

Learning how to Learn Learning Algorithms: Recursive Self-Improvement

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE

Jürgen Schmidhuber You_again Shmidhoobuh

"True" Learning to Learn (L2L) is not just transfer learning! Even a simple feedforward NN can transfer-learn to learn new images faster through pre-training on other image sets

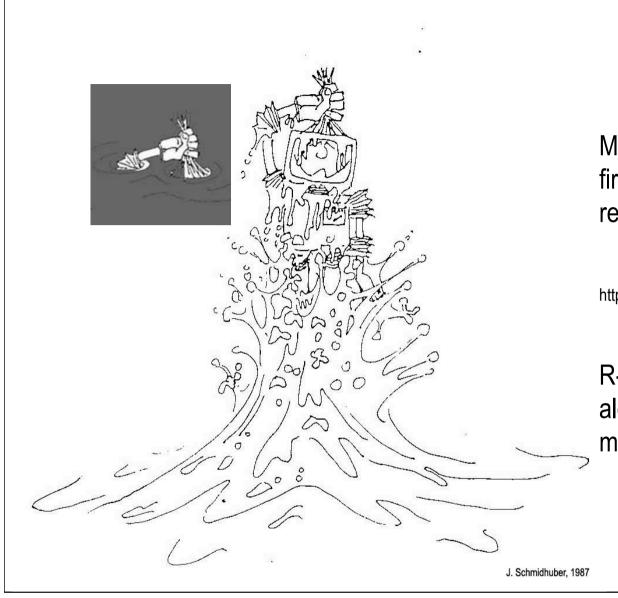
True L2L is not just about learning to adjust a few hyperparameters such as mutation rates in evolution strategies (e.g., Rechenberg & Schwefel, 1960s)

Radical L2L is about encoding the initial learning algorithm in a universal language (e.g., on an RNN), with primitives that allow to modify the code itself in arbitrary computable fashion

Then surround this self-referential, selfmodifying code by a recursive framework that ensures that only "useful" selfmodifications are executed or survive (RSI)

J. Good (1965): informal remarks on an intelligence explosion through recursive self-improvement (RSI) for super-intelligences

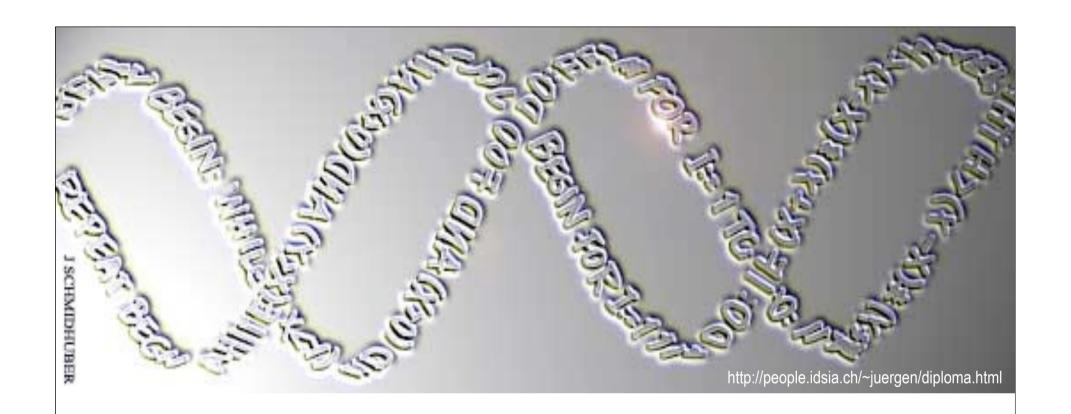
My concrete algorithms for RSI: 1987, 93, 94, 2003



My diploma thesis (1987): first concrete design of recursively self-improving Al

http://people.idsia.ch/~juergen/metalearner.html

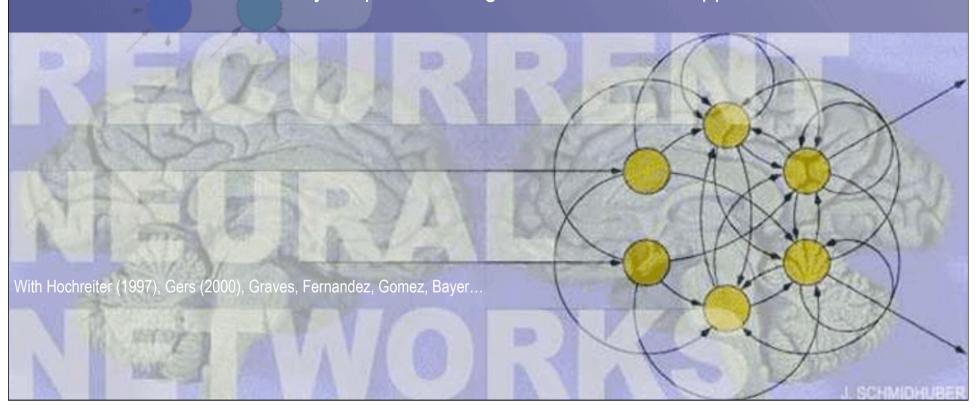
R-learn & improve learning algorithm itself, and also the meta-learning algorithm, etc...



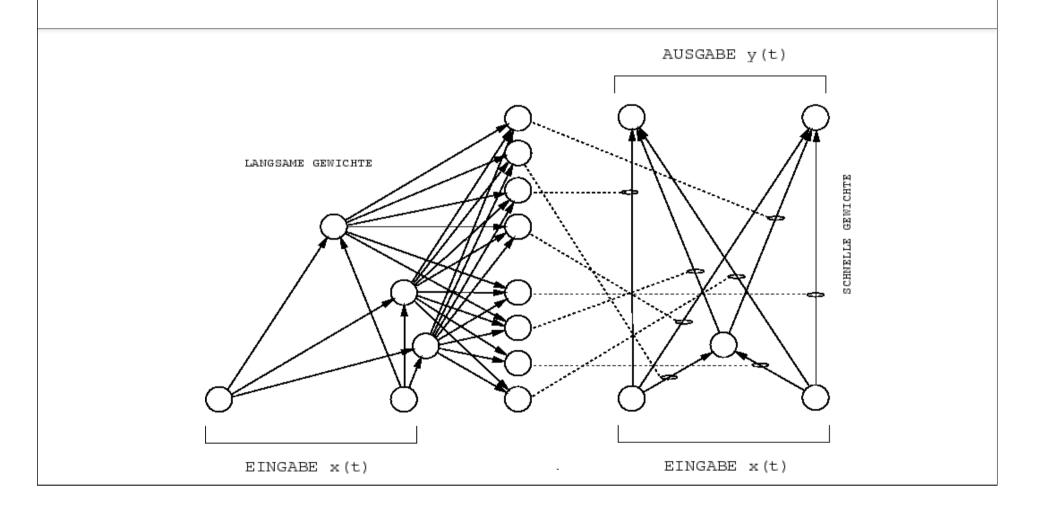
Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP etc: J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning how to learn: The meta-meta-... hook. Diploma thesis, TU Munich

LONG SHORT-TERM MEMORY

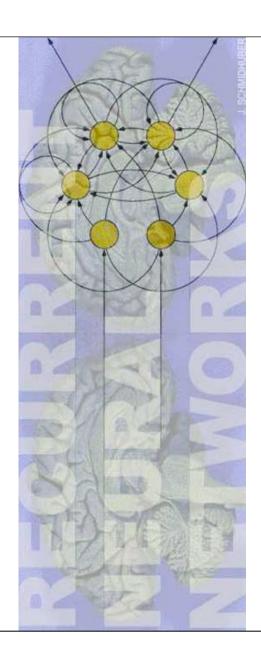
1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now



Separation of Storage and Control for NNs: End-to-End Differentiable Fast Weights (Schmidhuber, 1992) extending v.d. Malsburg's non-differentiable dynamic links (1981)



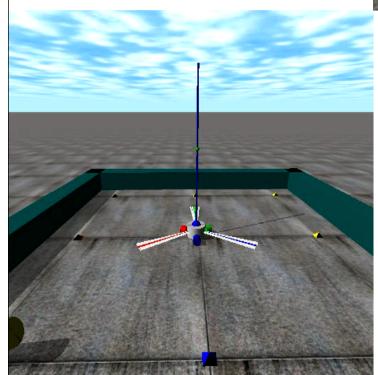
1993: More elegant Hebb-inspired addressing to go from (#hidden) to (#hidden)² temporal variables: gradientbased RNN learns to control internal end-to-end differentiable spotlights of attention for fast differentiable memory rewrites – again fast weights



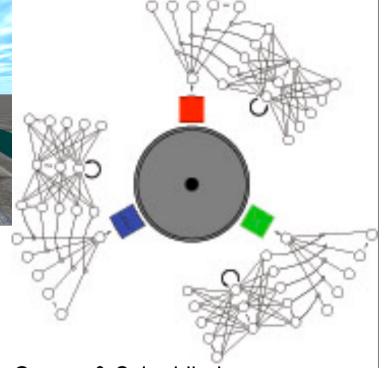
Schmidhuber, ICANN 1993:

Reducing the ratio between learning complexity and number of time-varying variables in fully recurrent nets.

Similar to NIPS 2016 paper by Ba, Hinton, Mnih, Leibo, Ionesco 2005:
ReinforcementLearning or
Evolving RNNs
with Fast Weights

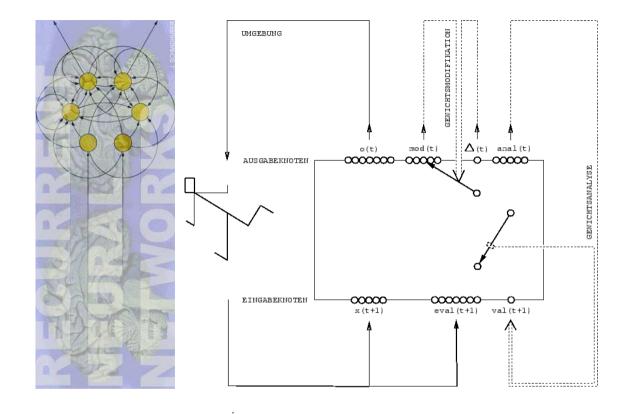


Robot learns to balance 1 or 2 poles through 3D joint



Gomez & Schmidhuber: Co-evolving recurrent neurons learn deep memory POMDPs. GECCO 2005

http://www.idsia.ch/~juergen/evolution.html



1993: Gradient-based meta-RNNs that can learn to run their own weight change algorithm:
J. Schmidhuber.
A self-referential weight matrix.
ICANN 1993

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to learn a learning algorithm for quadratic functions that was faster than backprop

Success-story algorithm (SSA) for self-modifying code (since 1994)

E.g., Schmidhuber, Zhao, Wiering: MLJ 28:105-130, 1997

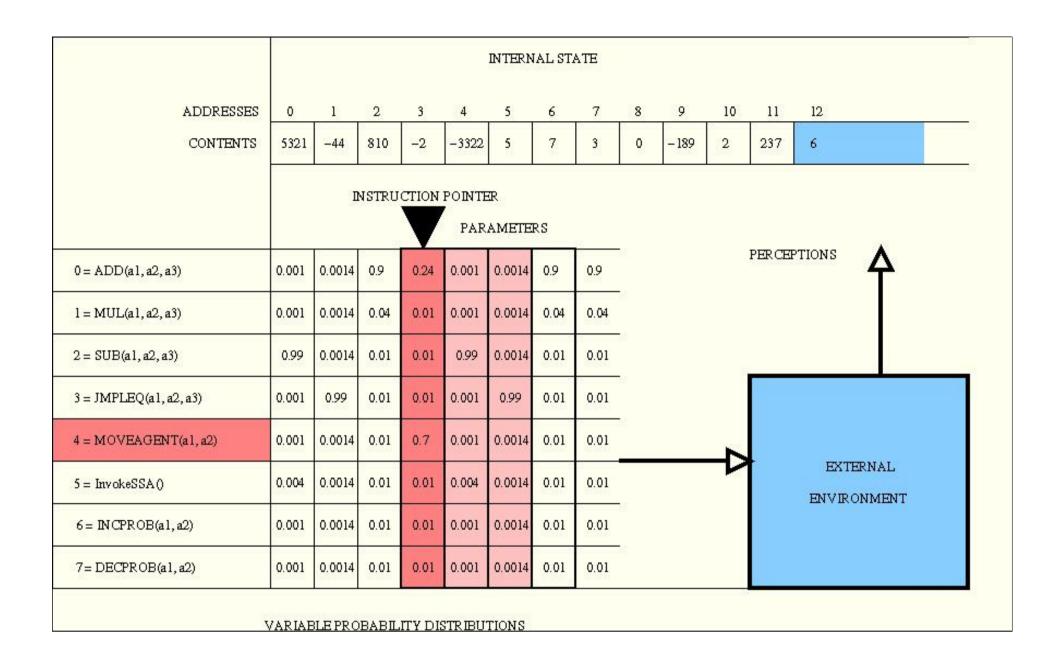
R(t): Reward until time t. Stack of past check points $v_1v_2v_3$... with self-mods in between. SSA undoes selfmods after v_i that are not followed by long-term reward acceleration up until t (now):

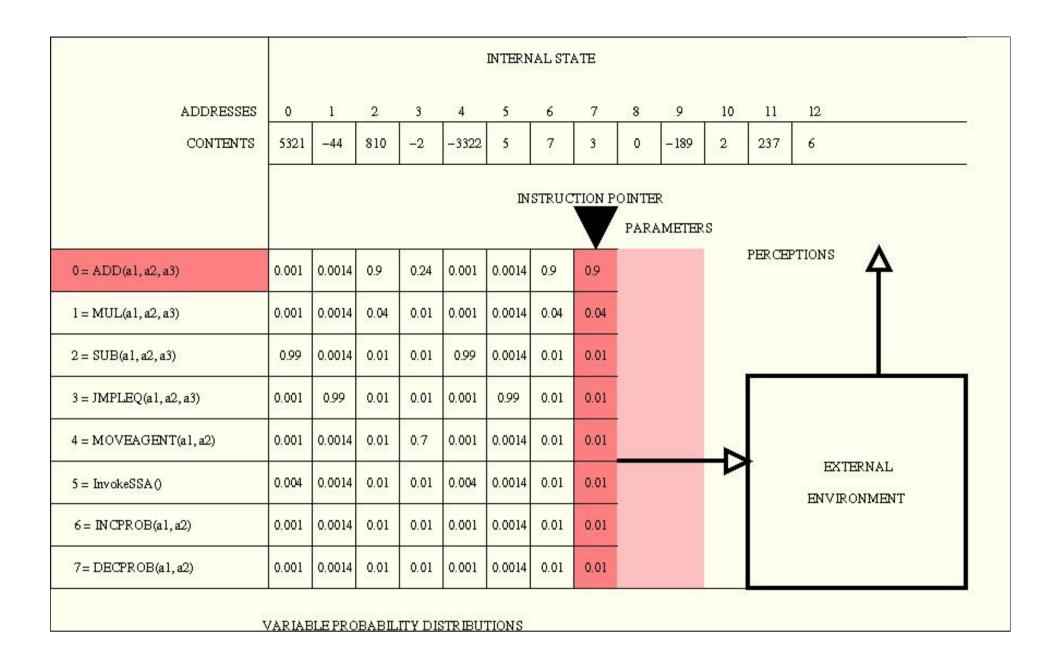
$$R(t)/t <$$
 $[R(t)-R(v_1)] / (t-v_1) <$
 $[R(t)-R(v_2)] / (t-v_2) < ...$

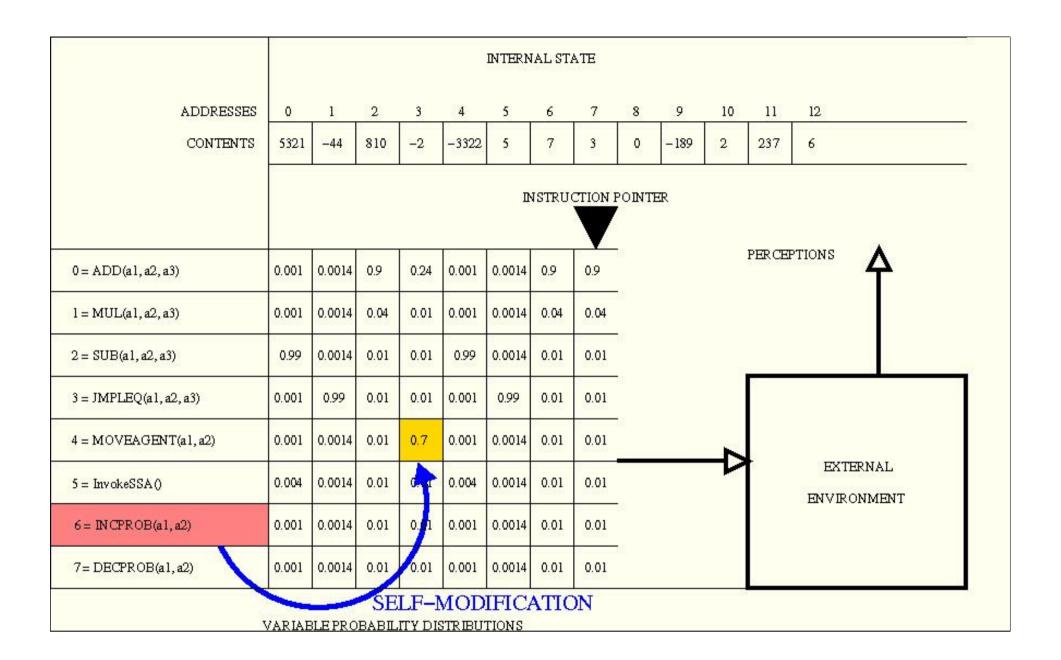
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12			
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	-189	2	237	6			
		ם	NSTRU	CTION	POINTE PAR	er Amete	RS			•	•	•	520			
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9				PERCEPTIONS A				
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04	180							
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01	W.							
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	W.							
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	W.		_	e se				
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			7/	EXTERNAL ENVIRONMENT				
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	88		ENVIRONMENT					
7= DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	181							

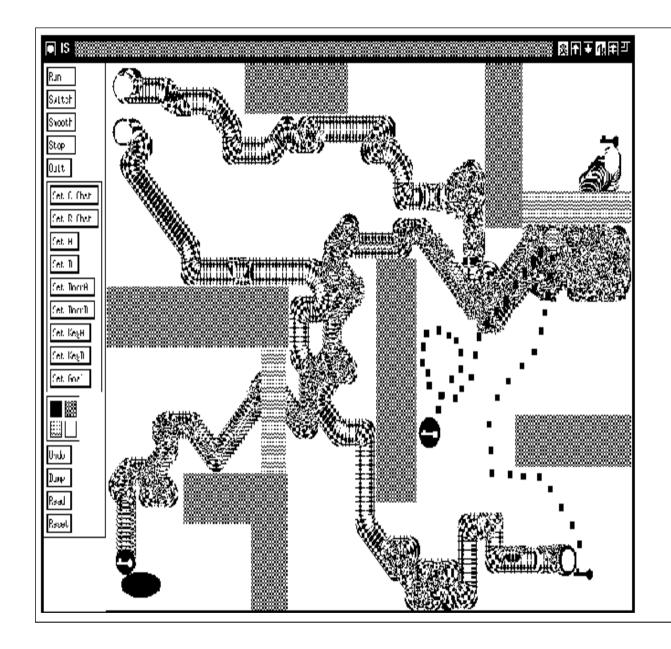
						INTERN	AL STA	ATE								
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12			
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	-189	2	237	6			
		I	NSTRU	CTION	POINTE PAR	ER AMETEI	RS	901		•						
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9	101			PERCEPTIONS A				
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04	161 1							
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01	187							
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01	181				Î			
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01	182							
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			72	1	EXTERNAL ENVIRONMENT			
6= INCPROB(al, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	101		ENVIRONMENT					
7= DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01	161							

						INTERN										
ADDRESSES	0	1	2	3	4	5	6	7	8	9	10	11	12			
CONTENTS	5321	-44	810	-2	-3322	5	7	3	0	-189	2	237	6			
	2	ı	NSTRU	CTION	POINTE PAR	er Amete	RS	200		-	•		620			
0 = ADD(a1, a2, a3)	0.001	0.0014	0.9	0.24	0.001	0.0014	0.9	0.9				PERCEPTIONS A				
l = MUL(a1, a2, a3)	0.001	0.0014	0.04	0.01	0.001	0.0014	0.04	0.04								
2 = SUB(a1, a2, a3)	0.99	0.0014	0.01	0.01	0.99	0.0014	0.01	0.01								
3 = JMPLEQ(a1, a2, a3)	0.001	0.99	0.01	0.01	0.001	0.99	0.01	0.01								
4 = MOVEAGENT(a1, a2)	0.001	0.0014	0.01	0.7	0.001	0.0014	0.01	0.01			_	die.				
5 = InvokeSSA()	0.004	0.0014	0.01	0.01	0.004	0.0014	0.01	0.01			7/	EXTERNAL ENVIRONMENT				
6 = INCPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01				EN VIRONMEN I				
7= DECPROB(a1, a2)	0.001	0.0014	0.01	0.01	0.001	0.0014	0.01	0.01								





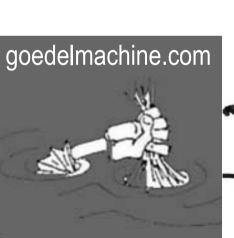


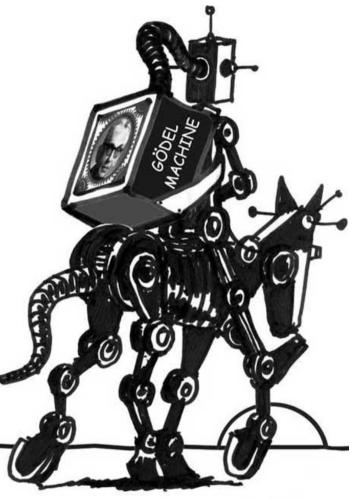


1997: Lifelong meta-learning with selfmodifying policies and success-story algorithm: 2 agents, 2 doors, 2 keys. 1st southeast wins 5, the other 3. Through recursive self-modifications only: from 300,000 steps per trial down to 5,000.

Kurt Gödel, father of theoretical computer science, exhibited the limits of math and computation (1931) by creating a formula that speaks about itself, claiming to be unprovable by a computational theorem prover: either formula is true but unprovable, or math is flawed in an algorithmic sense

Universal problem solver Gödel machine uses self reference trick in a new way



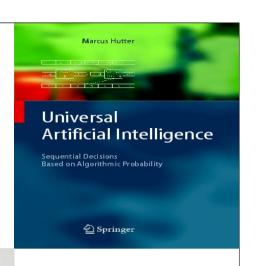


Gödel Machine (2003): agent-controlling program that speaks about itself, ready to rewrite itself in arbitrary fashion once it has found a proof that the rewrite is useful, given a user-defined utility function

Theoretically optimal self-improver!

Initialize Gödel Machine by Marcus Hutter's asymptotically fastest method for all well-defined problems

IDSIA 2002 on my SNF grant



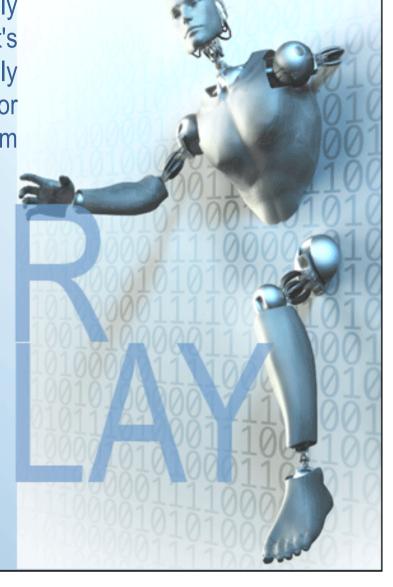
Given $f:X \rightarrow Y$ and $x \in X$, search proofs to find program q that provably computes f(z) for all $z \in X$ within time bound $t_q(z)$; spend most time on f(x)-computing q with best current bound

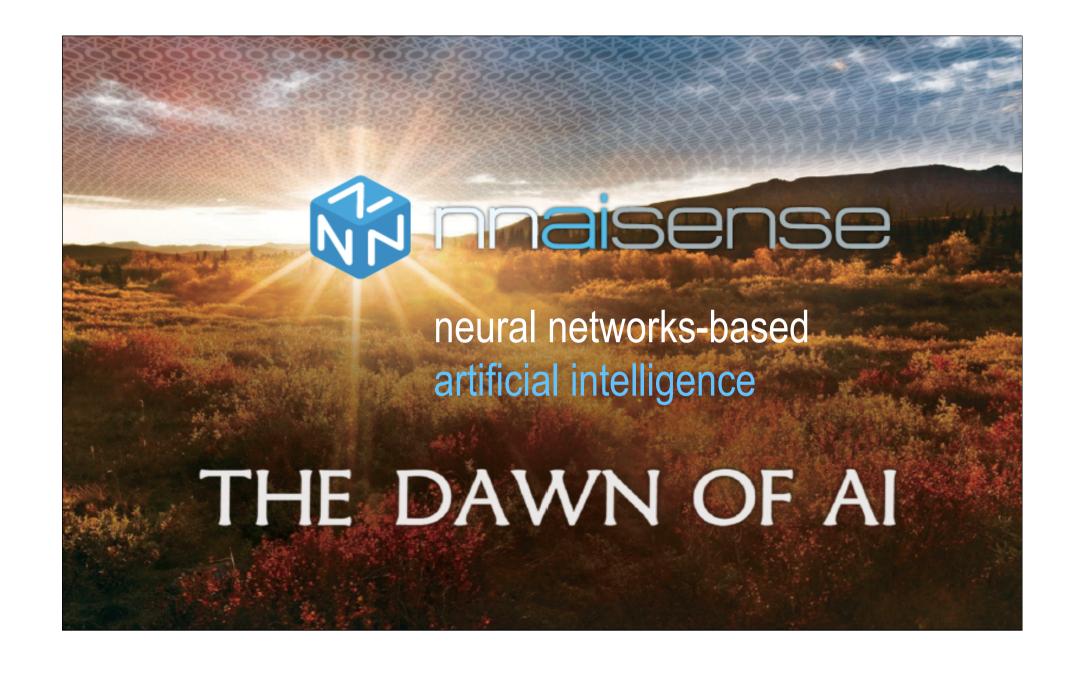
 $n^3+10^{1000}=n^3+O(1)$

As fast as fastest f-computer, save for factor 1+ε and f-specific const. independent of x!

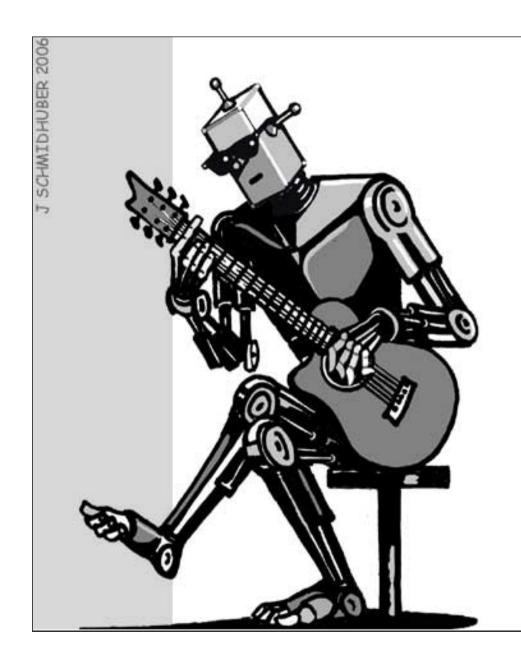
PowerPlay not only solves but also continually invents problems at the borderline between what's known and unknown - training an increasingly general problem solver by continually searching for the simplest still unsolvable problem

POWE P





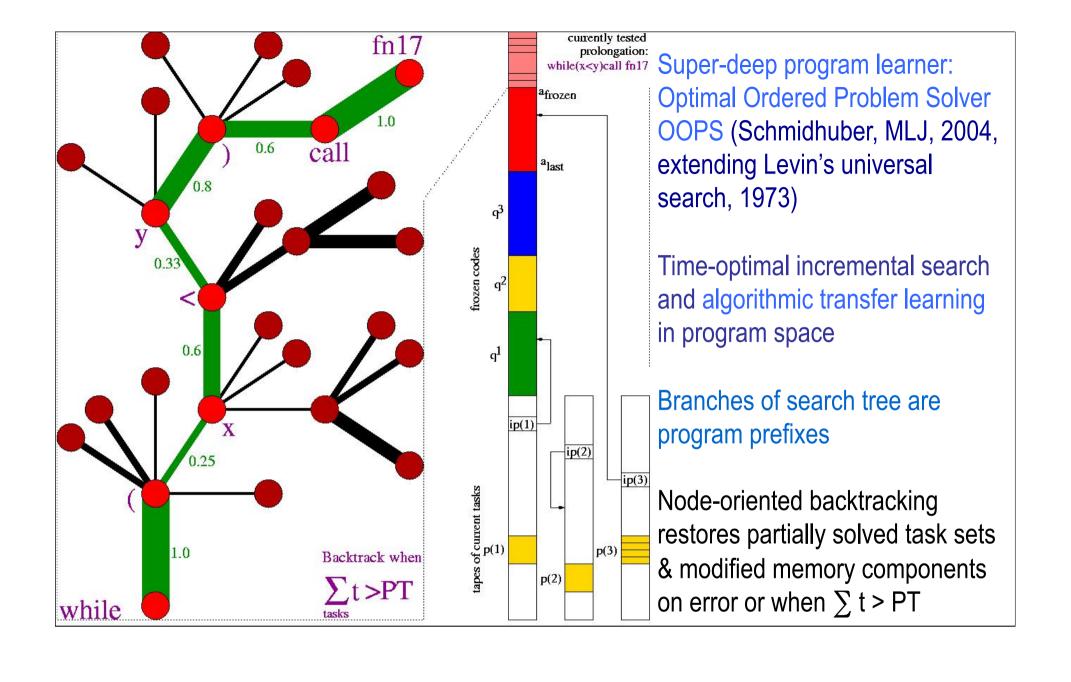
- 1. J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)
- 2. J. Schmidhuber. A self-referential weight matrix. ICANN 1993
- 3. J. Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994.
- 4. J. Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning. TR IDSIA-69-96, 1996. (Based on 3.)
- 5. J. Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying policies. In *Learning to learn*, Kluwer, pages 293-309, 1997. (Based on 3.)
- 6. J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning 28:105-130, 1997. (Based on 3.)
- 7. J. Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-Improvers. In *Artificial General Intelligence*, p. 119-226, 2006. (Based on TR of 2003.)
- 8. T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
- 9. More under http://people.idsia.ch/~juergen/metalearner.html

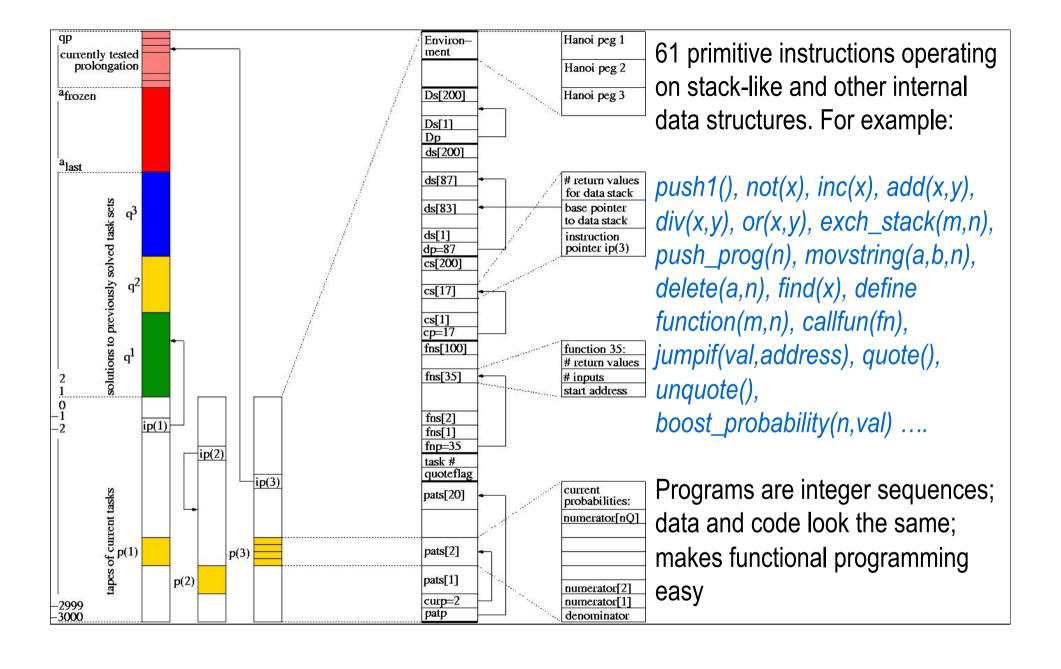


Learning how to Learn Learning Algorithms: Extra Slides

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE





Towers of Hanoi: incremental solutions

- +1ms, n=1: (movdisk)
- 1 day, n=1,2: (c4 c3 cpn c4 by2 c3 by2 exec)
- 3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
- 4 days: n=4, n=5, ..., n=30: by same double-recursive program
- Profits from 30 earlier context-free language tasks (1ⁿ2ⁿ): transfer learning
- 93,994,568,009 prefixes tested
- 345,450,362,522 instructions
- 678,634,413,962 time steps
- longest single run: 33 billion steps (5% of total time)! Much deeper than recent memory-based "deep learners" ...
- top stack size for restoring storage: < 20,000

What the found Towers of Hanoi solver does:

- (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
- Prefix increases P of double-recursive procedure:
 Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN
 Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
 Hanoi(Aux,Source,Dest,n-1); END
- Prefix boosts instructions of previoulsy frozen program, which happens to be a previously learned solver of a context-free language (1ⁿ2ⁿ). This rewrites search procedure itself: Benefits of metalearning!
- Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11
- Suffix probability without prefix execution: 4*10⁻¹⁴
- That is, Hanoi does profit from 1ⁿ2ⁿ experience and incremental learning (OOPS excels at algorithmic transfer learning): speedup factor 1000

J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning with Recurrent Controller & Recurrent World Model

Learning and planning with recurrent networks

On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning RNN-based Controllers (RNNAIs) and Recurrent Neural World Models

http://arxiv.org/abs/1511.09249

