
Chapter 9

Additional Topics in Probability

In this chapter, we look at additional properties of probability.

9.1 Addition Rules for Probability; Mutually Ex-

clusive Events

We discuss set operations and their relationship to probability calculations:

∙ And: outcomes common to events; in intersection of events

∙ Or: outcomes in union of events

∙ Not (Complement): outcomes not in event, but in sample space

∙ Complement rule: P (A′) = 1− P (A)

Then we focus on “or”; in particular, we discuss the addition rules for probability:

∙ Addition rule for events A, B.

P (A or B) = P (A ∪B) = P (A) + P (B)− P (A ∩B)

∙ Addition rule for (mutually exclusive) disjoint events A, B, when A ∩B = Ø.

P (A or B) = P (A ∪ B) = P (A) + P (B)

∙ Addition rule for mutually exclusive events A1, A2, . . .An,

P (A1 ∪ A2 ∪ ⋅ ⋅ ⋅ ∪ An) = P (A1) + P (A2) + ⋅ ⋅ ⋅+ P (An)

Exercise 9.1 (Addition Rules for Probability; Mutually Exclusive Events)

165
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1. And, Or and Not (Complement).

(a) Box of tickets.
Box has six tickets. Each ticket has 1, 2 or 3 with one of three subscripts:
a, b or c. One ticket drawn from box at random.

1a 2a 1b 3b 2c 3c

Probability ticket is

i. “1” is P (1) = 1
6
/ 2

6
/ 3

6
.

ii. “a” is P (a) = 1
6
/ 2

6
/ 3

6
.

iii. “1” and an “a” is P (1 and a) = P (1 ∩ a) = 1
6
/ 2

6
/ 3

6
.

iv. “1” or an “a” is P (1 or a) = P (1 ∪ a) = 1
6
/ 2

6
/ 3

6
.

v. “1” and a “2” is P (1 and 2) = P (1 ∩ 2) = 0
6
/ 1

6
/ 2

6
.

vi. not an “a” is P (a′) = 1− P (a) = 1− 2
6
= 2

6
/ 3

6
/ 4

6
.

(b) Box of coins.
Coins are sampled at random from box.

74c  78c  78c  76c  80c

74n  78n  80n

78d  81d

S

C

N

D

Figure 9.1 (And, or, not: box of coins)

Chance coin is a

i. cent is P (C) = 3
10

/ 4
10

/ 5
10

/ 6
10
.

ii. 1978 is P (1978) = 3
10

/ 4
10

/ 5
10

/ 6
10
.

iii. cent and a 1978 is P (C and 1978) = P (C ∩ 1978) = 1
10

/ 2
10

/ 3
10

/ 4
10
.

iv. cent or a nickel is P (C or N) = P (C ∪N) = 5
10

/ 6
10

/ 7
10

/ 8
10
.

v. cent or a 1978 is P (C or 1978) = P (C ∪ 1978) = 5
10

/ 6
10

/ 7
10

/ 8
10
.

vi. not a dime is P (D′) = 5
10

/ 6
10

/ 7
10

/ 8
10
.

2. Addition rule: two events.

(a) Box of coins. Refer to box of coins figure above.

i. Since not possible to choose a single coin that is both a cent and a
nickel; in other words, choosing a cent and nickel are mutually exclu-
sive (disjoint) events, probability of choosing cent or a nickel is

P (C or N) = P (C ∪N) = P (C) + P (N) =
5

10
+

3

10
=
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5
10

/ 6
10

/ 7
10

/ 8
10
.

ii. Since it is possible to choose a single coin that is both a cent and a
1978; in other words, choosing a cent and 1978 coin is not mutually
exclusive, probability of choosing a cent or a 1978 is

P (C or 1978) = P (C ∪ 1978)

= P (C) + P (1978)− P (C and 1978)

=
5

10
+

4

10
−

2

10
=

5
10

/ 6
10

/ 7
10

/ 8
10
.

iii. Since C and D mutually exclusive,

P (C ∪D) = P (C) + P (D)

=
5

10
+

2

10
=

5
10

/ 6
10

/ 7
10

/ 8
10
.

iv. Since 1978 and D not mutually exclusive,

P (1978 ∪D) = P (1978) + P (D)− P (1978 ∩D) =

=
4

10
+

2

10
−

1

10
=

5
10

/ 6
10

/ 7
10

/ 8
10
.

(b) Addition rule: fathers, sons and college.
Data from a sample of 80 families in a midwestern city gives record of
college attendance by fathers (F) and their oldest sons (S).

son attended son did not
college attend college

father attended college 18 7 25
father did not attend college 22 33 55

40 40 80

i. Probability son, in a randomly chosen family, attended college, is
P (S) = 18

40
/ 18

25
/ 40

80
/ 25

80
.

ii. Probability father, in a randomly chosen family, attended college, is
P (F ) = 18

40
/ 18

25
/ 25

80
/ 55

80
.

iii. Probability father does not attend college, is
P (F ′) = 1− P (F ) = 18

40
/ 18

25
/ 40

80
/ 55

80
.

iv. Probability son attends and father does not attend college is
P (S and F ′) = 22

40
/ 22

55
/ 22

80
/ 18

80
.
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v. Probability son attends or father does not attend college is
P (S or F ′) = P (S) + P (F ′)− P (S and F ′) = 40

80
+ 55

80
− 22

80
=

73
80

/ 74
80

/ 75
80

/ 76
80
.

(c) Additive rule: dice. In two rolls of fair die, let event A be “sum of dice is
five”. Let event B be event “no fours are rolled”.

6

5

4

3

2

1

die 1 (green)

die 2

(red)

1 2 3 4 5 6

A

B
S

Figure 9.2 (Venn diagram for tossing two dice)

i. P (A) = (i) 1
36

(ii) 2
36

(iii) 3
36

(iv) 4
36
.

ii. P (B) = (i) 24
36

(ii) 25
36

(iii) 26
36

(iv) 27
36
.

iii. P (A ∩B) = (i) 1
36

(ii) 2
36

(iii) 3
36

(iv) 4
36
.

iv. So P (A ∪ B) = P (A) + P (B)− P (A ∩ B) =
(i) 26

36
(ii) 27

36
(iii) 28

36
(iv) 29

36
.

v. Event A and event B
are mutually exclusive / are not mutually exclusive.

(d) More addition rule.

i. If P (E) = 3
36
, P (F ) = 9

36
and P (E and F ) = 2

36
.

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) = 10
36

/ 11
36

/ 12
36
.

ii. Since P (E) = 0.25, P (F ) = 0.10 and P (E and F ) = 0.03, then
P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) = 0.30 / 0.32 / 0.33.

iii. True / False. Addition rule determines chance of E “or” F .

iv. True / False. Events E and F are mutually exclusive if P (E∩F ) = 0.

(e) Waiting in line. Assuming all arrangements equally likely, what is chance
line of 5 females and 4 males waiting to buy books at bookstore be arranged
where females are grouped together and males are grouped together?

i. Total arrangements of 9 individuals:
9! = 128, 800 / 257, 600 / 362, 880

ii. Arrangements of 5 females and 4 males OR 4 males and 5 females:
P ((5F∩4M)∪(4M∩5F )) = P (5F∩4M)+P (4M∩5F ) = 5!4!+4!5! =
2880 / 5760 / 7620
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iii. So chance females grouped together and males are grouped together:
2880

128800
/ 5760

257600
/ 5760

362880

3. Addition rule: two or more mutually exclusive events.

(a) Number of seizures, X

number
seizures, x p

0 0.17
2 0.21
4 0.18
6 0.11
8 0.16
10 0.17

i. Chance a person has at most 4 seizures is
P (X ≤ 4) = P (0 ∪ 2 ∪ 4) = P (0) + P (2) + P (4) =
0.17 / 0.21 / 0.56 / 0.67
since number of seizures per year mutually exclusive of one another.

ii. Chance a person has at least 4 seizures is
P (X ≥ 4) = P (4) + P (6) + P (8) + P (10) = 1− P (X ≤ 3) =
0.21 / 0.38 / 0.56 / 0.62.

(b) Sum of dice, X.

6

5

4

3

2

1

die 1 (green)

die 2

(red)

1 2 3 4 5 6

A

S

Figure 9.3 (Venn diagram for tossing two dice)

Let X be “sum of dice”, so chance “sum of dice is at most five”
P (X ≤ 5) = P (2∪3∪4∪5) = P (2)+P (3)+P (4)+P (5) = 1

36
+ 2

36
+ 3

36
+ 4

36
=

8
36

/ 9
36

/ 10
36

/ 11
36

since sums mutually exclusive of one another.

(c) Committees. From a group of 6 females and 9 males, what is chance of
forming committees of 5 individuals consisting of at most 2 females?

i. Total combinations of choosing 5 of 6 + 9 = 15 individuals:
C(15, 4) / C(15, 5) / C(15, 6)
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ii. Combinations at most 2 females from 5 individuals is either 0F and
5M OR 1F and 4M OR 2F and 3M

P ((0F∩5M)∪(1F∩4M)∪(2F∩3M)) = P (0F∩5M)+P (1F∩4M)+P (2F∩3M) =

C(6, 0)C(9, 5) + C(6, 1)C(9, 4) + C(6, 2)C(9, 3)
C(6, 1)C(9, 5) + C(6, 2)C(9, 4) + C(6, 3)C(9, 3)

iii. So chance at most two females on committee:
C(6,0)C(9,5)+C(6,1)C(9,4)+C(6,2)C(9,3)

C(15,5)
/ C(6,1)C(9,5)+C(6,2)C(9,4)+C(6,3)C(9,3)

C(15,5)

9.2 Conditional Probability

We discuss conditional probability:

P (A ∣ B) =
P (B ∩A)

P (B)
=

P (A ∩ B)

P (B)
.

Exercise 9.2 (Conditional Probability)

1. Conditional probability and dependence: box of coins.

74c  78c  78c  76c  80c

74n  78n  80n

78d  81d

74n  78n  80n74n  78n  80n74n  78n  80n

74c  78c  78c  76c  80c

74n  78n  80n

78d  81d

74c  78c  78c  76c  80c74c  78c  78c  76c  80c74c  78c  78c  76c  80c

74n  78n  80n

78d  81d

74c  78c  78c  76c  80c74c  78c  78c  76c  80c

74n  78n  80n

78d  81d

74, given nickel cent, given 78

Figure 9.4 (Conditional probability: box of coins)

(a) Choosing 1974.
Chance a coin chosen at random from box is a 1974 coin is
P (1974) = 1

10
/ 2

10
/ 3

10
/ 4

10
.

(b) Choosing 1974, given nickel.
Of three coins that are nickels, 1 / 2 / 3 are 1974 coins. Given coin taken
from box is a nickel, chance this coin is a 1974 nickel is
P (1974 ∣ N) = 1

3
/ 2

3
/ 3

3
/ 4

3
.

(c) Choosing 1974 depends on choosing nickel.
Unconditional chance coin is “1974”, P (1974) = 2

10
, is equal / not equal

to conditional chance coin is “1974, given a nickel”, P (1974 ∣ N) = 1
3
.

Choosing a “1974” and choosing a ”nickel” are dependent.
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(d) Choosing cent.
Chance of choosing a cent is P (C) = 2

5
/ 5

10
/ 2

10
/ 2

4
.

(e) Choosing cent, given 1978.
Of coins that are 1978s, 2 / 4 / 5 are cent coins. Given a coin is a 1978,
chance this coin is a cent is P (C ∣ 1978) = 2

5
/ 5

10
/ 2

10
/ 2

4
.

(f) Choosing cent independent of choosing 1978.
Since P (C) = 5

10
= P (C ∣ 1978) = 2

4
, choosing a “cent” and choosing a

”1978” are independent / dependent events.

(g) In general.
If P (E) = P (E ∣ F ), E and F dependent / independent; otherwise,
dependent. This is one method to determine independence/dependence.

2. More conditional chance: fathers, sons and college.

son attends son does not
college, S attend college, S ′

father attended college, F 18 7 25
father did not attend college, F ′ 22 33 55

40 40 80

(a) Probability son attends college given father attended college
P (S ∣ F ) = 18

40
/ 18

25
/ 40

80
/ 25

80
.

(b) Probability son does not attend college given a father attended college
P (S ′ ∣ F ) = 7

25
/ 18

25
/ 7

18
/ 25

7
.

(c) P (S ∣ F ′) = 55
22

/ 33
55

/ 22
55

/ 22
80
.

(d) P (S ′ ∣ F ′) = 22
55

/ 33
80

/ 22
33

/ 33
55
.

(e) P (F ∣ S) = 18
40

/ 18
25

/ 18
22

/ 25
80

(f) P (F ∣ S) = 18
40

equals / does not equal P (S ∣ F ) = 18
25
.

(g) Using the formula.

P (S ∣ F ) =
P (S ∩ F )

P (F )
=

P (F ∩ S)

P (F )
=

18/80

25/80
=

18
40

/ 18
25

/ 40
80

/ 25
80
.

3. And more conditional probability: coins.
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HHH       THH

HTH        TTH

HHT        THT

HTT         TTT

Figure 9.5 (Flipping three coins)

(a) Chance one head appear given at least one head appears 1
7
/ 3

7
/ 3

8
/ 4

8
.

(b) Chance one head appear given one tail appears 0
3
/ 1

3
/ 2

3
/ 3

3
.

(c) Chance at least two heads given three heads appears 1
1
/ 1

2
/ 1

3
/ 1

4
.

4. And more conditional probability: cards. Cards are taken out of deck at random.
Let Ei represent event ith card taken from deck.

(a) Chance first card dealt is an ace
P (E1) =

1
52

/ 4
52

/ 3
51

/ 1
51
.

(b) Chance second card dealt is a jack, given first card dealt is an ace
P (E2 ∣ E1) =

1
52

/ 4
50

/ 4
51

/ 1
51
.

(c) Chance third card dealt is jack, given first two are jack and ace
P (E3 ∣ E1 ∩ E2) =

1
50

/ 4
52

/ 3
51

/ 3
50
.

5. Conditional chance versus unconditional chance: interviews.
Conditional probability calculated for event, depends on occurrence of another
event. Seven candidates, three are females (Kathy, Susan and Jamie), inter-
viewed for two identical jobs. Candidates are interviewed at random.

Kathy   Susan    Jamie    Tom   Tim   Tyler    Toothy

Kathy
Susan
Jamie
Tom
Tim
Tyler
Toothy

x x x x x x

x x x x x

x x x x

x x x

x x

x

Figure 9.6 (Venn diagram for two candidates chosen)

(a) One candidate is chosen. Chance Tom chosen given that male chosen is
conditional / unconditional probability
P (Tom ∣ male) = 1

7
/ 2

7
/ 1

4
/ 1

3
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(b) One candidate is chosen. Chance Tom chosen given that female chosen is
conditional / unconditional probability
P (Tom ∣ female) = 1

7
/ 3

7
/ 1

4
/ 0

3
.

(c) One candidate is chosen. Chance Tom chosen is conditional / uncondi-
tional probability P (Tom) = 1

7
/ 3

7
/ 1

4
/ 0

3
.

(d) One candidate is chosen. Chance Tom not chosen is conditional / un-
conditional probability P (Tom′) = 7

6
/ 3

7
/ 6

7
/ 0

3
.

(e) Two candidates are chosen. Chance Susan and Tom chosen is conditional
/ unconditional probability. Since only 21 couples1 possible (Venn dia-
gram), P (Susan ∩ Tom) = 1

7
/ 2

7
/ 1

4
/ 1

21
.

(f) Two candidates are chosen. Chance Susan or Tom (or both) are chosen is
conditional / unconditional probability. Since eleven (Venn diagram)
couples from 21 couples possible,
P (Susan ∪ Tom) = 21

11
/ 2

7
/ 1

4
/ 11

21
.

(g) Two candidates are chosen. Chance Susan and Jamie are chosen, given two
females are chosen is conditional / unconditional probability, where
P (Susan ∩ Jamie ∣ two females) = 2

7
/ 3

7
/ 2

3
/ 1

3
.

(h) True / False Conditional probability essentially involves taking a subset,
defined by the conditional event, of the original sample space and then
calculating the probability within this subset.

9.3 Multiplication Rules for Probability: Indepen-

dent Events

We discuss multiplication rule

P (A ∩B) = P (A ∣ B)P (B) = P (B ∣ A)P (A)

or, more generally,

P (A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An) = P (A1)P (A2 ∣ A1) ⋅ ⋅ ⋅P (An ∣ A1 ∩ ⋅ ⋅ ⋅ ∩An−1).

Two events are independent if

P (A ∩ B) = P (A)P (B)

1Notice we count “Susan and Tom”, but not “Tom and Susan”, in our 21 couples. The order of
couples does not matter to us. Also, we do not count “Susan and Susan” as one of our 21 couples. If
order mattered because, for example, the first interview was for president and second for secretary,
then we would count 2× 21 = 42 ways of choosing our two candidates.
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or, more generally, if for every subset Ai1 , . . ., Air of them,

P (Ai1 ∩Ai2 ∩ ⋅ ⋅ ⋅ ∩ Air) = P (Ai1)P (Ai2) ⋅ ⋅ ⋅P (Air)

and so, in this case, multiplication rule simplifies to

P (A1 ∩A2 ∩ ⋅ ⋅ ⋅ ∩An) = P (A1)P (A2) ⋅ ⋅ ⋅P (An)

Exercise 9.3 (Multiplication Rules for Probability: Independent Events)

1. Independence (sampling with replacement)
versus dependence (sampling without replacement): box of tickets.
Two things are independent if chance for second given first are the same, no
matter how first turns out; otherwise, two things are dependent.

1a 2a 1b 3b 2c 3c

(a) Sample with replacement: independence.
Two tickets are sampled with replacement at random from box. All six
tickets remain in box when second ticket is drawn. Chance second ticket
is a “2” given first ticket is a “1” is 1

6
/ 2

6
/ 3

6
.

(b) When sampling at random with replacement, chance second ticket of two
drawn from box is “2”, no matter what the first, is always 1

6
/ 2

6
/ 3

6
.

(c) Sample without replacement: dependence.
Two tickets are sampled without replacement at random from box. Only
five tickets remain in box when second ticket is drawn. Chance second
ticket is a “2” given first ticket is a “1” is 1

5
/ 2

5
/ 3

5
.

(d) True / False When sampling at random without replacement, chance
second ticket of two drawn from box is any given number depends on
number drawn on first ticket.

(e) When sampling at random without replacement, draws are
independent / dependent of one another;
with replacement, draws are independent.

2. Multiplication rule: box of tickets.

1a 2a 1b 3b 2c 3c

(a) Two tickets are sampled with replacement from box: tickets are indepen-
dent of one another. Chance first ticket is “1” and second ticket is “a” is2

P (1 and a) = P (1) ⋅ P (a) = 1
6
×

1
6
/ 2

6
×

1
6
/ 2

6
×

2
6
= 1

9
.

This is an example of (a special case of) the multiplication rule.

2Order of tickets matters here. If you did not see how two tickets were picked from box, it would
not be clear whether “1” or “a” was first or second ticket and so, in this case,
P (1 and a) + P (a and 1) = P (1) ⋅ P (a) + P (a) ⋅ P (1) = 2× 2

6
× 2

6
.
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(b) True / False
Since “1” and “a” are independent, then P (1 and a) = P (1) ⋅ P (a).
If “1” and “a” had been dependent, then P (1 and a) ∕= P (1) ⋅ P (a).

(c) Three tickets are sampled with replacement from box. Chance first ticket
is “1” and second ticket is “3” and third ticket is “3” is
P (1 and 3 and 3) = P (1) ⋅ P (3) ⋅ P (3) = 2

6
/ 2

6
×

2
6
/ 2

6
×

2
6
×

2
6
= 1

27
.

(d) Three tickets are sampled with replacement from box. Chance all three
tickets are “3”s is3 2

6
/ 2

6
×

2
6
/ 2

6
×

2
6
×

2
6
= 1

27
.

(e) Three tickets are sampled with replacement from box. Chance at least one
of the three tickets is a “3” is either

∙ chance one a “3” or two are “3”s or three are “3”s, OR

∙ one minus chance none of three tickets are “3”s,

1− P (no 3s) = 1 −
4
6
/ 1 −

4
6
×

4
6
/ 1 −

4
6
×

4
6
×

4
6
= 19

27
.

3. Independence versus dependence: fathers, sons and college.

son attends son does not
college attend college

father attended college 18 7 25
father did not attend college 22 33 55

40 40 80

(a) Probability son, in a randomly chosen family, attends college, is
P (S) = 18

40
/ 18

25
/ 40

80
/ 25

80
.

(b) Probability father, in a randomly chosen family, attended college, is
P (F ) = 18

40
/ 18

25
/ 40

80
/ 25

80
.

(c) Probability son attends college and father attended college is
P (S ∩ F ) = 18

40
/ 18

25
/ 40

80
/ 18

80
.

(d) Since 18
80

∕=
(

40
80

)

×
(

25
80

)

or 0.225 ∕= 0.15625; in other words,

P (S ∩ F ) ∕= P (S)× P (F ),
event “son attends college”
is independent of / depends on event
“father attended college”.

(e) True / False If events A and B are independent then
P (A ∩ B) = P (A) ⋅ P (B).
If events A and B are dependent then

3Order of the tickets does not matter here, whether you saw in what order the tickets were chosen
or not, since all three tickets are the same: all “3”s. The answer will always be 2

6
× 2

6
× 2

6
in this

case.
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P (A ∩ B) ∕= P (A) ⋅ P (B).
This is another method to determine independence/dependence.

4. Multiplication rule. A deck is shuffled and three cards are dealt.

(a) Chance first card dealt is an ace is
P (ace) = 1

52
/ 4

52
/ 3

51
/ 1

51
.

(b) Chance second card dealt is a jack, given first card dealt is an ace, is
P (jack ∣ ace) = 1

52
/ 4

50
/ 4

51
/ 1

51
.

(c) Probability first card is an ace and second card is a jack is
P (ace ∩ jack) = P (ace) ⋅ P (jack ∣ ace) = 1

52
×

3
51

/ 4
52

×
4
51

/ 4
51

/ 1
51
.

This is an example of multiplication rule.

(d) Probability third card dealt is a jack, conditional on first two cards dealt
are a jack and an ace, is P (jack ∣ (ace ∩ jack)) = 1

50
/ 4

52
/ 3

51
/ 3

50
.

(e) Probability of an ace, jack and another jack is
P (ace ∩ jack ∩ jack) = P (ace) ⋅ P (jack ∣ ace) ⋅ P (jack ∣ (ace ∩ jack)) =
4
52

×
3
51

×
2
50

4
52

×
4
51

×
3
50

4
50

×
3
49

×
2
48

This is another example of general multiplication rule4.

5. More multiplication rule: renting cars. A firm rents 60% of cars from A and
40% from B. Of cars from A, 9% needed a tune–up; of cars from B, 20% needed
a tune–up. A car is chosen at random.

4The order of the cards matters here. If you did not see how the three cards were picked from
the deck, it would not be clear which one of three possibilities occurred: ace, jack, jack or jack, ace,
jack or jack, jack, ace. In this case, the answer would be 3× 4

52
× 4

51
× 3

50
.
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P(T  and A) = P(T  | A)P(A) = (0.91)(0.60) = 0.546

agency A,

tune-up, (T)

P(A) = 0.60

P(T | A) = 0.09
P(T and A) = P(T | A)P(A) = (0.09)(0.60) = 0.054

P(T and B  ) = P(T | B  )P(B ) = (0.20)(0.40) = 0.080

(T and  B  ) = P(T  | B )P(B) = (0.80)(0.40) = 0.320

P(T  | A) = 0.91

P(T | B ) = 0.20

P(T | B ) = 0.80

P(B) = 0.40

no tune-up, (T )

no tune-up, (T )

tune-up, (T)

agency B

‘

‘‘
‘

‘

‘

‘
‘ ‘

Figure 9.7 (Multiplication rule: renting cars)

(a) Multiplication rule.
Chance car from A: P (A) = 0.40 / 0.60 / 0.80
chance car needs tune–up, given from A: P (T ∣ A) = 0.09 / 0.60 / 0.91
so chance car comes from A and needs tune–up:
P (T ∩A) = P (T ∣ A)P (A) = (0.09)(0.60) = 0.054 / 0.60 / 0.91
Notice, uppermost path tree diagram gives P (T ∩A) = 0.054.

(b) More multiplication rule.
Chance car comes from B: P (B) = 0.40 / 0.60 / 0.80
chance car needs tune–up, given from B: P (T ∣ B) = 0.20 / 0.60 / 0.91
so chance car comes from B and needs tune–up:
P (T ∩B) = P (T ∣ B)P (B) = (0.20)(0.40) = 0.080 / 0.60 / 0.91
Notice, third path of tree diagram gives P (T ∩ B) = 0.080.

(c) Total probability.
Chance car needs tune–up:

P (T ) = P (T ∩ A) + P (T ∩ B)

= P (T ∣ A)P (A) + P (T ∣ B)P (B)

= (0.09)(0.60) + (0.20)(0.40) =

0.080 / 0.134 / 0.280

6. Multiplication rule: gender and majors.
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% of sophomores % who are % who are
in this major females males

Liberal Arts 0.55 0.75 0.25
Education 0.25 0.85 0.15
Technology 0.10 0.25 0.75
Sciences 0.05 0.50 0.50
Other 0.05 0.65 0.35

(a) Multiplication rule.
Chance student in Technology: P (T ) = 0.10 / 0.20 / 0.30
chance student female, given Technology: P (F ∣ T ) = 0.10 / 0.25 / 0.75
so chance student female and in Technology:
P (F ∩ T ) = P (F ∣ T )P (T ) = (0.25)(0.10) = 0.025 / 0.060 / 0.075

(b) More multiplication rule.
Chance student in Technology: P (T ) = 0.10 / 0.20 / 0.30
chance student male, given Technology: P (M ∣ T ) = 0.10 / 0.25 / 0.75
so chance student male and in Technology:
P (M ∩ T ) = P (M ∣ T )P (T ) = (0.75)(0.10) = 0.025 / 0.060 / 0.075

7. Multiplication rule when events independent: basketball. Basketball player has
n = 10 free throws and sinks each throw with probability p = 0.3. Assume each
throw independent and identical to each other throw. Let event Si represent
when basketball player sinks ith throw.

(a) Chance of sinking ten throws in a row:
P (S1 ∩ S2 ∩ ⋅ ⋅ ⋅ ∩ S10) = (0.3)10 = 0.059 / 0.00059 / 0.0000059

(b) Chance of missing ten throws in a row:
P (S ′

1 ∩ S ′

2 ∩ ⋅ ⋅ ⋅ ∩ S ′

10) = (0.7)10 = 0.028 / 0.059 / 0.064

(c) Chance of sinking first (and only first) throw of ten:
P (S1 ∩ S ′

2 ∩ ⋅ ⋅ ⋅ ∩ S ′

10) = (0.3)(0.7)9 = 0.012 / 0.059 / 0.064

(d) Chance of sinking second (only second) throw of ten:
P (S ′

1 ∩ S2 ∩ S ′

3 ∩ ⋅ ⋅ ⋅ ∩ S ′

10) = (0.3)(0.7)9 = 0.012 / 0.059 / 0.064

(e) Number of ways of sinking only one of ten throws: C(10, 1) = 1 / 5 / 10

(f) Probability of sinking only one of ten throws:
C(10, 1)(0.3)(0.7)9 = 0.12 / 0.59 / 0.64

8. Independence versus disjoint events: cards.
Independent events are different from disjoint events.
Events A and B are disjoint / independent if P (A ∩ F ) = P (A) ⋅ P (B).
Events A and B are disjoint / independent if P (A ∩ B) = 0.
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9. Addition and multiplication rules. True / False.
When “and” is involved, “multiply”: P (E ∩ F ) = P (E) ⋅ P (F ∣E).
When “or” is involved, “add”: P (E ∪ F ) = P (E) + P (F )− P (E ∩ F );


