
Apache NiFi

 i

Apache NiFi

 i

About the Tutorial

Apache NiFi is an open source data ingestion platform. It was developed by NSA and is

now being maintained and further development is supported by Apache foundation. It is

based on Java, and runs in Jetty server. It is licensed under the Apache license version

2.0.

In this tutorial, we will be explaining the basics of Apache NiFi and its features.

Audience

This tutorial is designed for software professionals who want to learn the basics of Apache

NiFi and its programming concepts in simple and easy steps. It describes the components

of Apache NiFi with suitable examples.

Prerequisites

You should have a basic understanding of Java, ETL, Data ingestion and transformation.

The user should be familiar with web server, platform configuration, and regex patterns.

Copyright & Disclaimer

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache NiFi

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Apache NiFi — Introduction .. 1

Apache NiFi - General Features ... 1

Apache NiFi - Key Concepts ... 1

Apache NiFi Advantages .. 2

Apache NiFi Disadvantages ... 2

2. Apache NiFi — Basic Concepts .. 3

3. Apache NiFi — Environment Setup ... 5

4. Apache NiFi — User Interface ... 6

Components of Apache NiFi .. 7

5. Apache NiFi — Processors ... 11

GetFile ... 11

GetFile Settings .. 11

GetFile Scheduling ... 12

GetFile Properties .. 13

GetFile Comments ... 14

PutFile .. 14

PutFile Settings .. 14

PutFile Scheduling ... 15

PutFile Properties .. 16

PutFile Comments ... 17

6. Apache NiFi — Processors Categorization ... 18

Apache NiFi

 iii

7. Apache NiFi — Processors Relationship .. 20

8. Apache NiFi — FlowFile ... 22

9. Apache NiFi — Queues .. 24

10. Apache NiFi — Process Groups ... 26

11. Apache NiFi — Labels .. 28

12. Apache NiFi — Configuration .. 29

Core properties .. 29

State Management .. 30

FlowFile Repository ... 31

13. Apache NiFi — Administration .. 33

zookeeper .. 33

Enable HTTPS ... 33

Other properties for administration .. 34

14. Apache NiFi — Creating Flows... 36

15. Apache NiFi — Templates ... 38

Create Template .. 38

Download Template .. 38

Upload Template ... 39

Add Template .. 39

16. Apache NiFi — API .. 40

17. Apache NiFi — Data Provenance ... 42

18. Apache NiFi — Monitoring .. 45

In built Monitoring .. 45

19. Apache NiFi — Upgrade .. 50

20. Apache NiFi — Remote Process Group .. 52

21. Apache NiFi — Controller Settings .. 54

DBCPConnectionPool .. 54

22. Apache NiFi — Reporting Task .. 56

Apache NiFi

 iv

MonitorMemory .. 56

23. Apache NiFi — Custom Processor ... 57

24. Apache NiFi — Custom Controllers Service ... 59

25. Apache NiFi — Logging .. 60

Apache NiFi

 1

Apache NiFi is a powerful, easy to use and reliable system to process and distribute data

between disparate systems. It is based on Niagara Files technology developed by NSA and

then after 8 years donated to Apache Software foundation. It is distributed under Apache

License Version 2.0, January 2004. The latest version for Apache NiFi is 1.7.1.

Apache NiFi is a real time data ingestion platform, which can transfer and manage data

transfer between different sources and destination systems. It supports a wide variety of

data formats like logs, geo location data, social feeds, etc. It also supports many protocols

like SFTP, HDFS, and KAFKA, etc. This support to wide variety of data sources and

protocols making this platform popular in many IT organizations.

Apache NiFi - General Features

The general features of Apache NiFi are as follows:

● Apache NiFi provides a web-based user interface, which provides seamless

experience between design, control, feedback, and monitoring.

● It is highly configurable. This helps users with guaranteed delivery, low latency,

high throughput, dynamic prioritization, back pressure and modify flows on

runtime.

● It also provides data provenance module to track and monitor data from the start

to the end of the flow.

● Developers can create their own custom processors and reporting tasks according

to their needs.

● NiFi also provides support to secure protocols like SSL, HTTPS, SSH and other

encryptions.

● It also supports user and role management and also can be configured with LDAP

for authorization.

Apache NiFi - Key Concepts

The key concepts of Apache NiFi are as follows:

● Process Group: It is a group of NiFi flows, which helps a user to manage and keep

flows in hierarchical manner.

● Flow: It is created connecting different processors to transfer and modify data if

required from one data source or sources to another destination data sources.

● Processor: A processor is a java module responsible for either fetching data from

sourcing system or storing it in destination system. Other processors are also used

to add attributes or change content in flowfile.

● Flowfile: It is the basic usage of NiFi, which represents the single object of the

data picked from source system in NiFi. NiFi processor makes changes to flowfile

1. Apache NiFi — Introduction

Apache NiFi

 2

while it moves from the source processor to the destination. Different events like

CREATE, CLONE, RECEIVE, etc. are performed on flowfile by different processors in

a flow.

● Event: Events represent the change in flowfile while traversing through a NiFi Flow.

These events are tracked in data provenance.

● Data provenance: It is a repository. It also has a UI, which enables users to check

the information about a flowfile and helps in troubleshooting if any issues that arise

during the processing of a flowfile.

Apache NiFi Advantages

● Apache NiFi enables data fetching from remote machines by using SFTP and

guarantees data lineage.

● Apache NiFi supports clustering, so it can work on multiple nodes with same flow

processing different data, which increase the performance of data processing.

● It also provides security policies on user level, process group level and other

modules too.

● Its UI can also run on HTTPS, which makes the interaction of users with NiFi secure.

● NiFi supports around 188 processors and a user can also create custom plugins to

support a wide variety of data systems.

Apache NiFi Disadvantages

● When node gets disconnected from NiFi cluster while a user is making any changes

in it, then the flow.xml becomes invalid. A node cannot connect back to the cluster

unless admin manually copies flow.xml from the connected node.

● Apache NiFi have state persistence issue in case of primary node switch, which

sometimes makes processors not able to fetch data from sourcing systems.

Apache NiFi

 3

Apache NiFi consist of a web server, flow controller and a processor, which runs on Java

Virtual Machine. It also has 3 repositories Flowfile Repository, Content Repository, and

Provenance Repository as shown in the figure below.

Flowfile Repository

This repository stores the current state and attributes of every flowfile that goes through

the data flows of apache NiFi. The default location of this repository is in the root directory

of apache NiFi. The location of this repository can be changed by changing the property

named "nifi.flowfile.repository.directory".

Content Repository

This repository contains all the content present in all the flowfiles of NiFi. Its default

directory is also in the root directory of NiFi and it can be changed using

"org.apache.nifi.controller.repository.FileSystemRepository" property. This directory uses

large space in disk so it is advisable to have enough space in the installation disk.

Provenance Repository

The repository tracks and stores all the events of all the flowfiles that flow in NiFi. There

are two provenance repositories – volatile provenance repository (in this repository all

the provenance data get lost after restart) and persistent provenance repository. Its

default directory is also in the root directory of NiFi and it can be changed using

“org.apache.nifi.provenance.PersistentProvenanceRepository” and

“org.apache.nifi.provenance.VolatileProvenanceRepositor” property for the respective

repositories.

2. Apache NiFi — Basic Concepts

Apache NiFi

 4

Apache NiFi

 5

In this chapter, we will learn about the environment setup of Apache NiFi. The steps for

installation of Apache NiFi are as follows:

Step 1: Install the current version of Java in your computer. Please set the JAVA_HOME

in your machine. You can check the version as shown below:

In Windows Operating System (OS) (using command prompt):

> java -version

In UNIX OS (Using Terminal):

$ echo $JAVA_HOME

Step 2: Download Apache NiFi from https://nifi.apache.org/download.html

● For windows OS download ZIP file.

● For UNIX OS download TAR file.

● For docker images, go to the following link

https://hub.docker.com/r/apache/nifi/.

Step 3: The installation process for Apache NiFi is very easy. The process differs with the

OS:

● Windows OS: Unzip the zip package and the Apache NiFi is installed.

● UNIX OS: Extract tar file in any location and the Logstash is installed.

$tar –xvf nifi-1.6.0-bin.tar.gz

Step 4: Open command prompt, go to the bin directory of NiFi. For example, C:\nifi-

1.7.1\bin, and execute run-nifi.bat file.

C:\nifi-1.7.1\bin>run-nifi.bat

Step 5: It will take a few minutes to get the NiFi UI up. A user can check nifi-app.log,

once NiFi UI is up then, a user can enter http://localhost:8080/nifi/ to access UI.

3. Apache NiFi — Environment Setup

https://hub.docker.com/r/apache/nifi/
http://localhost:8080/nifi/

Apache NiFi

 6

Apache is a web-based platform that can be accessed by a user using web UI. The NiFi UI

is very interactive and provides a wide variety of information about NiFi. As shown in the

image below, a user can access information about the following attributes:

 Active Threads

 Total queued data

 Transmitting Remote Process Groups

 Not Transmitting Remote Process Groups

 Running Components

 Stopped Components

 Invalid Components

 Disabled Components

 Up to date Versioned Process Groups

 Locally modified Versioned Process Groups

 Stale Versioned Process Groups

 Locally modified and Stale Versioned Process Groups

 Sync failure Versioned Process Groups

4. Apache NiFi — User Interface

Apache NiFi

 7

Components of Apache NiFi

Apache NiFi UI has the following components:

Processors

User can drag the process icon on the canvas and select the desired processor for the data

flow in NiFi.

Input port

Below icon is dragged to canvas to add the input port into any data flow.

Input port is used to get data from the processor, which is not present in that process

group.

After dragging this icon, NiFi asks to enter the name of the Input port and then it is added

to the NiFi canvas.

Processor Icon

Input port Icon

Apache NiFi

 8

Output port

The below icon is dragged to canvas to add the output port into any data flow.

The output port is used to transfer data to the processor, which is not present in that

process group.

After dragging this icon, NiFi asks to enter the name of the Output port and then it is

added to the NiFi canvas.

Process Group

A user uses below icon to add process group in the NiFi canvas.

Output port Icon

Apache NiFi

 9

After dragging this icon, NiFi asks to enter the name of the Process Group and then it is

added to the NiFi canvas.

Process Group Icon

Apache NiFi

 10

Remote Process Group

This is used to add Remote process group in NiFi canvas.

Funnel

Funnel is used to transfer the output of a processor to multiple processors. User can use

the below icon to add the funnel in a NiFi data flow.

Template

This icon is used to add a data flow template to NiFi canvas. This helps to reuse the data

flow in the same or different NiFi instances.

After dragging, a user can select the templates already added in the NiFi.

Label

These are used to add text on NiFi canvas about any component present in NiFi. It offers

a range of colors used by a user to add aesthetic sense.

Remote Process Group Icon

Funnel Icon

Template Icon

Label Icon

Apache NiFi

 11

Apache NiFi processors are the basic blocks of creating a data flow. Every processor has

different functionality, which contributes to the creation of output flowfile. Dataflow shown

in the image below is fetching file from one directory using GetFile processor and storing

it in another directory using PutFile processor.

GetFile

GetFile process is used to fetch files of a specific format from a specific directory. It also

provides other options to user for more control on fetching. We will discuss it in properties

section below.

GetFile Settings

Following are the different settings of GetFile processor:

Name

In the Name setting, a user can define any name for the processors either according to

the project or by that, which makes the name more meaningful.

Enable

A user can enable or disable the processor using this setting.

Penalty Duration

This setting lets a user to add the penalty time duration, in the event of flowfile failure.

Yield Duration

5. Apache NiFi — Processors

Apache NiFi

 12

This setting is used to specify the yield time for processor. In this duration, the process is

not scheduled again.

Bulletin Level

This setting is used to specify the log level of that processor.

Automatically Terminate Relationships

This has a list of check of all the available relationship of that particular process. By

checking the boxes, a user can program processor to terminate the flowfile on that event

and do not send it further in the flow.

GetFile Scheduling

These are the following scheduling options offered by the GetFile processor:

Schedule Strategy

You can either schedule the process on time basis by selecting time driven or a specified

CRON string by selecting a CRON driver option.

Concurrent Tasks

This option is used to define the concurrent task schedule for this processor.

Execution

A user can define whether to run the processor in all nodes or only in Primary node by

using this option.

Run Schedule

Apache NiFi

 13

It is used to define the time for time driven strategy or CRON expression for CRON driven

strategy.

GetFile Properties

GetFile offers multiple properties as shown in the image below raging compulsory

properties like Input directory and file filter to optional properties like Path Filter and

Maximum file Size. A user can manage file fetching process using these properties.

Apache NiFi

 14

GetFile Comments

This Section is used to specify any information about processor.

PutFile

The PutFile processor is used to store the file from the data flow to a specific location.

PutFile Settings

The PutFile processor has the following settings:

Name

In the Name setting, a user can define any name for the processors either according to

the project or by that which makes the name more meaningful.

Enable

A user can enable or disable the processor using this setting.

Penalty Duration

This setting lets a user add the penalty time duration, in the event of flowfile failure.

Apache NiFi

 15

Yield Duration

This setting is used to specify the yield time for processor. In this duration, the process

does not get scheduled again.

Bulletin Level

This setting is used to specify the log level of that processor.

Automatically Terminate Relationships

This settings has a list of check of all the available relationship of that particular process.

By checking the boxes, user can program processor to terminate the flowfile on that event

and do not send it further in the flow.

PutFile Scheduling

These are the following scheduling options offered by the PutFile processor:

Schedule Strategy

You can schedule the process on time basis either by selecting timer driven or a specified

CRON string by selecting CRON driver option. There is also an Experimental strategy Event

Driven, which will trigger the processor on a specific event.

Concurrent Tasks

This option is used to define the concurrent task schedule for this processor.

Execution

A user can define whether to run the processor in all nodes or only in primary node by

using this option.

Apache NiFi

 16

Run Schedule

It is used to define the time for timer driven strategy or CRON expression for CRON driven

strategy.

PutFile Properties

The PutFile processor provides properties like Directory to specify the output directory for

the purpose of file transfer and others to manage the transfer as shown in the image

below.

Apache NiFi

 17

PutFile Comments

This Section is used to specify any information about processor.

Apache NiFi

 18

In this chapter, we will discuss process categorization in Apache NiFi.

Data Ingestion Processors

The processors under Data Ingestion category are used to ingest data into the NiFi data

flow. These are mainly the starting point of any data flow in apache NiFi. Some of the

processors that belong to these categories are GetFile, GetHTTP, GetFTP, GetKAFKA, etc.

Routing and Mediation Processors

Routing and Mediation processors are used to route the flowfiles to different processors or

data flows according to the information in attributes or content of those flowfiles. These

processors are also responsible to control the NiFi data flows. Some of the processors that

belong to this category are RouteOnAttribute, RouteOnContent, ControlRate, RouteText,

etc.

Database Access Processors

The processors of this Database Access category are capable of selecting or inserting data

or executing and preparing other SQL statements from database. These processors mainly

use data connection pool controller setting of Apache NiFi. Some of the processors that

belong to this category are ExecuteSQL, PutSQL, PutDatabaseRecord, ListDatabaseTables,

etc.

Attribute Extraction Processors

Attribute Extraction Processors are responsible to extract, analyze, change flowfile

attributes processing in the NiFi data flow. Some of the processors that belong to this

category are UpdateAttribute, EvaluateJSONPath, ExtractText, AttributesToJSON, etc.

System Interaction Processors

System Interaction processors are used to run processes or commands in any operating

system. These processors also run scripts in many languages to interact with a variety of

systems. Some of the processors that belong to this category are ExecuteScript,

ExecuteProcess, ExecuteGroovyScript, ExecuteStreamCommand, etc.

Data Transformation Processors

Processors that belong to Data Transformation are capable of altering content of the

flowfiles. These can be used to fully replace the data of a flowfile normally used when a

user has to send flowfile as an HTTP body to invokeHTTP processor. Some of the

processors that belong to this category are ReplaceText, JoltTransformJSON, etc.

Sending Data Processors

Sending Data Processors are generally the end processor in a data flow. These processors

are responsible to store or send data to the destination server. After successful storing or

6. Apache NiFi — Processors Categorization

Apache NiFi

 19

sending the data, these processors DROP the flowfile with success relationship. Some of

the processors that belong to this category are PutEmail, PutKafka, PutSFTP, PutFile,

PutFTP, etc.

Splitting and Aggregation Processors

These processors are used to split and merge the content present in a flowfile. Some of

the processors that belong to this category are PutEmail, PutKafka, PutSFTP, PutFile,

PutFTP, etc.

HTTP Processors

These processors deal with the HTTP and HTTPS calls. Some of the processors that belong

to this category are InvokeHTTP, PostHTTP, ListenHTTP, etc.

AWS Processors

AWS processors are responsible to interaction with Amazon web services system. Some

of the processors that belong to this category are GetSQS, PutSNS, PutS3Object,

FetchS3Object, etc.

Apache NiFi

 20

In an Apache NiFi data flow, flowfiles move from one to another processor through

connection that gets validated using a relationship between processors. Whenever a

connection is created, a developer selects one or more relationships between those

processors.

As you can see in the above image, the check boxes in black rectangle are relationships.

If a developer selects these check boxes then, the flowfile will terminate in that particular

processor, when the relationship is success or failure or both.

Success

When a processor successfully processes a flowfile like store or fetch data from any

datasource without getting any connection, authentication or any other error, then the

flowfile goes to success relationship.

Failure

When a processor is not able to process a flowfile without errors like authentication error

or connection problem, etc. then the flowfile goes to a failure relationship.

7. Apache NiFi — Processors Relationship

Apache NiFi

 21

A developer can also transfer the flowfiles to other processors using connections. The

developer can select and also load balance it, but load balancing is just released in version

1.8, which will not be covered in this tutorial.

As you can see in the above image the connection marked in red have failure relationship,

which means all flowfiles with errors will go to the processor in left and respectively all the

flowfiles without errors will be transferred to the connection marked in green.

Let us now proceed with the other relationships.

comms.failure

This relationship is met, when a Flowfile could not be fetched from the remote server due

to a communications failure.

not.found

Any Flowfile for which we receive a ‘Not Found’ message from the remote server will move

to not.found relationship.

permission.denied

When NiFi unable to fetch a flowfile from the remote server due to insufficient permission,

it will move through this relationship.

Apache NiFi

 22

A flowfile is a basic processing entity in Apache NiFi. It contains data contents and

attributes, which are used by NiFi processors to process data. The file content normally

contains the data fetched from source systems. The most common attributes of an Apache

NiFi FlowFile are:

UUID

This stands for Universally Unique Identifier, which is a unique identity of a flowfile

generated by NiFi.

Filename

This attribute contains the filename of that flowfile and it should not contain any directory

structure.

File Size

It contains the size of an Apache NiFi FlowFile.

mime.type

It specifies the MIME Type of this FlowFile.

8. Apache NiFi — FlowFile

Apache NiFi

 23

path

This attribute contains the relative path of a file to which a flowfile belongs and does not

contain the file name.

Apache NiFi

 24

The Apache NiFi data flow connection has a queuing system to handle the large amount

of data inflow. These queues can handle very large amount of FlowFiles to let the processor

process them serially.

The queue in the above image has 1 flowfile transferred through success relationship. A

user can check the flowfile by selecting the List queue option in the drop down list. In

case of any overload or error, a user can also clear the queue by selecting the empty

queue option and then the user can restart the flow to get those files again in the data

flow.

The list of flowfiles in a queue, consist of position, UUID, Filename, File size, Queue

Duration, and Lineage Duration. A user can see all the attributes and content of a flowfile

by clicking the info icon present at the first column of the flowfile list.

9. Apache NiFi — Queues

Apache NiFi

 25

Apache NiFi

 26

In Apache NiFi, a user can maintain different data flows in different process groups. These

groups can be based on different projects or the organizations, which Apache NiFi instance

supports.

The fourth symbol in the menu at the top of the NiFi UI as shown in the above picture is

used to add a process group in the NiFi canvas. The process group named

“Tutorialspoint.com_ProcessGroup” contains a data flow with four processors currently in

stop stage as you can see in the above picture. Process groups can be created in

hierarchical manner to manage the data flows in better structure, which is easy to

understand.

In the footer of NiFi UI, you can see the process groups and can go back to the top of the

process group a user is currently present in.

To see the full list of process groups present in NiFi, a user can go to the summary by

using the menu present in the left top side of the NiFi UI. In summary, there is process

groups tab where all the process groups are listed with parameters like Version State,

Transferred/Size, In/Size, Read/Write, Out/Size, etc. as shown in the below picture.

10. Apache NiFi — Process Groups

Apache NiFi

 27

Apache NiFi

 28

Apache NiFi offers labels to enable a developer to write information about the components

present in the NiFI canvas. The leftmost icon in the top menu of NiFi UI is used to add the

label in NiFi canvas.

A developer can change the color of the label and the size of the text with a right-click on

the label and choose the appropriate option from the menu.

11. Apache NiFi — Labels

Apache NiFi

 29

Apache NiFi is highly configurable platform. The nifi.properties file in conf directory

contains most of the configuration.

The commonly used properties of Apache NiFi are as follows:

Core properties

This section contains the properties, which are compulsory to run a NiFi instance.

S. No. Property Name Default Value Description

1 nifi.flow.configuration.file ./conf/flow.xml.gz This property

contains the path to

flow.xml file. This

file contains all the

data flows created in

NiFi.

2 nifi.flow.configuration.archive.

enabled

true This property is

used to enable or

disable archiving in

NiFi.

3 nifi.flow.configuration.archive.

dir

./conf/archive/ This property is

used to specify the

archive directory.

4 nifi.flow.configuration.archive.

max.time

30 days This is used to

specify the retention

time for archiving

content.

5 nifi.flow.configuration.archive.

max.storage

500 MB it contains the

maximum size of

archiving directory

can grow.

6 nifi.authorizer.configuration.fil

e

./conf/authorizers.xml To specify the

authorizer

configuration file,

which is used for

user authorization.

12. Apache NiFi — Configuration

Apache NiFi

 30

7 nifi.login.identity.provider.con

figuration.file

./conf/login-identity-

providers.xml

This property

contains the

configuration of

login identity

providers,

8 nifi.templates.directory ./conf/templates This property is

used to specify the

directory, where

NiFi templates will

be stored.

9 nifi.nar.library.directory ./lib This property

contains the path to

library, which NiFi

will use to load all

the components

using NAR files

present in this lib

folder.

10 nifi.nar.working.directory ./work/nar/ This directory will be

storing the

unpacked nar files,

once NiFi processes

them.

11 nifi.documentation.working.di

rectory

./work/docs/compone

nts

This directory

contains the

documentation of all

components.

State Management

These properties are used to store the state of the components helpful to start the

processing, where components left after a restart and in the next schedule running.

S. No. Property Name Default Value Description

1 nifi.state.management.configur

ation.file

./conf/state-

management.xml

This property

contains the path to

state-

management.xml

file. This file

contains all

component state

present in the data

Apache NiFi

 31

flows of that NiFi

instance.

2 nifi.state.management.provider

.local

local-provider It contains the ID of

the local state

provider.

3 nifi.state.management.provider

.cluster

zk-provider This property

contains the ID of

the cluster-wide

state provider. This

will be ignored if NiFi

is not clustered but

must be populated if

running in a cluster.

4 nifi.state.management.embedd

ed.zookeeper.start

false This property

specifies whether or

not this instance of

NiFi should run an

embedded

ZooKeeper server.

5 nifi.state.management.embedd

ed.zookeeper.properties

./conf/zookeeper.prop

erties

This property

contains the path of

the properties file

that provides the

ZooKeeper

properties to use if

<nifi.state.manage

ment.embedded.zo

okeeper.start> is

set to true.

FlowFile Repository

Let us now look into the important details of the FlowFile repository:

S. No. Property Name Default Value Description

1 nifi.flowfile.repository.implem

entation

org.apache.nifi.controller

.repository.WriteAheadFl

owFileRepository

This property is

used to specify

either to store the

flowfiles in memory

or disk. If a user

want to stores the

flowfiles in memory

Apache NiFi

 32

then change to

“org.apache.nifi.con

troller.repository.Vo

latileFlowFileReposit

ory”.

2 nifi.flowfile.repository.directo

ry

./flowfile_repository To specify the

directory for flowfile

repository.

Apache NiFi

 33

Apache NiFi offers support to multiple tools like ambari, zookeeper for administration

purposes. NiFi also provides configuration in nifi.properties file to set up HTTPS and other

things for administrators.

zookeeper

NiFi itself does not handle voting process in cluster. This means when a cluster is created,

all the nodes are primary and coordinator. So, zookeeper is configured to manage the

voting of primary node and coordinator. The nifi.properties file contains some properties

to setup zookeeper.

S No. Property name Default Value description

1 nifi.state.management.embed

ded.zookeeper.properties

./conf/zookeep

er.properties

To specify the path and

name of zookeeper

property file.

2 nifi.zookeeper.connect.string empty To specify the connection

string of zookeeper.

3 nifi.zookeeper.connect.timeou

t

3 secs To specify the connection

timeout of zookeeper with

NiFi.

4 nifi.zookeeper.session.timeou

t

3 secs To specify the session

timeout of zookeeper with

NiFi.

5 nifi.zookeeper.root.node /nifi To specify root node for

zookeeper.

6 nifi.zookeeper.auth.type empty To specify authentication

type for zookeeper.

Enable HTTPS

To use NiFi over HTTPS, administrators have to generate keystore and truststore and set

some properties in the nifi.properties file. The TLS toolkit can be used to generate all the

necessary keys to enable HTTPS in apache NiFi.

13. Apache NiFi — Administration

Apache NiFi

 34

S No. Property name Default

Value

description

1 nifi.web.https.port empty To specify https port

number.

2 nifi.web.https.network.interfac

e.default

empty Default interface for https

in NiFi.

3 nifi.security.keystore empty To specify the path and

file name of keystore.

4 nifi.security.keystoreType empty To specify the type of

keystore type like JKS.

5 nifi.security.keystorePasswd empty To specify keystore

password.

6 nifi.security.truststore empty To specify the path and

file name of truststore.

7 nifi.security.truststoreType empty To specify the type of

truststore type like JKS.

8 nifi.security.truststorePasswd empty To specify truststore

password.

Other properties for administration

There are some other properties, which are used by administrators to manage the NiFi

and for its service continuity.

S No. Property name Default

Value

Description

1 nifi.flowcontroller.graceful.shutd

own.period

10 sec To specify the time to

gracefully shutdown the

NiFi flowcontroller.

2 nifi.administrative.yield.duration 30 sec To specify the

administrative yield

duration for NiFi.

Apache NiFi

 35

3 nifi.authorizer.configuration.file ./conf/author

izers.xml

To specify the path and

file name of authorizer

configuration file.

4 nifi.login.identity.provider.config

uration.file

./conf/login-

identity-

providers.xm

l

To specify the path and

file name of login identity

provider configuration

file.

Apache NiFi

 36

Apache NiFi offers a large number of components to help developers to create data flows

for any type of protocols or data sources. To create a flow, a developer drags the

components from menu bar to canvas and connects them by clicking and dragging the

mouse from one component to other.

Generally, a NiFi has a listener component at the starting of the flow like getfile, which

gets the data from source system. On the other end of there is a transmitter component

like putfile and there are components in between, which process the data.

For example, let create a flow, which takes an empty file from one directory and add some

text in that file and put it in another directory.

 To begin with, drag the processor icon to the NiFi canvas and select GetFile

processor from the list.

 Create an input directory like c:\inputdir.

 Right-click on the processor and select configure and in properties tab add Input

Directory (c:\inputdir) and click apply and go back to canvas.

 Drag the processor icon to the canvas and select the ReplaceText processor from

the list.

 Right-click on the processor and select configure. In the properties tab, add some

text like “Hello tutorialspoint.com” in the textbox of Replacement Value and click

apply.

 Go to settings tab, check the failure checkbox at right hand side, and then go back

to the canvas.

 Connect GetFIle processor to ReplaceText on success relationship.

 Drag the processor icon to the canvas and select the PutFile processor from the

list.

 Create an output directory like c:\outputdir.

 Right-click on the processor and select configure. In the properties tab, add

Directory (c:\outputdir) and click apply and go back to canvas.

 Go to settings tab and check the failure and success checkbox at right hand side

and then go back to the canvas.

14. Apache NiFi — Creating Flows

Apache NiFi

 37

 Connect the ReplaceText processor to PutFile on success relationship.

 Now start the flow and add an empty file in input directory and you will see that, it

will move to output directory and the text will be added to the file.

By following the above steps, developers can choose any processor and other NiFi

component to create suitable flow for their organisation or client.

Apache NiFi

 38

Apache NiFi offers the concept of Templates, which makes it easier to reuse and distribute

the NiFi flows. The flows can be used by other developers or in other NiFi clusters. It also

helps NiFi developers to share their work in repositories like GitHub.

Create Template

Let us create a template for the flow, which we created in chapter no 15 “Apache NiFi -

Creating Flows”.

Select all the components of the flow using shift key and then click on the create template

icon at the left hand side of the NiFi canvas. You can also see a tool box as shown in the

above image. Click on the icon create template marked in blue as in the above picture.

Enter the name for the template. A developer can also add description, which is optional.

Download Template

Then go to the NiFi templates option in the menu present at the top right hand corner of

NiFi UI as show in the picture below.

15. Apache NiFi — Templates

Apache NiFi

 39

Now click the download icon (present at the right hand side in the list) of the template,

you want to download. An XML file with the template name will get downloaded.

Upload Template

To use a template in NiFi, a developer will have to upload its xml file to NiFi using UI.

There is an Upload Template icon (marked with blue in below image) beside Create

Template icon click on that and browse the xml.

Add Template

In the top toolbar of NiFi UI, the template icon is before the label icon. The icon is marked

in blue as shown in the picture below.

Drag the template icon and choose the template from the drop down list and click add. It

will add the template to NiFi canvas.

Apache NiFi

 40

NiFi offers a large number of API, which helps developers to make changes and get

information of NiFi from any other tool or custom developed applications. In this tutorial,

we will use postman app in google chrome to explain some examples.

To add postman to your Google Chrome, go to the below mentioned URL and click add to

chrome button. You will now see a new app added to your Google Chrome.

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomo

p?hl=en

The current version of NiFi rest API is 1.8.0 and the documentation is present in the below

mentioned URL.

https://nifi.apache.org/docs/nifi-docs/rest-api/index.html

Following are the most used NiFi rest API Modules:

 To call a NiFi rest API use the following URL:

http://<nifi url>:<nifi port>/nifi-api/<api-path>

 In case HTTPS is enabled

https://<nifi url>:<nifi port>/nifi-api/<api-path>

S No. API module

Name

api-path Description

1 Access /access To authenticate user and get

access token from NiFi.

2 Controller /controller To manage the cluster and create

reporting task.

3 Controller

Services

/controller-services It is used to manage controller

services and update controller

service references.

4 Reporting Tasks /reporting-tasks To manage reporting tasks.

5 Flow /flow To get the data flow metadata and

component status and query

history.

6 Process Groups /process-groups To upload and instantiate a

template and create components.

16. Apache NiFi — API

https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://chrome.google.com/webstore/detail/postman/fhbjgbiflinjbdggehcddcbncdddomop?hl=en
https://nifi.apache.org/docs/nifi-docs/rest-api/index.html

Apache NiFi

 41

7 Processors /processors To create and schedule a

processor and set its properties.

8 Connections /connections To create a connection, set queue

priority and update connection

destination

9 FlowFile Queues /flowfile-queues To view queue contents, download

flowfile content, and empty queue.

10 Remote Process

Groups

/remote-process-

groups

To create a remote group and

enable transmission.

11 Provenance /provenance To query provenance, and search

event lineage.

Let us now consider an example and run on postman to get the details about the running

NiFi instance.

Request

GET http://localhost:8080/nifi-api/flow/about

Response

{

 "about": {

 "title": "NiFi",

 "version": "1.7.1",

 "uri": "http://localhost:8080/nifi-api/",

 "contentViewerUrl": "../nifi-content-viewer/",

 "timezone": "SGT",

 "buildTag": "nifi-1.7.1-RC1",

 "buildTimestamp": "07/12/2018 12:54:43 SGT"

 }

}

http://localhost:8080/nifi-api/flow/about

Apache NiFi

 42

Apache NiFi logs and store every information about the events occur on the ingested data

in the flow. Data provenance repository stores this information and provides UI to search

this event information. Data provenance can be accessed for full NiFi level and processor

level also.

The following table lists down the different fields in the NiFi Data Provenance event list

have following fields:

S No. Field Name Description

1 Date/Time Date and time of event.

2 Type Type of Event like ‘CREATE’.

3 FlowFile Uuid UUID of the flowfile on which the event is performed.

4 Size Size of the flowfile.

5 Component

Name

Name of the component which performed the event.

6 Component

Type

Type of the component.

7 Show lineage Last column has the show lineage icon, which is used to see

the flowfile lineage as shown in the below image.

17. Apache NiFi — Data Provenance

Apache NiFi

 43

To get more information about the event, a user can click on the information icon present

in the first column of the NiFi Data Provenance UI.

There are some properties in nifi.properties file, which are used to manage NiFi Data

Provenance repository.

S. No. Property Name Default Value Description

1 nifi.provenance.repository.direct

ory.default

./provenance_reposi

tory

To specify the

default path of NiFi

data provenance .

2 nifi.provenance.repository.max.s

torage.time

24 hours To specify the

maximum retention

time of NiFi data

provenance.

3 nifi.provenance.repository.max.s

torage.size

1 GB To specify the

maximum storage

of NiFi data

provenance.

4 nifi.provenance.repository.rollove

r.time

30 secs To specify the

rollover time of NiFi

data provenance.

5 nifi.provenance.repository.rollove

r.size

100 MB To specify the

rollover size of NiFi

data provenance.

6 nifi.provenance.repository.indexe

d.fields

EventType,

FlowFileUUID,

Filename,

To specify the fields

used to search and

Apache NiFi

 44

ProcessorID,

Relationship

index NiFi data

provenance.

Apache NiFi

 45

In Apache NiFi, there are multiple ways to monitor the different statistics of the system

like errors, memory usage, CPU usage, Data Flow statistics, etc. We will discuss the most

popular ones in this tutorial.

In built Monitoring

In this section, we will learn more about in built monitoring in Apache NiFi.

Bulletin Board

The bulletin board shows the latest ERROR and WARNING getting generated by NiFi

processors in real time. To access the bulletin board, a user will have to go the right hand

drop down menu and select the Bulletin Board option. It refreshes automatically and a

user can disable it also. A user can also navigate to the actual processor by double-clicking

the error. A user can also filter the bulletins by working out with the following:

 by message

 by name

 by id

 by group id

Data provenance UI

To monitor the Events occurring on any specific processor or throughout NiFi, a user can

access the Data provenance from the same menu as the bulletin board. A user can also

filter the events in data provenance repository by working out with the following fields:

 by component name

 by component type

 by type

NiFi Summary UI

Apache NiFi summary also can be accessed from the same menu as the bulletin board.

This UI contains information about all the components of that particular NiFi instance or

cluster. They can be filtered by name, by type or by URI. There are different tabs for

different component types. Following are the components, which can be monitored in the

NiFi summary UI:

 Processors

 Input ports

 Output ports

 Remote process groups

 Connections

18. Apache NiFi — Monitoring

Apache NiFi

 46

 Process groups

In this UI, there is a link at the bottom right hand side named system diagnostics to check

the JVM statistics.

Reporting Tasks

Apache NiFi provides multiple reporting tasks to support external monitoring systems like

Ambari, Grafana, etc. A developer can create a custom reporting task or can configure the

inbuilt ones to send the metrics of NiFi to the externals monitoring systems. The following

table lists down the reporting tasks offered by NiFi 1.7.1.

S. No. Reporting Task Name Description

1 AmbariReportingTask To setup Ambari Metrics Service for NiFi.

2 ControllerStatusReportingTask To report the information from the NiFi

summary UI for the last 5 minute.

3 MonitorDiskUsage To report and warn about the disk usage

of a specific directory.

4 MonitorMemory To monitor the amount of Java Heap used

in a Java Memory pool of JVM.

5 SiteToSiteBulletinReportingTask To report the errors and warning in

bulletins using Site to Site protocol.

6 SiteToSiteProvenanceReportingT

ask

To report the NiFi Data Provenance

events using Site to Site protocol.

NiFi API

There is an API named system diagnostics, which can be used to monitor the NiFI stats in

any custom developed application. Let us check the API in postman.

Request

http://localhost:8080/nifi-api/system-diagnostics

Response

{

 "systemDiagnostics": {

 "aggregateSnapshot": {

 "totalNonHeap": "183.89 MB",

http://localhost:8080/nifi-api/system-diagnostics

Apache NiFi

 47

 "totalNonHeapBytes": 192819200,

 "usedNonHeap": "173.47 MB",

 "usedNonHeapBytes": 181894560,

 "freeNonHeap": "10.42 MB",

 "freeNonHeapBytes": 10924640,

 "maxNonHeap": "-1 bytes",

 "maxNonHeapBytes": -1,

 "totalHeap": "512 MB",

 "totalHeapBytes": 536870912,

 "usedHeap": "273.37 MB",

 "usedHeapBytes": 286652264,

 "freeHeap": "238.63 MB",

 "freeHeapBytes": 250218648,

 "maxHeap": "512 MB",

 "maxHeapBytes": 536870912,

 "heapUtilization": "53.0%",

 "availableProcessors": 4,

 "processorLoadAverage": -1,

 "totalThreads": 71,

 "daemonThreads": 31,

 "uptime": "17:30:35.277",

 "flowFileRepositoryStorageUsage": {

 "freeSpace": "286.93 GB",

 "totalSpace": "464.78 GB",

 "usedSpace": "177.85 GB",

 "freeSpaceBytes": 308090789888,

 "totalSpaceBytes": 499057160192,

 "usedSpaceBytes": 190966370304,

 "utilization": "38.0%"

 },

 "contentRepositoryStorageUsage": [

 {

 "identifier": "default",

 "freeSpace": "286.93 GB",

 "totalSpace": "464.78 GB",

 "usedSpace": "177.85 GB",

 "freeSpaceBytes": 308090789888,

Apache NiFi

 48

 "totalSpaceBytes": 499057160192,

 "usedSpaceBytes": 190966370304,

 "utilization": "38.0%"

 }

],

 "provenanceRepositoryStorageUsage": [

 {

 "identifier": "default",

 "freeSpace": "286.93 GB",

 "totalSpace": "464.78 GB",

 "usedSpace": "177.85 GB",

 "freeSpaceBytes": 308090789888,

 "totalSpaceBytes": 499057160192,

 "usedSpaceBytes": 190966370304,

 "utilization": "38.0%"

 }

],

 "garbageCollection": [

 {

 "name": "G1 Young Generation",

 "collectionCount": 344,

 "collectionTime": "00:00:06.239",

 "collectionMillis": 6239

 },

 {

 "name": "G1 Old Generation",

 "collectionCount": 0,

 "collectionTime": "00:00:00.000",

 "collectionMillis": 0

 }

],

 "statsLastRefreshed": "09:30:20 SGT",

 "versionInfo": {

 "niFiVersion": "1.7.1",

 "javaVendor": "Oracle Corporation",

 "javaVersion": "1.8.0_151",

 "osName": "Windows 7",

Apache NiFi

 49

 "osVersion": "6.1",

 "osArchitecture": "amd64",

 "buildTag": "nifi-1.7.1-RC1",

 "buildTimestamp": "07/12/2018 12:54:43 SGT"

 }

 }

 }

}

Apache NiFi

 50

Before starting the upgrade of Apache NiFi, read the release notes to know about the

changes and additions. A user needs to evaluate the impact of these additions and changes

in his/her current NiFi installation. Below is the link to get the release notes for the new

releases of Apache NiFi.

https://cwiki.apache.org/confluence/display/NIFI/Release+Notes

In a cluster setup, a user needs to upgrade NiFi installation of every Node in a cluster.

Follow the steps given below to upgrade the Apache NiFi.

 Backup all the custom NARs present in your current NiFi or lib or any other folder.

 Download the new version of Apache NiFi. Below is the link to download the source

and binaries of latest NiFi version.

https://nifi.apache.org/download.html

 Create a new directory in the same installation directory of current NiFi and extract

the new version of Apache NiFi.

 Stop the NiFi gracefully. First stop all the processors and let all the flowfiles present

in the flow get processed. Once, no more flowfile is there, stop the NiFi.

 Copy the configuration of authorizers.xml from current NiFi installation to the new

version.

 Update the values in bootstrap-notification-services.xml, and bootstrap.conf of new

NiFi version from the current one.

 Add the custom logging from logback.xml to the new NiFi installation.

 Configure the login identity provider in login-identity-providers.xml from the

current version.

 Update all the properties in nifi.properties of the new NiFi installation from current

version.

 Please make sure that the group and user of new version is same as the current

version, to avoid any permission denied errors.

 Copy the configuration from state-management.xml of current version to the new

version.

 Copy the contents of the following directories from current version of NiFi

installation to the same directories in the new version.

o ./conf/flow.xml.gz

o Also flow.xml.gz from the archive directory.

19. Apache NiFi — Upgrade

https://cwiki.apache.org/confluence/display/NIFI/Release+Notes
https://nifi.apache.org/download.html

Apache NiFi

 51

o For provenance and content repositories change the values in nifi. properties

file to the current repositories.

o copy state from ./state/local or change in nifi.properties if any other external

directory is specified.

 Recheck all the changes performed and check if they have an impact on any new

changes added in the new NiFi version. If there is any impact, check for the

solutions.

 Start all the NiFi nodes and verify if all the flows are working correctly and

repositories are storing data and Ui is retrieving it with any errors.

 Monitor bulletins for some time to check for any new errors.

 If the new version is working correctly, then the current version can be archived

and deleted from the directories.

Apache NiFi

 52

Apache NiFi Remote Process Group or RPG enables flow to direct the FlowFiles in a flow to

different NiFi instances using Site-to-Site protocol. As of version 1.7.1, NiFi does not offer

balanced relationships, so RPG is used for load balancing in a NiFi data flow.

A developer can add the RPG from the top toolbar of NiFi UI by dragging the icon as shown

in the above picture to canvas. To configure an RPG, a Developer has to add the following

fields:

S. No. Field Name Description

1 URLs To specify comma separated remote target NiFi URLs.

2 Transport Protocol To specify the transport protocol for remote NiFi

instances. It’s either RAW or HTTP.

3 Local Network

Interface

To specify the local network interface to send/receive

data.

4 HTTP Proxy Server

Hostname

To specify the proxy server’s hostname for the

purpose of transport in RPG.

5 HTTP Proxy Server Port To specify the proxy server’s port for the purpose of

transport in RPG.

6 HTTP Proxy User It is an optional field to specify the username for HTTP

proxy.

7 HTTP Proxy Password It is an optional field to specify the password for

above username.

20. Apache NiFi — Remote Process Group

Apache NiFi

 53

A developer needs to enable it, before using it like we start processors before using them.

Apache NiFi

 54

Apache NiFi offers shared services, which can be shared by processors and reporting task

is called controller settings. These are like Database connection pool, which can be used

by processors accessing same database.

To access the controller settings, use the drop down menu at the right top corner of NiFi

UI as shown in the below image.

There are many controller settings offered by Apache NiFi, we will discuss a commonly

used one and how we set it up in NiFi.

DBCPConnectionPool

Add the plus sign in the Nifi Settings page after clicking the Controller settings option.

Then select the DBCPConnectionPool from the list of controller settings.

DBCPConnectionPool will be added in the main NiFi settings page as shown in the below

image.

It contains the following information about the controller setting:Name

 Type

 Bundle

 State

21. Apache NiFi — Controller Settings

Apache NiFi

 55

 Scope

 Configure and delete icon

Click on the configure icon and fill the required fields. The fields are listed down in the

table below:

S. No. Field Name Default

value

description

1 Database

Connection

URL

empty To specify the connection URL to

database.

2 Database

Driver Class

Name

empty To specify the driver class name for

database like com.mysql.jdbc.Driver for

mysql.

3 Max Wait Time 500 millis To specify time to wait for the data from

a connection to database.

4 Max Total

Connections

8 To specify the maximum number of

allocated connection in database

connection pool.

To stop or configure a controller setting, first all the attached NiFi components should be

stopped. NiFi also adds scope in controller settings to manage the configuration of it.

Therefore, only the ones which shared the same settings will not get impacted and will use

the same controller settings.

Apache NiFi

 56

Apache NiFi reporting tasks are similar to the controller services, which run in the

background and send or log the statistics of NiFi instance. NiFi reporting task can also be

accessed from the same page as controller settings, but in a different tab.

To add a reporting task, a developer needs to click on the plus button present at the top

right hand side of the reporting tasks page. These reporting tasks are mainly used for

monitoring the activities of a NiFi instance, in either the bulletins or the provenance. Mainly

these reporting tasks uses Site-to-Site to transport the NiFi statistics data to other node

or external system.

Let us now add a configured reporting task for more understanding.

MonitorMemory

This reporting task is used to generate bulletins, when a memory pool crosses specified

percentage. Follow these steps to configure the MonitorMemory reporting task:

 Add in the plus sign and search for MonitorMemory in the list.

 Select MonitorMemory and click on ADD.

 Once it is added in the main page of reporting tasks main page, click on the

configure icon.

 In the properties tab, select the memory pool, which you want to monitor.

 Select the percentage after which you want bulletins to alert the users.

 Start the reporting task.

22. Apache NiFi — Reporting Task

Apache NiFi

 57

Apache NiFi is an open source platform and gives developers the options to add their

custom processor in the NiFi library. Follow these steps to create a custom processor.

 Download Maven latest version from the link given below.

https://maven.apache.org/download.cgi

 Add an environment variable named M2_HOME and set value as the installation

directory of maven.

 Download Eclipse IDE from the below link.

https://www.eclipse.org/downloads/download.php

 Open command prompt and execute Maven Archetype command.

> mvn archetype:generate

 Search for the nifi type in the archetype projects.

 Select org.apache.nifi:nifi-processor-bundle-archetype project.

 Then from the list of versions select the latest version i.e. 1.7.1 for this tutorial.

 Enter the groupId, artifactId, version, package, and artifactBaseName etc.

 Then a maven project will be created having to directories.

o nifi-<artifactBaseName>-processors

o nifi-<artifactBaseName>-nar

 Run the below command in nifi-<artifactBaseName>-processors directory to add

the project in the eclipse.

mvn install eclipse:eclipse

 Open eclipse and select import from the file menu.

 Then select “Existing Projects into workspace” and add the project from nifi-

<artifactBaseName>-processors directory in eclipse.

 Add your code in public void onTrigger(ProcessContext context, ProcessSession

session) function, which runs when ever a processor is scheduled to run.

 Then package the code to a NAR file by running the below mentioned command.

mvn clean install

23. Apache NiFi — Custom Processor

https://maven.apache.org/download.cgi
https://www.eclipse.org/downloads/download.php

Apache NiFi

 58

 A NAR file will be created at nifi-<artifactBaseName>-nar/target directory.

 Copy the NAR file to the lib folder of Apache NiFi and restart the NiFi.

 After successful restart of NiFi, check the processor list for the new custom

processor.

 For any errors, check ./logs/nifi.log file.

Apache NiFi

 59

Apache NiFi is an open source platform and gives developers the options to add their

custom controllers service in Apache NiFi. The steps and tools are almost the same as

used to create a custom processor.

 Open command prompt and execute Maven Archetype command.

> mvn archetype:generate

 Search for the nifi type in the archetype projects.

 Select org.apache.nifi:nifi-service-bundle-archetype project.

 Then from the list of versions, select the latest version – 1.7.1 for this tutorial.

 Enter the groupId, artifactId, version, package, and artifactBaseName, etc.

 A maven project will be created having directories.

o nifi-<artifactBaseName>

o nifi-<artifactBaseName>-nar

o nifi-<artifactBaseName>-api

o nifi-<artifactBaseName>-api-nar

 Run the below command in nifi-<artifactBaseName> and nifi-

<artifactBaseName>-api directories to add these two projects in the eclipse.

o mvn install eclipse:eclipse

 Open eclipse and select import from the file menu.

 Then select “Existing Projects into workspace” and add the project from nifi-

<artifactBaseName> and nifi-<artifactBaseName>-api directories in eclipse.

 Add your code in the source files.

 Then package the code to a NAR file by running the below mentioned command.

o mvn clean install

 Two NAR files will be created in each nifi-<artifactBaseName>/target and nifi-

<artifactBaseName>-api/target directory.

 Copy these NAR files to the lib folder of Apache NiFi and restart the NiFi.

 After successful restart of NiFi, check the processor list for the new custom

processor.

 For any errors, check ./logs/nifi.log file.

24. Apache NiFi — Custom Controllers Service

Apache NiFi

 60

Apache NiFi uses logback library to handle its logging. There is a file logback.xml present

in the conf directory of NiFi, which is used to configure the logging in NiFi. The logs are

generated in logs folder of NiFi and the log files are as described below.

nifi-app.log

This is the main log file of nifi, which logs all the activities of apache NiFi application

ranging from NAR files loading to the run time errors or bulletins encountered by NiFi

components. Below is the default appender in logback.xml file for nifi-app.log file.

<appender name="APP_FILE"

class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>${org.apache.nifi.bootstrap.config.log.dir}/nifi-app.log</file>

 <rollingPolicy

class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">

<fileNamePattern>${org.apache.nifi.bootstrap.config.log.dir}/nifi-app_%d{yyyy-

MM-dd_HH}.%i.log</fileNamePattern>

 <maxFileSize>100MB</maxFileSize>

 <maxHistory>30</maxHistory>

 </rollingPolicy>

 <immediateFlush>true</immediateFlush>

 <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

 <pattern>%date %level [%thread] %logger{40} %msg%n</pattern>

 </encoder>

 </appender>

The appender name is APP_FILE, and the class is RollingFileAppender, which means logger

is using rollback policy. By default, the max file size is 100 MB and can be changed to the

required size. The maximum retention for APP_FILE is 30 log files and can be changed as

per the user requirement.

nifi-user.log

This log contains the user events like web security, web api config, user authorization, etc.

Below is the appender for nifi-user.log in logback.xml file.

<appender name="USER_FILE"

class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>${org.apache.nifi.bootstrap.config.log.dir}/nifi-user.log</file>

 <rollingPolicy

class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

25. Apache NiFi — Logging

Apache NiFi

 61

 <fileNamePattern>${org.apache.nifi.bootstrap.config.log.dir}/nifi-

user_%d.log</fileNamePattern>

 <maxHistory>30</maxHistory>

 </rollingPolicy>

 <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

 <pattern>%date %level [%thread] %logger{40} %msg%n</pattern>

 </encoder>

 </appender>

The appender name is USER_FILE. It follows the rollover policy. The maximum retention

period for USER_FILE is 30 log files. Below is the default loggers for USER_FILE appender

present in nifi-user.log.

<logger name="org.apache.nifi.web.security" level="INFO" additivity="false">

 <appender-ref ref="USER_FILE"/>

 </logger>

 <logger name="org.apache.nifi.web.api.config" level="INFO"

additivity="false">

 <appender-ref ref="USER_FILE"/>

 </logger>

 <logger name="org.apache.nifi.authorization" level="INFO"

additivity="false">

 <appender-ref ref="USER_FILE"/>

 </logger>

 <logger name="org.apache.nifi.cluster.authorization" level="INFO"

additivity="false">

 <appender-ref ref="USER_FILE"/>

 </logger>

 <logger name="org.apache.nifi.web.filter.RequestLogger" level="INFO"

additivity="false">

 <appender-ref ref="USER_FILE"/>

 </logger>

nifi-bootstrap.log

This log contains the bootstrap logs, apache NiFi’s standard output (all system.out written

in the code mainly for debugging), and standard error (all system.err written in the code).

Below is the default appender for the nifi-bootstrap.log in logback.log.

Apache NiFi

 62

<appender name="BOOTSTRAP_FILE"

class="ch.qos.logback.core.rolling.RollingFileAppender">

 <file>${org.apache.nifi.bootstrap.config.log.dir}/nifi-

bootstrap.log</file>

 <rollingPolicy

class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

<fileNamePattern>${org.apache.nifi.bootstrap.config.log.dir}/nifi-

bootstrap_%d.log</fileNamePattern>

 <maxHistory>5</maxHistory>

 </rollingPolicy>

 <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

 <pattern>%date %level [%thread] %logger{40} %msg%n</pattern>

 </encoder>

 </appender>

nifi-bootstrap.log file,s appender name is BOOTSTRAP_FILE, which also follows rollback

policy. The maximum retention for BOOTSTRAP_FILE appender is 5 log files. Below is the

default loggers for nifi-bootstrap.log file.

 <logger name="org.apache.nifi.bootstrap" level="INFO" additivity="false">

 <appender-ref ref="BOOTSTRAP_FILE" />

 </logger>

 <logger name="org.apache.nifi.bootstrap.Command" level="INFO"

additivity="false">

 <appender-ref ref="CONSOLE" />

 <appender-ref ref="BOOTSTRAP_FILE" />

 </logger>

 <logger name="org.apache.nifi.StdOut" level="INFO" additivity="false">

 <appender-ref ref="BOOTSTRAP_FILE" />

 </logger>

 <logger name="org.apache.nifi.StdErr" level="ERROR" additivity="false">

 <appender-ref ref="BOOTSTRAP_FILE" />

 </logger>

