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 The fin efficiency, ηf = tanh(mL)/mL = 0.8913/1.428 = 0.624 = 62.4% 

 The fin effectiveness, є = ηf (fin surface area)/fin cross-sectional area 

  є  = 0.624(2πrL/π r2) = 1.248L/r = 25 

  18 
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= 0.836m

Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Copyright 2020, John H. Lienhard, IV and John H. Lienhard, V



Problem 5.33   A lead bullet travels for 0.5 seconds within a shock wave that heats 

the air near the bullet to 300oC.  Approximate the bullet as a cylinder 0.8 mm in 

diameter.  What is its surface temperature at impact if h = 600 W/m2K and if the 

bullet was initially at 20oC?  What is its center temperature? 

Solution  The Biot number 600(0.004)/35 = 0.0685, so we can first try the lumped 

capacity approximation.  See eqn. (1.22): 

                      (Tsfc – 300)/(20 – 300) = exp(-t/T),  where T = mc/hA 

     So T = ρc(area)/h(circumf.) = 11,373(130)π(0.004)2/hπ(0.008) = 4.928 seconds 

    And  (Tsfc – 300)/(20 – 300) = exp(−0.5/4.928).    

                                                                    So Tsfc = 300 - 0.903(280) = 47.0oC  

     In accordance with the lumped capacity assumption,  

                                                                    47.0oC is also the center temperature. 

Now let us see what happens when we use the exact graphical solution, Fig. 5.8: 

      for   Fo = αt/ro
2 = 2.34(10−5)(0.5)/0.0042 = 0.731 and r/ro = 1, we get: 

               (Tsfc – 300)/(20 – 300) = 0.90,                                      So Tsfc = 48.0oC 

       And at r/ro = 0,   (Tctr – 300)/(20 – 300) = 0.92,                   &  Tctr  = 42.4oC 

We thus have good agreement within the limitations of graph-reading accuracy.  It 

also appears that the lumped capacity assumption is accurate within around 6 

degrees in this situation. 

 

 

 

 

 

 

 

                                                             132b 
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Problem 5.52 Suppose that )∞(C) is the time-dependent temperature of the environment
surrounding a convectively-cooled, lumped object.

a) When )∞ is not constant, show that eqn. (1.19) leads to
3

3C
() − )∞) +

() − )∞)
T

= −3)∞
3C

where the time constant T is defined as usual.
b) If the object’s initial temperature is )8, use either an integrating factor or Laplace transforms

to show that ) (C) is

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3

3B
)∞(B) 3B

Solution
a) From eqn. (1.19) for constant 2, with )∞(C) not constant:

−ℎ�() − )∞) =
3

3C

[
d2+ () − )ref)

]
= <2

3)

3C

= <2
3 () − )∞)

3C
+ <2

3)∞
3C

Setting T ≡ <2
/
ℎ� and rearranging, we obtain the desired result:

3

3C
() − )∞) +

() − )∞)
T

= −3)∞
3C

(1)

b) The integrating factor for this first-order o.d.e. is 4C/T . Multiplying through and using the
product rule, we have

3

3C

[
4C/T () − )∞)

]
= −4C/T 3)∞

3C

Next integrate from C = 0 to C:

4C/T () − )∞) −
[
)8 − )∞(0)

]
= −

∫ C

0
4B/T

3)∞
3B

3B

Multiplying through by 4−C/T and rearranging gives the stated result:

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3)∞
3B

3B

Alternate approach: To use Laplace transforms, we first simplify eqn. (1) by defining
H(C) ≡ ) − )∞ and 5 (C) ≡ −3)∞/3C:

3H

3C
+ H

T
= 5 (C)

Next, we apply the Laplace transform ℒ{..}, with ℒ{H(C)} = . (?) and ℒ{ 5 (C)} = � (?):

ℒ

{ 3H
3C

}
+ℒ

{ H
T

}
= ℒ{ 5 (C)}

?. (?) − H(0) + 1
T

. (?) = � (?)

144



Solving for . (?):
. (?) = 1

? + 1/T H(0) + 1
? + 1/T � (?)

Now take the inverse transform, ℒ−1{..}:

ℒ
−1{. (?)} = ℒ

−1
{ 1
? + 1/T

}
H(0) +ℒ

−1
{ 1
? + 1/T � (?)

}
(2)

With a table of Laplace transforms, we find

ℒ
−1
{ 1
? + 1/T︸    ︷︷    ︸
≡� (?)

}
= 4−C/T︸︷︷︸

≡6(C)

and with � (?) and 6(C) defined as shown, the last term is just a convolution integral

ℒ
−1
{ 1
? + 1/T � (?)

}
= ℒ

−1{� (?)� (?)} =
∫ C

0
6(C − B) 5 (C) 3B

Putting all this back into eqn. (2), we find

H(C) = 4−C/T H(0) +
∫ C

0
4−(C−B)/T 5 (C) 3B

and putting back the original variables in place of H and 5 , we have at length obtained:

) (C) = )∞(C) +
[
)8 − )∞(0)

]
4−C/T − 4−C/T

∫ C

0
4B/T

3)∞
3B

3B

Extra credit. State which approach is more straightforward!
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Problem 6.12 (a) Verify that eqn. (6.120) follows from eqn. (6.119). (b) Derive an equation
for liquids that is analogous to eqn. (6.119).

Solution
a) Beginning with

ℎ =
1
!Δ)

∫ !

0
@F 3G

=
1
!

[∫ G;

0
ℎlaminar 3G +

∫ GD

G;

ℎtrans 3G +
∫ !

GD

ℎturbulent 3G

]
(6.119)

we may evaluate each integral separately. For a uniform temperature surface, the Nusselt
numbers are given by these equations:

Nulam = 0.332 Re1/2
G Pr1/3 (6.58)

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

)2
(6.114b)

Nuturb = 0.0296 Re0.8
G Pr0.6 for gases (6.112)

The three integrals are thus

1
!

∫ G;

0
ℎlam 3G =

0.332 :Pr1/3

!

∫ G;

0

√
D∞
a G

3G =
0.332 :Pr1/3

!
2
√
D∞G;
a

=
:

!
0.664 Re1/2

;
Pr

1
!

∫ GD

G;

ℎtrans 3G =
:

!

Nulam
(
Re; , Pr

)
Re2

;

(D∞
a

)2 ∫ GD

G;

G2−1 3G =
:

!

Nulam
(
Re; , Pr

)
Re2

;

(D∞
a

)2 1
2

(
G2D − G2;

)
=
:

!

Nulam
(
Re; , Pr

)
Re2

;

1
2

(
Re2D − Re2;

)
=
:

!

1
2

[
Nuturb

(
ReD, Pr

)
− Nulam

(
Re; , Pr

) ]
where the last step follows because eqn. (6.114b) intersects Nuturb at ReD, and

1
!

∫ !

GD

ℎturb 3G =
0.0296 :Pr0.6

!

(D∞
a

)0.8 ∫ !

GD

G−0.2 3G =
0.0296 :Pr0.6

(0.8)!

(
Re0.8

! − Re0.8
D

)
=
:

!
0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
Collecting these terms, we find:

Nu! ≡
ℎ!

:
= 0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.0296 Re0.8

D Pr0.6 − 0.332 Re1/2
;

Pr1/3
)

︸                                                ︷︷                                                ︸
contribution of transition region

for gases (6.120)

b) For a liquid flow, the turbulent correlation should be eqn. (6.113):

Nuturb = 0.032 Re0.8
G Pr0.43 for nonmetallic liquids (6.113)

189a
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and the integral in the turbulent range changes to
1
!

∫ !

GD

ℎturb 3G =
0.032 :Pr0.43

!

(D∞
a

)0.8 ∫ !

GD

G−0.2 3G =
0.032 :Pr0.43

(0.8)!

(
Re0.8

! − Re0.8
D

)
=
:

!
0.040 Pr0.43

(
Re0.8

! − Re0.8
D

)
Collecting these terms, we find:

Nu! ≡
ℎ!

:
= 0.040 Pr0.43

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.032 Re0.8

D Pr0.43 − 0.332 Re1/2
;

Pr1/3
)

︸                                               ︷︷                                               ︸
contribution of transition region

for nonmetallic liquids
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Problem 6.16 Air at −10 °C flows over a smooth, sharp-edged, almost-flat, aerodynamic
surface at 240 km/hr. The surface is at 10 °C. Turbulent transition begins at Re; = 140,000 and
ends at ReD = 315,000. Find: (a) the G-coordinates within which laminar-to-turbulent transition
occurs; (b) ℎ for a 2 m long surface; (c) ℎ at the trailing edge for a 2 m surface; and (d) X and ℎ

at G; .

Solution
a) We evaluate physical properties at the film temperature, ) 5 = (−10 + 10)/2 = 0 °C: a =

1.332 × 10−5 m2/s, Pr = 0.711, and : = 0.244 W/m·K. Also, D∞ = 240(1000)/(3600) =
66.7 m/s. Then:

G; =
Re;a
D∞

=
(140000) (1.332 × 10−5)

(66.7) = 0.0280 m

GD =
ReDa
D∞

=
(315000) (1.332 × 10−5)

(66.7) = 0.0629 m

Observe that the flow is fully turbulent over 1.937/2.00 = 96.9% of its length.

b) First, we need Re!:

Re! =
D∞!

a
=

(66.7) (2)
1.332 × 10−5 = 1.00 × 107

Then we get 2 from eqn. (6.115):

2 = 0.9922 log10(140, 000) − 3.013 = 2.09

Now we may use eqn. (6.120):

Nu! = 0.037(0.711)0.6 [(1.00 × 107)0.8 − (3.15 × 105)0.8]
+ 0.664 (1.40 × 105)1/2(0.711)1/3

+ 1
2.09

[
0.0296(3.15 × 105)0.8(0.711)0.6 − 0.332 (1.40 × 105)1/2(0.711)1/3

]
= 11248.9 + 221.8 + 236.0 = 1.171 × 104

Thus

ℎ =
:

!
Nu! =

(0.0244) (1.171 × 104)
2

= 143 W/m2K

c) With eqn. (6.112),

Nu! = 0.0296 Re0.8
! Pr0.6 = 0.0296 (1.00 × 107)0.8(0.711)0.6 = 9603

so
ℎ(!) = :

!
Nu! =

(0.0244) (9603)
2

= 117 W/m2K

d) The flow is laminar here. From eqn (6.58):

NuG; = 0.332 Re1/2
;

Pr1/3 = 0.332 (1.40 × 105)1/2(0.711)1/3 = 110.9

so
ℎ(G;) =

:

G;
NuG; =

(0.0244) (110.9)
0.0280

= 96.6 W/m2K
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With eqn (6.2), we find that the boundary layer here is very thin:

X =
4.92 G;√

ReG;
=

4.92(0.0280)
√

1.4 × 105
= 0.000368 m = 0.37 mm

191b
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Problem 6.17 Find ℎ in Example 6.9 using eqn. (6.120) with Re; = 80, 000. Compare with
the value in the example and discuss the implication of your result. Hint: See Example 6.10.

Solution Equation (6.120) is

Nu! ≡
ℎ!

:
= 0.037 Pr0.6

(
Re0.8

! − Re0.8
D

)
+ 0.664 Re1/2

;
Pr1/3

+ 1
2

(
0.0296 Re0.8

D Pr0.6 − 0.332 Re1/2
;

Pr1/3
)

(6.120)

From Example 6.9, we have Re! = 1.270 × 106 and Pr = 0.708. We may find 2 from eqn. (6.115):
2 = 0.9922 log10(80, 000) − 3.013 = 1.85

We also need ReD, which we can find following Example 6.10:

Re1.85−0.8
D =

0.0296(0.708)0.6(80, 000)1.85

0.332(80, 000)1/2(0.708)1/3
Solving, ReD = 184, 500. Substituting all this into eqn. (6.120):

Nu! = 0.037(0.708)0.6
[
(1.270 × 106)0.8 − (1.845 × 105)0.8

]
+ 0.664 (8.0 × 104)1/2(0.708)1/3

+ 1
1.85

[
0.0296(1.845 × 105)0.8(0.708)0.6 − 0.332 (8.0 × 104)1/2(0.708)1/3

]
Evaluating, we find the contributions of the turbulent, laminar, and transition regions:

Nu! = 1806.6︸ ︷︷ ︸
turb.

+ 167.4︸︷︷︸
lam.

+ 167.1︸︷︷︸
trans.

= 2, 141

The transition region contributes 7.8% of the total. The average heat transfer coefficient is

ℎ =
2141(0.0264)

2.0
= 28.26 W/m2K

and the convective heat loss from the plate is
& = (2.0) (1.0) (28.26) (310 − 290) = 1130 W

The earlier transition to turbulence increases the heat removal by [(1130+22)/(756+22)−1]×100 =

48%.
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Problem 6.46 Two power laws are available for the skin friction coefficient in turbulent
flow: � 5 (G) = 0.027Re−1/7

G and � 5 (G) = 0.059 Re−1/5
G . The former is due to White and the latter

to Prandtl [6.4]. Equation (6.102) is more accurate and wide ranging than either. Plot all three
expressions on semi-log coordinates for 105 6 ReG 6 109. Over what range are the power laws in
reasonable agreement with eqn. (6.102)? Also plot the laminar equation (6.33) on same graph for
ReG 6 106. Comment on all your results.

Solution The figure shows the two power laws and the mentioned turbulent and laminar
expressions:

� 5 =
0.455[

ln(0.06 ReG)
]2 (6.102)

� 5 =
0.664
√

ReG
(6.33)

The 1 ⁄7 power law is within 5% of eqn. (6.102) for 3.5 × 105 6 ReG 6 109, while the 1 ⁄5 power law
is within 5% for 105 6 ReG 6 5 × 107. We also observe that skin friction in laminar flow is far less
than in turbulent flow.

105 106 107 108 109
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

turbulent

laminar

Reynolds number, Rex

N
us

se
lt

nu
m

be
r,

C
f

Eqn. (6.102), Cf = 0.455/[ln (0.06 Rex)]2

Cf = 0.027/Re1/7
x

Cf = 0.059/Re1/5
x

Eqn. (6.33), Cf = 0.664/Re1/2
x
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Problem 6.47 Reynolds et al. [6.27] provide the following measurements for air flowing over
a flat plate at 127 ft/s with )∞ = 86 °F and )F = 63 °F. Plot these data on log-log coordinates as
NuG vs. ReG , and fit a power law to them. How does your fit compare to eqn. (6.112)?

ReG×10−6 St×103 ReG×10−6 St×103 ReG×10−6 St×103

0.255 2.73 1.353 2.01 2.44 1.74
0.423 2.41 1.507 1.85 2.60 1.75
0.580 2.13 1.661 1.79 2.75 1.72
0.736 2.11 1.823 1.84 2.90 1.68
0.889 2.06 1.970 1.78 3.05 1.73
1.045 2.02 2.13 1.79 3.18 1.67
1.196 1.97 2.28 1.73 3.36 1.54

Solution The film temperature is ) 5 = (63 + 86)/2 = 74.5 °F = 23.6 °C = 296.8 K. At this
temperature, Table A.6 gives Pr = 0.707. We can convert the given data to NuG = St ReGPr using a
spreadsheet.

To make a fit, we must recognize that Pr does not vary. We have no basis for fitting a Pr exponent.
So, we can fit to

NuG = � Re1G
This fit may be done by linear regression if we first take the logarithm:

ln NuG = ln � + 1 ln ReG
Using a spreadsheet, we can calculate the logarithms and perform the linear regression to find
� = 0.0187 and 1 = 0.814 (A2 = 0.9978), or

NuG = 0.0187 Re0.814
G

The fit is plotted with the equation, and the agreement is excellent.
With some additional effort, we may use the spreadsheet to find that the standard deviation of

the data with respect to the fit is BG = 2.81%, which provides a 95% confidence interval (two-sided
C-statistic for 21 points, ±2.08BG) of ±5.8%.

Equation (6.112) for Pr = 0.712,
NuG = 0.0296 Re0.8

G Pr0.6 = 0.0240 Re0.8
G (6.112)

is also plotted in the figure, but it is systematically higher than this data set and our fit. (Reynolds
et al. had 7 other data sets and reported an overall BG = 4.5% for a ±9% uncertainty at 95%
confidence.)
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Problem 6.48 Blair and Werle [6.36] reported the b.l. data below. Their experiment had a
uniform wall heat flux with a 4.29 cm unheated starting length, D∞ = 30.2 m/s, and )∞ = 20.5°C.

a) Plot these data as NuG versus ReG on log-log coordinates. Identify the regions likely to be
laminar, transitional, and turbulent flow.

b) Plot the appropriate theoretical equation for NuG in laminar flow on this graph. Does the
equation agree with the data?

c) Plot eqn. (6.112) for NuG in turbulent flow on this graph. How well do the data and the
equation agree?

d) At what ReG does transition begin? Find values of 2 and Re; that fit eqn. (6.116b) to these
data, and plot the fit on this graph.

e) Plot eqn. (6.117) through the entire range of ReG .

ReG×10−6 St×103 ReG×10−6 St×103 ReG×10−6 St×103

0.112 2.94 0.362 1.07 1.27 2.09
0.137 2.23 0.411 1.05 1.46 2.02
0.162 1.96 0.460 1.01 1.67 1.96
0.183 1.68 0.505 1.05 2.06 1.84
0.212 1.56 0.561 1.07 2.32 1.86
0.237 1.45 0.665 1.34 2.97 1.74
0.262 1.33 0.767 1.74 3.54 1.66
0.289 1.23 0.865 1.99 4.23 1.65
0.312 1.17 0.961 2.15 4.60 1.62
0.338 1.14 1.06 2.24 4.83 1.62

Solution
a) Calculate the Nusselt number from the values of Stanton number using NuG = St Pr ReG . 

This is easily done with software (or by hand if you are patient) using Pr = 0.71. The results 
are plotted on the next page. The regions can be identified from the changes in slope and 
curvature (part b makes the laminar regime more obvious).

b) The appropriate formula is eqn. (6.116) for a laminar b.l. with an unheated starting length:

Nulam =
0.4587 Re1/2

G Pr1/3[
1 − (G0/G)3/4] 1/3 (6.116)

We have only ReG , not G. However,
G0
G

=
ReG0

ReG
and ReG0 =

D∞G0
a

=
(30.2) (0.0429)
1.516 × 10−5 = 8.546 × 104

With this, the expression can be plotted. The agreement is pretty good. (Equation (6.71) is
shown for comparison.)

c) The equation,
Nuturb = 0.0296 Re0.8

G Pr0.6 (6.112)
is plotted in the figure, with excellent agreement.

d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data
on the log-log plot to determine the slope, 2. This slope can be determined iteratively if using
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software, or by drawing the line if working by hand. The slope is well fit by 2 = 2.5. Once
the slope is found, we find the point at which this line intersects the laminar, unheated starting
length curve. That point is well represented by Re; = 500,000 and Nulam(Re; , Pr) = 321.
Hence,

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

) 2
= 321

(
ReG

500, 000

) 2.5
(6.114b)

This equation is plotted in the figure, with very good agreement. Note that slightly different
values of Re; and Nulam may produce a good fit, if they lie on the same line. The best approach
is to find Re; and then calculate Nulam from eqn. (6.116).

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):

NuG (ReG , Pr) =
[
Nu5

G,lam +
(
Nu−10

G,trans + Nu−10
G,turb

) −1/2
] 1/5

(6.117)

This equation is plotted in the figure as well, with very good agreement.
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Problem 6.49 Figure 6.21 shows a fit to the following air data from Kestin et al. [6.29]
using eqn. (6.117). The plate temperature was 100 °C (over its entire length) and the free-stream
temperature varied between 20 and 30 °C. Follow the steps used in Problem 6.48 to reproduce that
fit and plot it with these data.

ReG×10−3 NuG ReG×10−3 NuG ReG×10−3 NuG

60.4 42.9 445.3 208.0 336.5 153.0
76.6 66.3 580.7 289.0 403.2 203.0

133.4 85.3 105.2 71.1 509.4 256.0
187.8 105.0 154.2 95.1 907.5 522.0
284.5 134.0 242.9 123.0

Solution
a) The results are plotted on the next page. The regions can be identified from the changes in

slope.
b) The appropriate formula is eqn. (6.58) for a laminar b.l. on a uniform temperature plate:

Nulam = 0.332 Re1/2
G Pr1/3 (6.58)

The film temperature is between 60 and 65 °C, so Pr = 0.703. This equation is plotted on
the figure. Only two data points touch the line, but they are in excellent agreement.

c) The appropriate equation,

Nuturb = 0.0296 Re0.8
G Pr0.6 (6.112)

is plotted in the figure, with very good agreement.
d) To use eqn. (6.114b), we can start by visualizing a straight line through the transitional data

on the log-log plot to determine the slope, 2. The slope is well fit by 2 = 1.7. Once the slope
is found, we find the point at which this line intersects the laminar, unheated starting length
curve. That point is well represented by Re; = 60,000 and Nulam(Re; , Pr) = 72.3. Hence,

Nutrans = Nulam
(
Re; , Pr

) (ReG
Re;

) 2
= 72.3

(
ReG

60000

) 1.7
(6.114b)

This equation is plotted in the figure, with good agreement. Note that the most consistent
approach is to find Re; and then calculate Nulam from eqn. (6.58).

e) Equation (6.117) uses the laminar, transitional, and turbulent Nusselt numbers from parts
(b), (c), and (d):

NuG (ReG , Pr) =
[
Nu5

G,lam +
(
Nu−10

G,trans + Nu−10
G,turb

) −1/2
] 1/5

(6.117)

This equation is plotted in the figure as well, with very good agreement in the turbulent and
transitional ranges. The laminar fit looks good with one data point, but not the other one.
The data themselves make a sharp leap between ReG of 66,300 and 85,300. (Kestin et al.
varied the Reynolds number between these data by increasing the air speed, D∞—these data
are not from spatially sequential points (unlike the data of Blair in Problem 6.48). The onset
of turbulence is an instability, and the change in flow conditions may well have affected the
transition.)
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Problem 6.50 A study of the kinetic theory of gases shows that the mean free path of a
molecule in air at one atmosphere and 20 °C is 67 nm and that its mean speed is 467 m/s. Use
eqns. (6.45) obtain �1 and �2 from the known physical properties of air. We have asserted that
these constants should be on the order of 1. Are they?

Solution We had found that

` = �1

(
d�ℓ

)
(6.45c)

and
: = �2

(
d2{�ℓ

)
(6.45d)

We may interpolate the physical properties of air from Table A.6: ` = 1.82 × 10−5 kg/m·s,
: = 0.0259 W/m·K, d = 1.21 kg/m3, and 2? = 1006 J/kg·K. In addition, the specific heat capacity
ratio for air is W = 2?/2{ = 1.4.
Rearranging:

�1 =
`

d�ℓ
=

1.82 × 10−5

(1.21) (467) (67 × 10−9)
= 0.481

and

�2 =
:W

d2?�ℓ
=

(0.0259) (1.4)
(1.21) (1006) (467) (67 × 10−9)

= 0.952

The constants are indeed �(1).
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Problem 7.5  Compare the h value computed in Example 7.3 with values predicted 

by the Dittus-Boelter, Colburn, McAdams, and Sieder-Tate equations.  Comment 

on this comparison.  

Solution: Taking values of components from Example 7.3, we get:    

  hDB = (k/D)(0.0243)(Pr)0.4(ReD)0.8 

     = (0.661/0.12)(0.0243)(3.61)0.4(412,300)0.8 = 6747 W/m2-K 

  hColburn = (k/D)(0.023)(Pr)1/3(ReD)0.8

      = (0.661/0.12)(0.023)(3.61)1/3(412,300)0.8 = 6193 W/m2-K 

  hMcdams = (k/D)(0.0225)(Pr)0.4(ReD)0.8 = (0.0225/0.0243)hDB 

      = 6247 W/m2-K 

  hST = hColburn(μb/μw)0.14 = 6193(1.75)0.14 = 6193(1.081)  

 = 6698 W/m2-K 

The more accurate Gnielinski equation gives h = 8400 W/m2-K.  Therefore, these 

old equations are low by roughly 20%, 26%, 26%, and 25%, respectively.    

Why such consistently large deviations?  It is because the old correlations 

represent much more limited data sets than Gnielinski’s correlation.  In this case, 

ReD = 412,000 was a good deal higher than the ReD values used to build the old 

correlations.   
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Problem 7.17 Air at 1.38 MPa (200 psia) flows at 12 m/s in an 11 cm I.D. duct. At one
location, the bulk temperature is 40 °C and the pipe wall is at 268 °C. Evaluate ℎ if Y/� = 0.002.

Solution We evaluate the bulk properties at 40°C = 313.15 K. Since the pressure is elevated,
we must use the ideal gas law to find the density of air with the universal gas constant, '◦, and the
molar mass of air, ":

d =
?"

'◦)
=

(1.38 × 106) (28.97)
(8314.5) (313.15) = 15.36 kg/m3

The dynamic viscosity, conductivity, and Prandtl number of a gas depend primarily upon tempera-
ture. At 313 K, ` = 1.917 × 10−5 kg/m·s, : = 0.0274 W/m·K, and Pr = 0.706. Hence,

Re� =
dDav�

`
=

(15.36) (12) (0.11)
1.917 × 10−5 = 1.058 × 106

The friction factor may be calculated with Haaland’s equation, (7.50):

5 =

{
1.8 log10

[
6.9

1.058 × 106 +
(
0.002
3.7

) 1.11
] }−2

= 0.02362

We can see from Fig. 7.6 that this condition lies in the fully rough regime, as confirmed by
eqns. (7.48):

ReY ≡
D∗Y

a
= Re�

Y

�

√
5

8
= (1.058 × 106) (0.002)

√
0.02362

8
= 114.9 > 70

Next, we may compute the Nusselt number from eqn. (7.49):

Nu� =

(
5 /8

)
Re� Pr

1 +
√
5 /8

(
4.5 Re0.2

Y Pr0.5 − 8.48
)

=

(
0.02362/8

)
(1.058 × 106) (0.706)

1 +
√

0.02362/8
(
4.5(114.9)0.2(0.706)0.5 − 8.48

)
= 2061

The temperature difference is quite large, so we should correct for variable properties using
eqn. (7.45):

Nu� = Nu�
���
)1

(
)1

)F

) 0.47
= (2061)

(
313.15
541.15

) 0.47
= 1594

Finally,
ℎ =

:

�
Nu� =

0.0274
0.11

(1594) = 397 W/m2K
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Problem 7.51 Consider the water-cooled annular resistor of Problem 2.49 (Fig. 2.24). The
resistor is 1 m long and dissipates 9.4 kW. Water enters the inner pipe at 47 °C with a mass flow rate
of 0.39 kg/s. The water passes through the inner pipe, then reverses direction and flows through
the outer annular passage, counter to the inside stream.

a) Determine the bulk temperature of water leaving the outer passage.
b) Solve Problem 2.49 if you have not already done so. Compare the thermal resistances

between the resistor and each water stream, '8 and '>.
c) Use the thermal resistances to form differential equations for the streamwise (G-direction)

variation of the inside and outside bulk temperatures ()1,> and )1,8) and an equation the local
resistor temperature. Use your equations to obtain an equation for )1,> − )1,8 as a function
of G.

d) Sketch qualitatively the distributions of bulk temperature for both passages and for the resistor.
Discuss the size of: the difference between the resistor and the bulk temperatures; and overall
temperature rise of each stream. Does the resistor temperature change much from one end
to the other?

e) Your boss suggests roughening the inside surface of the pipe to an equivalent sand-grain
roughness of 500 µm. Would this change lower the resistor temperature significantly?

f) If the outlet water pressure is 1 bar, will the water boil? Hint: See Problem 2.48.
g) Solve your equations from part (c) to find )1,8 (G) and )A (G). Arrange your results in terms

of NTU> ≡ 1/( ¤<2?'>) and NTU8 ≡ 1/( ¤<2?'8). Considering the size of these parameters,
assess the approximation that )A is constant in G.

Solution
a) The answer follows directly from the 1st Law, & = ¤<2?

(
)1,out − )1,in):

Δ)1 = &/( ¤<2?) = 9400/(0.39 · 4180) = 5.77 °C
so )1,out = 47 + 5.77 = 52.8 °C.

b) The inside thermal resistance, '8 = 3.69 × 10−2 K/W, is 23% greater than the outside
resistance, '> = 3.00 × 10−2 K/W.

c) With eqn. (7.10), putting (@|%)inside = ()A − )1,8)/'8! and (@|%)outside = ()A − )1,>)/'>!

where the tube length is ! = 1 m:

¤<2?
3)1,8

3G
=
)A − )1,8

'8!
(1)

− ¤<2?
3)1,>

3G
=
)A − )1,>

'>!
(2)

Recalling the solution of Problem 4.29, we can divide the resistance equation by ! to obtain
a local result (assuming that ℎ is equal to ℎ along the entire passage):

)A − )1,8

'8!
+ )A − )1,>

'>!
=
&

!
= constant (3)

Each of )1,8, )1,>, and )A are functions of G.
By adding eqn. (1) to eqn. (2), and then using eqn. (3),

− ¤<2?
3 ()1,> − )1,8)

3G
=
&

!
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and integrating (with )1,> = )1,8 at G = !), we find

)1,> − )1,8 =
&

¤<2?
(1 − G/!) (4)

d) From working part (a) and Problem 2.49, we already know that the resistor will be much
hotter than the water on either side (194 °C at the end where the water enters and exits). At
any point, )A − )1 � )1,> − )1,8, so that )A − )1,8 ' )A − )1,> ' constant, along the entire
passage. From eqns. (1) and (2), then, the bulk temperature of each stream has a nearly
straight line variation in G, but the outer passage temperature rises a bit faster because the
thermal resistance on that side is lower. Similarly, eqn. (3) shows that the resistor temperature
varies by no more than do the bulk temperatures.

e) Your solution to Problem 2.49 shows that the epoxy layers provide the dominant thermal
resistance on each side. Roughness will make the convection resistance smaller, but con-
vection resistance is only about 10% of the overall resistance. Your boss’s idea will add
cost and pressure drop, but it won’t lower the resistor temperature much. (Suggestion: Find
a diplomatic way to tell him that.)

f) The water will not boil if the highest temperature of the epoxy is below )sat. The hottest
point for the epoxy is in the outlet stream at the exit (where the bulk temperature is greatest).
From the solution to Problem 2.49, using the voltage divider relation from Problem 2.48,

)epoxy − )1,outlet = ()A − )1,outlet)
'conv
'outside

= (194 − 52.8) 0.00307
0.0300

= 14.4 K

The water will not boil.

g) Rearranging eqn. (3) with eqn. (4):

)A − )1,8 + ()A − )1,8)
'8

'>

= &'8 − ()1,> − )1,8)
'8

'>

()A − )1,8)
(
1 + '8

'>

)
= &'8 −

&'8

¤<2?'>

(1 − G/!)

)A − )1,8 = (&'8)
(

'>

'> + '8

) [
1 − 1

¤<2?'>

(1 − G/!)
]

(5)

From eqn. (3), we may estimate that &'8 ≈ ()A − )1,8)/2; thus, we can see that the second
term on the right is very small and could be neglected entirely.

Upon substituting eqn. (5) into eqn. (1) we have:

¤<2?
3)1,8

3G
=
&

!

(
'>

'> + '8

) [
1 − 1

¤<2?'>

(1 − G/!)
]

Integration gives:

)1,8 (G) − )1,in =
&

¤<2?

(
'>

'> + '8

) [
G

!
− 1

¤<2?'>

(
G

!
− G2

2!2

) ]
Because the second term in the square brackets is small, we see that the bulk temperature has
an essentially straight line variation.
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More precisely, we may think of this arrangement as a heat exchanger, where *� = 1/'>

so that

NTU> =
*�

¤<2?
=

1
¤<2?'>

=
1

(3.00 × 10−2) (0.39) (4180)
= 0.020 � 1

From Chapter 3, we recall that a heat exchanger with very low NTU causes very little change
in the temperature of the streams, as is the case here. Putting our result in terms of the outside
and inside NTUs:

)1,8 (G) − )1,in = (&'8)NTU8

(
'>

'> + '8

) [
G

!
− NTU>

(
G

!
− G2

2!2

) ]
(6)

Substituting eqn. (6) into eqn. (5):

)A − )1,in = (&'8)
(

'>

'> + '8

) {
1 − NTU>

(
1 − G

!

)
− NTU8

[
G

!
− NTU>

(
G

!
− G2

2!2

) ] }
Since NTU8 has a similar value to NTU>, the resistor temperature is indeed nearly constant,
with variations on the order of NTU0 = 0.02.
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Problem 8.13 The side wall of a house is 10 m in height. The overall heat transfer coefficient
between the interior air and the exterior surface is 2.5 W/m2K. On a cold, still winter night
)outside = −30 °C and )inside air = 25 °C. What is ℎconv on the exterior wall of the house if Y = 0.9?
Is external convection laminar or turbulent?

Solution The exterior wall is cooled by both natural convection and thermal radiation.
Both heat transfer coefficients depend on the wall temperature, which is unknown. We may solve
iteratively, starting with a guess for )|. We might assume (arbitrarily) that 2⁄3 of the temperature
difference occurs across the wall and interior, with 1⁄3 outside, so that )| ≈ (25 + 30)/3 − 30 =

−11.7 °C = 261.45 K. We may take properties of air at)5 ≈ 250 K, to avoid interpolating Table A.6:
Properties of air at 250 K

thermal conductivity : 0.0226 W/m·K
thermal diffusivity U 1.59 × 10−5 m2/s
kinematic viscosity a 1.135 × 10−5 m2/s
Prandtl number Pr 0.715

The next step is to find the Rayleigh number so that we may determine whether to use a correlation
for laminar or turbulent flow. With V = 1/)5 = 1/(250) K−1:

Ra! =
�V()| − )outside)!3

aU
=

(9.806) (−11.7 + 30) (103)
(250) (1.59) (1.135) (10−10)

= 3.98 × 1012

Since, Ra! > 109, we use eqn. (8.13b) to find Nu!:

Nu! =

{
0.825 +

0.387 Ra1/6
![

1 + (0.492/Pr)9/16
] 8/27

}2

=

{
0.825 + 0.387(3.98 × 1012)1/6[

1 + (0.492/0.715)9/16
] 8/27

}2

= 1738

Hence
ℎconv = (1738) 0.0226

10
= 3.927 W/m2K

The radiation heat transfer coefficient, for )< = (261.45 + 243.15)/2 = 252.30 K, is
ℎrad = 4Yf)3

< = 4(0.9) (5.6704 × 10−8) (252.30)3 = 3.278 W/m2K
The revised estimate of the wall temperature is found by equating the heat loss through the wall

to the heat loss by convection and radiation outside:
(2.5) (25 − )|) = (3.927 + 3.278) ()| + 30)

so that )| = −15.8 °C, which is somewhat lower than our estimate. We may repeat the calculations
with this new value (without changing the property data) finding Ra! = 3.09 × 1012, Nu! = 1799,
ℎconv = 4.065 W/m2K, )< = 250.3 K, and ℎrad = 3.201 W/m2K. Then

(2.5) (25 − )|) = (4.065 + 3.201) ()| + 30)
so that )| = −15.9 °C. Further iteration is not needed. Since the film temperature is very close to
250 K, we do not need to update the property data.

To summarize the final answer, ℎconv = 4.07 W/m2K and most of the boundary layer is turbulent.
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Problem 8.15 In eqn. (8.7), we linearized the temperature dependence of the density differ-
ence. Suppose that a wall at temperature )| sits in water at )∞ = 7 °C. Use the data in Table A.3
to plot |d| − d∞ | and |−d5 V5 ()| − )∞) | for 7 °C 6 )| 6 100 °C, where (..)5 is a value at the film
temperature. How well does the linearization work?

Solution With values from Table A.3, we may perform the indicated calculations and make
the plot. The linearization is accurate to within 10% for temperature differences up to 40 °C, and
within 13% over the entire range.

Properties of water from Table A.3

)
[
°C

]
d
[
kg/m3] V

[
K−1] (d| − d∞) −d5 V5 ()| − )∞)

7 999.9 0.0000436 0.0 0.000
12 999.5 0.000112 −0.4 −0.389
17 998.8 0.000172 −1.1 −1.08
22 997.8 0.000226 −2.1 −2.02
27 996.5 0.000275 −3.4 −3.18
32 995.0 0.000319 −4.9 −4.52
37 993.3 0.000361 −6.6 −6.05
47 989.3 0.000436 −10.6 −9.54
67 979.5 0.000565 −20.4 −18.1
87 967.4 0.000679 −32.5 −28.4

100 958.3 0.000751 −41.6 −36.2
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Problem 8.53 An inclined plate in a piece of process equipment is tilted 30◦ above horizontal
and is 20 cm long in the inclined plane and 25 cm wide in the horizontal plane. The plate is held
at 280 K by a stream of liquid flowing past its bottom side; the liquid is cooled by a refrigeration
system capable of removing 12 W. If the heat transfer from the plate to the stream exceeds 12 W,
the temperature of both the liquid and the plate will begin to rise. The upper surface of the plate
is in contact with ammonia vapor at 300 K and a varying pressure. An engineer suggests that any
rise in the bulk temperature of the liquid will signal that the pressure has exceeded a level of about
?crit = 551 kPa.

a) Explain why the gas’s pressure will affect the heat transfer to the coolant.
b) Suppose that the pressure is 255.3 kPa. What is the heat transfer (in watts) from gas to the

plate, if the plate temperature is )| = 280 K? Will the coolant temperature rise?
c) Suppose that the pressure rises to 1062 kPa. What is the heat transfer to the plate if the plate

is still at )| = 280 K? Will the coolant temperature rise?

Solution
a) Sufficiently high pressures can cause condensation of the NH3 vapor on the plate. In addition,

before condensation occurs, pressure changes may cause significant properties variations in
the NH3 vapor.

b) At 255.3 kPa, the saturation temperature is )sat = 260 K < 280 K; condensation will not
occur. Replacing � with an effective gravity � cos 60◦, the Rayleigh number is

Ra! =
� cos 60◦VΔ)!3

aU
=

9.81 × (1/2) × 0.00345 × 20 × 0.23

(5.242 × 10−6) (5.690 × 10−6)
' 9.07 × 107

The Nusselt number is

Nu! = 0.68 + 0.67Ra1/4
!

[
1 +

(
0.492

Pr

) 9/16
] −4/9

= 0.68 + 0.67 × (9.07 × 107)1/4
[
1 +

(
0.492
0.92

) 9/16
] −4/9

' 52.3

Then,

ℎ = Nu!
:

!
= 52.3 × 0.0244

0.2
= 6.38 W/m2K

and the heat transfer is

& = ℎ�()∞ − )|) = 6.38 × 0.2 × 0.25 × (300 − 280) ' 6.38 W < 12 W

and the plate and liquid temperatures will not rise.
c) At a pressure of 1062 kPa, the saturation temperature is )sat = 300 K > 280 K; condensation

occurs. The Nusselt number is

Nu! = 0.9428

[
d5 (d5 − d�)� cos 60◦ℎ′

5 �
!3

`: ()sat − )|)

] 1/4

= 1814

266h
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The heat transfer coefficient is

ℎ = Nu!
:

!
= 4353 W/m2K

The heat transfer rate is
& = ℎ�()sat − )|) = 4353 W � 12 W

and the plate and liquid temperatures will rise.
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Problem 8.54 A characteristic length scale for a falling liquid film is ℓ = (a2/�)1/3. If the
Nusselt number for a laminar film condensing on plane wall is written as Nuℓ ≡ ℎℓ/: , derive an
expression for Nuℓ in terms of Re2. Show that, when d5 � d�, Nuℓ =

(
3Re2

) −1/3.

Solution Starting with eqns. (8.58) and (8.72), we have

NuG =
ℎG

:
=
G

X
(8.58)

and

Re2 =
d5
(
d5 − d�

)
�X3

3`2 =
d5Δd �X

3

3`2 (8.72)

Then, by replacing G by ℓ

Nuℓ =
ℎℓ

:
=
ℓ

X
and, by rearranging Re2,

X =

(
3`a
�Δd

Re2
) 1/3

So

Nuℓ =
(
a2

�

) 1/3 (
�Δd

3`a

) 1/3
Re−1/3

2 =

(
Δd

3d5

) 1/3
Re−1/3

2

and when d5 � d�, Δd ' d5 so

Nuℓ ' (3Re2)−1/3 for d5 � d�
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Problem 8.59 Using data from Tables A.4 and A.5, plot V for saturated ammonia vapor for
200 K 6 ) 6 380 K, together with the ideal gas expression VIG = 1/) . Also calculate / = %/d') .
Is ammonia vapor more like an ideal gas near the triple point or critical point temperature?

Solution

200 220 240 260 280 300 320 340 360 380
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

Temperature [K]

β
[K

−1
]

Data from Table A.4
Ideal gas, βIG = 1/T

With ? and d from Table A.5, and using ' = '◦/"NH3 = 8314.5/17.031 = 488.2 J/kg-K, we
find / as below. For an ideal gas, / = 1.

) [°C] / ) [°C] /

200 0.9944 300 0.8788
220 0.9864 320 0.8263
240 0.9722 340 0.7606
260 0.9505 360 0.6784
280 0.9198 380 0.5716

Saturated ammonia vapor only behaves like an ideal gas for temperatures close the triple point
temperature (195.5 K) and is highly non-ideal in the vicinity of the critical point temperature
(405.4 K). This behavior underscores the importance of using data for V when dealing with vapors
near saturation conditions.
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Problem 9.37   

 P_vap (Pa) T_sat (K) T_sat (C) 

 1000 280.12 6.97 

 10000 318.96 45.81 

 100000 372.76 99.61 

    

t (C) Delta T (K) q (kW/m^2) h (kW/m^2K) 

6.97 1 25.1 25.1 

 2 52.9 26.5 

 3 83.7 27.9 

 4 117.2 29.3 

 5 153.6 30.7 

 6 192.9 32.1 

 7 234.9 33.6 

 8 279.8 35.0 

    

45.81 1 113.0 113.0 

 2 238.8 119.4 

 3 377.3 125.8 

 4 528.7 132.2 

 5 692.9 138.6 

 6 869.8 145.0 

 7 1059.6 151.4 

 8 1262.1 157.8 

    

99.61 1 210.3 210.3 

 2 444.5 222.2 

 3 702.5 234.2 

 4 984.2 246.1 

 5 1289.8 258.0 

 6 1619.2 269.9 

 7 1972.4 281.8 

 8 2349.4 293.7 
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Surface at 100 C
Delta T P_0 Delta P rho_0 factor mdot (kg/m^2s) q (MW/m^2)

0 101420.0 0 0.59817 0.000345552 0.0 0
1 105090.0 3670 0.61841 0.000345231 1.3 3
2 108870.0 7450 0.6392 0.000344907 2.6 6
3 112770.0 11350 0.66056 0.000344564 3.9 9
4 116780.0 15360 0.6825 0.000344241 5.3 12
5 120900.0 19480 0.70503 0.000343941 6.7 15
6 125150.0 23730 0.72816 0.000343615 8.2 18
7 129520.0 28100 0.7519 0.000343299 9.6 22
8 134010.0 32590 0.77627 0.000343 11.2 25
9 138630.0 37210 0.80127 0.000342697 12.8 29

10 143380.0 41960 0.82693 0.000342402 14.4 32

T_0 373.15
p_0 101420
R 461.404
coef 1.6678
sigma 0.31
factor1 3.0329914
hfg 2246000 treat as constant

Surface at 40 C
Delta T P_0 Delta P rho_0 factor mdot (kg/m^2s) q (MW/m^2)

0 7384.9 0 0.051242 0.000372416 0.0 0.0
1 7787.8 402.9 0.053871 0.00037186 0.1 0.3
2 8209.6 824.7 0.056614 0.000371306 0.3 0.7
3 8650.8 1265.9 0.059474 0.000370756 0.5 1.1
4 9112.4 1727.5 0.062457 0.000370213 0.6 1.5
5 9595 2210.1 0.065565 0.00036967 0.8 1.9
6 10099 2714.1 0.068803 0.000369146 1.0 2.3
7 10627 3242.1 0.072176 0.000368579 1.2 2.8
8 11177 3792.1 0.075688 0.000368067 1.4 3.2
9 11752 4367.1 0.079343 0.000367534 1.6 3.7

10 12353 4968.1 0.083147 0.000366984 1.8 4.2
40 C

T_0 313.15
p_0 7384.9
R 461.403996
coef 1.6678
sigma 0.31
factor1 3.0329914
hfg 2306000 treat as constant

Problem 9.38
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Problem 10.52: The fraction of blackbody radiation between wavelengths of 0 and
𝜆 is

𝑓 = 1
𝜎𝑇4 ∫

𝜆

0
𝑒𝜆,𝑏 𝑑𝜆 (11)

a) Work Problem 10.51.
b) Show that

𝑓(𝜆𝑇) = 15
𝜋4 ∫

∞

𝑐2/𝜆𝑇

𝑡3

𝑒𝑡 − 1 𝑑𝑡 (12)

where 𝑐2 is the second radiation constant, ℎ𝑐/𝑘𝐵, equal to 1438.8 µm⋅K.
c) Use the software of your choice to plot 𝑓(𝜆𝑇) and check that your results match

Table 10.7.

Solution. Following the solution to Problem 10.51:

𝑓 = 1
𝜎𝑇4 ∫

𝜆

0
𝑒𝜆,𝑏 𝑑𝜆 (13)

= 1
𝜎𝑇4 ∫

𝜆

0

2𝜋ℎ𝑐2
𝑜

𝜆5 [exp(ℎ𝑐𝑜/𝑘𝐵𝑇𝜆) − 1] 𝑑𝜆 (14)

= 1
𝜎𝑇4 ∫

∞

𝑐𝑜/𝜆

2𝜋ℎ𝜈3

𝑐2
𝑜 [exp(ℎ𝜈/𝑘𝐵𝑇)− 1]

𝑑𝜈 (15)

= 1
𝜎𝑇4

2𝜋𝑘4
𝐵𝑇4

ℎ3𝑐2
𝑜

∫
∞

𝑐2/𝜆𝑇

𝑡3

𝑒𝑡 − 1 𝑑𝑡 (16)

= 15
𝜋4 ∫

∞

𝑐2/𝜆𝑇

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (17)

= 15
𝜋4 ∫

∞

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥− 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (18)

= 1− 15
𝜋4 ∫

𝑐2/𝜆𝑇

0

𝑥3

𝑒𝑥 − 1 𝑑𝑥 (19)

The numerical integration can be done in various ways, depending on the software avail-
able. (On a sophisticated level, the last integral can be written in terms of the Debye
function which is available in the Gnu Scientific Library.) This equation is plotted in
Fig. 1.

Problem 10.53: Read Problem 10.52. Then find the central range of wavelengths that
includes 80% of the energy emitted by blackbodies at room temperature (300 K) and at
the solar temperature (5777 K).

Solution. From Table 10.7, 𝑓 = 0.10 at 𝜆𝑇 = 2195 µm⋅K and 𝑓 = 0.90 at 𝜆𝑇 = 9376
µm⋅K. Dividing by the absolute temperatures gives:

𝑇 [K] 𝜆0.1 [µm] 𝜆0.9 [µm]

300 7.317 31.25
5777 0.380 1.62
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Figure 1. The radiation fractional function

Problem 10.54: Read Problem 10.52. A crystalline silicon solar cell can convert pho-
tons to conducting electrons if the photons have a wavelength less than 𝜆band = 1.11
µm, the bandgap wavelength. Longer wavelengths do not produce an electric current,
but simply get absorbed and heat the silicon. For a solar cell at 320 K, make a rough
estimate of the fraction of solar radiation on wavelengths below the bandgap? Why is
this important?

Solution. The relevant temperature is that of the sun, 5777 K, not that of the solar
cell. We approximate the sun as a blackbody at 5777 K, ignoring atmospheric absorption
bands.

𝜆band𝑇 = (1.11)(5777) µm ⋅ K = 6412 µm ⋅ K
Referring to Table 10.7, a bit less than 80% of solar energy is on these shorter wavelengths
(with a more exact table, 77%). This is significant because the solar cell can convert less
than 80% of the solar energy to electricity; additional considerations lower the theoretical
efficiency still further, to less than 50%.
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Problem 10.55 Two stainless steel blocks have surface roughness of about 10 µm and Y ≈ 0.5.
They are brought into contact, and their interface is near 300 K. Ignore the points of direct contact
and make a rough estimate of the conductance across the air-filled gaps, approximating them as two
flat plates. How important is thermal radiation? Compare your result with Table 2.1 and comment
on the relative importance of the direct contact that we ignored.

Solution The gaps are very thin, so little circulation will occur in the air. Heat transfer
through the air will be by conduction. Radiation and conduction act in parallel across the gap.
The temperature difference across the gap will likely be small, so we may use a radiation thermal
resistance. The conductance is the reciprocal of the thermal resistance, per unit area, so ℎgap =

ℎcond + ℎrad.
Letting the gap width be X = 10 µm and taking :air = 0.0264 W/m·K, we can estimate

ℎcond ≈ :

X
=

0.0264
10 × 10−6 = 2, 640 W/m2K

With eqns. (2.29) and (10.25):

F1–2 =

(
1
Y1

+ 1
Y2

− 1
) −1

=

(
2

0.5
− 1

) −1
=

1
3

ℎrad = 4f)3
<F1–2 = 4(5.67 × 10−8) (300)3(0.3333) = 2.041 W/m2K

Then
ℎgap = ℎcond + ℎrad = 2640 + 2.041 = 2, 642 W/m2K

This conductance is on the lower end of the range of given in Table 2.1. Conduction through con-
tacting points will add significantly to the heat transfer, although it will be highly multidimensional
and not easily calculated. Thermal radiation, however, is negligible.
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