an element of A" under the Weyl group, which is
fully represented in K (every wa(l) e K) . Thus G = KA'K .
It remains to prove the uniqueness of the A component. If

G' is the universal group of the same type as G and ¢ 1is the
natural homomorphism, it follows from Lemma 49(d) and Theorem 18,
Cor. 2 that nKt = K and from Lemma 49 that = maps A'+ iso=-
morphically onto At . Thus we may assume that G is universal.
Then G 1is a direct product of its indecomposable factors so
that we may also assume that G is indecomposable. Let Ay PDe

ith

the fundamental weight, V. an l:-module with Ay as

i
highest weight, Gi the corresponding Chevalley gfoup,

N G ——->-Gi the corresponding homomorphism, and s the

1
corresponding lowest weight. Assume now that x = cac € G ,

t A
with ¢, ¢ e K and a e A+ . Set “i(a) = p * . Each weight

¢. increased by a sum of positive roots, Thus n;
n.
is the smallest integer such that p lnia is integral, i.e. such

on V., 1is
1 1
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n

i . . ! : .
- that p n;X 1s since m,cC and n;¢ are integral, thus is

uniquely determined by x . Since {ﬂi} is a basis of the late-

tice of weights (g. = woxi) , this yields the uniqueness in the

i
local case and completes the proof of Theorem 21.

Corollary 1¢ If e 1is not a field, the group K is maximal in

its commensurability class.

. 1
Proof: Assume K is a subgroup of G containing K properly.
1
By the theorem there exists a ¢ AN K , a £ K. BSome entry of
the diagonal matrix a is nonintegral so that by'unique facto-
1
rization |K /K| 4is infinite.
Remark: The case e = Z 1is of some importance here,

Corollary 2¢ If e =’Z{p' and k = Qp (p-adic integers and

numbers) and the p-adic topology is used, then K is a maximal

compact subgroup of G .

Proof: We will use the fact that :ij is compact. (The proof
is a good exercise.) We may assume that G is universal. Let

k be the algebraic closure of k and G the corresponding

Chevalley group. Then G = G MSL(V,k) (Theorem 7, Cor. 3}, so

that K = @/ SL(V,e) . Since o is compact, so is End(V,e) ,
hence also is K , the set of solutions of a system of polynomial
equations since G 1is an algebraic group, by Theorem 6. If K'
is a subgroup of G containing K properly, there exists

aea N K', a £ K, by the theorem. Then {[an[D In e Z} 1is

_ \
not bounded so that K 1s not compact.

e
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Remark: We observe that in this case the decompositions G = BK
+ . . .

and G = KA K are relative to a maximal compact subgroup just

as in Theorems 16 and 17. Also in this case the closure formula

of Theorem 16, Cor. 7 holds.

Exercise (optional): Assume that G 1is a Chevalley group over
a, R or Qp and that K 1is the corresponding maximal compact
subgroup discussed above. Prove the commutativity under convolu-
tion of the algebra of functions on G which are complex-valued,
continuous, with compact support, and invariant under left and
right multiplications by elements of K . {Such functions are
sometimes called zonal functions and are of importance in the
harmonic analysis of G .) Hint: prove that there exists an
antiautomorphism ® of G such that wxa(t) = xna(t) for all

a and t , that ® preserves every double coset relative to

K , and that ® preserves Haar measure. A much harder exercise

is to determine the exact structure of the algebra.

Next we consider a double coset decomposition of K = Ge

itself in the local case. We will use the following result, the

~ first step in the proof of Theorem 7.

Lemma 52: Let L be the Lie algebra of G (the original Lie

Y

algebra of 81 with its coefficients transferred to k) , N the
number of positive roots, and {Y¥,,Y .

101p0es a basis of /\Nl:
made up of products of X 's and H's with ¥, = N Xa . For
L a>0
x e G write x¥; =% cj(x)Yj . Then x € U HU if and only if

cl(x) + 0.
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Theorem 22: Assume that e is a local principal ideal domain,

that p 1is its unique prime, and that k and G are as before.

(a) B UTH U_ is a subgroup of Gy -

I pee
(b} G

U B.wB (dis joint), if the representatives for
weW L

W in G are chosen in Ge .

©

(c) BIWBI = BIWUw,e with the last component of the right

uniquely determined mod Uw,p .
Proof: Let e denote the residue class field e/pe, G the
Chevalley group of the same type as G over ¢ , and Bo, B, ...
the usual subgroups. By Theorem 18, Cor. 3 reduction mod p

yields a homomorphism & of Ge onto GS .

(1) n'l(UgHgUg) C U'HU . We consider G acting on /\Sﬁ as

in Lemma 52. As 1is easily seen Ge acts integrally relative to

the basis of Y!'s . Now assume nx € UzH=U= . Then c¢,(nx) % O
_ e e e 1

by the lemma applied to Gz , whence cl(x) + 0 and x € UTHU

_again by the lemma.

(2) GCorollary: ker n C UTHU

(3) Bp = At

Bs . dssume x ¢ n_lBg . Then x & UBU by (1).
From this and x ¢ Ge it follows as in the proof of Theorem 7(b)

that x € UeHeUe , and then that x ¢ BI

(4) Completion of proof: By (3) we have (a). To get (b) we
simply apply "t to the decomposition in Gz relative to Bg .
We need only remark that a choice as indicated is always possible

since each wa(l) € Ge . From (b) the equation in (c) easily
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follows. (Check this.) Assume bywu, = bywu, with b, & B

I’

@ 1 N

-1 -1 -1
u. € U . Then bl b, = wuus w aBIﬂU

= U_ , whence
3 W,e Up , enc

~1
u Uy € Uw,p and (c) follows.

Remark: The subgroup BI above is called an Iwahori subgroup.
It was introduced in an interesting paper by Iwahori and Matsumoto
(Pabl. Math. I.H.E.S. No. 25 (1965)). There a decomposition

which combines those of Theorems 21(a) and 22(b) can be found.

The present development is completely different from theirs.

There is an interesting connection between the decomposition

G, = UBwB; above and the one, G_=\J(BuB)_ , that G, inherits

as a subgroup of G , namely:

Corollary: Assume w & W , that S(w) is as in Theorem 16, Cor.

9, and that nt Ge — Gg is, as above, the natural projection.
!
Then_ n(BIwBI) = ngBg , and n(BwB)e = w'gé(w)ng Bg . Hence

if & 1is a topological field, e.g. C,[R or Qp , then n(BwB)e

is the topological closure of n(BIwBI) .

Proof: The first equation follows from nalBg = BI , proved
above. Write w = WQWB,.. as in Lemma 25, Cor. Then

(%) (BwB)e = (BW@B)G(BW by Theorem 18, Cor. 1. Now

BB)e"'
(BwaB)ejQ x"a(p) and wa(l) and is a union of B double cosets.

\ — - v 1 auel -
Thus n(Bw,B)_ D Békj Bz w,Bz = B_ G, 5 . The reverse inequel

- )

ity also holds since (Bw(LB)e C:BeGa,e by Theorem 18, Cor. 1.

From this, (%), the definition of S{w) , and Lemma 25, the re-

quired expression for n(BwB)e novw follows.
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Appendix. Our purpose is to prove Theorem 23 below which gives
the closure of BwB under very general conditions. We will
write w' < w if woe S(w)v with S(w) as in Theorem 16, Cor.
9, i.e. if w'  is a subexpression (i.e. the product of a subse-~
quence) of some minimal expression of w as a product éf simple
reflections.

Lemma ¢ The following are true.

r - - - 3 .
(a) If w is a subexpression of some minimal. expression

?l for w , it is a subexpression of all of them.

(b} In (a) the subexpressions for w  can all be taken t§
be minimal.

(c) The relation < is transitive.

(d) If weW and « is a simple root such that wa > 0

1

(resp. w a > 0) , then ww, > W (resp. woW > W)

(e) W, W for all w e W

_ Proof: (a) This was proved in Theorem 16, Cor. 7 and 9 in a
rather roundabout way. It is a direct consequence of the following
fact, which will be proved in a later section: the equality of
two minimal expressions for w (as a product of simple reflec-
tions) is a consequence of the relations Wy Wyoon = WoWp ...

(wl,w2 distinct simple reflections, n terms on each side,
n = order w1w2)

(b) If w‘ = Wy Wo. o W is an expression as in (b) and
it is not minimal, then two of the terms on the right can be

cancelled by Appendix IT Z21.
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(c) By (a) and (b).
(d) If wa >0 and Wy W e s W is a minimal expression
for w , then Wy e W oW is one for W, by Appendix IT 19, so
that W, > w , and similarly for the other casé.

(e) This is proved in Lemma L46.

Now we come to our main result.

Theorem 23: Let G be a Chevalley group. Assume that k 1is.a

nondiscrete topological field and that the topology inherited by
G as a matric group over k 1is used. Then the following condi-

R ! .
tions on W,w are equivalent.

o omr——

(a) Bw B BB

(b)

1M

t

=
IA
=

Proof: Let Yl be as in Lemma 52 and more generally

T, = é;B X for weW ., For xce G 1let cw(x) denote the
coefficient of YW in xYl We will show that (a) and (b) are

~equivalent to:

(c) c,' is not identically O on BwB .,

(a) => (c). Ve have xg(t)X, =X, + I thj with X, of weight

repre-
W p

sents w in W in N/H . Thus (*) BwBY C:k¢Yw + higher

(0 or a root) w+ jB , and n X = cX (c$ 0) if n

terms in the ordering given by sums of positive roots. Thus cwt

is not identically O on BwYB , hence also not on BwB , by (a).

1
(c) => (b). We use downward induction on N(w ) . If this is

maximal then w o= WO the element of W making all positive
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roots negative, and then w = w_ by (c) and (%) above. Assume

o
1 1.
w o W, . Choose a simple so that w- Ly > 0 , hence

N(waw') > N(w ) . Since c,'(BuB) $ 0 and Bu.bwB C
BwB U BwawB , Wwe see that Cy w'(BwB) + O or cwqu(mewB) + 0,

@
! 1 1
so that ww <w or ww < w. ¥ . In the first case w <w

o8
by Lemma 53{(c) and (d). In the second case if wa < 0 then
Ww < W by Lemma 53(d) which puts us back in the first case,
while if not we may choose a minimal expression for w starting

with w_  and conclude that w < W,

(b) ==> (a). By the definitions and the usual calculus of double

cosets, this is equivalent to: if a is simple, then ﬁﬁ;ﬁ =

B L/BwaB . The left side is contained in the right, an algebraic
group, hence a closed subset of G . Since BwaB coptains

}(a ~ 1 and the topology on k is not discrete, its closure
contains 1 , hence also B , proving the reverse inequality and

completing the proof of the theorem.

Remark: In case k above is ({,R or Qp», the theorem reduces
to results obtained earlier. In case k 1is infinite and the
Zariski topology on k and G are used it becomes a result of

Chevalley (unpublished). Our proof is quite different from his.

Exercise: (a) If weW and a 1is a positive root such that
wa > O , prove that wi, > w (compare this with Lemma 53(d)),
and conversely if wr < w then (%) there exists a sequence of

positive roots al,az,...,ar such that if W, o= W then

1

TR T T T
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1 . 1 t
WoW) .o Ws g0y > O for all i and wwj...w, =w. Thus w W

and (%) are equivalent.

(b) It seems to us likely that wf < w 1is also equiv~
alent to: there exists a permutation n of the positive roots
such that wfnu - wa is a sum of positive roots for every

. t
a>09% or even to: I (wa - wa) 1s a sum of positive roots.
' a>0
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§9. The orders of the finite Chevalley groups. Presently we will

prove:

Theorem 24: Let W be a finite reflection group on a real space

V of finite dimension 4 ;| S the algebra of polynomials on V ,

I(S) the subalgebra of invariants under W . Then:

(a} I(S) 1is generated by + homogeneous algebraically in-
dependent elements Il"”’IL

(b) The degrees of the Ij's , say dl""’d% , are unieuely

determined and satisfy Z(d‘j - 1) = N , the number of
J
positive roots.

§ (c) For the irreducible Weyl groups the di's are as follows:

W di's
-
Ay

B,f,, C‘f’ 2) lp,...,Z’L

2’ 3’...,{l+l

D, 2, byou.,2b = 2,4

=3

6 2) 57 6) 87 9) 12

B, |2, 6, 8,10, 12, 14, 18

By |2, 8,12, 14, 18, 20, 2k, 30
F, 2,6, 8, 12

o |6

Our main goal is:

Theorem 25: (a) Let G be a universal Chevalley group over a

field k of q elements and the di’s as in Theorem 24. Then

e e e it e gy et e AT _—
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d;
|G| = qN TT (@' - 1) with N = Z.(di - 1) = the number of positive
i

roots.
(b) If G 4is simple instead, then we have to divide by
c = |Hom(Ll/L0, kﬁ)[ , given as follows:
G| A | BsCo | Dy | By | By |Eg|F |Gy

o

‘(L+1,q—1) ] (2,9-1) {(h,q%_l) | (3,9-1) ](2,q~1) [1 |1 l 1

Remark: We see that the groups of type B, and C;, have the
same order. If 4 = 2 the root systems are isomorphic so the
groups are isomorphic. We will show later that if 4 > 3 the
groups are isomorphic if and only if q is even.

The proof of Theorem 25 depends on the following identity.

Theorem 26: Let W and the d;'s be as in Theorem 24 and t

=~

d.
an indeterminate. Then ) tN(w) = TT (1L -t l)/(l -t) .
weW i

We show first that Theorem 25 is a consequence of Theorems

2L and 26.

Lemma 54:¢ If G 1is as in Theorem 25(a) then

4
6] = % -1)* 3z J
weW
Proof: Recall that, by Theorems 4 and h', G = \(J BwB (disjoint)

weW
and BwB = UHwUw with uniqueness of expression. Hence

|G| = [U||H Now by Corollary 1 to the proposition of

.5 Ul .
wer WI

83, [U] = ¢ and |[U &) | By Lemma 28, |H| = (¢ -1)°.

wl =
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Corollary: U is a p-Sylow subgroup of G , if p denotes the

characteristic of k .

Proof: pqu(w) unless N(w) = O . Since N{(w) = 0 if and only
if w=1,pts 0,

Proof of Theorem 25: (a) follows from Lemma 54 and Theorem 26.

(b) follows from the fact that the center of the universal group

is isomorphic to Hom(Ll/Lo, k*) and the values of Ll/L found

0
in §3,

Before giving general proofs of Theorems 24 and 26 we give
independent (case by case) verifications of Theorems 24 and 26

for the classical groups.

Theorem 24: Type A,: Here W"E'S{’+l permuting 4 + 1 linear
functions {’y,..-,W),; such that o =X, =0 . In this case
the elementary symmetric polynomials Cpsee+s0yyq AaTE invariant

and generate all other polynomials invariant under W .

Types B;, Cy+ Here W acts relative to a suitable basis

L“l”"’ak by all permutations and sign changes. Here the ele-
mentary symmetric polynomials in U)i,..[;qf are invariant and

generate all other polynomials invariant under W .
Type D, ¢ Here only an even number of sign changes can occur.
Thus we can replace the last of the invariants for B%,(di...wf

by &ﬁf"b%

Theorem 26: Type A,: Here W= Sy and N(w) is the number
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of inversions in the sequence (w(l),...,w(£ + 1)) . If we write

P (t) = o NN hen Pray(t) = Po(t)(1 + ¢ £2 ..+ 1y
WEWSJSL_'_:L

as we see by considering separately the 4 + 2 wvalues that

- 4+1 .
w(4 + 2) can take on. Hence the formula PL(t) = ]T'(l - tJ)/(l - t)
J==

follows by induction.

Exercise: Prove the corresponding formulas for types By, C; and
Dy, . Here the proof is similar, the induction step being a bit

more complicated.

Part (a) of Theorem 24 follows from:

Theorem 27: Let G be a finite group of automorphisms of a real

vector space V of finite dimension 4 and I the algebra of

polynomials on V invariant under G . Then:

(a) If G is generated by reflections, then I 1is generated

by 4 algebraically independent homogeneous elements (and 1) .
(b) Conversely, if I is generated by 4 algebraically
independent homogeneous elements (and 1) then G 1is generated

by reflections.

Example: Let 4 =2 and V have coordinates x,y . If
G = {+ id.} , then G 1is not a reflection group. I is generated

by x2, xy, and y2 and no smaller number of elements suffices.

Notation: Throughout the proof we let S be the algebra of all
polynomials on V, SO the ideal in S generated by the homoge-

neous elements of I of positive degree, and Av stand for
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average over G (i.e. AVP = |G[°l r gP) .
geG

Proof of (a): (Chevalley, Am. J.» of Math. 1955.)

(1) Assume Il’ 12,... are elements of I such that 1

1
is not in the ideal in I generated by the others and that

Pl’ P2,... are homogeneous elements of S such that I PiIi =0

Then Pl £ SO .

Proof: Suppose I, € dideal in S generated by I,,... . Then

I, = £ R .e« €8 so that I, = Avl
1 i>2 2’ 1 1
= I (AVR,)I. Dbelongs to the ideal in I generated by I,,...,
i>2 11 -
a contradiction. Hence Il does not belong to the ideal in S

.I. for some R
i~i

generated by 12,... .
We now prove (1) by induction on d = deg Py . If d= 0,

Pl =0 € SO'. Assume d >0 and let g e G  be a reflection in
a hyperplane L = O . Then for each i, L|(Pi - gPi) . Hence
(P, - gPi)/L)Ii = 0 , so by the induction assumption
P, - &Py € SO , L.e. Py =gPy (mod SO) . Since G 1is generated
by reflections this holds for all g € G and hence
Pl = AVPl (mod SO) . But AVPl € So SO Pl € So .

We choose a minimal finite basis Il”"’In for So formed
of homogeneous elements of I . Such a basis exists.by Hilbert's

Theorem.

() The I,'s are algebraically independent.

Proof: If the Ii are not algebraically independent, let

H(Il""’In) = 0 be a nontrivial relation with all monomials in
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the Ii's of the same minimal degree in the underlying coordinates

XyseeasXy - Let H, = bH(Il,._...,In)/BIi . By the choice of H

not all Hi are 0.. Choose the notation so that

{Hl,...,Hm} (m < n) but no subset of it generates the ideal in
m

I generated by all the Hi . Let Hj = iil Vj,i Hi for

j=m+ 1,...,n where Vj ; € I and all terms in the equation
J
are homogeneous of the same degree. Then for k=1, 2,...,%

n
we have 0O = OH/0x, = iil H; OI,/0x,

m n
= I Hi(in/bxk LA R P 6Ij/bxk).. By (1) bIl/bxk

i=l jemtl J2
n
+ j=i+l Vj,l BIj/bxk € S, . Multiplying by x, , summing over k,
using Eulert!s formula, and writing dj = deg Ij we get
n - n
4.1, + z V. d.I. = ¥ A.I. where A, belongs to the ideal
171 jem+l Jsl 7373 j=1 11 i

in S generated by the X - By homogeneity A = 0 . Thus Il

is in the ideal generated by IZ""’In , a contradiction.
(3) The I,'s generate I as an algebra.

Proof: Assume P € I is homogeneous of positive degree. Then

P=23 PiIi, Pi € S . By averaging we can assume that each
Pi e I . Each Pi is of degree less than the degree of P , so

by induction on its degree P 1is a polynomial in the _Ii's .

L) n=12.

Proof:; By (2) n <4 . By Galois theory R(I) is of finite
index in ﬁQ(xl, x2,...,xn) , hence has transcendence degree 4

over (K, whence n >4 .
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y (R), (3) and (4) (a) holds.

Proof of (b): (Todd, Shephard Can. J. Math. 1954.)

Let Il,...,I& be algebraically independent generators of ’
I of degrees djj;...3d; respectively.
di -1 _ . -1
(5) TT(L -t )™ = A¥ det(l - gt) , as a formal identity
i= SEL
in t .

Proof't Let €908y be the eigenvalues of g and Xy eesXy

the corresponding eigenfunctions. Then det(l - gt);l

TT (1 + €. t + 82 24 ..») . The coefficient of t? is

pl p2 ) .
X € ees 3 1.e. the trace of g acting on the
n + = €1 &2 :
pl p2 .0 ."n
space of homogeneous polynomials in XpsenerXy of degree n ,

P, P
since the monomials ll 22... form a basis for this space. By

averaging we get the dimension of the space of invariant homogeneous

polynomials of degree n . This dimension is the number of mono-
mials T 1122... of degree n , i.e., the number of solutions of
. P n .
pldl + p2d2 + ... =n, i.e, the coefficient of ¢t in
. d. .

-1
in(l -t H7

(6) TT d; = |G| and Z(d; - 1) = N = number of reflections

in G .
Proof: We have det(l - gt) {fl - t) if g=1,
(1 - t (l +t) if g is a

reflection,
a polynomial not divisible by

(1 - t)'{""l otherwise.
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Substituting this in (5) and multiplying by (1 -'t){ s we have
d.-1 '
TT@a+e+ ...+ )™ oeb@ + n-t)/(1+t) + (1-t)3P(t))

where P(t) is regular at t =1 . Setting t =1 we get

T d;l = |G|"’:L . Differentiating and setting t

(TT d75)E(=(a;-1)/2) = [6[7H(/2) , so z(d;-1)

1l we get

N .

(7) Let Gt be the subgroup of G generated by its reflec-

t
tions. Then G =G and hence G 1is a reflection group.

Proof: Let I;, di , and NY refer to GY . The I; can be
expressed as polynomials in the Ii with the determinant of the
corresponding Jacobian not O . Hence after a rearrangement of
the I;, d,/dL. # 0 for all i . Hence d, »d; . But

2(d, = 1) =N =N =g(d; -1) by (6). Hence d, = d; for all
i, s0, again by (6), (6] =TT d; =TT d; = (6| ,s0 G=0G

Corollary: -The degrees dl’ d2’°°' above are uniquely determined
and satisfy the equations (6).
Thus Theorem 24(b) holds.

- BExercise:! For each reflection in G choose a root o . Then
b(:]: 2 I ,on.)
1 2 s .
det = TT(L up to multiplication by a nonzero number,
b(xl, X5, )

Remark: The theorem remains true if IR is replaced by any field
of characteristic O and "reflection" is replaced by "automorphism
of V with fixéd point set a hyperplane?,

For the proof of Theorem 24(c) (determination of the d.)

we use-:
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Proposition: Let G and the di be as in Theorem 27 and
W= W ...W o, the product of the simple reflections (relative to
an ordering of V (see Appendix I.8)) in any fixed order. Let

h be the order of w . Then;
(a) N =4in/2
(b) w contains w = exp 2ni/h as an eigenvalue, but not 1 .
m

(c) If the eigenvalues of w are {W i[l <m; <h - 1}
then {m, + 1} = {di}

Proof: This was first proved by Coxeter (Duke Math. J. 1951),
case by case, using the classification theory. For a proof not
using the classification theory see Steinberg, T,A;M.S. 1959, for
(a) and (b) and Coleman, Can. J. Math. 1958, for.(c) using (a)
and (b).

This tan be used to determine the d; for all the Chevalley
groups. As an example we determine the di for E8 . Here
4 =8, N=120 , so by (a) h = 30 . Since w acts rationally
Wwh(n, 30) = 1} are all eigenvalues. Since ¥(30) = 8 = 1
these are all the eigenvalues. Hence the di are
1, 7, 11, 13, 17, 19, 23, 29 all increased by 1 , as listed

previously. The proofs for G2 and Fh are exactly the same.

E6 and E7 require further argument.

Exercise: Argue further.

Remark: The dils also enter into the following results, related

to Theorem 24:
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(a) Let Jﬁ be the original Lie algebra, k a field of charac-
teristic O , G the corresponding adjoint Chevalley group. The
algebra of polynomials on Ji invariant under G 1is generated
by 4 algebraically independent elements of degree dl,..,,dL ’
the di's as above.

This is proved by showing that under restriction from li to
ﬂ$ the Geinvariant polynomials on li are mapped isomorphically
onto the W-invariant polynomials on 7+u The corresponding
result for the universal enveloping algébra of £ then follows
easily.

(b)Y If G acts on the exterior algebra on L ) the algebra of
invariants is an exterior algebra generated by 4 independent
homogeneous elements of degrees {2d; -1} .

This is more difficult. It implies that the Poincare polyno-

mial (whosé coefficients are the Betti numbers) of the correspond-

ing compact semisimple Lie group (the group K constructed from

Cind8)is TTA+t T )

Proof of Theorem 26: (Solomon, Journal of Algebra, 1966.)

Let [ be the set of simple roots. If = C J] 1let W
be the subgroup generated by all Wos @ ET oL

(L) If w e Wﬂ then w permutes the positive roots with

support not in mw .

Proof: If B 1is a positive root and supp B ¢ mn then

B= I__ e,a with some e, > 0, a fn . Now wBp is B plus a
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vector with support in = , hence its coefficient of a 1is positive,

so wWB > O .

(2) Corollary: If w e Wﬂ then N(w) is unambiguous (i.e.

it is the same whether we consider w e W or w e W)

(3) For = CfTT define Wni = {Ww &€ Wwn > 0} . Then:

L (a) Every w € W can be written uniquely w = w'w“
with w' e W ' and wn e W .
7 )4

(b) In (a) N(w) = N(w ) + N(w')

Proof: (a) For any w e W let w e Wﬂw be such that N(w')

is minimal. Then w'a >0 for all a & m by Appendix II.l9(a') .

Hence wt € Wnt so that w ¢ W;Wn . Suppose now w = w'wn = u'u"
. 1 1 1 it ) o oatL] 1
with w , u € Wﬂ and W , u ¢ Wn . Then wwu =u .
tonm o] 1 a4ty
Hence wwu 7w >0. Now w (-n) <O so wu ~n has support
it
in n . Hente wu “im C m so by Appendix II.23 (applied to Wn)
o] v it )
wu =1 . Hence w =u,w =u .
(b) follows from (a)} and (1).
(4) Let wW(t) = z MW w(t) = 5 N | Tnen
weW n wewn
z (—l)ﬂW(t)/Wn(t) _— , where N is the number of positive
C

rSots and (-1)" = (--l)lni .

Proof: We have, by (3), W(t)/wn(t) = I, tN(w) . Therefore

, weW _
the contribution of the term for w to the sum in (4) is thN(w)
where c¢_= £ (=1)" . If w keeps positive exactly k elements

W

wn>0
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fa-1%=0 if k#o0

{\ 1 if k= 0.

Therefore the only contribution is made by Wo oo the element of

of T[] then Cy =

w which makes all positive roots negative, so the sum in (4) is

equal to tN as required.

Corollary: Z(-1)™|W|/{W | = 1.

Exercise: Deduce from (4) that if o and B are complementary

subsets of T then = (-1)™ %W (t) = 5 (-1)™ B _(¢71) .
o n B &
Set D= {veVl(v,a) >0 for all a & TT} , and for each

nC Tl set D = {veV|(v,a) =0 forall aemn, (v, B) >0
for all B & [ - =} . D, 1is an open face of D .

(5) The following subgroups of W are equal:

(@) Wn .

(b) The stabilizer of D_ .

(c) The point stabilizer of Dn .

(d) The stabilizer of any point of D_ .

Proof: (a) C (b) because = 1is orthogonal to DTL . (b)) C (c)
because D .is a fundamental domain for W by Appendix ITII.33.

Clearly (c) g;(d) . (@) g;(a) by Appendix III.32.

(6) In the complex cut on real k-space by a finite number
of hyperplanes let n, be the number of i-~cells. Then

£(-1)'n; = (-1)% .

Proof: This follows from Euler's formula, but may be proved
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directly by induction. In fact, if an extra hyperplane H is

added to the configuration, each original i-cell cut in two by

H has corresponding to it in H an (i - l)-cell separating the

two parts from each other, so that 'Z(—l)ini remains unchanged.
(7) In the complex K cut from V by the reflecting hyper-

planes let n_(w)(=n g;TT} w € W) denote the number of cells W-

congruent to D_ and w-fixed. Then % (-l)“nn(w) = det w .

Proof: Each cell of K 1is W-congruent to exactly one Dﬂ . By

(5) every cell fixed by w 1lies in Vw(Vw {v e Vijwr = v}) .
Applying (6) to Vw and using dim D_ = t ~ |n| we get

I (-l)“nn(w) = (-=-l)j("k , where k = dim V, . But w is orthog-
onal, so that its possible eigenvalues in V are + 1, - 1 and
pairs of conjugate complex numbers. Hence (ul)iﬁk = det w .

If X" is a character on Wl , & subgroup of W , then 'XW

denotes the induced character defined by (=) .XW(W)

- w7 (xwx_l) . (See, e.g., W. Feit, Characters of
1 xeW -
1

eW

XWX 1

finite groups.)

(8) Let X be a character on W and Xﬂ = (){[Wn)w(ng_ ']T) .
Then néTT(_l)ﬂkﬂ(w) = X(w) det w for all weW .

1

Proof: “Assume first that X.s 1 . Now xwx™ ¢ W if and only

1 rives D (by (5)) which happens if and only if w

fixes xlew . Therefore ln(w) = nﬂ(w) by (%) . By (7) this

if xwx

gives the result for )(s 1. If X is any character then
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](n = }an so (8) holds.

(9) Let M be a finite dimensional real W-module, In(M)

A
be the subspace of Wn-invariants, and I(M) Dbe the space of
A
W-skew-invariants (i.e. I(M) = {m & Mjwm = (det w)m for all w e W}).

Then £ (=1)"dim I_(M) = dim f(M)
nCIT b

$ Proof: 1In (8) take )( to be the character of M , average over
we W, and use (*).
(10) If p = T[a, the product of the positive roots, then

p 1is skew and p divides every skew polynomial on V. .

Proof : We have wp = -p = (det wa)p if a is a simple root by
Appendix I.11. Since W 1is generated by simple reflections P
is skew. If f 1is skew and a a root then wdf = (det wa)f = -f
so a|f . By unique factorization p|f .

(11) Let P(t) = 7@ - tdi)/(l - t) and for nQ;'TT let

{d_.} and P be defined for W as {di} and P are for W ,

i
Then % (-1) “P /P (t) =

Proof: We must show () —l)nTT -t ﬂl

d. -1 = 'o
=t"T(L -t 1) . Let S= IS, be the algebra of polynomials
i k=0 '
on V , graded as usual. As in (5) of the proof of Theorem 27

k

the coefficient of t on the left hand side of () is

% (-1)™dim I _(S,) . Similarly, using (10), the coefficient of
'k
[T
K

by (9).

A
on the right hand side of (%) is dim I(Sk) . These are equal

B o,
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(12) Proof of Theorem 26. We write (11) as

(& - (0TTy/p(e) = £_(-1)%/p () and (4) as

z
(tN - (-l)TT)/W(t) = ? (-1)“/W (t) Then, by induction on
. - . ’
ﬂgﬂ'

O {TTI, W) = P(t)

Remark: Step (7), the geometric step, represents the only simpli-

fication of Solomon's original proof.




145

§lO. Isomorphisms and automorphisms. In this section we discuss

the isomorphisms and automorphisms,pf Chevalley groups over‘per--==
fect fields. This assumption of perfectness is not strictly
necessary but it simplifies the discussion in one or two places.
We begin by proving the existence of certain automorphisms related

to the existence of symmetries of the underlying root systems.

Lemma 55: Let X be an abstract indecomposable root system with

not all roots of one length. Let o* = fa” = 2a/(a,a)|a € £} be

the abstract system obtained by inversion. Then:

(a) Z* is a root system.

(b) Under the map * long roots are mapped onto short roots
and vice versa. Further, angles and simple systems of
roots are preserved.

(c) If p = (ao,ao)/(BO,BO) with a_  long, B_ short then

W,
P

the map a —> pa* if a 1is long,
a if a 1is short,

extends to a homothety.

Proof: (a) holds since <a*,B*> = <p,a> . (b) and (c) are clear.
The root system 2* obtained in this way from I 1is called

the root system dual to I

Exercise: Let o = I n, ey be a root expressed in terms of the

simple ones. Prove that a is long if and only if p[ni when-

ever @y is short.

Examples: (a) For n > 3, Bn and Cn are dual to each other.
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B, .and Fh are in duality with themselves (with p =2} as is
Gy (with p = 3) .
(b) Let a, B. a + 8, o + 28 be the positive roots

for I of type B, . Then those for z* are Q*, 5*, (a + B)*

s
)

FS3 ' B3 % . *
= 20 + Ba , and (a + 2B) =a + B% . If we identify o  with
B and B* with a we get a map of B, onto itself. a —> B,

B ——>a, & + B —>a + 20, a + <P

> a + B . This is the map
given by reflecting in the line L in the diagram below (L is

the bisector of <(a,B)) and adjusting lengths.

Theorem 28: Let I, 2* ‘and p be as above, k a field of char-

acteristic p (p 1is either 2 or 3}, G, ¢* universal Chevalley
groups constructed from (Z,k) and (Z*,k) respectively. Then

o

there exists a homomorphism ¢ of G into G' and signs €4
for all @ € ¥ such that w(xd(t)) = xa*(sat) if a is long,
(e tP) i -
x, *(e t7) if a is short.

If k is perfect then @ is an isomorphism of abstract groups.

Examples: (a) If k 1is perfect of characteristic 2 then

Spin2n+l’ 502n+1 (split forms), and Sp,, are isomorphic.
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(b) Consider Coy P = 2, e, = 1l . The theorem assefts

that on U we have an endomorphism (as before we identify g

i
il

and ") such that (1) @(x(t)) = x5(t), @(xg(t)) = x (67,

w(xd+3(t)) = Xa+2B(t2), @(Xd+23(t)) = Xa+B(t) . The only non-
trivial relation of type (B) on U is () (xa(t), xB(u))

= X

2 . .
a+5(tu)xa+25(tu ) by Lemma 33. Applying ® to (2) gives

2 2.2 2
(3) (xB(t), xa(u )) = xa+28(t u )xa+5(tu ) .
This is valid, since it can be obtained from (2) by taking inverses

and replacing t by u2, u by t .

(c) The map ® in (b) is outer, for if we represent
G as Sph and if t § O, xa(t) - 1 "has rank 1 while
xB(t) -1 has rank 2 .

(d) If in (b) |k| = 2, ¢ leads to an outer automor-
phism of .36 since, in fact, Sph(Z)‘g Sg - To see this represent

86 as the Weyl group of type A. . This fixes a bilinear form

-

2 =1 0 0
with matrix -1 2 -1 0
0 -1 2 =1
0 0 -1 2 -1
0O O 0 =1 2

O O O W

relative to a basis of simple roots. This is so because, uyp to mul-
e L _ 2
tiplication by a scalar, the form is just I xixj(ai,aj) = |Z xiail .

Reduce mod 2 . The line through @) toag a5 becomes invariant

3
and the form becomes skew and nondegenerate on the quotient space.

Hence we have a homomorphism kr : 86 _ SPL(Z) . It is easily

e
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seen that ker %/ i)aé so ker *’ = 1 . Since [Sé| = 6! = 720
R I R o R EXGIP Y is an isomorphism.
Y-l may be described as follows. SpL(Z) acts on the
underlying projective space P3 which contains 15 points. Given

a point p there are 8 points not orthogonal to p . These split

into two four point sets Sl’ S, such that each of {p} v Sl

@ and [p} U 82 consists of mutually nonorthogonal points and these
} are the only five elemeht sets containing p with this property.
! There are 15-2/5 = 6 such 5 element sets. Sp4(2) acts faith-
?\ fully by permutation on these 6 sets, so Sph(2) «m~>-86 is de-
1 fined. Under the outer automorphism thé stabilizers of points

# and lines are interchanged. Each of the above five point sets

corresponds to a set of five mutually skew isotropic lines.

Proof of‘Theorem 28: If p =2 each g, = 1 . We must show
that ¢ as defined on the xa(t) by the given equations preserves
(A), (B), and (C) . Here (A) and (C) follow at once. The

nontrivial relations in (B) are:

(xd(t),xﬁ(u)) = xa+B(ipu) if Ja] = |B| and <(a,p) = 120°
xu+ﬁ(12tu) if a,B are short, orthogonal, and a+Bel ,
xa+B(ipu)xm+ZB(ipu2) if [a|>|B| and <(a,B) = 135° .

(The last equation follows from Lemma 33. In the others the right
hand side is of the form xa+B(Na,Btu)') If p =2 the second
equation can be omitted and there are no ambiguities in sign.

Becuase of the calculations in Example (b) above @ preserves
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these relations. Thus ¢ extends to a homomorphism.
There remains only the case G,, p =3 . The proof inlthat ¢

case depends on a sequence of lemmas.

Lemma 56: Let G be a Chevalley group. Let a, B be distinct
simple roots, n the order of wawB in W , so that

W WgWg oeo = WgWWg .. (n factors on each side) in W .
Then: (a) wa(l)wB(l)wa(l) cee = WB(l)w@(l)wB(l) eee (n factors
on each side}) in G .

(b) Both sides map X, to =X, (where w = waWB cee) o

Proof: We may assume G is universal. For simplicity of notation
we assume n = 3 , Consider x = wa(l)WB(l)Wa(l)WB("l)Wa('l)wB('l) .
Let G, = <¥Q,X_a> . Then the product of the first five factors
of x is.in wa(l)wﬁ(l)GawB(—l)wa(-l) = GwawBa = GB and hence

X € GB « Similarly x € GQ . By the uniqueness in Theorem h’,

x € H ., By the universality of G, x =1 ., Let

«
|

= Wa(l)wB(l)wa(l) . Then qu = cX_B where c¢ = *1 , Since
[XQ,X_Q] = H, is preserved by y, yX_, = cXB (same c as above).
Exponentiating and using wa(l) = xa(l)x_a(ml)xa(l) we obtain

yw, (1)y~ = W_glc) = wo(-c) . By (a) yo (1)y™ = w(l) , so

¢ = =1 , proving (b).

Lemma 57: If a, b are elements of an associative algebra over

a field of characteristic O , if both commute with [a,b] and

if exp makes sense then exp(a + b) = exp a exp b exp(-[a,b]/2) .

Proof: Consider f(t) = exp(-(a+b)t)exp at exp bt exp(-[a,b]tz/Z) )

B R —_ —— U R
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a formal power series in t . Differentiating we get f‘(t)

[}

(-(atb) + a = [bya]t + b = [a,b]t)f(t) = 0 . Hence f(t)-
f(o) =1 .

|

Now assume G . is a Chevalley group of type G2 over a field
of characteristic O , and that the corresponding root system is
as shown.

2a+3B
atB A

/ a+2p

y at3p

A

(1) Let y = wa(l)wB(l) be an element of G  corresponding

to w = (rotation through 60° (clockwise)). Then the

wde
Chevalley basis of ji can be adjusted by sign changes so that

yxar = "pr for all ¥ .

H = = <+ R 5K ==
Proof: Let YXX CXXWJ’ Cy +1 Then () Cy = C_ys and

(<) C\CuyCuly = -1 . (by Lemma 56(h} . Adjust the signs of X .
and sza so that ¢ = A ~1 , and adjust the signs of X;wa
and quza in the same way. It is clear from (%) and (%) that

CF = -1 for all Yy in the w-orbit through o . Similarly we

may make CJ.= -1 for all Y in the w-orbit through 8

(2) (a) In (1) we have

Npows = Ny s forall ¥, 6.
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(b) We may arrange so that N =1 and N 2 .
a,B a

+B,B T
b It then follows that NB;@+23 = N@+B;@+2B = 3. and

NQ-:“-"'BB =1
Proof: (a) follows from applying vy  to [XU’XGJ and using (1).
> In the proof of (b) we use (*) if Yy, & are roots and

{¥Y+ 18] - r <1i<q}l is the &-string through ¥, then

NY,5 = +(r + 1) , and N and qué’_é have the same sign

¥,0
(for their product is gq(r + 1)) . By changing the signs of all

X, for ¥ in a w-orbit we can preserve the conclusion of (1)

¥
and arrange that NQ,B =1, NQ+B,B = 2 . By (a) and (%) we have

Np,a+2p = Nasp,ar2p = 3N gp 2as3p = “MNpg,a = 3 - Now
(X (Xqi2g:%g11 = [Xa+28’[xm’XB]] , S0 that Ny, o0 N, o\ a5

= N&,BN@+25,Q+B . Hence N&,G+BB = Na,B = 1.
(3) If (1) and (2) hold then:
(a) (xa(t),XB(u)) = Xa+ﬁ(tu)xm+35(atuB)xa+ZB(-tu2)x2a+35(t2u3)
2 2

(b) (g ,p(t)sxg(u)) = X pa(Rb0)x 4 (=3tu") x5, 55(3870)
(c) (Xa(t)’xa+3ﬂ(u)) = x2a+35(tu)
(d) (Xa.+2[3(t) )XB(U-)) = XG."'BB(—Btu)

(e) (XQ."'B(t),XQ."'ZB(u)) = X2a+33(3tu) .

Proof: (a) By (2) xg ()X, = (exp ad uXp)X, = X, - uX

@ o8 at+p
+ u2Xa+25 + u3X&+3B . Multiplying by -t and exponentiating we
2

get xB(u)xa(nt)xB(«u) = exp(—tXa—tu3Xa+BB)exp(tuXa+Bntu Xa+28)

(<tud) (~62u3/2)x g (B0) % g (607 )iy, 20 (36703/2)

X2a+3p Xa+p Xa+2p 2a.+3p
by Lemma 57, which yields (a). The proof of (b) is similar. In

= Xa(-t)xa+3B

hm'ﬂ'm-n—v SRR T I TR R S T L mete e i e e - ———————
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(c) = (&) the term on the »ight hand eige cormesponds to the only
root of the form iy + jé . The coefficient is Ny,é . We have
taken the opportunity of working out all of the nontrivial rela- -
tions of U explicitly. However, we will only use them in
characteristic 3 when they simplify considerably.

(L) (a) There exists an automorphism 6 of G such that
if w is rotation through 60° then 6xx(t) = XWK(—t) for all
Yeri,tek.

(b) If characteristic k = 3 , then there exists an
endomorphism ¢ of G such that if r is the permutation of
the roots given by rotation through 30O then
ox (t) = fxw(—t) if y is long,

t?fx(tB) if Yy is short.

Proof: f(a) Take © +toc be the inner automorphism by the element
y of (1).

(b) The relations (A) and {C) are clearly preserved.
Now on the generators @2 =86 o ﬁ’ , Where ﬂ/; xd(t)~——€> xa(tB) ,
hence ¢2 extends to an endomorphism of G . This implies that
in verifying that the relations (B) are preserved by o it
suffices to show this for one pair of roots (¥,6) with <(¥,8) =
each of the angles 30°, 60°, 90°, 120°, 150°. For if R(Y,s)
-liS the relation (xg(t),xé(u)) =TT xiK*jé(Cijtiuj) , if
<(XY,6') = <(¥,%) , and if ® preserves R(}),8) then ¢ pre-
serves R(xﬂ,ét) . To show this it is enough to show that %

preserves R(ry,rd) . If ® does not preserve R(ry,rd) then
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that (a) is preserved by x
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@2 does not preserve R(Y,8) , a contradiction since @2 = 0 o?’

extends to an endomorphism. It remains to verify R(Y,8) for
pairs of roots ()¥,8) with <(Y¥,8) = 30°, 60°, 90°, 120°, 150°.
For <(x,8) = 309, 60°, 90° we take ¥Y=a, 6 =a + B, 2a + 38,

@ + 2B respectively. Here we have commutativity both before'and
after applying ® (since (e) becomes trivial since characteristic
k=13) . For <(¥,8) = 120° take (Y¥,8) = (a, @ + 3B) . Then

® converts (c) to (x +B( -t), Xg (=u)) = x (=tu) which is (b),

at2pB
a valid relation. For <(¥,8) = 150° we take (Y¥,8) = (a,B) .

We compare the constants NZ'G for the positive root system
)
relative to (a,B) and the positive root system relative to

(=a, & + B) . Corresponding to Nm,B = 1 we have N—@,@+B =1

and corresponding to = 2 wWe have N = -2 . By

N

atg,p B,atB

changing the sign of Xg' for all short roots ¥ we return to
the original situation. Since W, maps the first system onto
the second, \7: xbit) —_ {rxw X(-t) if ¥ is short,

(t) if ¥ is long

QX
extends to an automorphism of G , and so to prove that % pre-

serves R(Y,8) it is sufficient to prove that '7 o® does, i.e.

(t) —> [

y WQPX(t) if ¥ is long,

3 . )
wqry‘t ) if ¥ is short.
(Note that w,r 1is the reflection in the line bisecting <(a,B)) .

I.e., that the following equations are consistent:

(a) (xa(t),xB(u)) = XQ+B(tu)XQ43B( ~tu 3 )x +2B( tuz,x2a+38(t wl) )
Lz
(a") (xB(t),xa(u3)) = xa+36(t3u3) Q+B( -tu )x2a+35('t3u6) a+26(t2 3)
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3,.u by t , and

(at) follows from (a) by replacing t by u
taking inverses. This proves (4).

We now complete the proof of Theorem 28. The only remaining
case of the first statement is G of type G2, p=3. If \

e
0

G = G this follows from (4) above. In fact, whether G = G*
or not is immaterial because (%) a universal Chevalley group
is determined by I and k independently of li or the Chevalley
basis of L . (%) follows from Theorem 29 below.

Assume now that k 1is perfect. Then ¢ maps one set of
generators one to one onto the other so that @—l exists on the
generators. Since @ preserves (A), (B), and (C) so does"

-1 1

®™" . Hence ¥~ exists on G , i.e. % 1is an isomorphism.

Remark: If k is not perfect, and ¢: G —> G , then ®G is

the subgroup of G in which ¥ is paramaterized by k if a
is long, by k? if a 1is short. Here kP can be replaced by

any field between kpr and k to yield a rather weird simple

group.

Theorem 29: Let G and G' be Chevalley groups constructed

from (£, B = (X, H o € 2}, L, k) and

(Jff, B = {XQ‘,HQY[Q' £ Z?}, L', k) , respectively. Assume
that there exists an isomorphism of ¥ onto Zf taking

a ——> o' such that L maps onto L‘ . Then there exists an

isomorphism ®: G —> G' and signs sa(a € L) such that

@xq(t) = xaT(sat) for all a € £, t € k . Furthermore we may

take e =+l if a or -a is simple.
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Proof: By the uniqueness theorem for Lie algebras with a given
root system there exists an isomorphism \f: }i—=~€> Ji' such
that %’Xa = eaxa" %/Ha = Hm' with €4.E base field for L
(of characteristic . 0) and €, = 1 if a or =a 1is simple.
(For this see, e.g. Jacobson, Lie Algebras.) By Theorem 1,

N = +(r + 1) =-Na',B' . By induction on heights every
e = +1 . Let J: be a faithful representaﬁion of Ji' used to
construct Gf . Then po ﬂ/ is a representation of L which
can be used to construct G . Then xa(t) = xa,(e&(t)) , So that

® = id. meets our requirements.
Remarks: (a) Suppose k is infinite and we try to prove Theorem

28 with t® replaced by t . Then we must fail. For then the
transpose of @IH , -mapping characters on H* to those on H ,
‘maps Ef onto £ in the inversional manner of Lemma 55, hence
can not be a homomorphism. This explains the relative treatment

of long and short roots,

(b) If k 1is algebraically closed and we view G and
G* as algebraic groups then ® 1is a homomorphism of algebraic
groups and an isomorphism of abstract groups, but not an isomor-
phism of algebraic groups (for taking pth roots (which is nec-
essary for the inverse map) is not a rational operation).

(c) For type G, , characteristic k =3 (a similar

result holds for 02 and Fh , Characteristic k = 2) , in lik

there is an endomorphism d® such that
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o (U Xa —_—— ana if a is long
3Xra = 0 if a 1is short.

Thus ,,E g:p___>£ short g_c_g_> 0 1is exact, where [short is the

7-dimensional ideal spanned by all XB’ and HK’ for ¥ short.

This leads to an alternate proof of the existence of @

Corollary: (a) Let ¥ be an indecomposable root system, o

an angle preserving permutation of the simple roots, 0’+ 1.

If all roots are equal in length then o= extends to an automor-
phism of % . If not, and if p 1is defined as abo?e, then o

must interchange long and short roots and o extends to a per-

mutation o of all roots which also interchanges long and short
roots and is such that the map o —> oca if o 1is long,

a —> po-a if a 1is short is an isomorphism of root systems.

The possibilities for o are:

(i) 1 root length:

uf//:;:::;\\\5¥ 2

A (n>2): o—o0 ... 0—0 o =1
4 o )
D (n > k): ﬁ ::>o———o ces O—0 o =1
o
—
D, : L>o—o 2 =1
*—‘—”_29
E6. o) o & o) o 6"2 = 1
N T—
(ii) 2 root lengths, % =1 in all cases.
=
02 o===x==0 p = 2
/m
Fh O e O TR () et p =2
e~y

G2 O==e=0 D = 3
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(b) Let k be a field and G a Chevalley group con-
structed from (Z,k) . Let o be as in (a).. If two root lengths
occur assume k 1is perfect of characteristic p . If G is of
type D, , and characteristic k + 2 , assume cL=1. Then

there exists an autcomorphism ¢ of G and signs g, (E:OL = ]

if a or -a is simple) such that

$xu(t) = (e.t) if a is long or all roots are of one length,

*oa'fa
p . .
xo_m(sat ) if a is short.

Proof: (a) is clear. (b) If G is universal the existence of

¢ follows from Theorems 28 and 29. If G 1is not universal let
e GT ~—> G be the universal covering. To show that ¢ can

be dropped from G to G it is necessary to show that

? ker nC ker n . Now ker n( center G' and unless G is of
type Dy with characteristic k $ 2 the center of G' is
cyclic, so the result follows. Now suppose G 1is of type D2n
and characteristic k $ 2 . If ¢' = center of Gf , then c'

is canonically isomorphic to Hom(Ll/LO,k*) = (Ll/LO)* , giving

a correspondence between subgroups € of Cf and lattices L
between LO and Ll sucn that 9C( C if and only if oL g L .
Since ker m corresponds to L and oL = L , the result follows.

that
Remark: The preceeding argument shows/ for D2n in characteristic

k # 2 an automorphism of G fixing H and permuting the

%fa's according to o can exist only if oL =1 .

14

Remark: Automorphisms of G of this type as well as the identity

are called graph automorphisms.

N T R an < e e e o e
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Exercise: (a) Prove ¢ above is outer.
(b) By imbedding A, in G, as the subgroup generated
by all }é(L such that a is long, show that its graph automor-
phisms can be realized by inner automprphisms of G2 . Similarly

for D, in FL, D, in B , and B¢ in E, .

Lemma 58: Let G be a Chevalley group over Kk, £, E kK" for all
simple a . Let f be extended to a homomorphism of LO into
) .

k' . Then there exists a unique automorphism ¢ of G such

that wxd(t) = xa(fat) for all a g £ .

Proof: Consider the relations (B), (xa(t), xB(u))
= TT xi&+j5(°ijtlu3) . Applying % we get the same thing with

= pled
atjp = Ta'p) -
The relations (A) and (C) are clearly preserved. The unique-~

t replaced by £ t, u replaced by fBu (for fi

ness is clear.

Remark: Automorphisms of this type are called diagonal automor—

phisms.
Exercise: Prove that every diagonal automorphism of G can be

realized by conjugation of G in G{(k) by an element in H(k) .

Example: Conjugate SLn by a diagonal element of GLn .

If G 1is realized as a group of matrices and ¥ is an
automorphism of k then the map ¥ : x, (t) -~>'xa(tx) on gen-
erators extends to an automorphism of G . Such an automorphism

is called a field automorphism.

Theorem 30: Let G be a Chevalley group such that ¥ is
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indecomposable and k 1is perfect. Then any automorphism of G

can be expressed as the product of an inner, a diagonal, a graph

and a field automorphism.

Proof: Let o~ be any automorphism of G

(1) The automorphism o= can be normalized by multiplication
by an inner automorphism so that oU = U, ocU~ = U~ . If this
is done then o H = H and there exists a permutation Jo of the

simple roots such that O_Xa. = Xj)“ and o‘%_’a = X-;‘-/aa. for

all simple a .

Proof: If k is finite, U 1is a p-Sylow subgroup (p = char-

acteristic k) by the corollary of Theorem 25, so by Sylow's
Theorem we can normalize o by an inner automorphism so that
occoU=U . If k 1is infinite the proof of the corresponding
§ statement is more difficult and will be given at the end of the

proof (steps (5) - (12)). For now we assume oU = U .
1

U~ 1is conjugate to U , so o U = uwlwu ~ for some

weW,ueU. Since U MNU =1, wilwu™I N U = 1 and hence

Www /N U =1 . Thus w= TS U™ = Wt . Normalizing

o by the inner automorphism corresponding to u"=l we get
cU=U, cU0U =0 . Now B = UH = normalizer of U, B® = UH =
normalizer of U~ . Hence o fixes B/N\B = H . Also o
permutes the (B,B) double cosets. Now B UBwB (W# 1) 1is a
group if and only if w = Wys @ simple. Therefore ¢  permutes
these groups. Now (B u BwaB)lW U7 = F o - Since for B u Bw B

1. Bw(')::L U B){ o and

_ put -
= BWa v Bwana




160

BNU =1, BY_,NU" =%

. . -1 . | .
Thus it suffices to show Bw] wOf\ Uw, = Bw w /1 wU is empty.

g 0 We must show Bw;l/W U~ is empty.

This holds by Theorem 4. Therefore the %;QQTS, G simple, are
permuted by o and similarly for the ¥}m's . The permutation
in both cases is the same since ¥'a and t%ﬂB commute (a, B
simple) if and only if a $ B .

(2) The automorphism o can be further normalized by a

diagonal automorphism so that O‘Xa(l) = fpa(l) for all simple
(1) = x oo (1)

@ . It is then true that o x_ and o‘wa(l)

Q

= w (1) . Further Jp preserves angles.
In the proof of (2) we use:

Lemma 59: Let o be a root, t ¢ k*, u € k . Then

(W)x (t) = x (u)x (t)x_a(u) if and only if u = ~t~1 ,

xd. (t)x—a 04 - o

in which case both sides equal wa(t)

Proof: It suffices to verify this in SLy where it is immediate.

Proof of (2): We can achieve o‘xd(l) = x (1) for all simple

roots a by a diagonal automorphism. By Lemma 59 with t =1

ox_ (-1) = x__ (-1) and hence O‘Wa(l) = vpa(l) . Suppose a
and B are simple roots. Then <(a,B) == ;-n/n where n =
order of WaWB in W = order of wa(l)wB(l) mod H = order of

o*(wa(l)wB(l)) mod H = order of w in W . Hence <(a,p)

(¢ 5 B
f 'ﬁ

(3) o can be further normalized by a graph automorphism

so that JO = 1 .
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Proof: By the Corollary to Theorem 28 a graph automorphism exists
corresponding to JO provided that p =2 if I 1is of type 02
or Fh sy or p=3 if ¥ is of type G2 , or UPL =1 if x
is of type D,, and char k + 2 , in the notation there. Suppose
L is of type C, or Fh and P + 1 . Then there exist simple

roots a and B, &« long, B short, such that a + B and
a + 28 are roots, Jpa = B,JOB = o , and wa(l)'¥de(~l) = ¥-@+B .

Applying o we get G‘%OH_ZB = X—OH_B, O")f-cu_B = ¥d.+2B . JSince
¥q, and a+28 commute so do ¥B and ¥Q’a+[3 . Hence
0= Nﬂ*B,B = +2 , Hence characteristic k = 2 so the required
graph automorphism exists. Similarly it exists if £ is of
type G2 . Finally, if I 1is of type D2n , characteristic
k # 2 , and JO is extended in the obvious way, then ‘fL = L by
the remark after Corollary (b) to Theorem 28, so that the graph
automorphism exists by the coroliary itself.

(h) o~ can now be normalized by a field automorphism so
that o =1 (i.e. if o satisfies oU=1U, oU =1 |,
o*xa(l) = x (1) for all simple roots a then o is a field

o
automorphism) .

Proof: Fix a simple root a and define f: k —> k by
o-xd(t) = xa(f(t)) . We will show that f 1is an automorphism

of k. We have f additive, onto, f(1) = 1 and by Lemma 59
o*wa(t) = wu(f(t)) . Therefore o’ha(t) = ha(f(t)) . Since the
kernel of the map t —= h (t) 1is contained in {*1} and

ha(t) is multiplicative, f is multiplicative up to sign.
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af(t)f(u) (where a = a(t,u)

il
1]

Assume f(tu) 1 and t, u f 0).

We must show a =1 . Then af(t)f(u) + £f(u) = f(tu) + £(u)

]

]
.

£((t + 1)u)
b(f(t) + l)f(u) = bf(t)f(u) + bf(u) . Hence (b -~ a)f(t)

bf(t + 1)f(u) (where b = b(t + 1,u) = +1)

l1-b. Thus if a=Db, then a=b=1. If a $ b, then

b+ 1 sothat a =1 again. Hence f 1is an automorphism.

Let B be another simple root connected to o in the Dynkin
diagram (B if one exists). Let g be the automorphism of k
corresponding to B . Then o fixes )['0-*'6 . Consider |
(xd(t), xﬂ(u)) = xd+B(ipu)... (+ or =~ 1is independent of t,u) .
Applying o, first with u =1 then with t = 1, u replaced by

t we get

o (% ()5 x5(1)) = (% (£(t)), x5(1)) = x, f(££(E]))---

]

o™ (%, (1), xg(6)) = (x,(1), xg(g(t)) = x  ,(+g(t))+-- . In either
case the afG+B term on the right is o*xa+B(ip) . Hence
£(t) = glt) .

Since I 1is indecomposable there is a single automorphism
f of k so that d‘xa(t) = xa(f(t)) for all simple a .
Applying the field automorphism 1 to G we get the normal-
ization f =1, i.e. o fixes every xa(t), wu(t) for a
simple. These elements generate G so o= 1.

We now assume k 1is infinite and consider the normalization
ooU=0U of (1) ;

(5) Assume that k is infinite, that A and M are its

additive and multiplicative groups, that AO and Mo are infinite
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subgroups such that A/Ao' is finite and M/Mo is a torsion

group. If N%AO Q;Ao then A= A

Proof: Let F Dbe the additive group generated by N% . Then F
is a field for it is closed under multiplication and addition and

if £ eF, f4 0 then fT e F for some r >0 so L

fr'lf"r e F . Nowfor a €4, a$ 0, Fa f]AO is nontrivial

since Fa 1is infinite and A/A_ is finite. Thus fa e A for
some f # O . Hence a e FALC A, - |
(6) If B, U are as usual, k 1is infinite and BO is a

subgroup of finite index in B , then PB =T .

Proof: Fix « and identify \%Q with A (the additive subgroup
of k) and ¥ M B, with A  in (5). Set M,
)“’l

= {t¥n (t) By MB ] . Now (¥) h(t)x (u)h (€)™ = x_ (%)

so MA CAj . M is infinite and MI/MO is torsion so by (5)
¥, Ne, = ¥, i.e. ¥, CB, . By (x) DB D ¥, - Thus
BB, DU . since B,/U 1is abelian BB , CU .

(7) If A 1is a connected solvable algebraic group then

PA 1is a connected unipotent group.

This follows from:

Theorem (Lie--Kolchin): Every connected solvable algebraic group

A 1is reducible to superdiagonal form.

Proof: We use induction on the dimension of the underlying space
V and thus need only to find a common eigenvector and may assume

V is irreducible. Let Al = Pu . By induction on the length
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of the derived series of A there exists v e V, v 4 O such
that XV = ;K(xl)v for all X € Al, X a rational character
on Al . Let Vai be the space of all such v . A normaliges
Al and hence permutes the Vj( , Wwhich are finite in number.
Since A 1is connected this is the identity permutation. Since
V 1is irreducible there is only one VX. and it is all of V ,
i.e., A; acts by scalars. Since A; = DA  each element of Ay
has determinant 1 so there are only finitely many scalars.
Since Al is connected all scalars are 1 , that is Al acts
- trivially. Thus A/A; is abelian and acts on V; and hence has
a common eigenvector.

An algebraic variety is complete if whenever it is imbedded

densely in another variety it is the entire variety. (For a more

exact definition see Mumford, Algebraic Geometry).

Examples: The affine line is not complete. It can be imbedded
in the projective line. The following are complete:
(a) All projective spaces.
{(b) All flag spaces.
(c) B\G where TG is a connected linear algebraic group
and B is a maximal connected solvable subgroup.
(See Seminaif% Chevalley, Exp 5 = 10.)
We now state, without proof, two results about connected

algebraic groups acting on complete varieties.

(8) Borel!s Theorem: A connected solvable algebraic group

acting on a complete variety fixes some point. This is an extension
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of the Lie-Kolchin theorem, which may be restated: every connected

solvable algebraic group fixes some flag on the underlying spéce.

We need a refinement of a special case of it.

Theorem: (Rosenlicht, Annali, 1957.) If A 1is a connected
unipotent group acting on a complete variety V , if everything
is defined over a perfect field k , and if V contains a point

over k , then it contains one fixed by A .

Notation: Let G be a Chevalley group over an infinite field

k, K the algebraic closure of k, G, B constructed over k ,

and Gk the set of elements in G whose coordinates lie in k .

(9) The map G —> (E\E)k is onto.

- . 1
Proofs Assume Bx is defined over k, x = wu as in Theorem &4 .

We can take w a prdduct of w_(1)'s defined over k . There~

1

fore Bu— is defined over k where u— = wuw ~ € U . Now U

is defined over k . Since u— = Bu= N\U , u— is defined over

k and hence x 1is defined over k also.

0.

(10) ‘Gk= K

Proof: See the proof of Theorem 7, Corollary 3.

{11} If A is a connected unipotent subgroup of G defined

over k , it is G-conjugate to a subgroup of U .

Proof: We make A act on B\G by right multiplication. By (8)

there exists Bx defined over k fixed by A . By (9) we can

choose x € @k , and then by (10) x & G . We have Bxa = Bx

1

for all a € A, i.e., xax - € B for all a € A , so that
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v o=l = . . . L=l o
xAx " (C B . Since A 1is unipotent xix ~ C U .
(12) If k 1is infinite and perfect, the normalization

occU =U of (1) can be attained.

Proof: o-B 1is solvable so o B (the smallest algebraic sub-
group of G containing o-B) is solvable. Hence (B’B)o , the
connected component of the identity, is solvable and of finite
index in OB ; (Efﬁ)o = EzTﬁgT for some B_  of finite index
in B, Let A = 133=§Z . By (7) A is connected, unipotent
and defined over k . By (6) ocUC4A . By (11) there exists

1 C T . Hence xo-Ux™t CU , i.e., the

1

x € G such that xix™
normalization o~ U C U has been attained. Then U Q;O“— U .

But U 1is maximal with respect to being nilpotent and containing
no elements of the center of G . (Check this.) Therefore

1

o U=U so oU=1U.

Corollary: If k is finite Aut G/Int G is solvable.

Exercise: Let D Dbe the group of diagonal automorphisms modulo

those which are inner., Prove:
(a) D QfHom(Lo,k*)/{Homomorphisms extendable to Ll} .
b3 >‘,<e i
1T k'/k 1 where the e, are the elementary divisors
of Ll/LO . |
(b) If k 4is finite, D= C , the center of the correspond-

ing universal group.

(c) D=1 1if k 1is algebraically closed or if all e, =1

Examples: (a) SLn . Every automorphism can be realized by a

-
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semilinear mapping of the underlying space composed with either
the identify or the inverse transpose. I.e., every automorphism
is induced by a collineation or a correlation of the underlying
projective space.

(b) Over ﬂ{ or QQ every automorphism of E8’ Fh R
or G2 is inner.

: o. TN _

(c) The triality automorphism l/j:>o-—-o exists
for Spin8 and PSO8 , but not for SO8 if characteristic
k42 .

(d) Aside from triality every automorphism of S0,
or PSOn (split form) is induced by a collineation of the under~

lying projective space P which fixes the basic quadric

Q: T x.x

1 Xp+l-i = O, If n is even, there exist two families of

(n - 2)/2 dimensional subspaces of P entirely within Q (e.g.,
if n =4 the two families of lines in the quadric surface
X1 %), + x2x3 = 0) . The graph automorphism occurs because these’

two families can be interchanged.

Theorem 31: Let G, G' be Chevalley groups relative to (Z,k},

(Z',k') with I, Zt indecomposable, Kk, kt perfect. Assume

G and GY are isomorphic. If k is finite, assume also char~
acteristic k = characteristic k' . Then k 1is isomorphic to
k' , and either I 1is isomorphic to Z' or else I, Z' are of
type B, Cn(n > 3) and characteristic k = characteristic

t
k =2 .

Proof: As in (1) and (2) of the proof of Theorem 30 we can

L T e e e e e e R T v e e -
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. t
normalize o~ so that oU=1U, o—xd(l) : fpa(l) , where ?ow L

is an angle preserving map of £ onto £ . Hence £ &% or

else I, Zf are B Cn(n > 3) . As in (3) characteristic k =

n,
characteristic kf = 2 1in the second case., As in (4) k¥ k' .

Corollary: Over a field of characteristic ¢ 2 the Chevalley

groups of type B, Cn(n > 3) are not isomorphic.

¥ Exercise: If rank I, rank Z' > 2 then the assumption char-

acteristic k = characteristic k' can be dropped in Theorem
3. (Hint: if p = characteristic k and rank & > 2 then
p makes the largest prime power contribution to |G| . If you

get stuck see Artin, Comm. Pure and Appl. Math., 1955)}. (There

1 .
are exceptions in case rank I, rank ¥ > 2 fails, e.g.,

SL, (k) = PSL,(5), SL,y(2) = PSL,(7).)
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§ 11. Some twisted Groups. In this section we study the group G

o
of fixed points of a Chevalley group G under an automorphism o .

We consider only the simplest case, in which o fixes U, H, U™, N,
hence acts on W = N/H and permutes the %avs . Before launching

into the general theory, we consider some examples:

(a) G=SL . If o is a nontrivial graph automorphism,
'] -
it has the form o x = ax la 1 (where x'  is the transpose
€1
of x and a = €, |, € =+ 1) . We see that o fixes x

?
if and only if xax =a . If a 1is skew, we get Go’= Spn .

If a is symmetric, we get GO,==SOn (split form). The group
SO2n in characteristic 2 does not arise here, but it can be

recovered as a subgroup of SO , namely the one isupported® by

2n+1

the long roots.

Let t -> Tt be an involutory automorphism of k having k.

f_1 -
as fixed field. If o is now modified so that o-x = ax la 1

’

then G _= SU_  (split form). This last result holds even if k is

i a division ring provided t -> t is an anti-automorphism.

If V 1is the vector space over ﬁ{ generated by the roots and
W is the Weyl group, then o acts on V and W and has fixed
| point subspaces VG. and WG_. Wo_ is a reflectlon group on Vo_
with the corresponding "roots" being the projection on VG‘ of

the original roots. To see these facts, we write n =2m + 1 or

T e R et i
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n = 2m and use the indices -m, - (m - 1),...,m ~ 1, m with the
index O omitted in case n = 2m . If. Wy is the weight on H
defined by u&:‘diag(a_m, cee am) —_— a; then the roots are

Wy = hﬁ(i # j) and d—ui = -4,; - V. 1is thus spanned by
1

W; =W -w[i>0}. Now weW_ if and only if w commutes
with o= , i.e., if and only if w(l; - Lﬁ) =W - L implics

wﬂq_i w(NLj) = kLk - W, . We see that Wo* is the octahedral
group acting on Vo‘ by all permutctions and sign changes of the
' _
basis {w;} . The projection of wi - uj(i, j#0) on Vo 1is
d ? ) 1
(k >0) . If either i =0 or j= 0, the projection of
\
W: = s 1s i%hk(k > 0) . The projected system is of type Cm
2m or BCm (a combination of Bm and Cm) if
n=2m-+1,

(b) G = 80,, (split form, char k # 2) . We take the

n
group defined by the form f = 2 I XX g - We will take the
i=1 : 1 a1
graph automorphism to be o-x = a;ax ~Ly- ai
1 73
1 |
a = . s Ay = “0l . The corresponding
1 10
1
"1
form fixed by el £ o is £ =23 + x5+ x°
orm fixed by elements o o 18 = izzxixﬂi X X1 -
Thus, GO_ fixes £ - f = (xl - x=1)2 and hence the hyperplane
X o~ Xy = o . Go’ on this hyperplane is the group SOanl .

If we now combine o~ with t —> %t as in (a), the form

X .+ 7)) fox X, + X 5 .
(X1X=1 i 1) X *1%a

N~ s

i1
fr is replaced by f =
i

2
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If we make the change of coordinates Xy replaced by X

x_) replaced by ’xl + Ek_l (t ek, t #%) , we see that f is

2 2 1
replaced by 2 ¥ x.x . + 2(x] +ax + bx",) and f is re-
placed by I (x.X .-
+ 2bx"lx_1) , Where a =t +t and b = tt . Since these two

+ Xmixi’ + (2x,lxl + a(xlxml + X_ 1%

formshave the same matrix, Gd’ is SO2n

version of f . That is, G, 1is SOZn(ko) for a form of index

n -« 1 which has index n over k .

over ko re the new

Example: If n = 4, k = G:, and ko = ﬁ{, Go- is the Lorentsz

2 2 .2
group (re f = Xy - X5 - x3

corresponds to A X Ay , We see that SLZ«E) and the O=com-

- xz) . If we observe that D,

ponent of the Lorentz group are isomorphic over their centers.
Thus , SLZQE) is the universal covering group of the connected

Lorentz group.

Exercise: Work out DB‘N« A3 in thebsame way.

For other examples see E. Cartan, Oeuvres Complétes, No. 38,
especially at the end.

Aside from the specific facts worked out in the above exam-
ples we should note the following. In the single root length
case, the fixed point set of a graph autohorphism yvields no new
group, only an imbedding of one Chevalley group in another (e.g.
Spn or SOn in SLn) . To get a new group (e.g. SUn) we must

use a field automorphism as well.

Now to start our general development we will consider first

e T
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the effect of twisting abstract reflection groups and root systems.
Let V be a finite dimensional real Euclidean vector space and
let % be a finite set of nonzero elements of V satisfying

(1) @ &% implies ca % if ¢ >0, c #1

(2) w2 =% for all a €% where w, _ 1is the reflection in

the hyperplane orthogonal to a .

(See Appendix I); We pick an ordering on V and let P (re-
spectively ][) be the positive (respectively simple) elements
of ¥ relative to that ordering. Suppose o is an'automorphism
of V which permutes the positive multiples of the elements of
each of ¥, P, and J[ . It is not required that o fix % ,
although it will if all elements of £ have the same length.
Let JP be the corresponding permutation of the roots. Note that
0~ 1s of finite order and normalizes W . Let Vo’ and Wo’
denote the fixed points in V and W respectively. If @ is
the average of the elements in the o =orbit of a , then
(B,&) = (B,a) for all B € V. . Hence the projection of a on

is a .
Vc‘ i

Theorem 32: Let £, P, [[, oo etc. be as above.

(a) The restriction of W to V is faithful.

o g
£{b) WO_IVO_ is a reflection group.
(c) 1If ZO_ denotes the projection of ¥ on VG~ , then
ZG_ is the corresponding 'root system’; i.e.,

Wg[Vsy» & € X} generates W_|V_ and wek_ = DS

However, (1) may fail for o -
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(d) 1If Tlg_ is the projection of || on Voﬂ, then TTg_
is the corresponding "simple system™; i.e, if multiples are cast out
(in case (1) fails for TTOJ, then TTG_ is linearly independent and
the positive elements of L, are positive linear combinations of

elements of TTg_o

Proof: Denote the projection of V on V_ by v —> v . This

commutes with o~ and with all elements of Wc"

(1) If cexr, then o #0 ; indeed a >0 implies a > O .

If a 1is positive, so are all vectors in the o=orbit of a . Thus,

their average o is also positive. If a < 0O, then a=- (-a) <O.

(2) Proof of (a). If we W_, w #1 , then wa<O0 for

some root a >0 . Thus, wa =war <0 and a>0 . So w,VG_% 1
(3) Let « Dve a Jo—orbit ox simple roots, let Ww be the
group generated by all wd(a e m), let P_ be the corresponding

set of positive roots, and let W be the unique element of Uﬂ

so that w P = - P . Then w_e W_ and WﬁlVU,z walvd, for any

root a e P_ . To see this, first consider cwworl c Wﬁ . Since
-1, _ -1 .

ow_o RW-— RW ,  then "W, O W by uniqueness, and W € Wd..

Since P permutes the elements oi « in a single orbit, the
projections on VO_ of the elements of Rﬁ are all positive
multiples of each other. It follows that if ¢« 1s any element

of P_, then wﬁa =-a . If velV_ with (v,a) =0 , then

0= (v,B) =(v,8) for B e . Hence WYV =T,

Thus Wﬁ,VO': waiVO_,
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(4) If v is a Jp-orbit of roots and w e W&. then all
elements of wv have the same sign, This follows from woa = o-wa

for «a e , we Wb_.

(5) {w&lw a'bp-orbit of simple roots} generates W .
Let we W_ with w#1 and let e be a simple root such that
wa < 0O. Let 7 be the Jp-orbit containing « . By (&), wP_ <0
(i.e., wB < 0 for all B e PW) . Now ww P >0 and w_ permutes
the elements of P - P . Hence, N(ww%) = N(w) - N(w#) (see
Appendix II.,17). Using induction on N(w) , we may thus show that

w is a product of w#'s .

(6) 1If W, is the element of W such that wbP =. P,

then w_ e W_. This follows from o-wbo:lP - P and the uniqueness

f .
of w,

(7) {WPWIW eW,., T a Jo-orbit of simple roots} is a partition
of ¥ . 1If the WPW'S are called parts, then a, B belong to the
same part if and only if o = cB for some ¢ > 0 . To prove (7),
we consider a e ¥, a >0 . Now e < 0 and Wy = WiWsy eee W,
where each w, = w_ for some Jo-orbit of simple roots @ (by (5)
and {6}) . Choose' i so that wy,, ... wa>o and

WiW 4 oo WoO <0 . If Wi T W, then Wiiq oo W O € PW ;

i.e., o is in some part. Similarly, if o« <0, o 1is in some

part. Now assume o, B belong to the same part, say to WPW .

—

We may assume a, B e Pw . Then a and B are positive multiples
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of each other, as has been noted in (3). Conversely, assume

(B) £, consists of all wa such that we W
and a ,is a root whose support lies in a simple Jouorbit.""
Now B has its support in 7 and hence so does B since o maps
simple roots not in # to positive multiples of simple roots not in
™ . We see then that B e Pﬂ , and that any part containing a
also contains B . The parts are just the sets of B such that

B=ca, ¢c>0 and hence form a partition.

(8) [wa|we W, , @ has support in a Jo-orbit of simple

roots} = Zo -

(9) Parts (b) and (c) follow from (3), (5), and (8).

(10) Proof of (d). We select one root o from each p-orbit
and form {a} . This set, consisting of elements whose supports in
TT' are disjoint, is independent since TT is, If a > 0 then
it is a positive linear combination of the elements of TT . Hence

a is a positive linear combination of the elements of TTO_.

Remark: To achieve condition (1) for a root system, we can

stick to the set of shortest projections in the various directions.

Examples:

(a) Eor o of order 2, W of type A, ; , we get W_ of type

Cn . For W of type A2n’ we get Wb. of type BCn .

(b) For o of order 2, W of type Dn , we get WG_’of

type Bn-l .
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{c) For o of order 3, W of type Dh , we get Wb_ of
type G2 . To see this let a, 8, ¥, 8 be the simple

roots with & connected with a, B, and vy . Then

g=Y/3(a+p+y),T=5 and
<a,8>=-1, <J,a>=-3, giving W, of type G, .
0
. / ///O
(Schematically: O———O\\\O = O<::8 —> =0 )

{d) For o of order 2, W of type Eg, we get W_ of

type Fl+ .
- 0—0
= 0—o —> 0—030—0 )
( o-—o—E~_o—o NO—0

{e) For o of order 2, W of type C,, we get W__ of type A4, .

(f) For o of order 2, W of type G2 ; we get W__ of
type .Al .

(g) For o of order 2, W of type Fl+ , we get W_ of
type 1316 (the dihedral group of order 16). To see
this let 0—0==0—0 Dbe the Dynkin diagram of Fh ,

a B y '
—\/3 _ ) - 1 -
and oa=V23, oB=V2y. Since a ="/2(a +V2 3) ,
B = 1/2(B +V2 y) , we have < B,a > =- 1,< a,B >
= - (2 +VY2) . This corresponds to an angle of 7w/8
between o and B . Hence WE, is of type 1916 .
Alternatively, we note that WEWB makes six positive

roots negative and that there are 24 positive roots in
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all, so that w 2

5 = (W'EZWB—)LP . Hence, WEZ = W

B
= (w. )8 =1 and W_ is of type J Note
TWE : o yp 16 = Yot

that this is the only case of those we have considered

in which W_ fails to be crystallographic (See Appendix V).

In (e), (f), (g) we are assuming that multiples have been

cast out,

The partition of T in (7) above can be used to define an
equivalence relation R on £ by a =8 if and only if o is a
positive multiple of B where a is the projection of a on V_.
Letting /R denote the collection of equivalence classes we have

the following:

Corollary: If ¥ 1is crystallographic and indecomposable, then

an element of /R is the positive system of roots of a system of

one of the following types:

(a) Arl1 n=1, 2, or 3.

(b) A2'(this occurs only if T is of type A2n) .

(c) 02 (this occurs if £ is of type 02

or Fh)'

(d) G, .
Now let G be a Chevalley group over a field k of character-
istic p . Let o be an automorphism of G which is the product

of a graph automorphism and a field automorphism © of k and
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such that if \F is the corresponding permutation of the roots

then
(1) if f preserves lengths, then order 6 = order P

(2) if \F doesn't preserve lengths, then pe2 =1 (where

p is the map x = xP) .

(Condition (1) focuses our attention on the only interesting case.
Observe that kP = id., 6 = id. is allowed.

Condition (2) could be replaced by 0°

= p thereby extending the
development to follow, suitably modified, to imperfect fields k.)
We know that p =2 if G 1is of type C, or FLF and p =3 if
G is of type G, . Recall also that o‘xa(t)

x_ {e te)

j)a (04

(6P if o < | pa

it Ja| 2 |pol
where
P
€, =+1 and e, =1 if * a is simple. (See the proof of
Theorem 29.)
Now o preserves U, H, B, U7, and N, and hence N/H=W .
The action thus induced on W is concordant with the permutation P
of the roots. Since P preserves angles, it agrees up to positive
multiples with an isometry on the real space generated by the roots.
Thus the results of Theorem 32 may be applied; Also we observe
that if n is the order of P o then n =1, 2, or 3, so that

the length of each Jo-orbit is 1 or n.
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Lemma 60: TT e, =1 over each \f-orbit of length n .

Proof: Since ¢ acts on each %a (+ a simple) as a field

automorphism, it does so on all of G , whence the lemma.
Lemma 61: If a e /R, then \¥a - £1 .
J

Proof': Choose @ e a so that no B e a can be added to it to
yield another root. If the orbit of « has length 1, set

x =x,(1) if e, =1, x =x,(t) with t ek, t#0 and

t+t” =0 if €y #1 . Then x e é%a o If the length is n ,
b

2

we set y = xa(l), then x = y.oy.0“y... over the orbit, and use

Lemma 60.

Theorem 33: Let G, o, etc. be as above,

(a) For each w e W_, the group u, = UNnw iU w is fixed

by o .

(b) For each w e W_, there exists n e N_, indeed

n e < Uo-’Uo~> , So that an =w .

(c) If n (w e W&_) is as in (b), then

GG-Z wewa_ Bo-anw,o‘ with uniqueness of expression

on the right.

Proof:

1

(a) This is clear since U and w ~U"w are fixed by o—.

(b} We may assume that w = W for some Jo—orbit of simple

roots o . By Lemma 61, choose x e %ia o X #1 , vhere a & 3/R
)
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corresponds to & .. Using Theorem 4' we may write x = un_ v for
1 some we W where ue U, v e Uw , and nWH =w . Now x=0x

=ou-onov and by Theorem L4 and the uniqueness in Theorem 4%,

we have o w=w, on =n,,ou=u,. and o v =v . Thus,
n, € < Uo"Uc‘> . Since w#1l, we Wo”' and w e Ww , we have
wao <O for someoew , wr<O, and w= Woo.

(c) Let xe G say x e BwB . Since o (BwB) = Bo wB

O—' I
we have we W_. Choose n  asin {b) and write x = bn v with

be B and v e Uw . Applying o we get b e Bc‘ and VvV e Uw,c"

Uniqueness follows from Theorem 4Y .

Corollary: The conclusions of Theorem 33 are still valid if Gg,

9

- 9 3
and Bo- are replaced by G03=<UOJU0_> and Bo_—»Go—f\BO,. Also

9 ?
since B_=7U_H_, we can replace H_ by Ho_=‘Go_f\Hc_,

Lemma 62: Let a. generically denote a class in /R . Let S be
a union of classes in £/R which is closed under addition and

h that if S th - S . Th =
suc at 1 a c en a Z en }fS,o- azjg séa,o‘

with the product taken in any fixed order and there is uniqueness

of expression on the right. In particular, Uo‘iél]; )ﬁa,O' and
Vo = aT>To£a’O“ for all we W_.
wa < O '

Proof: We arrange the positive roots in a manner consistent with
the order of the ‘a's; i.e., those roots in the first a are first,

etc, Now %S =:TT':¥Q in the order just described and with
‘ a>0
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uniqueness of expression on the right by Lemma 17. Hence .}{S ==TT-§éa
a>0

in the given order and again with uniqueness of expression on
the right., The lemma follows by considering the fixed points of

o- on both sides of the last equation.

Corollary: If a, b are classes in /R with a #+ b , then

(X, }fb) c 1T }fé , where the roots on the right are in the closed
subsystem generated by a and b , those of a and b excluded.
The condition on ¢ can be stated alternately, in terms of Eo_,
that ¢ is in the interior of the (plane) convex cone generated

by a and b .

Remark: The exact relations in the above corollary can be quite
complicated but generally resemble those in the Chevalley group

whose Weyl group is W

o For example, if G 1is of type A3 and

0 is of order 2, say 8——3—_8 , a=1{p}, b={a,y} , c=
fa + B8, B+ vy}, da={a+B+ vy}l , and if we set xa(t) = XB(t)

(t e ke) , xb(u) = xa(u)xy(ue) (u e k) , and similarly for ¢ and d,

we get (xa(t), xb(u)) = xc(i tu)xd(i t uue)-. In C,, the corres-

2)
ponding relation is
- 2
If G 1is of type X and o is of order n , we say GO_

is of type O E.g., the group considered in the above remark is

of type '2A3 . The group of type 202 is called the Suzuki group

and the groups of type 2G2 and

2F4 are called Ree groups. We
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write G~X and G_~ "X .

Lemma 63: Let a be a class in £/R, then 35a 5 has the
b

following structure:

(a) If a~A;, then aga,O' = {xa(t)lt € ke}
(v) 1If a/VA§, then j<a,d‘ = {XeOXess|x =‘xa(t), e a, tek}

(¢) If a~A,, a={o,B,a +B}, then 6° =1 and

aea,o* = {xa(t)XB(te)Xa+B(u)[tte +u+ = 0}

If (t,u) denotes the given element, then
(t,u)(t?,u') = (t + tq, u+u - tet?) .

(d) 1If ahJCZ, a = {a,B,a + B, ¢ + 22} , then 20° =1
140

and ‘X%,O_ = {Xa(t)xﬁ(te)xa+28(u)xa+8(t + ue)lt,u e k} .

) ¥
If (t,u) denotes the given element, (t,u) (t ,u )
T 9
= (t + t?, u+u o+ 9% ) .

(e) 1If arsz, a={a,p,0 +B, a + 28, « + 38, 20 + 3B}, then

R = - 6 e 1+6
38 =1 and afa,c.—-{xa(t)xB(t )Xd+3B(u)Xa+B(u -t )
v} 1+26
X2G+BB(V)XCL+2B(V -t )lt,u,v € k} . If
(t,u,v) denotes the given element then
(t,u,V)(t‘,u’,vY)z (t +tv,u +u7 + t7t38,v + V’- t?u + t72 3@\) s

Note that in (a) and (b), X

Q.0 is a one parameter group for the
)

fields ke and k respectively,
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Proof: (a) and (b) are easy and we omit their proofs. For (c),

1 .. Then
©)

normalize the parametrization of )€a+8 so that N
=N '

@B

, o-xﬁ(t) = xa(te) , and o*xa+8(u) = Xa+B(-u

o x, (t) = XB(t .
Write x e }fa,o- as x = Xa(t)XB(V)Xa+B(u) and compare the
coefficients on both sides of x = o x to get (c). The proof of

(d) is similar to that of (c). For (e), first normalize the signs

as in Theorem 28, and then complete the proof as in (c) and (d).

Exercise: Complete the details of the above proof.

Remark: The role of the group SL, in the untwisted case is taken
by the groups SLZ(ke) , SL2(k) , SUB(k,e)(split form) , the

fp Suzuki group, and Ree group of type G2 .

Exercise: Determine the structure of Ho- in the case G is

universal.
Lemma 64: If G is universal, then G, 1is generated by U_ and
U;_ except perhaps for the case Gd;\JZGZ with k infinite.

7 - ? 7
Proof: Let Gc__—-< UO_,UO.> and let H —-Ho_f\Gg_ . By the

o

i
corollary to Theorem 33, it suffices to show H_ C G_ ; i.e.,

9
(=) HO_ ==HO_ . Since G 1is universal, H 1is a direct product

of {'Eala simple} (see the corollary to Lemma 28)., These groups
are permuted by o exactly as the roots are. Hence it is enough

to prove (*) when there is a single orbit; i.e., when G, 1is one

®Ay, “C,, or %G, . For SL,, this is clear.

A 2

of the types SL2,

e S
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(1) For x e Uy - {1}, write x =u nu, with u; e U = 1,2

1 i 0"’1

_ ) 1 ? 5 - l
and n = n(x) e NQGO_. Then H_ is generated by {n(x)n(xo) Ixo

3
a fixed choice of x} . To see this let H;, be the group so gener-

W __u 1
ated. Consider GOF U0H8’}U0HG‘H(XO)U8-'ThiS set is closed under

multiplication by U;_. It is also closed under right multiplica-

)t -1

= n(xO

tion by n(xo)—1 . This follows from n(xO

1) )~

= n(x
o o

-1 - _ "o
n(x )" n(x_ ) and n(x )U n(x =U,.C G since

x =‘ul(n(x)n(xo)*l)n(xo)u for x e U - {1} . We see that

2
n _ G? h Hﬁ' _ HY
o o » Whence H_=H_.

(2) If o and B are the simple roots of Ay, CZ’ or G2
lébeled as in Lemma 63 (c), (d), or (e) respectively, then Hom
is isomorphic to x* via the map ©: t —> ha(t)hﬂ(te) .

(3) Let A be the weight such that < A,a>=1 , <A\,B>=0,
let R be a representation of Lk (obtained from one of el by
shifting the coefficients to k) having A as highest weight and

let vt be a corresponding weight vector., Let g« be the lowest

weight of R and let v~ be a corresponding weight vector. For

X e UO_— {11 , write xv~ =:f(x)v+ + terms for lower weights,
Then f(x) #0 and H;, is isomorphic under @'l in (2) to the
subgroup m of K generated by all f(x)f(x )'l . To prove (3),

0
let x e Uc"{l} and write x = uln(x)u2 as in (1). We see

xv~ = n(x)v+ + terms for lower weights, so n{(x)v = f(x)v+

and n(x)n(xo)-lv+ = f(x)f(xo)_lv+ . If n(x)n(xo)"l = ha(t)hB(te) ,
-1

then by the choice of k,f(x)f(xo

=t (see Lemma 19 (c)). (3)
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then follows from (1),

(4) The case G~ °A, . Here f(x)=-u’ and m=k . To

see this, we note that the representation R of (3) in this case

is R: XX > stg(k) and 1T x = x (6)xg (¢%)x (0]
1 t u+tt9
S] Thus, f(x) =u + tte = - ue

by Lemma 63 (c). Thus, m is the group generated by ratios of

elements (—ue) of k' whose traces are norms (ttg) . Let

vek . 1t u° #u, set u, = (u - ue)—l , and if W =u s

1
choose u; € k' so that u? =-u . Then uuy and u, are

values of f (their traces are 0 or 1), so that ue m and
m=k .

2

(5) The case Gogf 02 . Here f(x) = t2+26 20

+ u + tu
and m =k . To see this, first note that since the characteristic
of k is 2, there is an ideal in ?ﬁk "supported by short roots.

The representation R can be taken as Jfk acting on this ideal,

+ _ . - _ . .

and v —-Xa+B while v —-X_a_B . Letting x =
+ . .

xa(t)xB(te)xa+2Bﬁﬂxa+B(Ue + tl 9) we can determine f(x) . By taking
t = 0 in the expression for f(x) and writing v = (ve)zg, we
see that m = k* .

(6) The case GOQVQG2 . Here f(x) = th+6e -~ ul+39 - V2
+ t3+38 u + t1+36u39 + tv39 - tuv . The group m is generated

by all values of f for which (t,u,v) # (0,0,0), and it contains
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*2

k and -1 ; hence m=%k , if k is finite. Here the

representation R can be taken to be the adjoint representation
on Zik , v o= X2&+BB , and v = X-Za-BB . Letting x be as
in Lemma 63 (e), and working modulo the ideal in LK Tsupported®

by the short roots, we can compute f(x) . Setting t =u =0,

we see that - ve em, hence - 1em and k*2 Cm. If k is

<,

finite m =k follows from (%) - 1 ¢ K . To show (%), suppos%

2 0 - _ l, so £9 =+t and 19 =t .
23
e) = ¢ =t2t=-t,

-1 with t ek . Then t

Since 392 =], we see t = (t . But t3

so t =0, a contradiction. This proves the lemma.

Corollary: If G is universal, then G;_= G _ and H;_= H

2

o
G2 with %k infinite in which case

GO/G;_= HO,/H;,'-'—‘TJ k*/m with m as in (6) above.

-
except possibly for

Remarks: (a) It is not known whether m = k* always if Gd?’sz .

One can make the changes in variables v -—> v + tu and then

;138 L4060 _ 1+38

u-—=u - to convert the form f in (6) to

- v2 + t2u2 + tv3@ . Both before and after this simplification

the form satisfies the condition of homogenity:

£(t,u,v) = 400 (1 u/ett30 /2438 ip ¢ Lo .

(b) A corollary of (3) above, is that the forms in (5) and
(6) are definite, i.e., f =0 implies t=u(=v) =0. A
direct proof in case f is as in (5) can be made as follows:

t2+26 + u26 + tu with one of t, u nonzero.

Suppose O = f£(t,u) =
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If t=0, then u=0, sowe have t #0 . We see

f(t,u) = 2128 f(l,u/t29+l) using 292 =1 . Hence we may assume

t=1., Thus, 1+ W ru=0 or (by applying ©) W=1+u.
6° 5 20° _ 2

Hence u- =1+ u”  =u and u=u =y~ ., Thus, u=0orl, a

contradiction. A direct proof in case f 1is as (6) appears to be
quite complicated.

(c) The form in (5) leads to a geometric interpretation of

2 2+20 u26

02 . Form the graph v =t + tu in k3 of the form
f(x) . Imbed K> in P3(k) , projective 3-space over k , by
adding the plane at ¢ , and adjoin the point at &) in the
direction (0,0,1) to the graph to obtain a subset Q of P3(k) .

Q is then an ovoid in PB(k) ; i.e.
(1) No line meets Q in more than two points.,

(2) The lines through any point of Q not meeting Q again
always lie in a plane.

The group 2

C2 is then realized as the group of projective
transformations of P3(k) fixing Q . For further details as

well as a corresponding geometric interpretation of 2G2 see

J. Tits, Séminaire Bourbaki, 210 (1960). For én exhaustive treatment
of 2C

\1
2 especially in the finite case, see Luneberg, Springer

Lecture Notes 10 (1965).

Theorem 34: Let G and o be as above with G universal.

Excluding the cases: (a) <A,(L) , (b) 2B,(2) , () “G,(3) ,

(d) 2Fh(2) , we have that G;_ is simple over its center,
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Sketch of proof: Using a calculus of double cosets re Bo’ , which

can be developed exactly as for the Chevalley groups with h%r in
place of W and £/R (or £, (see Theorem 32)) in place of £ ,

and Theorem 33, the proof can be reduced exactly as for the Chevalley
groups to the proof of: G;_ = /S}G;. . If k has %enough"
elements, so does H;_ by the Corollary to Lemma 64 and the action
19@2_ . This

y
of Hc- on )éa,d' can be used to show )fa’O, C

] takes care of nearly everything. If k has "few® elements then
the commutator relations within the }fa's and among them can be
used. This leads to a number of special calculations. The details

are omitted.

Remark: The groups in (a) and (b) above are solvable. The group
in (c¢) contains a normal subgroup of index 3 isomorphic to Al(8).
The group in (d) contains a "new" simple normal subgroup of index 2.
(See J. Tits, "Algebraic and abstract simple groups,' Annals of

Math. 1964.)
- . 9 —
Exercise: Center of ,Gc‘ = (Center of G)o-'

We now are going to determine the orders of the finite
Chevalley groups of twisted type. Let k be a finite field of

characteristic p . Let a be minimal such that 6 = pa (i.e.,

e _ pa _ _Ra
such that t~ =t for all t e k) . Then |k| =p for
2 2 2 _ _Ratl
AL s °D_, PBg ; |k| = p7® for 3Dh : and |k| = p@
for 202 , ZFh , 2G2 . We can write o x (t) = fP“( €atq(a))
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where qfa) is some power of p 1less than |kl . If q 1is the
. _

geometric average of qf(a) over each dp-orbit then q = p® except
when Ga' is of type 202 , 2Fh , or 2G2 in which case

+1/2
q = /2

Let V be the real Euclidean space generated by the roots and
let o be the automorphism of V permuting the rays through
the roots as P permutes the roots. Since o normalizes W ,
we see that og acts on the space I of polynomials invariant
under W . Since o, also acts on the subspace of I of
homogeneous elements of a given positive degree, we may choose
the basic invariants Ij’ j=1, «.., 4, of Theorem 27 such

that o, I. = e.Ij for some ej e C (here we have extended the

J J
base field JK to ¢ ) . As before, we let dj be the degree
of Ij » and these are uniquely determined. Since oy acts
on V , we also have the set {e [j =1, «o., 4} of eigenvalues

0J
of 05 on V . We recall also that N denotes the number of

positive roots in T .,

Theorem 35: Let o, q, N, ej , and dj be as above, and

assume G 1is universal. We have

d.
_ N
(a) le_| =q T; (q J - es) .

(b} The order of the corresponding simple group is
obtained by dividing [GO_[ by [co_l where

C 1is the center of G .
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Lemma 65: Let o, H, U, etc. be as above.

N N(w)

() Ju -l =q", lu, [ =a"".

(b) IHG_I = ty(q - eoj) .

() ol =" TT(a - e, & "™,
weW -

where N(w) is the number of positive roots in £ made negative

by w.

ggggiz (a) It suffices to show that ,}Ea,o*' = qlal for

a € £/R by Lemma 62. This is so by Lemma 63. (b) Let w7 be a
p-orbit of simple roots. Since oh (t) = Epa(tQ(a)) , the
contribution to IHG_I made by elements of HO, “supported® by =

is (TT qla))-1=q" -1 if m=|r| . Since the e_,'s
aer J

corresponding to @ are the roots of the polynomial ) G | >

(b) follows. {(c) This follows from (a); (b), and Theorem 33.
Corollary: Uc‘ is a p-Sylow subgroup.

Lemma 66: We have the following formal identity in t:

N(w) _ : dj
T t = TT (1 - e.t )/(1 - e st)
welWl__ 3 J J

Proof: We modify the proof of Theorem 26 as follows:
(a) o there is replaced by o~ here.

(b) T there is replaced by £, here, where I

is the set of unit vectors in V which 1lie in the

same directions of the roots.
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(c) Only those subsets 7 of [| fixed by o, are con-

sidered.

(d) (-1)" is now defined to be (-1)X where k is the

number of” 06 orbits in ¥ .

(e) W(t) 4is now defined to be T tN(W)

W
eWb_

With these modifications the proof proceeds exactly as before

through step (5). Steps (6)-(8) become:

(6?) For 7 CTl, we W, 1let .NW be the number of cells
in K congruent to DTr under W and fixed by woy . Then
£(-1)" N_=det w. (Hint: If V =7V__ and K is the complex
on V? cut by K , then the cells of KYo are the intersections with

?
V' of the cells of K fixed by wog )

)
(7') Let % be a character on < W,o7 > and X _ the

restriction of X to < W%,og > induced up to < W,GB > . Then
£(-1)" x_(wo>) =%(wo-)det w (w e W)

VS
(8?) Let M be a < W,o_ > module, let I(M) be the space
of skew invariants under W , and let IW(M) be the space of

invariants under W% .  Then

£ (-7 tr (o, I(M) =tr (o, T(M)

The remainder of the proof proceeds as before.

Lemma 67: The ej7s form a permutation of the eoj‘s.
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Proof: Set t =1 in Lemma 66. Then (*) 1 has the same multiplicity
among the ejfs as among the eojVS . This is so since otherwise

the right side of the expression would have either a root or a

pole at t =1 . Assume o + 1, then either 052 =1 and all

e’s not 1 are -1 or else 053 =1 and all e's not 1 are

cube roots of 1, coming in conjugate complex pairs since oy is

real. Thus in all cases (*) implies the lemma.

Proof of Theorem 35: (a) follows from Lemmas 65, 66, 67. Now let

¢' be the center G, . Clearly c' 2 C __ . Using the corollary

o=
to Theorem 33 and an argument similar to that in the proof of
Corollary 1(b) to Theorem h? , we see ¢’ CH . CH. Since H.

acts "diagonally,” we have c' C C , hence ¢’ = C,., proving (b).

sk
Corollary: The values of |G_| and [C_| = [Hom (L_/L,,k o |
are as follows:
. . d' )
Chevalley | None (%) MT(q 9-1) | Hom (L_/Ly ,k")
group (o~ = 1)
5 d.
A (n > 2) -1 if d. is odd | Replace q J-1 by Same change; i,e.
n J d, d. 1.0%1)
q J-(~1) 3 in (¥) (n+l,q+l
2E 5 2 2
6 ame as An Same change as A (3, q+1)
2D 1 f n n
n -1 for one dj=n Replace one q -1 by| (4, q +1)
Q™M1 in (%)
3DLP | w,w? for d a1*(q”-1) (¢®-1) 1
| = 4,4 . (o®+q™+1)




G- ej%s%l |G¢| |Cwl
202 -1 for d[j =4 qh(qz-l)(qhﬂ) 1
%, -1 for d; = 6 2 (a2-1)(%+1) 1
2F,+ | -1 for d; = 6,12 0% (q2-1) (®+1) (P-1) 1
(q12+l)

Here w» denotes a primitive cube root of 1 .

Proof (except for ICC,I): We consider the cases:

2An . We first note (%) -1 e Wba . To prove (*) we

use the standard coordinates {u)i|1 <i<n+1} for A . Then

o is given by ugi - - W

5 Since W acts via all permuta-

nt+t2-1 °
tions of {UJi}, we see -1 e Wo; . Alternatively, since W is

transitive on the simple systems (Appendix II1,.24), there exists W, € W

such that wo(-TT) =TT . Hence, -wo(-l) =1 or o ; i.e., -l e W

or -1 e Wda . Since there are invariants of odd degree (di =23, ...),

-1 &W. By (%) ag fixes the invariants of even degree and

changes the signs of those of odd degree.

2E6 ) 2D2nfl . The second argument to establish (%) in

the case 2An may be used here, and the same conclusion holds.

2Dn (n even or odd). Relative to the standard coordinates

1 <i<n}, the basic invariants are the first n-1 elementary

{Vi|
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symmetric polynomials in {v?} together with TT v. , and W acts

via all permutations and even number of sign changes. Here o3

can be taken to be the map v; > v, (1 <i<n - 1), v, > - v, -

Hence, only the last invariant changes sign under o .

BDLP . The degrees of the invariants are 2, 4, 6, and 4. By
Lemma 67, the ej's are 1, 1, w, o, Since o7 is real,w and

032 must occur in the same dimension. Thus, we replace (qL*-l.)2

in the usual formula by, (qh-UJ)(qh- u?) = q8 + Qh + 1.

2 2

C

2 v G

o + In both cases the ej's are 1, -1 by Lemma 67.

Since < W,oa > 1is a finite group, it fixes some nonzero quadratic

form, so that ej =1 for dj =2 .

2Fh . The degrees of the invariants are 2, 6, &, 12 and
the ej's are 1, 1, -1, -1 . As before there is a quadratic
invariant fixed by oZ . Consider I = X o8 4 T (V2 )

a long root B short root

We claim that I is an invariant of degree 8 fixed by oy and

there is a quadratic invariant fixed by oy which does not divide
I . The first part is clear since W and c, bpreserve lengths
and permute the rays through the roots. To see the second part,
choose coordinates {vi|i =1, 2, 3, 4} so that the long roots

(respectively, the short roots) are the vectors obtained from

2 v, + v, + V

Vs Yy > V), {(respectively, vy t V2) by all permuta-

3
2 2 2

tions and sign changes. The quadratic invariant is vy t vyt vy + v2

8

L -
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To show that this does not divide I , consider the sum of those
terms in I which involve only vy and Vs and note that this
i + vg . Hence, I can be taken as one of the

basic invariants, and €; = 1 if dj =8 ,

is not divisible by v

Remark: |2C2| is not divisible by 3 . Aside from cyclic groups

of prime order, these are the only known finite simple groups

with this property.

Now we consider the automorphisms of the twisted groups. As
for the untwisted groups diagonal automorphisms and field auto-

morphisms can be defined.

¢
Theorem 36: Let G and o~ be as in this seetien and GO_ the
subgroup of G (or GO_) generated by UO_ and Uc— . Assume
T
that o is not the identity. Then every automorphism of GG_

is a product of an inner, a diagonal, and a field automorphism.

Remark: Observe that graph automorphisms are missing. Thus the
twisted groups cannot themselves be twisted, at least not in the

simple way we have been considering.

Sketch of proof: As in step (1) of the proof of Theorem 30, the

automorphism, call it ¢ , may be normalized by an inner auto-
morphism so that it fixes U__ and U;, (in the finite case by
Sylow'!s theorem, in the infinite case by arguments from the theory
of algebraic groups). Then it also fixes H;_, and it permutes

the 3Ea's (a simple, a € T£/R; henceforth we write Efé for

X, ) and also the X ,'s according to the same permutation,
, -




196

in an angle preserving manner (see step (2)) in terms of the
corresponding simple system TT&, of Vo— . By checking cases
one sees that the permutation is necessarily the identity: if k
is finite, one need only compare’the various |9€a|'s with each
other, while if k 1is arbitrary further argument is necessary
(one can, for example, check which %%aYS are Abelian and

which are not, thus ruling out all possibilities except for

A3 , 2E6 , and 3D4 , and then rule out these cases (the first

two together) by considering the commutator relations among the
3Ea's) . As in step (4) of the proof of Theorem 30, we need

only complete the proof of our theorem when G;_ is one of the
groups Ga ==<-X;,3f;a > , in other words, when G;_ is of one

%Ay, 2 , or %c, (with %¢,(2) and 2G2(3)

of the types Al, A C
excluded, but not Al(2), Al(B), or 2Az(h)), which we henceforth
assume. The case Al having been treated in § 10, we will treat
only the other cases, in a sequence of steps. We write x{t,u)

or x(t,u,v) for the general element of Uo— as given in

Lemma 63 and d{s) for ha(s)hB(se)
(1) We have the equations
a(s)x(t,w)d(s)™t = x(s*%, 10 in “a,
= x(sz-zet, SZGu) in 202
d(s):'c(‘c,1,1,v)d(s)"l = x(sz"Bet, s'l+36u, sv) in <G
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This follows from the definitions and Lemma 20(c) .

(2) Let Up, U, be the sﬁbgroups of U_. obtained by
setting t =0, then also u=0 . Then UO_D U1 D) U2 =1 ia the
lower central series U_ D (U_,U_) D> (U ,(U_,U_)) D ...

. . 2 2 .
for Uo’ if the type is A2 or 02 , Wwhile Uc’ ) Ul D U2 D1

2

o!

is if the type is “G

2 [ ]
Exercise: Prove this.

(3) If the case ZAZ(L) is excluded, then

-t

d(s)x(t,...)d(s)"l = x(g(s)t,...) , with g: K-> K

a homomorphism whose image generates k additively.

Proof: Consider 2Aé . By (1) we have g(s) ==sz"e , So that

g(s) =s for se ky - Since [k: ko] =2, we need only show

N
that g takes on a value outside of k

o -
32"6 = (sz"e)e so that 33 e ky for all s e k. ,

Now if g doesn't,
then

whence we easily conclude (the reader is asked to supply the

proof) that k has at most 4 elements, a contradiction. For

202 and 2G2 the proof is similar, but easier.

(4) The automorphism o (of G;~) can be normalized by

a diagonal and a field automorphism to be the identity on Uo'/Ul .

Proof: Since o fixes Uc‘ , 1t also fixes Ul’ hence acts
on Uo“/Ul . Thus there is an additive isomorphism
f: k = k such that o x(t,...) = x(f(t), ...)
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By multiplying ¢ by a diagonal automorphism we may assume
?
£(1) =1 . Since ¢ fixes H_ , there is an isomorphism

!
A

i : k ->k  such that od(s) = d(i(s)) . Combining these

equations with the one in (3) we get

e
L

f(g(s)t) = g(i(s))f(t) for all sek , tek.

Setting t =1, we get (*) f(g(s)) =gl(i(s)) , so that

f(g(s)t) = f(g(s))f(t) . If the case 2A2 (4) 1is excluded, then
f is multiplicative on k by (3), hence is an automorphism. The
same conclusion, however, holds in that case also since f fixes

0 and 1 and permutes the two elements of k not in kg -

Our object now is to show that once the normalization in

(4) has been attained ¢ is necessarily the identity.

(5) o fixes each element of Ul/U2 and U, , and also

: v
some W € Go~ which represents the nontrivial element of the Weyl

group.

Proof: The first part easily follows from (2) and (4), then
| the second follows as in the proof of Theorem 33(b).

2 2

(6) If the type is C, or "G, , then ¢ is the identity.

Proof: Consider the type 202 . From the equation (*) of (4) and
the fact that £ =1, we get g(s) = g(i(s)) , i.e., 5228

= i(s)z'26

, and then taking the 1 + € th power, s = i(s) ;
in other words ¢ fixes every d(s) . By (4) and (5),

ox(t,u) = x(t,u + i(t)) with j an additive homomorphism.

LTS Rk b e ey TR o < S 4 gt TR e =t R U
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Conjugating this equation by d(s) = @d(s) , wusing (1), and

comparing the new equation with the old, we get j(s2"29t)

= szej(t) , and on replacing s by 51t® , jlst) =s

l+28j(t) .
Choosing s + 0, 1, which is possible because <C,(2) has been
excluded, and replacing s by s+tl and by 1 and combining

the three equations, we get (s + sze)j(t) =0, Now s+ <9 0,
since otherwise we would have s + 520 = (s + 826)26 , then s = s? ,
contrary to the choice of s . Thus j(t) =0 . In other words

¢ fixes every element of Uo- . If the type is 2G2 instead,

]
the argument is similar, requiring one extra step. Since GO.

is generated by Uy and the element w of (5), ¢ is the

identity.
The preeeding argument, slightly modified, barely fails for

2A2 , in faect fails just for the smallest case 2A2(h) . The

proof to follow, however, works in all cases.

(7) If the type is 2A2 , then ¢ is the identity.

Proof: Choose w as in (5) and, assuming u $ 0 , write

1 _ v . v ? .
= Xnx with x,x e UO_, neH w . A simple
——— Py
calculation in SL3 shows that x = x{atu l, *) for some a e k

wx(t,u)w

depending on w but not on t or u . (Prove this.) If now
we write ox(t,u) = x(t,u + j(t)) , apply ¢ to the above

-1
equation, and use (4) and (5), we get et = t(u + j(t)) ,

so that j(t) = 0 and we may complete the proof as before.
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It is also possible to determine the isomorphisms among the
various Chevalley groups, both twisted and untwisted., We state

the results for the finite groups, omitting the proofs.

Theorem 37 : (a) Among the finite simple Chevalley groups, their

twisted analogues, and the alternating groups Cz;(n > 5) , a complete

list of isomorphisms is giVen as follows.

(1) Those independent of k ,

Gy~ By ~ A

C, ™ B,

D. ~A. % A 2D, ~R(A.x AL) ~ A

o ™Ay X Ay 2 1% A4 1
2 Av R

Dy~ Ag Dy ™" Thg

a1 (q®) ~ A ()
(2) B (q) ~C_(q) if q 1is even.

(3) Just six other cases, of the indicated orders.

A )~ 8 (5) v, 60
A, (7) ~ Ay(2) 168
Al(9)aJCE% 360
A3(2)~d8 20160

2 ‘
Ay(h) ~B,(3) 25620
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(b) In addition there are the following cases in which the

Chevalley group just fails to be simple.
The derived group of B,(2) ~ 626 360

2
G,(2) A, (9) 6048

2
G,(3) ~ A (8) 50k
°F, (2)

The indic¢es in the original group are 2, 3, 2, 2, respectively.

Remarks: (a) The existence of the isomorphisms in (1) and (2)
is easy, and in (3) is proved, e.g., in Dieudonne” (Can. J. Math.1949).

There also the first case of (b), considered in the form

B2(2)/v S¢ (symmetric group) is proved,

(b) It is natural to include the simple groups &% in
the above comparison since they are the derived groups of the
Weyl groups of type An-l and the Weyl groups in a sense form
the skeletons of the corresponding Chevalley groups. We would
like to point out that the Weyl groups W(En) are also almost

simple and are related to earlier groups as follows.

Proposition: We have the isomorphisms:

AI(Eg) B, (3) o 2ay(4)

q
/OW(E,?)NGB(z)

K9W(E8)/Cfv Dh(2) , with C the center, of order 2.
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Proof: The proof is similar to the proof of S¢ = W(A /\'B2(2)

5)
given near the beginning of § 10,

Aside from the cyclic grouns of prime order and the groups
considered above, only 11 or 12 other finite simple groups are

at present (May,1968) known, We will discuss them briefly.

(a) The five Mathieu.groups M (n =11, 12, 22, 23, 24).
These were discovered by Mathieu about a hundred years ago and put
on a firm footing by Witt (Hamburger Abh. 12 (1938)). They arise
as highly transitive permutation groups on the indicated numbers

of letters. Their orders are:

My = 7920 = g.0.10.11

|M12( = 95040 = 8.9,10.11.12

|M,,| = L43520 = 148.20.21.22

IM23| = 10200960 = 4§.20,21.22.23

leul = 244823040 = 48.20.21.22.23.24 .

(b} The first Janko group Jl discovered by Janko
(J. Algebra 3 (1966)) about five years ago. It is a subgroup of
G,(11) and can be represented as a permutation

group on 266 letters. Its order is
|J.] = 175560 = 11(11 + 1)(11°- 1) = 10.20.21.22 = 55.56.57 .
1

The remaining groups were all uncovered last fall, more or less.




203

(c}) The groups J, and Js 1/2 of Janko. The existence of
J2_ was put on a firm basis first by Hall and Wales using a machine;
and then by Tits in terms of a "geometry.?® It has a subgroup of
index 100 isomorphic to télG2(2)4KJ2A2(g), and is itself of index
416 in G,(4) . The group J5 i/2 has not yet been put on a firm
basis, and it appears that it will take a great deal of work to
do so (because it does not seem to have any “large? subgroups),

but the evidence for its existence is overwhelming. The orders are:

| g = 604800

2l

[d, 1/2| = 50232960 .

7
(d) The group H of D, Higman and Sims, and the group H

of G. Higman. The first group contains M as a subgroup of index.

22
100 and was constructed in terms of the automorphism group of a
graph with 100 vertices whose existence depends on properties

of Steiner systems., Inspired by this construction, G. Higman
then constructed his own group in terms of a very special geometry
invented for the occasion. The two groups have the same order,

and everyone seems to feel that they are isomorphic, but no one

has yet proved this. The order is:
9
lu| = [H| = 44352000 .

(e) The (latest) group S of Suzuki. This contains Gz(h)

as a subgroup of index 1782, and is contructed in terms of a graph

whose existence depends on the imbedding J2 C Gz(h). It possesses




204

an involutory automorphism whose set of fixed points is exactly J2 .

Its order is:

[S] = 448345497600 .

(f) The group M of McLaughlin. This group is constructed
in terms of a graph and contains 2A3(9) as a subgroup of index

275. Its order is:
M| = 898128000 .

Theorem 38: Among all the finite simple groups above (i.e., all

that are currently known), the only coincidencesin the orders

which do not come from isomorphisms are:
(a) Bn(q) and Cn(q) for n> 3 and q odd ,
(b) A,(4) and A3(2)ruC28 .

?
(c) H and H if they aren't isomorphic.

That the groups in (a) have the same order and are not
isomorphic has been proved earlier. The orders in (b) are both
equal to 20160 by Theorem 25, and the groups are not isomorphic
since relative to-the normalizer B of a 2-Sylow subgroup the
first group has six double cosets and the second has 2L. The proof
that (a), (b) and (c) represent the only possibilities depends on
an exhaustive analysis of the group orders which can not be

undertaken here,
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§12. Representations. In this section we consider the irreducible

representations of the infinite Chevalley groups. 4As we shall see,

here the theory is quite complete. All representations are assumed

to be finite-dimensional and the standard terminology is used. 1In

‘particular 1 must act as the identity, and the trivial O-dimen-

sional (but not the trivial 1l-dimensional) representation is ex-

cluded from the list of irreducible representations. We start

wWith a general lemma.

Lemma 68:¢ ILet K be an algebraically closed field, B and C

associative algebras with 1 over K , and A =B@®C .

(a) If (B,V) and (%,W) are (finite-dimensional) irreduc-

ible modules for B and C , then (a,U) = (B@ ¥, VW) 1is one

for a
(b) Conversely, every irreducible ~ A-module (a,U) is

realizable, uniquely, as a tensor product as in (a).

Proof: (a) By Burnside's Theorem (see, e.g., Jacobson, Lectures
in Abstract Algebra, Vol. 2), BB = End V and 3¥C = End W , whence

afh = End U and (a,U) is irreducible.

(b) Let V Dbe an irreducible B=-submodule of U . Such

exist since U is finite-dimensional. Let L be the space of

B-homomorphisms of V into U . This is nonzero and is a C(-module
under the rule ct = a(c) o £ . (Check this.}) Let (¥,W) Dbe an
irreducible submodule. The map ¢: V@W —> U defined by

v L —~—> f(v) is easily checked to be an A-homomorphism. VW

is irreducible by (a), and U is by assumption. Hence by Schur's
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Lemma (see loc. cit.) % 1is an isomorphism. If a = Br ® Yt is
a second decomposition of the required form, then restriction to
B yiclds B®L1¥B @1 , i.e. multiples of B and B are
isomorphic, so that by the Jordan-Holder or Krull-Schmidt theorems
B and BT are also. Similarly IX and ¥ are isomorphic,. which

proves the uniqueness in (b).

Corollary: (a) If K dis an algebraically closed field and

G = TFGi is a direct product of a finite number of groups, then
the tensor product V of irreducible KGiamodules Vi is an ir-
reducible KG-module, and every irreducible KG-module is uniquely
realizable in this way.

(b) Similarly for a direct sum £ = & L, of Lie

algebras over K

Proof: We apply Lemma 68, extended to several factors, in (a) to

group algebras, in (b) to enveloping algebras.

Exercise: If the direct product above is one of algebraic groups
over K [fof topological groupz, of Lie groups,...), then V is

rational (continuous, analysic,...) if and only if each Vi is.

Remark: If we are interested in the irreducible representations
of a Chevalley group G , we may as well assume it is universal.
The corollary then implies that we may as well also assume that

G (i.e. that £) is indecomposable. This we will do whenever it
1s convenient.

Now we take up the study of rational representations for
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Chevalley groups over algebraically closed fields'viewed as alge-
braic groups. In such representations the coordinates of the
representative matrix are required to be rational functions of
the original coordiﬁates. Whether this requirement is to be taken
locally (e.g. as in the prdof of Theorem 7, Cor. 1) or globally

is immaterial, in view of the following result.

Lemma 69: Let G Dbe a Chevalley group viewed as an algebraic
group as above, and f: G —> k a function. Then the following
conditions are equivalent.

(a) f 1is expressible as a rational function locally.

(b) f 1is expressible as a rational function globally.

(c) f 1is expressible as a polynomial.

Proof: It will be enough to show that (a) implies (c}. Let A

be the algebra of polynomial functions on G . By assumption there
exists an open covering {Ui} of G , which may be taken finite
by the maximal condition on the open subsets of G (which holds
by Hilbert's basis theorem in A4A) , and elements 8 hi in A
such that f = gi/hi and h; $ 0 on U, for all 1 . Since the
hi don't all vanish together, by Hilbert'!s Nullstellensatz there
exist elements a; in 4 such that 1 = Z aihi on G . Let
UO==(‘)Ui y it is nonempty, in fact dense, since G 1is irreducible.
On UO we have [ = J aifhi = X a;8; » @ polynomial, hence by den-
sity also on each Ui and on G , as required.

Presently we will need the following result.
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Lemma 70: The algebra A of polynomial functions on G 1is inte-—

grally closed (in its quotient field).

Proof: We observe first that A is an integral domain (since G
is irreducible as an algebraic set, the polynomial ideal defining
it is prime), so that it really has a quotient field. Assume

f = pl/p2 (pi'e A) 1is integral over A: £ + alfn°l'+ ee. ta, =0
for some a; € A . On restriction to the open set UTHU of G

the p; and a; become, by Theorem 7(b), polynomials in the co-
ordinates {ta,ti,t;l} Since such polynomials form a unique
factorization domain, we see by the above equation that f itself
is such a polynomial, on U HU . The same being true on each of
the translates of U HU by elements of G , we conclude that f

is a polynomial on G , i.e. f is in A , by Lemma 69.

Two more lemmas and then the main theorem.

Lemma 71: The rational characters of H (homomorphisms into k*)
are just the elements of the lattice L generated by the global

weights of the representation defining G .

Proof: Let A\ Dbe a character. Then it is a polynomial in the
diagonal elements of H (written as a group of diagonal matrices),
i.e. a linear combination of elements of L . Being multiplicative,
it equals some element of L . (Prove this.) Conversely, if

A gL , then A 1is a power product of weights in the representa-
tion defining G , and all exponents may be taken positive since

the product of the latter weights (as functions) is 1 , so that

A 1is a polynomial on H
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Now for any rational Ge-module V we may define the weights
A and the corresponding weight spaces Vk s relative to. . H , in
the obvious way.

Lemma 72 Let V be a rational G-module, A a weight, v an

element of Vk , and @& a root. Then there exist vectors
v € foia(i = 1,2,...) so that xa(t)v =V + 5 tlvi for all
t € k.

Proof:- Since V is rational and t ——> xa(t) is an isomorphism,
xa(t). is a polynomial in t: xq(t)v =z tlvi . If we apply h

to this equation and compare the result with the equation got by

-l o x (a(h)t) , we get v. e V

replacing xa(t) by hxa(t)h - 5 N

Setting t = 0 , we get v = Vo s whence the lemma.

Theorem 39 (Compare with Theorem 3): Let G be a Chevalley group

over an algebraically closed field k (i.e. a semisimple algebraic
group over k) , and assume the notations as above.

(a) Every nonzero rational G-module V contains a nonzero
element v' which belongs to some weight ) € L and is fixed

by all x £ U .,

(b) Assume V = ka+ with v as in (a). Then V = kUdv+ .
Further dim Vx = 1 , every weight x# on V has the form
A - Za (a positive root), and V=5V .

'U,
(c) In (a) <x,a> € 22+ for every positive root a .

(d) If V 1is irreducible, then the weight A (the "highest

weight) and the line kv’ of (a) are uniquely determined.
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(e) Given any character A on H satisfying (c), there
exists a unique irreducible rational G-module V in which A

is realized as in (a).

Proof: (a) The proof is the same as that of Theorem 3(a) with

Lemma 72 in place of Lemma 11.

(b) Since U B is dense in G (Theorem 7) and V is
rational, any linear function on V which vanishes on U BV
also vanishes on Gv' . Thus V = kUBv = kUv' . The other
assertions of (b) follow from this equation and Lemma 72.

(c) w, A 1is a weight on V (with wav+ a corresponding
weight vector). Since WA= A= <a,a> , it follows from (b)
that <p,a> e Z© . |

(d) This follows from the second and third parts of (b).

(e) We will use the correspondence between local weights
(on L) and global weights (on G) (see p. 60). Let A be as
in (e). By Lemma 71, A € L . Let A also denote the correspond-
ing weight on L , So that x(Ha) = Q\,a> € Z" for all a >0 .
Let sp,VY) be an irreducible L-module with A as its highest
weight, v oa corresponding weight vector, and Gf a correspond-
ing Chevalley group over k (constructed from Jolf and some
choice of the lattice M in V') . Since )\ 1is in the lattice
generated by the weights of the representation of dﬁ used to
construct G , it follows (Theorem 7, Cor. 1) that there exists a
rational homomorphism ®: G —> G1 such that xa(t) —_— x;(t),

or 1 for all a« and t , in the usual notation. The resulting
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representation of G on V' need not- be irreducible {and its
fepresentation class may vary with gthe choice of M) , but at
least it contains the vector v which is of weight A and is

. 1
fixed by every x e U . Let V " be the submodule of V' gen=
1t 1t

4+ 1
erated by v , and V a maximal submodule of V' & . (V

is in fact unique as follows from the equation V" = kUmv+ of

(b). Check this.) The G-module V = V"/fo' meets the exis-

tence requirements of (e). For the uniqﬁeness, let Vi,v;(i = 1,2)
satisfy the conditions on V,v+ in (e). Let v o= VI + v; € Vl + Vs

and V = kGv' . Then Vx = kv’ by (b), so that v; £V . Consider

the G<=homomorphism Py V —> Vl » projection on the first fac-
tor. Since vz generates Vl’ Pq is onto. Since also

ker Py Q;VZ (\V , which is O because V, 1is irreducible and

v; £V, it follows that p; 1is an isomorphism, lThus V is
isomorphic to V, , and similarly to V, , so that Vl and V,

1
are isomorphic, as required.

A complement: If <char k = O , then in the existence proof above

! 1 te
v' is itself irreducible, i.e. V' =7V and V' =0 . In

other words, if the Chevalley group G is constructed from an
irreducible £ -module. V and a field k of characteristic O ,

then as a linear group it is irreducible.

Proof: Recall that V was originally an Zaﬁwmodule (irreducible
by assumption), and that a lattice M as in Theorem 2, Cor. 1 was
then used to shift the coefficients to k . Clearly VQ is irre-

ducible relative to de . It follows that V, is irreducible
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relative to gﬁk: otherwise there would be a proper invariant
subspace Vi ,‘excluding kv'  since kv A V(Q + 0 , then some
nonzero v € Vl such that Xav = 0 for all &« > 0 , so that
writing v = » t.m, (mi e M, t. & k and linearly independent
over @) and choosing @ so that Xami + 0 for some i , we
would arrive at the contradiction I tixami = 0 . Since we can
recover each Xa from G by using xa(t) =1 + tXa + ... for
several values of t and the Xa's generate Jﬂ, we conclude
that Vk is irreducible for G .

In contrast to the case just considered, if char k + O , then

' tre
and V- + O 1in general and the exact situation is not

b b
VvV #V
at all understood, except in a few scattered cases (types Ay AZ’
B2 or when char k is large "compared' to A) . However, the

following is true.

Exercise: (a) For the lattice M of Theorem 2, Cor. 1 (with V
there assumed to be irreducible) assume that Cv'N M is pre=
scribed. Prove that there is a unique minimal choice for M
(contained in all others) and a unique maximal choice.

Assume now as in the complement, except that char k # O
Tty 1t
(b)Y If M is maximal, then V =0, i.e. V is

irreducible.

' 1y
(c) If M is minimal, themn V =V |

Example: If [/ 1is of type A , char k = 2 , and the adjoint

representation is used, then (b) holds for Moo= <X, H/2, Y>

and (c¢) holds for Mg = <X, H, ¥> , but not vice versa.
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The proof given above for the existence in Theorem 39(e)
brings out the connection between the representations of G and
those of L and shows that every irreducible rational represen-
tétion of a Chevalléy group in characteristic p ¢ O can be con-
structed by the reduction mod p of a corresponding representation
of a group in characteristic O . It depends, howevef, on the
existence of representations of L , which we have not proved
here, thus in its entirety is very long. We shall now develop an
alternate, more intrinsic, proof.

We start with the connection between a G-module V and its
dual V*,, on which G acts by the rule (xf)(v) = f(x”lv) for
all x g G, f € v ,and v € V . We recall that W, is the elém

ment of the Weyl group which makes all positive. roots negative.

Lemma 73: Let V be an irreducible rational Ge-module, A its

highest weight, v a corresponding weight vector, A" = W\
and f"  the element of v defined thus: if we write v = wov+
and v eV as v = cv + terms of other (hence higher) weights,
then f+(v) = ¢ . Then k* and £ are highest weight and

highest weight vector for v

Proof: In the definition of 7 we have used the fact that
dim Vw x dim Vk =1 , Here, and also in similar situations
later, we extend )\ to B by the rule a(b) = a(h)} if
b=uh (ueU, h € H) , and similarly for A . If we write
v € V as in the lemma and use Lemma 72, we see that

bv = c(wox)(h)v" + higher terms. Since c¢ = f+(v) and
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(wa)(h) = R , we have f"(bv) = X*(bgl)f+(v) . On replacing

b by b we get bf" = 2\¥(b)f' , as required.

Theorem 40: For A €L let Ay be the space of polynomial func-

tions a on G such that a(yb) = a(y)a(b}) for all y € G,

b € B , made into a Gemodule in the obvious way .

(a) If Vv, A, v’ are as in Lemma 73, then the map
PV — Ax defined by (¢f)(x) = f(xv+) for f ¢ v and
x € G 1is a Ge-isomorphism into.

(b} Conversely, if A 1is such that Ax + 0 , then AX
contains a unique irreducible Ge-submodule. The latter is finite=-

dimensional and rational and its highest wieght is x*

Proof: (a) The points to be checked here will be left as an
exercise,

(b) We observe first that as a G-module Ax is locally

finite~dimensional (in fact, it is finite-dimensional, but we shall
notbprove this), since the set of polynomials of a given degree

is. Thus there exist irreducible submodules and all of them are
finite-dimensional and rational. Let g be the highest weight of

+ . :
any one of them and a a corresponding nonzero weight vector. We

have (%) a*(bxb') = p(6™1)a" (x)A(b') for all x G, b, b & B .
Since BwOB_ is dense in G, é+(wo) + 0 . Since also a+(bwo)

= a+(wo.wglbwo) , we get from the above equation that ﬂ(b-l)

= x(wglbwo) , so that p = A" . Since £ is uniquely determined

by A , the function a+ is determined by its value at LS by
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(x) with x = W and the density of Bw_ B in G , proving the

uniqueness in (b).

Remarks: (a) In characteristic O it easily follows from the
theorem of complete reducibility that AX itself is irreducible.

(b) The representation of G on AK is, in the context

of polynomial representations, the one induced by the character
AN on B . The fact that it contains a representation of highest
weight A , is, in view of Theorem 39(a), a form of Frobenius

reciprocity.

Lemma 74% Let £F be as in Lemma 73 and a’ = @f+ with ¢ as

in Theorem 40(a) so that xv' = a+(x)wov+ + higher terms. Let WK

be the stabilizer of A in W , and for w e WK assume that the

corresponding representative w € G has been chosen so that

wv = v . Then if x & G is written thoWul (see Theorem h1)

we have a'(x) = x*(hnl) if weW,

A
0 otherwise.

Proofii A choice for w & G as above is always possible: Aif
A= 0, then V is trivial since G = DG , while if A 4 O,
then wv' has weight WX = A , hence is a multiple of v y SO

that by modifying it by a suitable element of H we can achieve

+ + +

wv = VvV . From the definitions and Lemma 72 we have a+(x)w v

o
= hwowv+ . If we WX , then a+(x) = }\*(hml

) by the choice of
W , while if a+(x) + 0, then w fixes kv by the equation so

that w € WX
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This brings us to the

Second proof of the existential part of Theorem 39(e):

Proof: Let A Dbe as in Theorem 39(c). It will be enough to prove
that the function defined by the last equations of Lemma 7L is
rational on G . The existence will then follow from Theorem 4LO(b)
with K* in place of A\ . By Lemma 70 any power of this function
will do, so that by Lemma 74 it will be enough to construct an
irreducible representation whose highest weight is some positive
power (positive multiple if we write characters on H additively)

of A . This we will do, using the following interesting result.

Lemma 75 (Chevalley): Let G be a linear algebraic group and P
a closed subgroup. Then there exists a rational G-module V and

a line L in V thse stabiliger in G 1s P

Proof: Let 4 be the algebra of polynomials in the matric entries
and I the ideal defining P . By Hilbert'!s basis theorem I

is generated by a finite number of its eleménts, so that there
exists a finite-dimensional G-invariant subspace B of 4 such
that BM™MI , say € , generates I . For x € G we have the
following equivalent conditions: x € P; f(x“ly) = 0 for all
fel,yeP; xICI;xCCC . Ifnow c¢=dimC, V= N\°B, v

is the product in V of a basis for C , and L = kv , it follows
that the stabilizer of L 1s exactly P

| We resume the proof of existence. Let TT = {“1>“2""’a¢}

be the set of simple roots. For i = 1,2,...,0 let Pi be the

parabolic subgroup of G corresponding to [ - {ai} (see Lemma
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30), Li = kvi the corresponding line of Lemma 75, ty the

corresponding rational character on Pi , hence also on B and
H , and Vi = kai . If j % i, then wj is represented in P.oy

so that Wjﬂi = U

L, , by choice, it follows from parts (b) and (c) of Theorem 39

5 and <ﬂi,Qj> = 0 ., Since W does not fix
applied to Vi that g 5@ > is a positive integer, say di

If now )\ 1s as before so that Q,a;> = C; € z* , 1t follows

1

that dn = I e u, withe d = TTdy ang e; = c;d/d; . If we form
. i i .

the tensor product TTVi » then T[v,~ 1is a vector of weight

dA\ for B , so that we may extract an irreducible component whose

highest weight is d\ , and thus complete our second existence

proof.

Remark: We are indebted to G. D. Mostow for the proof just given.
The extra problems that arise when char k # O are compen-

sated for by the fact that only a finite number of representations

has to considered in this case, as we shall now see.

Lemma 76: Assume char k=p $ 0 . Let Fr (for Frobenius) denote
the operation of replacing the matric entries of the elements of
G by their pth powers, If Jo is an irreducible rational rep-

resentation of G , then so is JO o Fr . 1If the highest weight of

\f is A , that of ~F o Fr is pA
Proof: Exercise.

Theorem 41! Assume that G above is universal (i.e. G 1is a

simply connected algebraic group), and that char k = p # O . Let
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{4
R be the set of »p irreducible rational representations of G
for which the highest weight )\ satisfies O < <k,ai> <p-=1

(mi simple). Then every irreducible rational representation of
[89] .

G can be written uhiquely . o Fr (p. ¢ l{) .
@ £ S

Sketch of proof: We observe first that since G 1is universal

L = Ll , so that all A's with all A ,a> € ZZT occur as highest

weights, in particular those used to define ﬂz . Consider

J
product of the corresponding weight vectors yields for JO a

j3==C>fﬁ o Frd . Let A, be the highest weight of Joj . The

highest weight vector of weight A =3 pjhj , by Lemma 76. If we
vary the ‘Fj's in Z?, we obtain, in view of the uniqQueness of
the expansion of a number in the scale of p , each possible
highest weight A\ -exactly once. Thus to prove the theorem we
need only show that each fo above is irreducible. The proof of
this fact depends eventually on the linear independence of the
distinct automorphisms Frj(j = 0,1,...) of k . We oﬁit the
details, referring the reader to R. Steinberg, Nagoya Math. J. 22

(1963), or to P. Cartier, 5ém. Bourbaki 255 (1963).

Corollary: Assume that one of the special situations of Theorem

28 holds. Let 7€L (resp. ﬁ?s) be the subsets of /£ defined
by Q> =0 for all i such that «, is long (resp. short).

Then every element of Z? can be written uniquely P @?FS with
vF{ € &?é and jos £ i?s . |

Proof: Given JO > ﬁ?, write the corresponding highest weight A\
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as Ay * Ay SO that the corresponding irreducible representations

JO*' ceand g are in ﬁ& and fs . We have to show that Py ®PS
is irreducible. If we define ¢ as in Theorem 20 but with G

and (}>:< inuerchanved and set .PL =0 O\Pé’\PS ® O\FS , we have
to show that the representation ‘FQICDJD of G is irrgducible.
Since the corresponding highest weights satisfy

<xz,a*> = Qg ,a> if a 1is short

. O‘ if not

il

<x*,a*> = p<xs,a> if o is long

0 if not,

we see that xz and x:/p correspond to elements of sz s SO

that the corollary follows from Theorem 41 applied to o*

Examples: (a) SL, . Here there are p representations

th being realized on the

space of polynomials homogeneous of degree 1 over k2

fi (i=o,:_L,...,p ~1) in R, the i

(b) Sp,» P = 2 . Here there are 4 representations in

Q’. If % 1is the graph automorphism of Theorem 28 then
)€£ o P = 'fs so that by the above corollary, these L are, in
terms of the defining representation Jo , just 1 (trivial),
prpo o, and.\f>CD UO.O P)

The results we have obtained can easily be extended to the
case that k is infinite (but perhaps not algebraically closed).
We consider representations on vector spaces over K , some alge-

braically closed field containing k , and call them rational if
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the coordinates of the image are polynomial functions over K in

the coordinates of the source. The preceding theory is then appli-

cable almost word for word because of the following two facts both

coming from the denseness of G in G (this is G with k

K
extended to KX) .

(a) Every irreducible polynomial representation of G ex-
tends uniquely to one of GK
(b) On restriction to G every irreducible rational repre-

sentation of GK remains irreducible.

Exercise: Prove (a) and (b).

The structure of arbitrary irreducible representations is
given in terms of the polynomial ones by the following general
theorem. Given an isomorphism ¢ of k into K , we shall also
write @ for the natural isomorphism of G onto the group ®G

obtained from G by replacing k by &k .

Theorem 42 (Borel, Tits): Let G be an indecomposable universal

Chevalley group over an infinite field k , and let o be an
arbitrary (not necessarily rational) irreducible representation
of G on a finite-dimensional vector space V over an algebrai-
cally closed field K . Assume that o is nontrivial. Then
there exist finitely-many isomorphiéms ¢, of k into K and
corresponding irreducible rational representations Pi of ®iG

over K such that U‘==C>fH_O P,
' i

Remarks : (a) As a corollary we see that k 1is necessarily
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imbeddable as a subfield of K . In other words, if k and K

are such that no such imbedding exists, e.g. if char k + char K ,
then every irreducible representation of G on a finite-dimensional
vector space over K 1is necessarily trivial. (Deduce that. the

same is true even if the representation is not irreducible.) If

k 1is finite, these statements are, of course, false.

(b) The theorem can be completed by statements concerning
the uniqueness of the decomposition and the condition for irreduc-
ibility if the factors are prescribed. Since these statements are
a bit complicated we shall omit them.

(c) The theorem was conjectured by us in Nagoya Math.

J. 22 (1963). The proof to follow is based on an as yet unpub-
lished paper by A. Borel and J. Tits in which results of a more

general character are considered.

Lemma 77: Let G, G be indecomposable Chevalley groups over

fields k, k' with k infinite and k' algebraically closed,

and o: G —> G' a homomorphism such that oG is dense in G .
(a) There exists an isomorphism ¥ of Lk into k' and

a rational homomorphism JO of ¥G 1into Gf such that o = f o @Y.
(b) If G dis universal, then \F can be lifted, uniquely,

1
to the universal covering group of G

Proof: (a) If the reader will examine the proof of Theorem 31

he will observe that what is shown there is that o¢= can be nor-

1

malized so that o—xa(t) = xax(sdp(t)q(a)) with o —> a an
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. 1
angle-preserving map of % on X , g, = X1, ¥ an isomorphism of
1
k onto k , and q(a) =1 on p . Since we are assuming only

that oG 1is dense in G , not that oG = Gf , the proof of the
corresponding result in the present case is somewhat harder. How-
ever, the main ideas are quite similar. We omit the proof. From
the above equations and the corresponding ones on H , it follows
from Theorem 7 that o~ has the form of (a).

(b) From these equations we see also, e.g. by considering
the relations (i), (B), (C) of Theorem 8, that p can be lifted

to any covering of G' , uniquely since G = BG .

Proof of Theorem 42: Let 4 = oG , the smallest algebraic sub-

group of GL{V) containing oG . We claim 4 1s a connected
semisimple group, hence a Chevalley group. 4s in the proof of
Theorem 30, step (12}, o U 1is connected, and similarly for ;:E:
so that A , being generated by these groups, is also. Let R be
a connected solvable normal subgroup of 4 . By the Lie-Kolchin
theorem R has weights on V , finite in number. A permutes the
corresponding weight spaces, and, being connected, fixes them all.
Since V 1is irreducible, there is only one such space and 1t is
all of V , so that R <consists of scalars, of determinant 1
since 4 =54, so that R is finite. Since R is connected,

R =1, sothat 4 is semisimple, as claimed. Let &, = TTAil

be the universal covering group of A written as a product of

its indecomposable components, Ay = TTAio the corresponding

factorization of the adjoint group, and a, B, ¥ = TT%E the
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corresponding natural maps as shown:

5 - u'l

‘Gm 5 bl:TTXi

—T > 3
=
AO B TTkio

By Lemma 77 we can 1lift B¢~ componentwise to get a homomorphism

S
=
i
=
‘—l-
|_l

8: G =—> 4. of the form 6&(x) = TTsfpi(x) with each ¢, an isomor-

1
phism of k into K and g, a rational hcomomorphism of miG into
Ail . We have aé = o since otherwise we would héve a homomor-
phism of G into the center of a . By Lemma 68, Cor. (a), a ,
interpreted as an irreducible rational representation of Al y may
be factored g>ai with a; an irreducible rational representation

of d;; . On setting \Fi = a.e; , We see that o = ad =(:>ai8fpi

= ® p.9. as required.
1 fl i?

Corollary: (a) Every absolutely irreducible real representation

of a real Chevalley group G 1s rational.

(b) Every holomorphic irreducible representation of a
semisimple complex Lie group is rational.

(c) Every continuous irreducible representation of a
simply connected semisimple complex Lie group is the tensor product

of a holomorphic one and an antiholomorphic one.

Proof: (a) If G 1is universal, this follows from the theorem and

the fact that the only isomorphism of {R into ﬂl is id. The
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transition to the nonuniversal case is an easy exercise.
(b} The proof is similar to that of (a).
(c) The only continuous isomorphisms of iﬁto €C are

the identity and complex conjugation.

Exercise: Prove that the word “absolutely” in (a) and the words
"simply connected’ in (c¢) may not be removed.

Now we shall touch briefly on some additional results.

Characters., As is customary in representation theory, the charac=

ters (i.e. the traces of the representative matrices) play a vital

role. We state the principal results in the form of an exercise.

Exercise: (a) Prove that two irreducible rational G-modules are
isomorphic if and only if their characters are equal. (Consider
.the characters on H .)

(b) Assume that char k = 0 and that the theorem of
complete reducibility has been proved in this case. Prove (a) for
representations which need not be irreducible.

(c) 4assume char k= 0 . Prove Weyl's formulas: Let V, A

be as in Theorem 39(e), X the corresponding character, and &
one-half the sum of the positive roots, a character on H . BSet
S, = I det w.w(n + &) , a sum of functions on H . Then

A weW

(1) x(h) = S}\(h)/SO(h) at ell h e H where S_(h) + O
(2) dim V= JT<n + 6,a>/<8,a> .
@>0

(Hint: wuse the éorresponding formulas for Lie algebras (see, e.g.,

Jacobson, Lie Algebras) and the complement to Theorem 39).
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Remark: The formula (1) determines "X uniquely since it turns
out that the elements of G which are conjugate to those elements

of H for which S, # 0 form a dense open set in G .

The unitarian trick. The basic results about the irreducible com-

plex repreéentations of a compact semisimple Lie group K , i.e.

a maximal compact subgroup of a complex Chevalley group G as in
§8, can be deduced from those of G because of the following im-
portant fact: (%) K 1is Zariski-dense in G . Because of Lemmas
43(b) and 45 (K 1is generated by the groups ©,5U,) this comes
down to the fact that SU, is Zariski-dense in SLZ(Q) , wWhose
proof is an easy exercise. By (*) the rational irreducible rep-
resentations of G remain distinct and irreducible on restriction
to K . That a complete set of continuous representations of K
is so obtained then follows from the fact that the corresponding
characters form a complete set of continuous class functions on

K . The proof of this uses the formula for Haar measure on K
and the orthogonality and completeness properties of complex ex-
ponentials, and yields as a by-product Weyl!s character formula
itself. This is how Weyl proved his formulé in Math. Zeit. 24
(1926) and it is still the best way. The thecorem of complete re-
ducibility can be proved as follows. Given any rational represen-
tation space V for G and an invariant subspace V7 , We can,
by averaging over K , relative to Haar measure, any projection

of V onto Vt and taking the kernel of the result, get a com-

plementary subspace invariant under K , thus also invariant under
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G Dbecause of (*). It is then not difficult to replace the complex

field by any field of characteristic O

Invariant bilinear forms. G denotes an indecomposable infinite

Chevalley group, V an irreducible rational G-module, and A\

its highest weight.

Lemma 78: The following conditions are equivalent.
(a) There exists on V a (nongero) invariant bilinear form.
(b) V and its dual V" are isomorphic.

(c) WA= A
Proof: Exercise (see Lemma 73).

Exercise: Prove that -W is the identity for all simple types
except An(n > 2), D2n+l’ E6’ and for these types it comes from
involutory automorphism of the Dynkin diagram. (Hint: for all of
the unlisted cases except for D2n the Dynkin diagram has no sym-

metry.)

Exercise: If there exists an invariant bilinear form on V , then
it is unique up to multiplication by a scalar and is either sym-
metric or skew—symmetric. (Hint: wuse Schurts Lemma.)
Lemma 79: Let h = [[h,(-1) , the product over the positive roots.
(a) h dis in the center of G and he = 1
(b} If V possesses an invariant bilinear form then it is
symmetric if A(h) = 1 ,

skew=symmetric if A(h) = -1



Proof: (a) Since ha(nl) = h_a(—l) (check this), h is fixed

by all elements of W . This implies that h is in the center,
2

as easily follows from Theorem AY. Since ha(«l) = ha(l) =1 ,
we have h° = 1 .
(b) We have an isomorphism ¢: V —=> V*, v — £

with v and f' ‘as in Lemma 73} the corresponding bilinear form
on V is given by (v,v’) = (@v)(v‘) . Tt follows that

(xv+,yv+) = f+(x=lyv+) for all x, y ¢ G . Thus (v+,wov+)

-] +

= f+(wov+) + 0 by the definition of £ , and (wov+,v+) = f(wO v).

If w is a minimal product of simple reflections in

= W W, Woyeao
o) a By
W , then for definiteness we pick LA wa(l)wB(l)... in G , so

that w;l = ... wx(al)wﬁ(—l)wa(nl) . We have wa(nl) = Wd(l)ha(l) ,

and similarly for B8,¥,... . Substituting into the expression for

wgl and bringing all the h's to the right, by repeated conjuga-

tion by w's , we get to the right h by Appendix II (25) and to

the left ... WX(l)WB(l)Wa(l) which is just W by a lemma to
be proved in the last section. Thus wgl = woh , and (wov+,v+)

becomes x(h)f+(w0v+) = x(h)(v+,wov+) , as required.

Observation: h as in Lemma 79 is 1 in each of the following

cases, since the center is of odd order.
(a) G 1is adjoint.
(b) Char k = 2 .

(c) G 1is of type As s E6’ Eg, Fb’ G, .

n
Exercise: In the remaining cases find h , as a product TTha(—l) @

over the simple roots.
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Example: SLZ.. For every V there is an invariant bilinear form.
Assume char k = O , so that for each i = 1,2,3,... there is
exactly one V of dimension i , viz. the space of polynomials
homogeneous of degree i - 1 . Then the invariant form is symmet-—

ric if i 1is odd, skew-symmetric if i 1is even.

Invariant Hermitean forms. Assume now that G 1is complex, o is

the automorphism of Theorem 16, K = GG. is the corresponding max-
imal compact subgroup, V and v are as before, and fi G —> a
is defined by xv' = f(x)v+ + terms of other weights.

(a) Prove that f(O‘X-l

) = T{x) . (First prove it on U HU ,
then use the density of U HU in G .)
(b) Prove that there exists a unique form ( , )} from

VxV to (L which is linear in the second position, conjugate

linear in the first, and satisfies (xv+,yv+) = f(o-xf;y) , and
that this form is Hermitean.
(c) Prove that ( , ) is positive_definite and invariant

under K .

Dimensions. Assume now that G 1is a Chevalley group over an in-

finite field k , that V and ) are as before, and that ?’{Z
is the universal algebra of Theorem 2, written in the form
?%; EQCU§2 bf page 16.

(2} Prove that there exists an antiautomorphism o= of

?A:l such that o X, = X and o H, = Hq for all a .

-Q

(b) Define a bilinear form (u,u') from QIZL to Qigi thus:
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write a"u.ur in the above form and then set every Xa = 0 .
Prove that this form is symmetric.
(c) Now define a bilinear form from ﬂle to Z thus:
= Ao ( , ) (interpreting A as a linear form on H- such
that x(Ha) e 2" for all « > 0) . Assﬁming now that this form
is reduced modulo the characteristic of k , prove that its rank

is just the dimension of V .

R L T A
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§ 13. Representations continued. In this section the irreducible
representations of characteristic p (the characteristic of the
base field k) of the finite Chevalley groups and their twisted

analogues will be considered. The main result is as follows.

Theorem 43: Let G be a finite universal Chevalley group or one

of its twisted analogues constructed as in §11 as the set of fixed

points of an automorphism of the form Xa(t) - %Pa(i tq(a)) . Then

the [T qla) irreducible polynomial representations of the includ-
a simple ' .

ing algebraic group (got by extending the base field k to its

algebraic closure) for which the highest weights A satisfy

0< <Anya><qgla) -1 for all simple « remain irreducible

and distinct on restriction to G and form a complete set.

By Theorem 41 we also have a tensor product theorem with the
c2 ' n-
product || suitably truncated, for example to T% if G is a
o

¢
-Chevalley group over a field of pn elements.

Exercise: Deduce from Theorem 43 the nature of the truncations

for the various twisted groups.

Instead of proving the above results (see Nagoya Math. J 22
(1963)), which would take too long, we shall give an a priori

development, similar to the one of the last section.

We start with a group of twisted rank 1 (i.e. of type

17 2A2’ 202, or 2G2, the degenerate cases Al(2), Al(B), e

not being excluded). The subscript ¢ on GO_, Wo”

A
eee Will
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henceforth be omitted. We write X, Y, w, K for )éa(a > 0), ¥

the nontrivial element of the Weyl group realized in G , and an

algebraically closed field of characteristic p . We observe that

U=X and U” =Y in the present case. In addition, X will

denote the sum of the elements of X in XKG .

Definition: An element v in a KG-module V is said to be a

highest weight vector if it is nonzero and satisfies

(a) xv=v for all xe U.

o

=

<
]

A(h)v for all h e H and some character A
(c) Xwv = v for some g e K.

The couple (A,) is'called the corresponding weight.

Remark: The refinement (c) of the usual definition is due to

C. W. Curtis (T11. J. Math. 7(1963) and J. fur Math. 219 (1965)).

That such a refinement is needed is already seen in the simplest

on H

case G = SL2(p) . Here there are p representations realized on

- 7

the spaces of homogeneous polynomials of degrees i =0, 1, ..., p -1,

with the highest weight in the usual sense being ikl . Since
the group H 1is cyclic of order p - 1 , the weights O and
(p - 1)7\.l are identical on H , hence do not distinguish the

corresponding representations from each other.

Theorem 44: Let G (of rank 1) and the notations be as above.

(a) Every nonzero KG-module V <contains a highest

weight vector v . For such a v we have KGv = KY¥Yv =KU v .
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(b) If V 1is irreducible, then it determines Kv as
the unique line of V fixed by U , hence it also determines the

corresponding highest weight.

(¢c) Two irreducible KG-modules are isomorphic if and only

if their highest weights are equal.
The proof depends on the following two lemmas.

Lemma 80: Let Y and K be as above, or, more generally, let Y

be any finite p-group and K any field of characteristic p .

(a) Every nonzero KY-module V contains nonzero vectors

invariant under Y .
(b) Every irreducible KY-module is trivial.

(c) Rad KY = {Tc(y)y | Tc(y) = 0} is the unique maximal

(one-sided or two-sided) ideal of KY . It is nilpotent.
(d) XY is the unique minimal ideal of KY .

Proof: (a) By induction on |Y| . Assume |Y| > 1 . Since Y
is a p-group, it has a normal subgroup Yl of index p , and
the subspace Vl of invariants of Yl on V is nonzero by the
inductive assumption. Choose y € Y to generate Y/Yl , and

v in Vl and nonzero. Then (1 - y)p v =0 ., Now choose r
maximal so that (1 - y)rv % 0 . The resulting vector is fixed by

Y , whence (a).

(b) By (é).
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(c) By inspection Rad KY is an ideal, maximal because
its codimension in KY 1is 1 . Bring the kernel of the trivial
representation, which is the only irreducible one by (b), it is the
unique maximal left ideal; and similarly for right ideals. On each
factor of a composition series for the left regular representation
of KY on itself Y acts trivially by (b), hence Rad KY acts

as O, so that Rad KY 1is nilpotent.
(d) By (b).

Lemma 81l: For xe X -1, write wxw = f(x)h(x)wg(x) with

f(x), g(x) e X and h(x) e H.

(a) f and g are permutations of X - 1 .

(b) (Fw)? =Tw® + ¥ hix)Iwg(x) .

xeX-1

Proof: (a) If f(x) =1, we get the contradiction xw € B ,
while if f(x?) = f(x) , we see that w"lx~lxtw e B, so that
x =x . Similarly for g .
12 _ %2 -
(b)  (Zw) =Xw" + ¥ Xf{x)hi{x)wg(x)
xeX-1

Here f(x) gets absorbed in X and h(x) normzlizes X , whence

(b).

Proof of Theorem 44: (a) By Lemma 80(b) the space of fixed

points of U =X on V is nonzero. Since H normalizes U and
is Abelian, that space contains a nonzero vector Vv such that (a)

and (b) of the definition of highest weight vector hold. Let
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Xwv = vy o If v

replace Vv by v

1= O, then (c¢) holds with ¢ =0 ., If not, we

1 - Then (a) and (b) of the definition still hold
with wA in place of A , and by Lemma 8(b) so does (c) with

& =IN(h(x)) . Now to prove that KGv = KYv it is enough,

because of the decomposition G = YBuwB , to prove that wv e KYv .

By the two parts of Lemma 81 we may write Xwv = pv , after some

simplification, in the form

(%) wr + % Awh™l

xeX-1

w)y(x)v = pv ,

with y(x) = wxw"1 e Y , whence our assertion.

. _
(b) Let V =Kv and VW = Rad KY-v . It follows from

Lemma 80(c) that the sum V = V‘7 + V“ is direct. Now assume

there exists some vy € v, vy é v' , fixed by X . We may assume
that v, € V' and also that vy is an eigenvector for H since
H is Abelian. We have ZXwv, = wYv, =0 ; since Y(l-y) =0 for

1 1
any yeY . Thus v, is a highest weight vector. By (a),

V= Kiv, C KYV =7V , a contradiction, whence (b)

(c) By (b) an irreducible KG-module determines its highest

weight (\,z) uniquely. Conversely, assume that Vl and V2

are irreducible KG-modules with highest weight vectors vy and
Vs of the same weight (A,x) . Set v = vy t v, e Vl + V, and
then V = KGv = KYv . Now Vs é V , since otherwise we could write
vV, = mr+v" with ¢ € K and v ¢ Rad KY.v and then projecting on Vl

2
and V2 get that ¢ =0 and ¢ =1 , a contradiction. Thus we
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may complete the proof as in the proof of Theorem 39(e).

Theorem 45: Let (A,z) be the highest weight of an irreducible

KG-module V.

]

(a) If N 41, then +=0. If N =1, then 4 =0
or = 1.
(b) Every weight as in (a) can be realized. Thus the

number of possibilities is |H| + 1.

Proof: (1) Proof of (b). In KG let H, = bEHMn“l)n, then
u = XHKWX and v = iHh‘ As in the proof of Theorem Lk (a), a
simple calculation yields Xw(u+cv) = 2 NMn(x))u + CXWHKE.
Here H acts, from the left, accordinzggglthe_characters

wh A, wh on the respective terms. Thus if wA £ A, we may real-
ize the weight (A,0) by taking c¢ = 0. If wh = A, we take

?

c = - EA(h(x)) instead. Finally if A = 1, then IA(h(x)) = -1

?
and we get ¢ =- 1 by taking c¢ = 0. To achieve (A,4) 1in an
irreducible module we simply take KG(u+cv) modulo a maximal
submodule.

(2) If dim V =1, then V 1is trivial and (A,2) = (1,0).

Since X and Y are p-groups, they act trivially by Lemma 80(b),
whence (2). |

5 (3) If dim V %4 1, then N\ determines . Write V = v "
; as in the proof of Theorem 4L (b). We have v" A 0. Since Y ..
fixes v' it fixes some line in it, uniquely determined in V,

by Theorem L4 (b) with Y in place of X. Since Y clearly

it
fixes wv, we conclude that wv &€ V . Projecting () of the proof-




236

of Theorem 44 (a) onto V , we get
() X k(wh"lw) =,
whence (3).

(4) Proof of (a). Combine (1),(2) and (3).

Corollaries to Theorems L4 and 457

(a) If N 41, then I A(h(x)) = 0. The number of
xeX-1
solutions n(h) of n(x) =nh with h given is, modulo p,
independent of h, 1in particular for each h 1s at least 1
(cf. Lemma 64, Step (1)).

(b) The irreducible representation of weight (N,M) can -

be realized in the left ideal generated by fkaﬁ + CXHR with

¢ = 1 for the trivial representation (1,0)

1l

O otherwise.

(¢c) If L(CK is a splitting field for H, it is one

for G.
(d) DimV = |X]| if (A1) = (1,-1)
< |X| if not.:
(e) The number of p-regular conjugacy classes of G 1is
! |H| + 1.

Proof: (a) If AN 4 1, then 4 =0 by Theorem 45(a) so that

)
TN (h(x)) =0 by (%) above applied with A replaced by wh\ .
Then Zn(h)A(nh) =0 for every A 4 1. By the orthogonality
relations for the characters on H (which are valid since p‘},hl),
we conclude that n(h), as an element of K, 1is independent of h.

If n(h) were O for some h, we would get |H|=%n(h)=0 (mod p),

a contradiction.
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(b) Let V be an irreducible module whose dual V*
has the highest weight (N,#). We consider, as in Theorem 4O
the isomorphism ¢ of V" into the induced representation
space of functions a : G -—> K such that a(yb)=al(y) ¥ (b)
for all y € G, b ¢ B defined by (of)(x) = f(xvt) with v7¥
a highest weight vector for V. Using the decomposition
V = Kw® + Rad KX-wv™ | we may define ¥ as in Lemma 73, pfove
that it is a highest weilght vector, and that at = mf+ 1s given
by the equations of Lemma 74, with A° 4in place of A .
Coverting functions-on G to elements of KG 1in the usual way,
a~¥a(x)x, we see that at becomes the element of (b),
whence (b). At the same time we see that V may be realized
in the induced module B, ~> G, as the unique irreducible
submodule in case A £ 1, as one of two in case A = 1.

(c) By (b).

(d) If 4 =0, then Xwv = O, whence Yv =0 and

’
dim V < |X| by Theorem 44(a). Conversely if dim V < |X]|,
then the annihilator of v in KXY contains Y by Lemma 80(d),
so that i = 0.

(e) By a classical theorem of Brauer and Nesbitt
(University of Toronto Studies, 1937) the number in question

equals the number of irreducible KG~modules, hence equals

|H| + 1 by Theorem 45(b).
Example: G = SL_(q). Here |H| =q -1, so that [H|+1=qg.

Remarks. (a) We see that the extra condition Xv = avy  serves

two purposes. First it distinguishes the smallest module ~v (1,0)
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from the largest (1,-1). Secondly, in the proof of the key

relation KGv = KUv it takes the place of the density argumenﬁ
(B dense in G) wused in the infinite case.

(b) The . preceding development applies to a wide'class of
doubly transitive permutation groups (with B the stabilizer
of a point, H of two points), since it depends only on the
facts that H 1is Abelian and has in B a normal complement U

which is a p-Sylow subgroup of G.

Now we consider groups of arbitrary rank. W ( = WT) will

be given the structure of reflection group as in Theorem 32 with
/R (see p. 177), projected into Vs and scaled down to a set
of unit vectors, the corresponding root system. For each simple
root a, we write Y  for X _ and choose w, in <X, Ya>

to represent w, 1n W. If we W 1s arbitrary, we choose a

minimal expression w = W W ee. as a product of simple re-

flections, and set W = w,w ... . Then W 1s independent
of the minimal expression chosen. We postpone the proof of this
fact, which could {and probably should) have been given much

earlier, to the end of the section so as not to interrupt the

present development. As a consequance we have:

Lemma 82: If w W W, --. 1s any minimal expression, then

XW = Xaﬁé. wab v e

Proof: Since VF:=§gi% ... this easily follows by induction

on N{w) or by Appendix II.25.

We extend the earlier definition of highest weight vector
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by the new requirement :

(¢) X wyv =nuv (s, e K for every simple root a.

Theorem 4L6: Let G be a (perhaps twisted) finite Chevalley

group (of arbitrary rank).

(a), (®),(c) Same as (a),(b),(c) of Theorem L.

(d) Let H, =HN<X,Y >. If (Au ) 1s the highest
weight of some irreducible module then g, =0 if LS
and g, =0 or -1 if kIHa = 1.

(e) Every weight as in (a) can be realized on some

irreducible KG-module.

Proof: We shall prove this theorem in several steps.

(al) There exists in V a nonzero eigenvector v for B.
This is proved as in Theorem L/ (a).

(a2) If v 1is as in (al), then so is vy = i;;;v

(a simple), unless it is O.

t
Proof: ILet x Dbe any element of U. Write x = X, Xy with

? '
X, € Xa and X, € Xa , the subgroup of elements of U whose Xa

— 1
components are 1. We recall that Xa and A normalize Xa

G

(see Appendix I.11). Thus xvy = x X w,v =vy, since Uvs=v.

Since H normalizes X, and is normalized by ?g, we see that
vy isalso an eigenvector for H.
(a3) Choose v as in (al), then we W so that N{w)

is maximal subject to vy = XWWV'+ 0. Then v, 1s a highest

weilght vector.
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Proof?l By Lemma 82 and (a2), vy 1s an eigenvector for B.

1

Let a be any simple root. If w ~a >0, then N(wyw)=N(wl+1

by_Appendix.II.IQz so that ‘Xwawmgw = X w, X w by Lemma 82,

and i;ﬁgvl = 0 ' by the choice of w. If w’la'< O, then we

may choose a minimal expression w = W oWy oo starting with W,
Then

-— B —_ 2__ —

X Wovy = (Xawa) X%, - -+ v by Lemma 82

= u X"W‘Xbi% .e. vV, with £ & K by Lemma 81(b)

By {al) and (a3) we have the first statement in (a).

(ak) KGv = KUv.

Proof: We have G =w. G C:%g w UB by Theorem 4. Thus it is
enough to show each w fixes KUwv, and for this we may assume
w = w, with a simple. Assume ¥ e U" . Write vy = yay; as
above, but using negative roots instead. Then Y, and Wé

-

normalize Y , so that ﬁéyv==ﬁéyay;v e U~ Wy, C KUTv by

)

Theorem LI (a applied to <Xa,Ya> .

(b1) If V =V +V with V =Kv and V = Rad KU v
as before, then V' is fixed by every X_W

a a

Proof: Write y = yay; as before.

Then X w.yv = I v(xlxw v with y(x) e U .
a'a a
xeX
a 13
X T - = )“l) W Vv V -
Thus Xawa(y 1)v XEX (v (x XWw vV €
a

(b2) Proof of (b). If this is false, there exists
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" fixed by X. As usual we may choose vy

v, eV ,v, $0, v

1 1
as an eigenvector for H, and then by (bl) and (a3) also an

ft

elgenvector for each iéﬁé, Then, as before, V = Kle = KU‘VIQ; v,

a contradiction.

(c) Same proof as for Theorem 4 (c).

(d) By Theorem 45(a) applied to < X ,Y > .

(e) Let m be the set of simple roots a such that n, =0,
and Wn the corresponding Subgroup of W. The reader should have

no trouble in proving that the left ideal of KG generated by

z ﬁHx‘Wfiw is an irreducible KG- module whose highest weight

<o
is (K,#a)

Corollary: (a) A splitting field for H 1is also one for G.

(b) Let V be irreducible, of highest weight (K,ua).

Then dim V = |U] if N =1 and all g = =1.

< |U] if not

(c) For each set m of simple roots, let H_ be the
group generated by all Ha(a e 7). - Then the number of irreducible
KG-modules, or, equivalently, of p-regular conjugacy classes of

G is %IH/Hn].

Proof: (a) Clear.
(b) Write Uw_v = XWOWOV = X WX W, .- vV, with
w, = w,w ... as in lLemma 82, and then proceed as in the proof

of Cor. (d) to Theorems L4 and L5.

(c) The given sum counts the number of possible weights

(K,ﬂa) according to the set =n of simple roots a such that
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Exercise: If G 1s universal, the above number is

1T T . * 4
a simpls (||, [+ 1) = a|Simp1e q(a), in the notation of Theorem

43. If in addition G 1s not twisted, then the number is qL
It remains to prove the following result used (inessentially)

in the proof of Lemma 82.

Lemma 83: (a) If w e W, then any two minimal expressions for
w as a product of simple reflections can be transformed into

each other by the relations
(%) WoWp W, e = W W W e (n terms on each side,

n =order w,w, , with a and b distinct simple roots).
(b) Assume that for each simple root a the
corresponding element Wé of G (any Chevalley group) is
‘ 1 1 . >o = e 00 i i
chosen to lie in < X_,X Let w = w w, be a minimal

expression for w & W. Then w = ﬁgﬁ% «+. 1s independent of the

minimal expression chosen.

Proof: (a) This is a refinement of Appendix IV.38 since the

relations wﬁ = 1 are not required. It 1s an easy exercise to

convert the proof of the latter result into a proof of the former,
which we shall leave to the reader.

(b) Because of (a) we only have to prove (b) when w
has the form of the two sides of (). For this we can refer to
the proof of Lemma 56 since the extra restrictions there, that

G is untwisted and that W, = w,(1) for each a, are not
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essential for the proof.

Remark: It would be nice if someone could incorporate in the
elementary development just given the tensor product theorem
mentioned after Theorem 43 or at least a proof that every
irreducible XK-module for G can be extended to the including
algebraic group, hence also to the other finite Chevalley groups

contained in the latter group.
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§1L. Representations concluded. Now we turn to the complex

representations of the groups just considered: Here the theory
is in poor shape. Only GL ~ (Green, T.A.M.S. 1955) and a few
groups of low rank have been worked out completely, then only ih
terms of the characters. Here we shall consider a few general

results which may lead to a general theory.

Henceforth K wiil denote the complex field. Given a
(one--dimensional) character A on a subgroup B of a group G,
realized on a space V, , we shall write Vi for the induced
module for G. This may be defined by Vg = KG<3KBVN {this
differs from our earlier version in that we have not switched to
a space of functions), and may be realized in KG 1in the left
1)

ideal generated by B, =,Z_ A(b )b (and will be used in this

beB
form). Its dimension is |G/B].

Exercises Check these assertions.

Lemma 8,: Let B, C be subgroups of a finite group €, 1let

N, # Dbe characters on B, C, and let V% ,VG

° be the correspond-

ing modules for G.

(a) If xeG, then By x C, in KG 1is determined up
to multiplication by a nonzero scalar by the (B,C) double coset
to which x belongs. |

(b) HomG(V%, Vi) is isomorphic as a K-space to the one
generated by all B, x CM .

(¢c) If B=C and A = 4 , then the isomorphism in (b)

is one of algebras.
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(d) The dimension of 'HomG(Vﬁ ,Vi) is the number of

(B,C) double cosets D such that B, x C, + 0 for some,
hence for every x 1in D, or, equivalently, such that the

restrictions of AN and x4 to BN x Cx”1 are equal.
Proof: (a) This is clear.

. Since BK generates VG

G G
(b) Assume T ¢ HomG(Vx, V) N

u

as a KG- module, TB, determines T. Let 1B x C, .

= E C
A xeG/lo X o
Since bB, = A(b)B,, we get by averaging over B that

TB, = X c.B, x C, . Thus T 1is realized on B hence on
xeB\g/c X M7 H A2

all of Vi, by right multiplication by |B]"'l % e By x C, .
Conﬁersely, any such right multiplication yields a homomorphism,
which proves (b);

(¢) By discussion in (b).

(d) The first statement follows from (a) and (b).

Let B1=Br‘\xC.x*1 and Cl=x'-1

Bx N C, and {y;} and {z
systems of representatives for B{\B and C/Cl' Set

B, = Elu(yﬁwy- and C. = Z/L(zfl)z-. Then

A i1 i J J
= ! ! 'l /{ ‘_l =
B, x C, = BkBlkBl,x,wXC,u with (xz)(xcx ) = u(c)
. -1
since xCyx ~ =By . If A fx¢ on By, then BlkBl,xu = 0.

If N =x#%, this product is |B1’Blk’ and then B, x C, + 0

bJ
since the elements yibl X Zj are all distinct.
Remarks: (a) This is a special case of a theorem of G. Mackey.

(See, e.g., Feitts notes.)

(b) The algebra of (c) 1is also called the commuting
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algebra since it consists of all endomorphisms of V% that

commute with the action of G.

Theorem 47: Let G be a (perhaps twisted) finite Chevalley group.

(a) If AN is a character on H extended to B 1in the
r usual way, then Vg is irreducible 1f and only if WA $ A for
every w e W such that w4 1.

(b) If N, z both satisfy the conditions of (a}, then

Vg 'is isomorphic to Vi if and only 1f A = wg for some w e W.

Proof: (a) Vi is irreducible if and only if its commuting

algebra is one-dimensional (Schur's Lemma), i.e., by (c) and (d)
of Lemma 84, if and only if A and wA agree on BN wavl,
hence on H, for exactly one we W, i.e. for only w = 1.
(b) Since V% and Vi are irreducible, they are iso=-
G G)

morphic if and only if dim HomG(Vk, Vﬂ = 1, which, as above,

holds exactly when A = wi for some (hence for exactly one) w & W.

Exercise: (a) dim HomG(VG, Vg) = |wp | 1f N = wg for some w,

it

0 otherwise.
(b} In Theorem 47 the conclusion in (b) holds even if

the condition in (a) doesn?tt.

Here W, 1s the stabilizer of A 1In W. We see, In
particular, that if A = 1 then the commuting algebra of Vg is

|W| - dimensional. But more is true.

Theorem 4,8: Let V be the KG-module induced by the trivial

one-dimensional KB-module. Then the commuting algebra EndG(V)

.
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is isomorphic to the group algebra KWw.

Reformulations :

(a) The multiplicities of the irreducible components of 'V
are Jjust the degrées of the irreducible Kw- modules.

(b) The subalgebra, call it A, of KG spanned by the
double coset sums §Wfﬁ, is isomorphic to KW.

(c) The algebfa of functions f i G —> K Dbiinvariant under
B (f(bxb') = f(x) for all b,b'e B) with convolution as multi-

plication is isomorphic to KW.

Proof: The theorem is equivalent to (a) by Schur!s Lemma and to
(b) by Lemma 84, while (b) and (c) are clearly equivalent. We
shall give a proof of (b), due to J. Tits. w will denote the

average in KG of the elements of the double coset BwB. The

A
elements % form a basis of 4 and 1 1is the unit element. If

a 1is a simple root, c_ will denote |Xa|"l

(1) 4 1is generated as an algebra by [w

a| a simple}

sub ject to the relations

(@) W al + (l-c ) for all a.

]
(@]

57 m€>

a
N AN
w

(B) aéwga A as in Lemma 83(a).

b ot ,

Proof: We observe that if each c¢_, 1s replaced by 1 then these
relations go over into a defining set for KW, by Appendix II.38.
Since B U BwaXa is a group, we have (ﬁwaié)2==r§ + SEWéfa with
r,s € K. Since Bw X contains with each of its elements 1its
inverse, we get r = |[Bw X |, and then from the total coefficient
(

s = [BwyX | - [B]. Thus (a) nolds in A, and so does (B) by
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~
Lemma 25 ,Cor., which also shows that the W, generate A.
A
Conversely, let A, Dbe the abstract associative algebra (with 1)

generated by symbols 'Qé subject to (a) and (B). For each

w e W choose a minimal expression w = W Wy e and set
A AN
w=w,w ... . By Lemma 83(a) and (B) this is independent of
the expression chosen: By (a) it follows that
A A N . -1
WoW = WW if wa>0 ,
N AL -1
= C W W + (l-—ca)w if w a < 0.

A .
Thus the w form a basis for A{; which; having the same

dimension as A, 1is therefore isomorphic to it.

(2) There exists a positive number c¢ = c(G) such that
n
c, =¢ a with n, a positive integer depending only on the type

of G. The multiplication table of A in terms of the basis {Q}
is given by polynomials in ¢ depending only on the type.

Proof: Consider ZAu(qZ), for example. Here the two

possibilities for |Xa\ are q2 and q3 by Lemma 63(c): If we

set ¢ = th ; then the corresponding values of n,6 are 2 and
which depend only on the type. For each of the other types the
verification is similar. From the first statement of (2) and the
equations of the proof of (1) the second statement follows.

(3) An associative algebfa AC with multiplication table
given by the polynomials of (2) exists for every complex number c.

In particular Ac(G) = A and Al = KW .

Proof: Since the type of the group G contains an infinite number

3,
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of members, the multiplication table 1s associlative for an

infinite set of values of ¢, hence for all values.

7
(4) A, 1is semisimple for c = c(G), for c =1, and

for all but a finite number of values of c.

Proof: A, 1s for ¢ = c¢{(G) the commuting algebra of a
KG-module and for c¢ = 1 a group algebra KW, hence semisimple
in both cases. The discriminant of A  1is a polynqmial in cy
nonzero at ¢ = 1 since then A, 1is semisimple, hence nonzero
for all but a finite number of values of c.

(5) Completion of proof. Since A 1is semisimple and K
is an algebraically closed field, A 1is a direct sum of complete
matric algebras, of certain degrees over K (see, e.g.,
Jacobsonts Structure of Rings or Feitt!s notes), and similarly
for KW. We have to show that the degrees are the same in the
two cases. If { is any finite-dimensional associative algebra
which is separable, i.e. which is semisimple when the base field
is extended to its algebraic closure, we define the numerical
invariants of ( to be the degrees of the resulting matric alge-
bras. The proof of Theorem L8 will be completed by the following

lemma.

Lemma 85: Let R Dbe an integral domain, F its field of
quotients, and f a homomorphism of R onto a field K. Let
(L, be a finite—dimensional associative algebra over R, and
Q_ and @y the resulting algebras over F and K. If

F
aF and CZK are separable, then they have the same numerical
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invariants.

In fact, from (3) and the lemma with R=K[c], = A,

>c(G) and then f :{c¢c —>1, it follows

and first f @ ¢
that A and KW have the same numerical invariants, hence

that they are isomorphic.

Proof of the lemmas:

(a) Assume that 63 is a finite-dimensional semisimple
assoclative algebra over an algebraically closed field L,

that bl’bz"'°’bn form a basis for (3/L, that Xy3Xgyeee Xy

are independent indeterminates over L, that b =X x,b., and

?

that P(t) is the characteristic polynomial of b acting from

p.
the left on 3 written as F(t) = || P, (t) *

?
L(xqyeee,xy)
wlith the Pi distinct monic polynomials irreducible over

L(xy,++,%x,). Then:

(al) The p; are the numerical invariants of 0 .

(a2) p; = dg P, for eaag i.

(a3) If P(t) = [[Q.(t) Y s any factorization over
J

L(xy,---,%,) such that ay = dggQ; for each Jj, then it agrees

with the one above so that the q are the numerical invariants

of 63.

Proof: For (al) and (a2) we may assume that 63 is the

E.. 1in

complete matric algebra End 1P and that b = inj 1]

terms of the matric units E If X = [Xij], then

ij°
P(t). = det (tI - X)P , so that we have to show that det(tI - X)

is irreducible over L(Xij)’ This is so since specilalization to
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the set of companion matrices .

N
X P
pl *pz°"*pp

yields the general equation

of degree p. In (a3) if some Q. were reducible or equal to

J
some Q  with k 4+ j, then any irreducible factor Py of Qj
would violate (a2).

/

(b) Let R™ be the integral closure of R in F

(consisting of all elements satisfying monic polynomial equations

PYRERES A indeterminates over F. Then

R*[xl,-..,xn] is the integral closure of R[xl,...,xn] in

over R), and xq,x

Fxg,.0,x).

Proof: See, e.g., Bourbaki, Commutative Algebra, Chapter V,

Prop. 13.
(c) 1If R* 1s as in (b), then any homomorphism of R 1into

——

K can be extended to one of R* into K.

Proof: By Zornts lemma this can be reduced to the case R*==R[a],

where 1t is almost immediate since K 1is algebraically closed.
(d) Completion of proof. Let {a;} be a basis for 4 /R,

hence also for <2F/F, and {x independent indeterminates over

F and also over K. The given homomorphism f : R —>K defines

a homomorphism f 3 Cl-—m;>a}{. By (c) it extends to a homo-

morphism of R* into X and then naturally to one of
% R -
R [Xl""’xn] ;nto Klxyy-eerx ]. If a = Z:giai and
P(t) = [T Pi(t) * is its characteristic polynomial, factored over

F(xl,...,xn) as before, then the coefficients of each P:.L are
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integral polynomlals in its roots, hence integral over the
coefficlents of P, hence integral over R[xl,xz,...,xn],
hence belong to R*[xl,...,xn] by (b). Thus if f(a)-= inf(aj_),
then its character polynomial has a corresponding factorization
n

pi _
Pf(t) = TTIEf(t) over K(xl,...,x ). By (al) the p; are

the numerical invariants of & and by (a2) they satisfy

F b
p; = dgtPi = dgtpif’ so that by (a3) with 6% = a.K- they are

also the numerical invariants of CZK, which proves the lemma.

Exercise: If AN 1is a character on H extended to B in the

usual way, then EndG(V%) is isomorphic to KW, . (Observe that

this result includes both Theorem 47 and Theorem 18.)

Remark < Altnoﬁgn A 1s isomorphic to KW there does not seem
to be any natural isomorphism and no one has succeeded in decom—
posing the module V of Theorem 48 into 1ts irreducible com-
ponents, except for some groups of low rank. We may obtain some
partial results, in terms of characters, by inducing from the

parabolic subgroups and using the following simple facts.

Lemma 86: Let 7 be a set of simple roots, W_ and G_ the
corresponding subgroups of W and G (see Lemma 30), and Vﬁ

and Vi the corresponding trivial modules induced to W and Gj

and similarly for ' .

(a) A system of representatives in W for the (wn,wn,)
double cosets becomes in G a system of representatives for

(G,G,t) double cosets.

G VGY) = dim Hom Vﬁr).

m? n W(V

y

. W
(b} dim HomG(V T
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Proof: (a) Exercise.

(b) By Lemma 84{d) and (a).

G

n and similarly

Corollary 1: Lethii denote the character of V
for W. If n_} 1s a set of integers such that 11M1=21%9(¥ is
an irreducible character of W, then 'XuG = Zngii is,up to sign,

one of QG.

Proof: Let (7(,LV)G denote the average of XY over G. We have

¢ v%), and similarly for W. Since x W

G G y
(X& X )G = dim HomG(Vn, 1)

o on'
; - W 4 W - G ~G
is irreducible, (X" X )y =1, it follows that (X s K ) g = 1,
so that i'X.G 1s irreducible, by the orthogonality relations for

finite group characters.

Remarks ¢ (a) In a beautiful paper in Berliner Sitzungsberichte,
1900, Frobenius has constructed a complete set of irreducible
characters for the symmetric group Sn’ i.e. the Weyl group of
type An—l , as a set of integral combinations of the characters
'Xﬁ . Using his method and the preceding corollary one can de-
cogpose the character of V in Theorem 48 in case G 1is of type
A _y- (See R. Steinberg T.A.M.S. 1951).

(b) The situation of (a) does not hold in general.
Consider, for example, the group W of type BZ’ i.e. the dihedral
group of order 8. It has five irreducible modules (of dimensions

1,1,1,1,2), while there are only four Riﬁ ’s  to work with.

(c) A result of a general nature is as follows.

Corollary 2: If the notation is as above and (-l)jt is as in

Lemma 66(d), then X - Z(<—1)n7ii is an irreducible character




254

of G and its degree in |U

Proof: Consider X W = x(-1)"xV.

n By (8) on p. 142, extended to

twisted groups (check this using the hints given in the proof of
Lemma 66),‘}ZW = det, an irreducible character. Hence *XG

is also one by Cor. 1 above. We have x5 (1) = 2(~1J7I|G/Gn] . If
G 1s untwisted and the base field has q elements, then by |
Theorem h' applied to G and to Gn this can be continued
E(-{L)nw(q)/wn(q) = qN = |U|, as in (4) of the proof of Theorem

26. If G 1is twisted, the proof is similar.

We continue with some remarks on the algebra A of Theorem

L8(b).

Lemma 87: The homomorphisms of A onto K are given by:
f(ﬁé) =1 or -c, for each simple root a, subject to the

A
condition that f(wa) is constant on each W-orbit.

Proof: For a and b simple, let n(a,b) denote the order of

w,w, in W. We claim that (x) a and b belong to the same
W-orbit if and only if there exists a sequence of simple roots

a =a =b such that nf(a ) 1is odd for every 1i.

028198y 103441

The equation <w w )n =1 with n odd can be rewritten to
21785 41

1
show that W and Wo y are conjugate, so that if the sequence
i i+

i

exists then a and b are conjugate. If a and b are conjugate,
then so are W, and Wy and this remains true when we project

into the reflection group obtained by imposing on W the additional

2 -
relations: (wcwd) = 1 whenever nf(c,d) is even. In this new

group w, and Wy must belong to the same component, so that the
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required sequence exists. By (%) the condition of the lemma holds
exactly when f(@é) = f(ﬁb) whenever n(a,b) is odd, i.e.

exactly when f preserves the relations (B) (of the proof of
Theorem 48). Since f(Qé) =1 or -c, exactly when f preserves

(a) (solve the quadratic), we have the lemma.

Remark: By finding the annihilator in A of the kernel of each of
the homomorphisms of Lemma 87, we get a one-dimensional ideal I in
A. This corresponds to an irreducible submodule of multiplicity 1
in V, realized in the left ideal KGI of KG. By working out the

corresponding idempotent, the degree of the submodule can be found.

Exercise: (a) If f(%é) =1 for all a show that I==KZ<%VQ

?
with q = IXW|, and that the corresponding KG-module is the
trivial one. (Hint: by writing W as a union of right cosets

- . s . A A
relative to {l,w,} and writing (a) 1in the form (w,-1)(w,+c,) =0,

show that I 1is as indicated.)

(b) If fTQé) = ~c, for all a, show that
I = KZ (det w)Ww, and that in this case the dimension is |U |.
-1 2

show that e™ =me

(Hint: if e 1is the given sum and c, = A

with m = 2cw=:|G/B|/{IJL)

(c) For G = Bz(q) work out all (four) cases of Lemma
87, hence obtain the degrees of all (five) irreducible components
of V.

(d) Same for A2 and for G2

Remark: It can be shown that the module of (b) is isomorphic to

the one with character X© as in Lemma 86, Cor.2. If we reduce

—_—
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the element I (det w)]U‘/XMIIE'w i@_ (which is |B|| U]l e) of I
mod p, we see from the proof of Theorem L46(e) that the given
module reduces to the one of that theorem for which AN =1 and
every Mg ==L. This latter module can itself be shown to be
isomorphic to thelone in Theorem 43 for which <N ,a> = q(a)-1
for every a. From these facts and Weyl!'s formula the character
of the original module can be found up to sign and the result us ed
to prove that the number of p-elements (of order a power of p)
of G 1is |U|2 . For the details see R. Steinberg, Endomorphisms

of linear algebraic groups, to appear.

Finally, we should mention that the algebra A admits an
A
involution given by aé ~—>ZL—ca-wa for all a (which in case

Cq —> 1 and A —> KW reduces to w —> (det wlw).

The preceding discussion points up tae following

Problem: Develop a representation theory for finite reflection

groups and use it to decompose the module V (or the algebra A)
of Theorem L8.

It is natural that in studying the complex representations of
G we have considered first those induced by characters on B since
for representations of characteristic p this leads to a complete
set. In characteristic O, however, this is not the case, as even
the simplest case G = SL shows. One must delve deeper. There-~

2
fore, we shall consider representations of G induced by (one-

dimensional) characters A on U. We can not expect such a

representation ever to be irreducible since its degree |G/U| 1is
1

too large (larger than |G| ), but what we shall show is that

if A 1s sufficiently general then at least it is multiplicity-free.
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In other words, EndG(Vg) is Abelian, hence a direct sum of fields.
(If A 1s not sufficiently general, we can expect the Weyl group

to play a role, as in Theorem .,8.)
Before stating the theorem, we prove two lemmas.

Lemma 88: Let k be a finite field and A a nontrivial character

from the additive group of k 1into K . Then every character can

be written uniquely A, :t —>A(ct) for some c & k .

Proof: The map c~ae>hb is a homomorphism of k 1into its dual,

and its kernel is clearly O.

Lemma 89: For w e W the followlng conditions are equlvalent.

(2) If a and wa are positive roots znd one of them is
simple, then so 1s the other.

(b) If a 1s simple and wa is positive, then wa 1is
simple.

(c) w=ww_ for some set = of simple roots, with w. as

O T O

usual and w, the corresponding object of Wn .

ot

There are possibilities for w.

Proof: (c) = (a) Because w. maps ‘m onto -7 and (%) per-

"

mutes the positive roots with support not in = (same proof as
for Appendix I.11).

(a) == (b) Obvious.

(b) => (c) Let m be the set of simple roots kept positive,
hence simple, by w. We claim: (%) if a >0 and supp a g;n ,
then wa < 0. Write a =b + ¢ with supp b g:n, supp ¢ ngT— 7.

Then wa = wb + wc. Here wc < O by the choice of =m, and
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supp WCEI wn ) supp wb. Thus wa < 0. If a is a simple root
not in m then ww.a < 0 by (%) and (%k), while if a is
in 7n this holds by the definition of = . Thus WWo = W, o,

whence (c).

Theorem 49: Let G be a finite, perhaps twisted, Chevalley group

and A :U —> K° a character such that KIXa +1 if a 1is simple,
=1 1if a 1is
positive but not simple. Then Vﬁ is multiplicity-free. In other
words, EndG(Vg) is Abelian, or, equivalently, the subalgebra A
of KG spanned by the elements U, hwU, (h € H, w e W) is Abelian.
Here U, = ugU%“(u_l)u , and we assume that the w are
chosen as in Lemma 83(b).
Remarks: (a) If a 1is not simple, then usually X_ CHu, so
that the assumption KIXa = 1 1is superfluous, but this 1s not always
the case, e.g. for B, or Fh with |k| =2 or for G, with
|k] = 3. In these latter groups, there are other possibilities,
which because of their special nature will not be gone into here.
(b) The proof to follow is suggested by that of Gelfand
and Graev, Doklady, 1963, who have given a proof for SL~ and
announced the general result for the untwisted groups. T. Yokonuma,

C. Rendues, Paris, 1967, has also given a proof for these latter

groups, but his details are unnecessarily complicated.

Proof of Theorem 49: The fact that A 1s Abelian will follow from

the existence of an (involutory) antiautomorphism f of G such

that
(a) fU = U.

(b) Af =N on U.
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(c) For each double coset UmnU such that UynU, $0, we
have f =n (here ne N =% Hw).
For since f extended to KG and 'then restricted to A is an
antiautomorphism - and at the same time the identity (by (a), (b),
(c)) it is clear that A 1s Abelian. The existence of f will
be proved in several steps.

(1) If UynU, 40 and n e H¥ , then w = wow, for some
set m of simple roots.
Proof: By Lemma 89 we need only prove that if a 1is simple and
wa positive then wa 1s simple. Writing the first U, above
with the Xwa component on the right, and the second with the Xa

~1 } .
component on the left, we get nX n 0. Since AN 1is
’ & )gﬂa,%. a,h t
nontrivial on X it is also so on X, whence wa 1s simple

by the assumptions on A, which proves (1).

The condition in (1) essentially forces the correct

definition of f. We set a =-wja . If a 1s simple, so is

a . In order to simplify the discussion in one or two spots we
assume henceforth that G (i.e. 1its root system) is indecomposable.
If G 1is wuntwisted, we start with the graph automorphism correspond-

ing to 7 (see the Corollary on p. 156), compose 1t with the
inversion x ~€>x_l , and finally with a diagonal automorphism so
that the result f satisfies, not only fU = U but also Af = A
on U. This is possible because of Lemma 89 and the assumptions
on AN 1in the theorem. If G is twisted, then we may omit the

e
o

graph automorphism (because is then the identity), and use
the explicit- isomorphism Xa/lea = k of (2) of the proof of

Theorem 36 in combination with Lemma 89 to achieve the second
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condition. We see that
(2) £ is an involutory antiautomorphism which satisfies
the required conditions (a) and (b). We must prove that it
also satisfies [(c). As consequences of the construction we have:

(3) fh=in w L

o for every h € H.

(,) If a" =a, then f is the identity on X/O0%, .
(5) If a" = a, there exists a nontrivial element of X,
fixed by f.

Proof: For X of type A; this follows from (4). For X, of

a
type 2A2 we choose the element (t,u) of Lemma 63(c) with
t=2,u=2 if p+$2, and t =0, u=1 if p =2, since
f{t,u) = (t,-—tteu) (check this, referring to the construction of

202 and 2G2 we may choose (0,1) and (0,1,0)

since f 1is the identity on {(O,u)} and {{O,u,0)}.

f). For types

(6) The elements ig e G may be so chosen that:

(6a) fw, =w,x for every simple root a.

(6b) If a and b are simple and n € N 1is such that
n.Xanfl = %, and Anxn™T) = A(x) for all x e X, , then
ol = W%

Vg ~ b

Proof: Under the action of f and the inner automorphisms 1

by elements n as in (6b) the X, (a simple) form orbits.
From each orbit we select an element X, . If a’ =a, we

choose Xx_ ¢ Xa- as in (5), write it as (%) x_, = xlﬁéx with

a a 2

' w i . Sin f 1is an
Xy,X, E X—a’ and choose W, accordingly ce

it also fixes Ww. by the

antiautomorphism and fixes L, 5
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uniqueness of the above form. If a* $# a, we choose x e X ,X, + 1,

arbitrarily. We then use the equations fw, = W x and 15@5 = ﬁ%
a

of (ba) and (6b) to extend the definition of W to the orbit of

a. We must show this can be done consistently, that we always
return to the same value. Let ays85, 058y ~be a sequence of

simple roots such that a; =a, =a and for each j either

ale
<

aj+l = aj or else there exists nj such that the assumptions 1in

(6b) holds with

a158441 nj in place of a,b,n. Let g denote
the product of the corresponding sequence of f's and ig 's .
: _ J
We must show that g fixes w, . We have gX =X, 8k, =X,

and in fact g acts on XaAITXé , ldentified with k, by
multiplication by a scalar ¢ as follows from the definition of

f and the usual formulas for 1,° Since Ag = A by the
corresponding condition on f and each 1,, it follows from

Lemma 89 that ¢ =1, so that g 1is the identity on Xa/iné .

If b X, = O, then g fixes the element x_ = above, hence also

?g by (*), whether g 1s an automorphism or an antiautomorphism.
If iTXé $ 0, then G 1is twisted so that a* =a. If g 1is an
automorphism, then by the proof of Theorem 36 from (5) on its
restriction to < X ,X__> is the identity so that it fixes w, ,
while if g 1is an antlautomorphism then by the same result its

restriction colncides with that of f so that it fixes ;@ by

the choice of W, .
Remark: If G 1is untwisted, the above proof is quite simple.

We assume henceforth that the 'ﬁ; are as in (6).

as in Lemma 83(b) and w¥= wow-lw;1 ,

(7) If W o= Ww




262

then fw=w*¥

Proof: Since W Wy e is minimal, ... w ., w

P

. 1s also.

a*
(Check this.) Since f 1is an antiautomorphism it follows from

Sl

(6a) that fw= ... W W , =< 00 Waw o =w .
b a b a”

(8) If w is as in (1) then fWw = W.

]

Proof: w* =w in this case (see (7)).

(9) If n 1is as in (1) then fn = n.
Proof: By (1), n e WH with w = w w, .  Assume aegm.
Then wa 1is simple and Anx n~t) = A(x) for all x X, »
by the inequality in the proof of (1). Thus hﬁarl-l = —wa

by (éb), from which we get, on picking a minimal expression
R R— -
) nw,n U= Wy Since

N(w) = N(wow, ) = N(w) - N(w/), it follows that if we put to-

for w,. , that (=

gether minimal expressions for w and w. we will get one for

W, - Thus w, = ww_ by Lemma 83(b), and similarly WB==WR*W:,
so that (**)‘Wiﬂtﬁfl ='W%* . If now we write n = wh , then
h commutes with jﬁn by (%) and (%x). Heﬁce

fn = fh.-fw since f 1is an antiautomorphism

= Wonﬁzlw- by (3) and (8)

- 1 ) — —_——
= in =
wwnh WTE S ce WO WWTL

I
)

h since nh commutes with W,

Thus f satisfies condition (c) and the proof of Theorem 49

is complete.
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Exercise: (a) Prove that if {W;} is as in (6) and w as in
(1), then Uy, WU, #O.

(b) Deduce that if H, denotes the kernel of the set
of simple roots = then the dimension of A, hence the number of

irreducible components of V% , in Theorem 49 is ZX|H_| .

Remark: The nétural group for the preceding theorem seems to be
the adjoint group extended by the diagonal automorphisms, a group
of the same order as the uhiversal group, but with something extra
at the top instead of at the bottom. For this group, G‘, prove
that the dimension above 1s just TT(IHa|+-1) = TTq(a) in the
notation of the exercise just before Lemma 83. Prove also that in

this case Vi is independent of A .

Remark: The problem now is to decompose the algebra A of Theorem
49 into its simple (one-dimensional) components. If this were done,
it would be a‘major step towards a representation theory for G.

As far as we know this has been done only for the group Al (see
Gelfand and Graev, Doklady, 1962). It would not, however, be the
complete story. For not every irreducible G-module 1is contalned

in one induced by a character on U i.e., by Frobenius re-

?
ciprocity, contains a one-dimensional U-module, as the following,
our final, example, due to M. Kneser, shows (although it is for

some types of groups such as An).

As remarked earlier, reduction mod 3 yields an isomorphism
of the subgroup W' of elements of determinant 1 of the Weyl

group W of type E, onto the group G = 805(3), the adjoint
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group of type B2(3). If we reverse thils isomorphism and extend
the scalars we obtain a representation of G on a complex space
V. The assertion 1s that U, 1i.e. a 3-Sylow subgroup of G,

fixes no line of . V. Consider the following diagram.

This is the Dynkin diagram of E6 with the lowest root «a adjoined

7
(a7 is the unique root in ~ D (see Appendix IIT.33), unique
because all roots are conjugate in the present case. It 1is
connected as shown because of symmetry and the fact that each

proper subdiagram must represent a finite reflection group.) We

1 - -
choose as a basls for V the a s with a, omitted, a union

3
of three bases of mutually orthogonal planes. WiV, acts as a
rotation of 120° in the plane <al,a2> and as the identity in
the other two planes, and similarly for W) We and WgWo . The

group W' also contains an element permuting the three planes
cyclically as shown, because of the conjugacy of simple systems
and the uniqueness of lowest roots, and the four elements generate
a 3-subgroup of W' . It is now a simple matter to prove that

this subgroup fixes no line of V.
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APPENDIX ON FINITE REFLECTION GROUPS

The results (and some of the terminology in What follows)

are motivated by the theory of semisimple Lie algebras, but no

kmowledge of this theory is assumed. The main results are starred.

I Preliminaries

AEMC 4B L T ———

V will be a finite-dimensional real or ratiohal Fuclidean

space. By a reflection (on V} 1is meant a reflection in some

hyperplane H. If @ 1is a nonzero vector orthogonal to H, the

reflection, denoted o, » 1s given by

(1) oyp = P -2(f,a)/ (a,a).a (p €V
We observe that o, 1s an automorphism of V, of order 2.
A useful fact 1is:

(2) If w is an automorphism of V, then woaw’l =0

To prove this, apply both sides to P €V, then use (1)

~and the invariance of ( , ) under w.

% will denote a finite set of nonzero elements of V such

‘that:

(3) a €% => -2 and ka@d® if k9= + 1.

(4) AEL = o =2I.

The elements of X will be called roots, and W will denote the

group generated by all o (a € Z).

(5) Lemma. The restriction of W to ¥ 1is faithful.
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Fdr, each w & W fixes pointwise the orthogonal complement
of I,
(6) Cor. W is finite.
(7) Examples. (a) If ¥ 1is the root system of a semisimple
Lie algebra over the complex field, then W 1is the corresponding
Weyl group. (b) If W 1is any finite group generated by reflections,

e.g. the group of symmetries of a regular solid, £ may be taken

as the set of unit normals to the hyperplanes in which reflections

of W take place.

(8) Definitions. A subset of roots is called a positive system

1f it consists of the roots which are positive relative to some
ordering of V. (Recall that this involves the specification of
a subset V' of V which is closed under addition and under
multiplication by positive scalars and satisfies trichotomy.) A

subset of roots, say T, is a simple system if (a) T 1is a

linearly independent set, and (b) every root is a linear
combination of the elements of T] in which all nonzero coefficients

are either all positive or all negative.

(9) Proposition. (a) Each simple system is contained in a unique

positive system. (b) Each positive system contains a unique

simple system.

If TT is a simple system, then clearly the "al1 positive"
roots in (8b) form the unique positive system containing TT ,
whence (a). Now let P be any positive system.. Let T[] be

a subset of P which generates P under positive linear




g o m

]

267

combinations and is minimal relative to this property. Then
(*) a, B € TT a +‘R => (¢,8) < 0. Assume not, so that
GBB =B - ca with ¢ > 0 . Assume O&B & P, so that

op =sey  (ye T, B

written suitably, expresses B as a positive combination of the

>0) . If ¢, <1, the last equation,
other elements of TT', a contradiction to the minimality of TT ,
while if Cq > 1, 1t expresses O as a positive combination

of elements of TT , hence of P , ‘equally a contradiction.
Similarly - G&B € P 1leads to a contradiction, whence (%)

Now a linear relation on TT may be written ¥ ae = z bBB

with the two sums over disjoint parts of || and a,sPg 2 O .
Writing this as P = o and using (*), we get (€,F) _ (,00) <O
whence (7 = 0 and then every a, = O because the ca's are
all positive. Similarly every bbB = 0 . Thus TT is
independent, is a simple system. From the definition of

a simple system any simple system contained in P consists

of those elements of P which are not positive combinations of
others, hence is uniquely determined by P .

(10) Lemma. Let || Dbe a simple system and P the positive

system containing 1. (a) ¢, B &€ ], ¢ 8 => (c¢,8) <O .

b) € € P => there exists ¢ € TT so that (e ,a) > 0.

For (b) write ¢ = cha(a e TT,CC > 0) as in (8b), and

then use (@,p) =Zc, ( ©,a)

%(11) Main lemma. Let J] , P be as in (10) and o € ]| . Then

o ¢ = - o and O‘C,(P\Cf.)ZP\C‘L

Pick @€ P \\a, P = £cgB (c ; 8€ 7). By (3) some

g 2 O
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cg >0 (B £ a). Application of o, does not change this cg
Hence o P & P\ a.
(12) Theorem. Any two simple {or positive) systems are conjugate

under W.

By (9) we need only consider two positive systems,say P

and P' . We use induction on n = ]Pﬂ(--P") . If n=0

H

1 ,
P =P . Assume n > 0. Then there is a root a simple

relative to P such that o« € P N (- p'). By (11),

] 1 .
|0‘aP N (=P )| = n-1, whence ]Pm-o-ap | = n-1. By the
t
inductive assumption Gan is conjugate to P § hence so is
. v
P .

Henceforth T] , P will be as in (lO) and fixed.

(13) Definition. If f €% , P =% c a as in (8b), then
aE T
Zc, 1s called the height of O agad written ht £ .

e.g.‘o;E'lTr—-) ht o = 1.

(1,) Lemma. Let W, be the group generated by {o&|a €Tl -
If p € P, the minimum value of ht on the set W PN P 1s 1

and 1s taken on only on W, P NIT.

Let P' be a minimum point and assume, 1f possible, that
P' @ T . By (10b) there is @ € TJ] so that (Pf ;a) >0,
whence by (1) ht o, Pr < nt P' and by (11) o pf >0, a
contradiction to the choice of P'

(15) Corollary. (a) If P& P ,P & 1T, then ht P > 1.
(b) ‘WOTT = 7. i.es Every root P 1s conjugate under Wb to a
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simple root.

By (14), (a) 1is clear and so is (b) if P > 0. If P < 0,
then - P > 0, whence - £ = wa (w E:Wb, a &T7), so that
f= (woa)a.

(16) Theorem. W 1is generated by {o&la 17} 1.e. W = Wb in (1).

If P 1is a root we have P = wa (w EW,,a €TT), by
(15b), whence O = wcaw“l (see (2)), an element of W, . Hence

Wl W, and Wo=W .

IT The function N

(17) Definition. For w & W, N(w) will denote the number of

roots £ such that P >0 and w P < 0. In other words,
N(w) = [P0 w (- P)].

e.g. N(1) =0, N(og) =1 if « &7, by (11).

(18) Lemma. w& W — N(w ) = N(w).

Prove this.

(19) Lemma. Assume wE W, a €T .
(a) If wi > 0, then N(ow) = N(w)+ L.
(a') If wla< o0, then N(ow) = N(w)- 1.
(b) If wa > 0, then N(wor ) = N(w) + 1.

(b') If we< 0, then N(wor ) = N(w)- 1.

Let S(w) =P N wl(=P). Then S(ow) = wle w S(w),
whence (a). To get (a') replace w by oW in (a), and to

get (b) and (b') replace w by wl and use (18).
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(20). Problem. (a) N(Wwf) < N(w) + N(w ) and N(ww ) =

(- l)N(W)

N(w) + N(w' ) mod 2. (b) det w = . (w,w} W

(21) Lemma Assume w = Wi, e s oWy (wi= oai,ai 1) If
N(w) < n, then for some 1,j (1< i< j< n-1), we have:

(b} w

Wi Wy%y41 ¢

co.'w_ 1 = Wiwi'i-l..'wj .

i+1wi +2 J+
! t A s
(¢) w= WyWy s oo eeewWp, with w, and wy.; missing.

By (19b) and N(w) < n, WiWy W0 < 0 for some

J+1
jsn-1. Since ay., >0, we have wi(wi+1.z.wjaj+1)<.o and

Wigpe e oWl > 0 for some i < j, whence W1t Wy%g41 5%

by (ll), which is (a). Using (2) with w =w erew. and

i+l J

G =agy, we get (b), and then replacing the left side of (b)

3t

by the right side in the product for w and using w? = 1, we

get (c).

Problem. Prove, conversely, that (a), (b) or (c) implies

N(w) < n..

(22) GCor. If w& W, then N(w) 1s the number of terms in a
minimal expression of 'w as a product of reflections correspond-

ing to simple roots.

let w = WiW, e o o Wy be a minimal expression. By (19)

((a) or (b)), N(w) < n, and by (2|c), N(w) > n.

(23) Theorem. For wE& W, if wP =P or w[l =T or N(w) =0,

then w = 1.

The three assumptions are clearly equivalent. Now N(w)=0
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implies that the minimal expression of w 1in (22) is empty,
whence w = 1. '
(24) Theorem. W is simply transitive on the positive systems,
and also on the simple systems.

By (12) and (23).
(25) Problem. (a) For w& W, choose a minimal expression as
in (22), w= WyWy e oWy (w; = oai} a; €T) (so that n = N(w)),
and set P; = wWjw,...w; 30, . Prove that P;(1s1i<n) isa
complete list of all roots f such that £ > 0 and w"l £ < 0.
(b) Since -P 1is a positive system, there exists by (24) a
uniéue w, €W such that w, P =-P. Write W = WyW,e oWy
(n = N(w) = |P|) as above. Prove that §,(1<1<n) is

a complete list of all positive roots. (Hint: (19), (21)).

ITI A fundamental domain for W.

(26) Definition. D will denote the region {jo({ vi(e ,a) >0,a€ 11},
Thus D 1is a closed convex cone, and if TJ spans V it is even

a simplicial cone with vertex at O.

(27) Lemma. Every P €V 1is conjugate to some f’ ~ D, in

fact to some _Pt in D such that 'fl -~ 1s a noﬁnegative

combination of the elements of T .

ILet S be this set of nonnegative combinations (in other
words, the dual cone of D). We introduce a partial order in V
by the definition & T ' if and only if ¥ -%' €5. Among

1 | '
the conjugates f - of f under W such that ¢ Z;f, we
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pick one which is maximal relative to this partial order.

Then a & T = o Pr %ﬁ:fY == (?Y ,a) 2 0 (by (1)), whence

Jn' €D and (27) follows.

(28) Theorem. Assume w W, f>€jV, fD not orthogonal to any

root, and wpP = . Then w = 1. (Restatement: w §1,wP=p=> P

is orthogonal to some root.)

By (27) we may assume f & D. For a & P, (wa,f )
= (a,wflfD) = (a,P) > 0. Hence wa & P, for all a & P,
so that wP = P. Then w = 1 by (23).
(29) Cor. 1If f &V 1s not orthogonal to any root, 1its
conjugates under W are all distinct. (And conversely, of
course. )
(30) Cor. The only reflections in W are those in hyperplanes

orthogonal to rcots, i.e. those of the form 6?((3 & 2.

ILet u be any reflection in a hyperplane H not

orthogonal to any root. The roots being finite in number,
there exists f @ H, P not orthogonal to any root. Then
utl,up =P > udw by (28).
(31) Problem. Let S be a set of roots such that [0, |a &€ S]
generates W. Prove that every root is conjugate, under W,
to some a & S, and every reflection in W to some O&(a & S).
(32) Lemma. Assume p,0€D, w& W, wP =0 . Then (a) w

is a product of simple reflections (i.e relative to simple roots)

fixing P . (b) P =o0.

For (a) we use induction on N(w). If N(w) = O, then
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w=1 by (23). Assumé N(w) > 0. Pick o & T so that
wa < 0. Then O 2 (oywa) =( . a)>0, whence (pP,a) =0
and o £ = . Since (woy)f =0, and Nlwo,) = N(w)-1
by (19b?), the inductive assumption applied to WO, yields (a).
Clearly (a) implies (b).
% (33) Theorem. D is a fundamental domain for W on V. In other
J words, each element of V 1is conjugate to exactly one element
of D.
By (27) and (32b).
(34) Problem. If f&€D and wg& W, show that p~wep is
a nonnegative combination of positive roots.

(35) Restatement. The reflecting hyperplanes (those orthogonal

to roots) partition V into closed chambers, each of which is a
fundamental domain for W. For a given chamber, the roots normal
to the walls and inwardly directed form a simple system, and each
simple system is obtained 1n this way. Prove these assertions
and also that the angle between two walls of a chamber is always
; a submultﬁple of m=m.

#* (36) Theorem. If S 1is any subset of V, the subgroup of W

which fixes S pointwlse is a reflection group. In other words,

every w & W which fixes S polntwise 1s a product of reflections
which also do.

Remark. (36) 1is an extension of (28). Verify this.

For the proof of (36) we may assume that S 1s indepedent,

hence finite, and using induction, reduce to the case where S
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has a single element, say f>, which may be taken in D by
(27). Then (32a) with o = f yields our result.
(37) Problem. For each subset T of TT let W(TT,) denote the

group generated by {o& | a Efrf }. Prove that W(TT'H Tfr)
w(Tr ) N W ).

IV Generators and relations for W.

* (38) Theorem. For a,BET] , let n(a,B) denote the order
of oyop in W. (So n(a,a) =1, while n(a,B) > 1 if a % B.)
Then the group W 1is defined by the generators {6:1 | €11 }

ynlasB) _p «,BETT}. In

other words, the given elements generate W and the given

sub ject to the relations {ﬂoadb

relations imply all others in W.

By (16) the given elements generate W. Suppose the

relation (%) W Wy oo W,

We will show it is a formal consequence of the given relations,

w, =1 (w = o&i, ay & T1) holds in W.

by induction on r. By (20b) or by (19) r 1is even, say
r =2s. If s =0 there is nothing to show. Suppose s > O.
We start with the observation:

(0) (%) 1is equivalent to Wi 1 Wy pp @ s WRWIWoe e oWy =1(1<i<r).

2
Case 1. Suppose @y 3 w2w3...wsas+l . We have
N(Wlwz"'ws+l) = N(w2sw25—l"'ws+2) < s+l, by (19a).

Hence by (21) we have (2la) and (21b) for some i,J such that

1<i< j<s. Since i,j = l1,s is excluded in the present case,
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both sides of (21b) have length < s. By our inductive

assumption we may replace the left side of (21b) by the rignt
side in (%). If w? is then replaced by 1, the inductive
assumption can be applied to the resulting relation to complete
the proof, in the present case.

Case 2. Suppose a + oy (If s = 1, this case doesn't occur.)

By the first case we may assume Ay = WWoee W and then

sas+l

by (0) also a. = WaW) e oW whence

2 s+las+2 ’

(%%)  wow,..-

23

If (%%) 1is substituted into (%}, we can shorten (%), as above.

s+l = WaWyc e Woyo by (2).

Thus we are reduced to showing that (*%) 1is a consequence of the
original relations in (38), i.e. that

w3:,_\r2w3. .o S+lx:vs+2ws+l. oWy = 1 is. Since

g + @y = WoWye..W

Q. , we are back in Case 1. - -
5 s+l

Because of (0) above the only case that remains is:
Case 3. Suppose @y = a3 =0p = ... and Ay =0 = Qg = o0 .
st S = 1 = = .
Then (%) has the form (O&Gé) 1 with a =ay, B =aq,
Here s must be a multiple of nf(a,B), the order of 9408

so that (%) 1s a consequence of the relation (oaoé)n(“:B) = 1.
(39) Examples. (a) W_= S,- The symmetric group of degree n
acts on an n-dimensional space by permuting the coordinates

relative to an orthomormal basis e, (1< 1< n). The trans-

i
position (ij) corresponds to the reflection in the hyperplane

orthogonal to e; - €j . We may take X% = {ef-aj | 1 4 3}, and

relative to a lexicographic ordering , TT= {e =%, ;1< 1< n-1}.
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Thus 8, 1is generated by the transpositions w; = (1 i+l1)

5 - : 2 _ 3 -
(1< 1isn=-1) subject to the relations wi = 1, (ww; )7 =1,
and (wiwj)Q =1 if Ji-=j| > 1. (b) W _=0Oct . The
octahedral group includes sign changes as well as permutations

of the coordinates, so has order 2™ ! . Here we may take

Tefztegtoeg, xey 145} and o= {ey-, £ llci<n-1T.

S0, comparing with (a), we have one more generator Wy and n

- 2 2 . .
more relations w} =1, (wn__lwn)LP =1, (ww ) =1 if ign-2.
We observe that Sn and Octn are the groups of symmetries of

the regular simplex and the regular cube.

3%

(40) Problem. Prove that W 1is defined by the generators
{0}d a ¢ ¥ ] subject to the relations

() ©@Z-1la€tr}, (B) fo,007"

=O*a|a,B€Z,?f=0aB}-
(Hint. Using (15b) and (16) show that the group so defined is
generated by {0, la @ 7T} as a consequence of (B), and then

using (21) show that any nontrivial relation Wyw = 1

2-0¢Wn

(w, = o, ,a; €T[) which holds in W can be shortened as a
1

consequence of (4) and (B).)

(V) Appendix.

AT St e — A ——

We consider some refinements in our results which occur
in the crystalographic case, when 2(a,B)/ (B,B) 1is an integer
for all a,B € £, which we henceforth assume. (This case

occurs when we have root syster: of Lie algebras.)

(L1) Refinement of (8). In the present case, all coefficients
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in (8b) are integers.

Prove this, by induction on ht f (P& L) (see (13)).
(42) Cor. hnt P 1is always an integer.
(43) Problem. Under the assumptions of (34), assume also
that (2P, a)/ (e,e) 1is an integer for every a € T[. Show
that P - wfP 1is a nonnegative integral combination of the
elements of 71T .
(44) Problem. If « and B are roots, a ¥ -p and (a,B) < O,
prove that a + B is a root. (Hint: prove that a + B equals

O&B or GBQ )
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