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Abstract

An accurate model for the structure of speech is essential
to many speech processing applications, including speech en-
hancement, synthesis, recognition, and coding. This paper ex-
plores some deficiencies of standard harmonic methods of mod-
eling voiced speech. In particular, they ignore the effect of fun-
damental frequency changing within an analysis frame, and the
fact that the fundamental frequency is not a continuously vary-
ing parameter, but a side effect of a series of discrete events.

We present an alternative, time-series based framework for
modeling the voicing structure of speech called thefine pitch
model. By precisely modeling the voicing structure, it can more
accurately account for the content in a voiced speech segment.
Index Terms: speech analysis, pitch estimation, fundamental
frequency

1. Introduction
An accurate model for the structure of speech is essential
to many speech processing applications, including speech en-
hancement, synthesis, recognition, and coding.

The premise underlying modern models for speech is that
it can be decomposed into an excitation signal and a linear
model of the vocal tract. Figure 1 presents this standardmixed-
excitationmodel for speech. Under this model, speech signals
are composed of a linear combination of a colored noise signal
and a filtered sequence of impulses.

H(z)

G(z)

+ Speech

Figure 1:The mixed excitation model for speech.

Most of the energy in a voiced speech signal is generated by
the repeated closing of the glottal folds within the larynx. This
typically occurs at a rate as low as 60 Hz for men, and as high as
300 Hz for women[1], and is what imparts voiced speech with
its fundamental frequency. It is this sequence of discrete glottal
closure events that is modeled by the sequence of impulses in
Figure 1.

Engineers have used this fundamental frequency to improve
speech representations and processing for many years in both
coding [2, 3], enhancement [4, 5, 6], and noise-robust automatic
speech recognition [7, 8, 9].

Each of these techniques is built using frame-based spec-
tral analysis. The speech signal is broken into overlapping seg-
ments, each between 25ms and 45ms long. Then, a single pitch
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Figure 2:Three narrowband spectrograms of a man’s voice with
rising, constant, and falling fundamental frequency.

is inferred for this segment based on either autocorrelation or
spectral analysis.

In this paper, we propose an alternative pitch analysis
framework called thefine pitch modelfor speech. It operates
time-synchronously with the digitized samples of the incoming
speech signal, assigning a unique pitch for every sample. It is
able to precisely track the changing periodic structure of speech
and operates well even in low signal-to-noise environments.

Section 2 examines the core of the new algorithm, how it
defines instantaneous pitch, and how it can be superior to pre-
vious frame-based harmonic methods. Section 3 describes an
efficient algorithm for estimating afine pitch track, as well prac-
tical considerations such as reasonable bounds on the range and
precision of the estimate.

2. The Structure of Voiced Speech
Figure 2 shows three different narrowband spectrograms of a
man uttering the same speech sound,/r/ , with different fun-
damental frequency patterns. The most striking features in these
spectrograms are the horizontal bands of energy that appear as
harmonics of a fundamental frequencyf0 near 100 Hz.

2.1. The Harmonic Model of Voiced Speech

Under the assumptions thatf0 is perfectly constant, and that the
vocal tract transfer functionH(z) doesn’t change, and that the
signal exists for all time, voiced speech is a truly periodic signal
and can be represented as a trigonometric series:

x(t) =

KX

k=1

ak cos(2πkf0t) + bk sin(2πkf0t) (1)
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Figure 3:Perfectly periodic synthetic speech has a zero residual
(above), but if the pitch changes by as little 0.5 samples per
pitch period (below), the residual is no longer perfect.

The ideal signalx(t) has all of its energy concentrated at
f0 and its harmonics. It is very appealing to use this harmonic
model for voiced speech, because once the fundamental fre-
quency is known, the speech can be represented with only a
handful of parameters.

Some algorithms use the harmonic model directly, such
as in Larocheet al.[10] and Seltzeret al.[8]. Both estimate
the voiced speech spectrum by projecting the measured speech
spectrum onto the subspace of all possible harmonic spectra
with a given fundamental frequency.

Another common use of the harmonic model is to select
frequency bins from the measured spectrum, and label them as
either voiced speech or noise. These techniques are described
as using “peak picking” or “harmonic tunneling”, and several
good examples exist in the recent literature[7, 9, 5, 6, 4].

2.2. Problems with the Harmonic Model

Unfortunately for the harmonic model, voiced speech does not
have a constant fundamental frequency.

Figure 3 shows how even slight variations in pitch can cause
the model to fail. These speech signals were synthesized with
an all-pole vocal tract model estiamted from the same data as
in the middle section of Figure 2 and exciting it with a series of
discrete pulses.

The speech in the top of Figure 3 has a constant fundamen-
tal period of 100 samples. When it is passed through a comb
filter with a period of 100 samples, the harmonic model of Eq. 1
indicates that the residual signal should be zero. Observe that
the plot of the residual has almost no energy. In other words,
the harmonic model can account for all the energy in the signal.

The bottom half of Figure 3 is similar to to the top half,
except the pitch period is increasing at a rate of 0.5 samples per
pitch period. The length-100 comb filter is too long for the first
periods, and too short for the last. The harmonic model is not
able to account for all of the energy in the signal.

One way to solve this problem is to use a time-warping
function on the incoming signal to enforce a constant pitch.
This can produce quite accurate pitch estimates[11], but the
constant pitch signal will contain some FM distortion as a re-
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Figure 4: A simulation of voiced speech with pitch period in-
creasing over time. The instantaneous pitch value depends on
whether the prediction is forward or backward in time, and is
sometimes undefined.

sult of the processing.
This paper solves the problem by constructing a model ca-

pable of describing the periodic nature of speech without a con-
stant pitch requirement.

2.3. The Fine Pitch Model

Since the rate of glottal closures can change over time, it is
useful to dismiss the notion of fundamental frequency in favor
of instantaneous pitch period. Whereas the harmonic model
estimates a constant fundamental frequency for each analysis
frame, the fine pitch model assigns a sequence of instantaneous
pitch periods that can be different for every sample of the speech
signal.

Because of the nature of voiced speech generation, namely
that it is generated from a sequence of discrete events, a se-
quence of instantaneous pitch periods should not have a slope. It
should be piecewise constant, exhibiting a stair step pattern. Ac-
cording to the mixed excitation model, the instantaneous pitch
should not change in between glottal closure events. In this pa-
per, we refer to these regions asepochs.

The instantaneous pitch period for a segment of voiced
speech is the shortest delay, either in the future or the past, be-
tween it and another substantially similar, non-overlapping seg-
ment of the signal. This leaves open the questions of how the
segments are defined, and what “substantially similar” means.
Depending on how these questions are answered, particular im-
plementations of the fine pitch model will differ in accuracy and
efficiency.

Figure 4 contains an exaggerated view of what happens as
the pitch period changes during voiced speech.

The signal in region B1 is similar to a segment from the
previous epoch (B2) and a segment from the future epoch (B3).
The backward pitch period during B1 is the relative lag between
B1 and B2, and exists for the entire current epoch. The back-
ward pitch period during B3 is the relative lag between B1 and
B3. The segment of signal between B1 and B3 does not have a
backward pitch defined. This is always the case when pitch pe-
riod is increasing: signal segments near the end of each epoch
do not have a backward pitch defined.



The forward pitch period in the segment B2 is the relative
lag between B1 and B2. The forward pitch period in the seg-
ment F1 is the relative lag between F1 and F2. Because the pitch
period is increasing, the forward pitch is well defined every-
where.

Notice that the speech segment B1 overlaps with the speech
segment F1. In this region, both a forward pitch period and a
backward pitch period are defined, and that they are quite dif-
ferent.

3. Estimating the Fine Pitch Track
An ideal solution to the fine pitch model would segment the
voiced speech into non-overlapping epochs that obey the for-
ward and backward similarity measures discussed above.

A practical solution is to estimate a set of pitch lags, one for
every sample of speech, that minimizes an objective function
that approximates the true model. For this paper, we chose an
objective function that balances how well the received signal
sampley[n] is predicted by the sampley[n−τn], with a measure
of the smoothness of the sequence of pitch period estimates.

yr[n] = y[n]− y[n− τn] (2)

F =
X

n

(yr[n])2 + γ
X

n

(τn − τn−1)
2 (3)

If the instantaneous pitch period estimatesτn match the true
pitch periods, the time-varying comb filter of Eq. 2 will elim-
inate much of the voiced speech energy, leaving only a small
residualyr[n]. The first term in Eq. 3 measures the energy of
this residual. Since the time-varying comb filter is only good at
eliminating signals that have a coherent pitch, minimizing this
term is equivalent to finding and eliminating the voiced speech
components.

The second term in Eq. 3 forces the algorithm to choose
a pitch sequence that is mostly smooth over time. Ideally, we
would choose a constraint that would force a piecewise-constant
pitch sequence, but this first-order Markov assumption is much
more efficient to compute. The parameterγ controls the rela-
tive importance of residual signal energy and smooth pitch se-
quence, and can be set empirically on a small set of data.

BecauseF is first-order Markov inτn, the optimum instan-
taneous pitch sequence can be found using standard dynamic
programming search techniques.

First, a forward recursion is performed. Assume the cost
associated with the best possible instantaneous pitch assign-
ments up to timet − 1 and ending atτt−1 is available, and
call that costq(τt−1, t− 1). The set of new costsq(τt−1, τt, t)
is found by adding the cost of starting in the previous pitch pe-
riod value (q(τt−1, t−1)), the cost of transitioning pitch period
values ((τt−τt−1)

2), and the cost of the new pitch period value
((y[t] − y[t − τt])

2). Before repeating the recursion, only the
best route toτt at timet is retained, as well as the identity of
the transition corresponding to this route.

Second, a backward recursion is performed. At the end
of the utterance, choose the instantaneous pitch value that has
the lowest cost. Then, follow the retained “best transition” to
find the previous instantaneous pitch. Repeat following the best
transitions backward in time until eventually the entire file has
been processed.

Figure 5 shows how the fine pitch model is much better
at predicting the energy of voiced speech. The test signal is
the same as the bottom half of Figure 3, with pitch increasing
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Figure 5:The same signal from the bottom of Figure 3, modeled
by the fine pitch model. Because the pitch is increasing (top),
the backward looking pitch has problems near the epoch bound-
aries. The residual from the fine pitch model (bottom) is near
zero.

at the rate of about 0.5 samples per sample. In Figure 3, the
model assumed a constant pitch and was unable to account for
the observed speech. Figure 5 uses the fine pitch model, and
leaves very little residual energy. Also note how the estimated
pitch has the predicted stair step pattern.

Figure 6 demonstrates the result of applying the fine pitch
model to real speech. The test signal is the same as used in the
spectrogram with falling fundamental frequency from Figure 2.
It is apparent from the small residual that the fine pitch model is
able to account for most of the energy in the speech signal. The
estimated pitch exhibits the same piecewise constant pattern as
the simulated data, with an enticing twist: sometimes the mea-
sured pitch will be different between the first and second half of
each epoch.

3.1. Practical Considerations

The precision of the instantaneous pitch estimate is very im-
portant, because even small rounding errors in the fundamental
frequency estimate can become large errors in estimating the
position of the highest harmonic. Luckily, although the origi-
nal sampling rate limits the Nyquist bandwith, it is still possible
to get sub-sample resolution on the relative phase of the signal
components.

A deep voice may have a fundamental frequency near
50 Hz, and a 40th harmonic at 2 kHz. To get that harmonic accu-
rately placed to within 5 Hz, the fundamental frequency should
be accurate to within1

8
Hz. At an 8 kHz sampling rate, this

corresponds to measuring a 160 sample pitch period to within
0.4 samples.

At the other end of typical fundamental frequencies, a high
pitched voice can have a fundamental frequency of 400 Hz, with
a 5th harmonic at 2 kHz. To place that harmonic to within 5 Hz,
the fundamental frequency should be accurate to within 1.0 Hz.
At an 8 kHz sampling rate, this corresponds to measuring a 20
sample period to within 0.05 samples.

In general, to get harmonics near 2 kHz accurate to within
5 Hz, a pitch period atn samples must be accurate to within
approximatelyn/400 samples.
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Figure 6: The real speech signal from Figure 2 with a falling
fundamental frequency. Even though the pitch is changing at
about one sample per epoch, the fine pitch model is able to cap-
ture most of the signal’s energy.

With this variable-precision need in mind, the current sys-
tem is implemented in two passes over the data. In the first pass,
pitch is estimated to within one sample. This covers the first few
harmonics accurately, but is not yet precise enough. In the sec-
ond pass, a higher resolution pitch estimate is formed with the
restriction that it can’t vary by more than two samples from the
original estimate. To accomplish this, the signal is up-sampled
by a rate consistent with the extra precision needed to refine the
first-pass pitch estimate.

4. Conclusions
This paper advocates replacing the popular harmonic models for
speech with a time-synchronous fine pitch model. Preliminary
experiments indicate that the FPM is able to precisely track the
time-varying nature of voiced speech, which allows it to accu-
rately represent more of the energy present in such signals.
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