Microservices
with Rust

Build, test, and deploy scalable and reactive microservices
with Rust 2018

Packt

‘ ‘ www.packt.com
Denis Kolodin

Hands-On Microservices with
Rust

Build, test, and deploy scalable and reactive microservices
with Rust 2018

Denis Kolodin

BIRMINGHAM - MUMBAI

Hands-On Microservices with Rust

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shririam Shekhar

Content Development Editor: Manjusha Mantri
Technical Editor: Mayank Dubey

Copy Editor: Safis Editing

Language Support Editors: Mary McGowan and Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing

Indexer: Priyanka Dhadke

Graphics: Jisha chirayil

Production Coordinator: Tom Scaria

First published: January 2019
Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.
ISBN 978-1-78934-275-8

www.packtpub.com

A Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Denis Kolodin has been developing high-loaded network applications for more than 12
years. He has mastered and used different kinds of programming languages, including C,
Java, and Python, for developing a variety of apps, from high-frequency trading robots to
video broadcasting servers. Nowadays, he enjoys creating peer-to-peer networking
applications and is inspired by distributed systems such as cryptocurrencies.

He has been using Rust since version 1.0 and is delighted with the features it provides,
specifically WebAssembly support. He's the author of Yew Framework, which collected more
than 6,000 stars on GitHub. He writes with Rust continuously as part of his job and believes
that Rust will be used for everything in the future, including backend, frontend, operating
systems, embedded software, games, and smart contracts.

About the reviewer

Daniel Durante is an avid coffee drinker/roaster, motorcyclist, archer, welder, and
carpenter whenever he isn't programming. From the age of 12, he has been involved with
web and embedded programming with PHP, Node.js, Golang, Rust, and C.

He has worked on text-based browser games that have reached over 1,000,000 active
players, created bin-packing software for CNC machines, embedded programming with
cortex-m and PIC circuits, high-frequency trading applications, and helped contribute to
one of the oldest ORMs of Node.js (Sequelize]S).

He has also reviewed other books — PostgresSQL Developer’s Guide, PostgreSQL 9.6 High
Performance, Rust Programming By Example, and Rust High Performance — for Packt.

I'would like to thank my parents, my brother, my mentors, and my friends who "ve all put
up with my insanity of sitting in front of a computer day in and day out. I would not be
here today if it wasn't for their patience, guidance, and love.

Gaurav Aroraa has completed his M.Phil in computer science. He is an MVP, a lifetime
member of the Computer Society of India (CSI), an advisory member of IndiaMentor, and
is certified as a scrum trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and
PRINCE-P. Gaurav is an open source developer, and the founder of Ovatic Systems Private
Limited. Recently, he was awarded the title "Icon of the year — excellence in mentoring
technology startups" for the year 2018-19 by Radio City, A Jagran Initiative, for his
extraordinary work during his 20-year career in the industry in the field of technology
mentoring. You can tweet Gaurav on his twitter handle: @g_arora.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Chapter 1: Introduction to Microservices
Technical requirements
What are microservices?
Why we need microservices
How to deploy a microservice
Docker
Continuous Integration

How to split a traditional server into multiple microservices

Reasons to avoid monoliths
Impossible to scale vertically
Impossible to update and deploy only one feature
The failure of one server affects all features
Breaking a monolithic service into pieces
Definition of a REST API
User registration microservice
E-mail notifications microservice
Product catalog microservice
Shopping cart microservice
Payment Integration microservice
Statistics collecting microservice

Transformation to microservices
Reusing existing microservices
Why Rust is a great tool for creating microservices
Explicit versus implicit
Minimal amount of runtime errors
Great performance
Minimal dependencies burden
Summary
Further reading

Chapter 2: Developing a Microservice with the Hyper Crate
Technical requirements
Binding a Tiny Server
Adding necessary dependencies
The main function of the server
Address of the server
Server instances
Setting the requests handler
Adding the server instance to a runtime
Building and running

Table of Contents

Rebuilding on changes
Handling incoming requests
Adding a service function
Implementing a service function
Index pages
Implementing the REST principles
Adding a shared state
Accessing a shared state from a service function
Parsing paths in a microservice
Implementing REST methods
Extracting the user's identifier
Getting access to the shared data
REST methods
POST - Creating data
GET — Reading data
PUT — Updating data
DELETE - Deleting data
Routing advanced requests
Defining paths with regular expressions
Adding the necessary dependencies
Writing regular expressions
Path for index page

Path for user management
Path for the users list

Matching expressions
Summary

Chapter 3: Logging and Configuring Microservice
Technical requirements
Adding logging to a microservice
Random-value-generating microservices
The log crate
Loggers
Log levels
Logging messages
Custom level of messages
Checking logging is enabled
Own target
Using logging
Configuring a logger with variables
RUST_LOG
RUST_LOG_STYLE
Changing the RUST_LOG variable to your own
Reading environment variables
Standard library
Using the .env file
Using the dotenv crate
Adding variables to the .env file

[ii]

Table of Contents

Parsing command-line arguments
Using the clap crate
Adding dependencies
Building a parser
Reading arguments
Usage
How to add subcommands
Reading the configuration from file
Adding the TOML config
Adding dependencies
Declaring a struct for configuration
Reading the configuration file
Joining all values by a priority
Creating and using the configuration file
Summary

Chapter 4: Data Serialization and Deserialization with the Serde Crate
Technical requirements
Data formats for interaction with microservices
The serde crate
Serializing responses
Deserializing requests
Tweaking serialization
Changing the case of names
Removing a nesting
Using specific names for a tag and content
Any Value
Using hyper
Reading a body from a stream
Custom types
Custom serialization
Custom deserialization
Custom error types with the failure crate
Binary data
Compiling, running, and testing
Microservices with multiple formats
Different formats
Parsing a query
Checking different formats
Transcoding
XML support

Summary

Chapter 5: Understanding Asynchronous Operations with Futures Crate

Technical requirements
Basic asynchronous types

Basic types of future crate
Using the Future trait

[iii]

Table of Contents

Using the Stream trait
Using Sink to send data back
The channel module
Channels for sending multiple messages
Single-Producer Single-Consumer
Multi-Producer Single-Consumer
Multi-Producer Multi-Consumer
Example of usage
One-shot
Using channels to use Sink in multiple places
Executors
Running futures and streams with blocking
Using an executor
The async/await syntax
Creating an image service
Uploading images
The tokio crate
Asynchronous input/output of files
Multipart form requests
Downloading images
sendfile for sending files
Testing the service
Summary

Chapter 6: Reactive Microservices - Increasing Capacity and

Performance
Technical requirements
What is a reactive microservice?
Loose coupling
Message-driven applications
Asynchronous

Should a reactive microservice be asynchronous?
Reactive microservices with futures and streams

Message brokers
Remote procedure calls
JSON-RPC
gRPC
Thrift
Other RPC frameworks
RPC and REST
Reactive manifesto
Understanding JSON-RPC
How JSON-RPC works
Creating a microservice
Dependencies
Client
Worker
Server
Compiling and running

[iv]

97
97
98
98
98
99
99
99

100

101

103

103

103

104

105

105

108

109

110

110

112

112

113

114
114
115
115
116
116
117
117
118
118
118
118
118
119
119
119
119
120
120
121
122
124
125
127

Table of Contents

Learning about gRPC
How gRPC works
Creating a microservice

Dependencies

Protocol

Generating interfaces

Shared client

Client

Server implementation
Service implementation
Handlers
The main function

Worker

Compiling and running
Summary

Chapter 7: Reliable Integration with Databases
Technical requirements
PostgreSQL

Setting up a test database
Simple interaction with a database
Adding dependencies
Creating a connection
Wrapping with a tool
Compiling and running
Connection pools
Creating a pool
Parallel imports with the rayon crate
Rayon
MySQL
Database for tests
Connecting with the r2d2 adapter
Adding dependencies
Database interaction functions
Creating a connection pool
Redis
Bootstrap database for tests
Creating a connection pool
Dependencies
Adding commands and interaction functions
Data manipulation functions
Parsing arguments
Connecting to Redis
Executing subcommands
Testing our Redis example
MongoDB
Bootstrapping a database for testing
Connecting to a database using the r2d2 pool

128
128
128
129
130
131
132
134
134
135
136
137
138
138

139

140
140
141
141
143
143
145
146
149
150
151
153
154
154
155
156
156
157
158
160
160
161
161
162
163
164
165
165
166
167
167
168

[v]

Table of Contents

Interaction functions
Parsing arguments
Creating a connections pool
Implementing subcommands
Testing
DynamoDB
Bootstrapping a database for testing
Connecting to DynamoDB
Adding dependencies
Interaction functions
Parsing command-line arguments
Testing
Summary

Chapter 8: Interaction to Database with Object-Relational Mapping

Technical requirements
The diesel crate
Adding the necessary dependencies
diesel_cli
Creating migrations
Declaring the data structure
Models
Connecting to a database
Parsing arguments
Creating a connection
Implementing subcommands using a DSL
Adding a user subcommand implementation
Listing users subcommand implementation
Testing
Complex database structure
Business logic of the example application
API methods
Database structure and migrations
Diesel initial setup
up.sql
down.sql
Users table
up.sql
down.sql
Channels table
up.sql
down.sql
Memberships table
up.sql
down.sql
Messages table
up.sql
down.sql
Schema

[vi]

169
170
171
172
173
174
174
176
176
178
182
185
186

187
187
188
188
188
189
190
191
192
192
193
194
194
195
196
196
196
198
198
199
199
200
200
200
201
201
201
202
202
202
202
203
203
203

203

Table of Contents

Models 205
User 205
Channel 206
Membership 207
Message 207

Database interaction API crate 208
Api 209
Register user 209
Create channel 210
Publish channel 211
Add member 212
Add message 213
Delete message 213

Testing the crate 214

Summary 215
Chapter 9: Simple REST Definition and Request Routing with
Frameworks 216
Technical requirements 216
Rouille 217

Creating a microservice 217
Bootstrapping a server 217
Handling requests 218

Root handler 218

Sign-up handler 218

Sign-in handler 220

Default handler 221

Compiling and running 221
Nickel 222

Creating a microservice 222
Bootstrapping a server 222
Handling requests 224
Worker for sending emails 225

Compiling and running 226

Rocket 227

Creating a microservice 227
Bootstrapping a server 227
Handling requests 229
Database schema and models 230

Compiling and running 231

Gotham 232

Creating a microservice 233
Types of framework 233
The main function 235
Handler implementation 238

Running and testing 240

Summary 242
Chapter 10: Background Tasks and Thread Pools in Microservices 243

[vii]

Table of Contents

Technical requirements
Interacting with threads
Synchronous or asynchronous?
IO-bound versus CPU-bound tasks
Synchronous tasks inside asynchronous contexts
The limitations of using 10 operations on files
Spawning a thread for image processing
Interacting with a thread in an asynchronous way
Using thread pools
CpuPool
The blocking section
Actors
Basics of the actix framework
Implementing actors
The count actor
Types
Actor
Message
Handler
The log actor
Types
Actor
Message
Handler
The resize actor
Types
Actor
Message
Handler
Using the server with actors
Requests handler
Building and running

Summary

Chapter 11: Involving Concurrency with Actors and the Actix Crate

Technical requirements
Actor concurrency in microservices
Understanding actors
Actors in microservices
The Actix framework
Creating a microservice with actix-web
Bootstrapping an actix-web server
Starting a server
App creation
Scope and routes
Static files handler
HTTP client
GET requests
POST requests

243
244
244
244
244
245
246
248
251
251
252
254
255
255
256
256
256
257
257
258
258
259
260
260
260
261
261
261
262
262
264
266

267

268
268
268
269
269
270
270
270
270
271
272
273
273
274
275

[wiii]

Table of Contents

Handlers
Signup
Signin
New comment
Comments
Counter
Middleware
Building and running
Using databases
The database interaction actor
Actors
Messages
Setting a value message
Get value message
Link to actor
Using database actors
WebSocket
Repeater actor
Actors
Messages
Updating the message
Control message

The notification actor
Actor
Handlers
Adding WebSocket support to a server

Summary

Chapter 12: Scalable Microservices Architecture
Technical requirements
Scalable architecture
Basic ideas
Message brokers and queues
RabbitMQ
Kafka
Application bottlenecks
Scalable application with Rust and RabbitMQ
Bootstrap message broker for testing
Dependencies
Abstract queue interaction actor
Dependencies
Abstract messages handler
Actor
Handling an incoming stream
Sending a new message
Utility methods
Crate
Request and response

276
276
277
278
280
280
280
282
282
282
283
283
283
284
285
286
289
289
289
290
290
291
292
293
295
296

298

299
299
300
300
300
301
301
301
302
302
303
305
305
306
307
309
310
311
313
315

[ix]

Table of Contents

Worker
Dependencies
Handler
main function

Server
Dependencies
Shared state
Server handler
Requests handlers

Index handler

Tasks handler

Upload handler
main function

Testing

How to scale this application

Summary

Chapter 13: Testing and Debugging Rust Microservices

Technical requirements
Testing microservices
Unit testing
Mocking
Starting a server for testing
Making requests
Implementing tests
Running our tests
Integration testing
Starting an application instance
Dependencies
Utils
The integration testing client
Types
Users
Content
Mailer
Router
Debugging microservices
curl
Postman
mitmproxy
LLDB
Visual Studio Code
Structural logging
Example
Building and testing
Distributed tracing
Starting Jaeger
Generating spans

316
316
316
318
318
318
319
320
321
321
322
323
324
326
328

328

329
329
330
330
330
332
334
335
336
337
338
338
339
340
343
344
345
346
347
349
349
350
352
354
356
358
358
360
361
362
362

[x]

Table of Contents

Compile and run
Summary

Chapter 14: Optimization of Microservices
Technical requirements
Performance-measuring tools

Welle
Drrill
Measuring and optimizing performance
Basic example
Performance
Optimizations
State sharing without blocking
Reusing values by references
Caching
Compilation with optimizations
Optimization techniques
Link-time optimizations
Abort instead of panicking
Reducing the size of binaries
Isolated benchmarks
Profiling
Summary

Chapter 15: Packing Servers to Containers
Technical requirements
Building a Docker image with a microservice
Creating an image with the Rust compiler
Users microservice image
.dockerignore
Dockerfile
Building an image
Starting a container
Content microservice image
Email microservice image
Router microservice image
DBSync worker image
Dependencies
The main function
Hiding microservice source code
Composing a microservice set
Application definition
Database container
A container with an email server
DBSync worker container
Mails microservice container

364
366

367
367
368
368
369
370
370
373
374
375
376
377
378
380
380
381
381
382
383
385

387
387
388
388
391
391
392
393
395
395
396
397
397
398
398
400
401
402
402
403
403
404

[xil

Table of Contents

Users microservice container
Content microservice container
Router microservice container
Running the application
Adding persistent state to the application
Running the application in the background
Summary

Chapter 16: DevOps of Rust Microservices - Continuous Integration

and Delivery
Technical requirements

Continuous integration and continuous delivery

Continuous integration
Continuous delivery
Container orchestration
Rust tools
Rustfmt
Installation
Usage
Configuration
Clippy
Installation
Usage
Configuration
Recommended code attributes
Rustfix
Installation
Usage
Cargo test
Cl and CD tools
TravisClI
AppVeyor
Jenkins
Demonstration of continuous integration
Docker Compose
The SCM server
The ClI server
The Cl agent
The image
Configuring Gogs
Configuring TeamCity
Authorizing agents
Creating a project
Building steps for Rust
Building with CI
Summary

405
405
406
406
408
409
410

411
411
412
412
413
414
414
415
415
415
416
417
417
418
419
419
420
420
420
421
421
422
423
424
425
426
426
426
427
427
428
431
434
435
437
440
442

[xii]

Table of Contents

Chapter 17: Bounded Microservices with AWS Lambda 443
Technical requirements 443
Serverless architecture 444

AWS Lambda 444
Azure Functions 445
Cloudflare Workers 445
IBM Cloud Functions 445
Google Cloud Functions 446
Minimal Rust microservices for AWS Lambda 446
Dependencies 446
Developing a microservice 447
Building 449
Deployment 450
Serverless Framework 455
Preparation 455
Implementation 456
Dependencies 456
Handler 457
Request and response types 459
Functions 461
Configuration 463
Resources 464
Deployment 468
Permissions 468

Script 469
Running 470
Testing 472
Updating and removing 478
Summary 478
Other Books You May Enjoy 479
Index 482

[xiii]

Preface

This book will introduce you to the development of microservices with Rust. I started using
Rust not that long ago, back in 2015. It had only been a couple of months since the release of
version 1.0 and, at that time, I didn't think that this tool would usher in a silent revolution
that would disrupt the traditions associated with system programming, which, at that time,
was tedious and in no way fashionable.

Maybe I'm exaggerating a little, but I have witnessed how companies stopped using the
customary tools and began rewriting parts of their products or a number of services in
Rust, and they were so happy with the outcome that they continue to do so time and again.
Today, Rust is an important part of blockchain initiatives, the flagship for WebAssembly,
and is an awesome tool for developing fast and reliable microservices that utilize all
available server resources. Consequently, Rust has transformed itself from a hobby tool for
curious developers into a strong foundation for modern products.

In this book, we will learn how to create microservices using Rust. We begin with a short
introduction to microservices, and discuss why Rust is a good tool for writing them. Then,
we will create our first microservice using the hyper crate, and learn how to configure
microservices and log activities. After that, we will explore how to support different
formats of requests and responses using the serde crate.

Who this book is for

This book is designed for two categories of reader—experienced Rust developers who are
new to microservices, and advanced microservice developers who are new to Rust. I've
tried to cover the ecosystem of useful tools and crates available for Rust developers today.
This book describes the creation of microservices, from high-level frameworks to
constructing low-level asynchronous combinators that produce responses with minimal
resource blocking time. This book aims to allow you to find the solution to a specific task.

To be able to understand the topics covered in this book, you need a solid background in
the Rust programming language (you should be able to write and compile applications
using cargo, understand lifetimes and borrowing concepts, know how traits work, and
understand how to use reference counters, mutexes, threads, and channels). If you are
unfamiliar with Rust, take the time to understand these concepts before reading this book.

Preface

You also have to know how to write a minimal backend working on an HTTP protocol. You
have to understand what REST is, and how to use it for applications. However, you don't
have to understand how HTTP/2 works because we will use crates that provide
abstractions agnostic to specific transport.

What this book covers

Chapter 1, Introduction to Microservices, introduces you to microservices and how they can
be created with Rust. In this chapter, we also discuss the benefits of using Rust for creating
microservices.

Chapter 2, Developing a Microservice with Hyper Crate, describes how to create microservices
with the hyper crate, thereby allowing us to create a compact asynchronous web server
with precise control over incoming requests (method, path, query parameters, and so on).

Chapter 3, Logging and Configuring Microservices, includes information about configuring a
microservice using command-line arguments, environment variables, and configuration
files. You will also see how to add logging to your projects, since this is the most important
feature for the maintenance of microservices in production.

Chapter 4, Data Serialization and Deserialization with Serde Crate, explains how, in addition to
customary HTTP requests, your microservice has to support formal requests and responses
in a specific format, such as JSON, and CBOR, which is important for API implementation
and in terms of organizing the mutual interaction of microservices.

Chapter 5, Understanding Asynchronous Operations with Futures Crate, delves into the deeper
asynchronous concepts of Rust and how to use asynchronous primitives for writing
combinators to process a request and prepare a response for a client. Without a clear
understanding of these concepts, you cannot write effective microservices to utilize all
available resources of a server, and to avoid the blocking of threads that execute
asynchronous activities and require special treatment with execution runtime.

Chapter 6, Reactive Microservices — Increasing Capacity and Performance, introduces you to a
reactive microservice that won't respond immediately to incoming requests, and that takes
time to process a request and response when it's done. You will become familiar with
remote procedure calls in Rust and how to use the language so that microservices can call
one another.

Chapter 7, Reliable Integration with Databases, shows you how to interact with databases
using Rust. You will get to know crates that provide interaction with databases, including
MySQL, PostgreSQL, Redis, MongoDB, and DynamoDB.

[2]

Preface

Chapter 8, Interaction to Database with Object-Relational Mapping, explains how, in order to
interact with SQL databases effectively and map database records to native Rust structs,
you can use object-relational mapping (ORM). This chapter demonstrates how to use
diesel crates which require nightly compiler version and whose capabilities are used for
generating bindings with tables.

Chapter 9, Simple REST Definition and Request Routing with Frameworks, explains how, in
certain cases, you don't need to write stringent asynchronous code, and that it is sufficient
to use frameworks that simplify microservice writing. In this chapter, you will become
acquainted with four such frameworks—rouille, nickel, rocket, and gotham.

Chapter 10, Background Tasks and Thread Pools in Microservices, discusses multithreading in
microservices and how to use pools of threads to perform tasks on a background, given that
not every task can be performed asynchronously and requires a high CPU load.

Chapter 11, Involving Concurrency with Actors and Actix Crate, introduces you to the Actix
framework, which uses the actor's model to provide you with abstractions that are easily
compatible with Rust. This includes the balance of performance, the readability of the code,
and task separation.

Chapter 12, Scalable Microservices Architecture, delves into an explanation of how to design
loose-coupling microservices that don't need to know about sibling microservices, and that
use message queues and brokers to interact with one another. We will write an example of
how to interact with other microservices using RabbitMQ.

Chapter 13, Testing and Debugging Rust Microservices, explains how testing and debugging
is a key component in terms of preparing for the release of microservices. You will learn
how to test microservices from unit tests to cover a full application with integration tests.
Afterward, we will then discuss how to debug an application using debuggers and logging
capabilities. Also, we will create an example that uses distributed tracing based on the
OpenTrace API — a modern tool for tracking the activities of complex applications.

Chapter 14, Optimization of Microservices, describes how to optimize a microservice and
extract the maximum performance possible.

Chapter 15, Packing Servers to Containers, explains how, when a microservice is ready for
release, there should be a focus on packing microservices to containers, because at least
some microservices require additional data and environments to work, or even just to gain
the advantage of fast delivery containers over bare binaries.

Chapter 16, DevOps of Rust Microservices - Continuous Integration and Delivery, continues
with the theme of learning how to build microservices and explains how to use continuous
integration to automate building and delivery processes for your product.

[3]

Preface

Chapter 17, Bounded Microservices with AWS Lambda, introduces you to serverless
architecture, an alternative approach to writing services. You will become acquainted with
AWS Lambda and you can use Rust to write fast functions that work as a part of serverless
applications. Also, we will use the Serverless Framework to build and deploy the example
application to the AWS infrastructure in a fully automated manner.

To get the most out of this book

You will require at least version 1.31 of Rust. Install it using the rustup tool: https://
rustup.rs/. To compile examples from some chapters, you will need to install a nightly
version of the compiler. You will also need to install Docker with Docker Compose to run
containers with databases and message brokers to simplify the testing of example
microservices from this book.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www.packt .com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Microservices-with-Rust. In case there's an update to the
code, it will be updated on the existing GitHub repository.

[4]

Preface

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789342758_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10* . dmg disk image file as another disk in
your system."

A block of code is set as follows:

let conn = Connection::connect ("postgres://postgres@localhost:5432",
TlsMode: :None) .unwrap () ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

#[derive (Deserialize, Debug)]
struct User {

name: String,

email: String,

}

Any command-line input or output is written as follows:

cargo run ——- add user-1 user-1lQ@example.com
cargo run —-- add user-2 user-2@example.com
cargo run —— add user-3 user-3(@example.com

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

[5]

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

Introduction to Microservices

This chapter will introduce you to the basics of microservices, including what a
microservice is and how to break a monolithic server down into microservices. It will be
useful if you are not familiar with the concept of microservices or if you have never
implemented them using the Rust programming language.

The following topics will be covered in this chapter:

e What are microservices?
e How to transform a traditional server architecture into microservices
e The importance of Rust in microservices development

Technical requirements

This chapter hasn't got any special technical requirements, but now is a good time to install
or update your Rust compiler. You can get this from Rust's official website: https://www.
rust-lang.org/ . I recommend that you use the rustup tool, which you can download
from https://rustup.rs/

If you have previously installed the compiler, you need to update it to the latest version
using the following command:

rustup update

You can get the examples for this book from the GitHub page: https://github.com/
PacktPublishing/Hands-On-Microservices—-with—-Rust-2018/.

Introduction to Microservices Chapter 1

What are microservices?

Modern users interact with microservices every day; not directly, but by using web
applications. Microservices are a flexible software development technique that help to
implement applications as a collection of independent services with weak relations.

In this section, we'll learn about why microservices are a good thing and why we need
them. Microservices follow the REST architecture, which provides rules about using
consistent HTTP methods. We will also look at how microservices can be deployed to the
user, which is one of their main advantages.

Why we need microservices

Microservices are a modern software development approach that refers to the splitting of
software into a suite of small services that are easier to develop, debug, deploy, and
maintain. Microservices are tiny, independent servers that act as single business functions.
For example, if you have an e-commerce suite that works as a monolith, you could split it
into small servers that have limited responsibility and carry out the same tasks. One
microservice could handle user authorization, the other could handle the users' shopping
carts, and the remaining services could handle features such as search functionality, social-
media integration, or recommendations.

Microservices can either interact with a database or be connected to other microservices. To
interact with a database, microservices can use different protocols. These might

include HTTP or REST, Thrift, ZMQ, AMQP for the messaging communication style,
WebSockets for streaming data, and even the old-fashioned Simple Object Access Protocol
(SOAP) to integrate them with the existing infrastructure. We will use HTTP and REST in
this book, because this is the most flexible way to provide and interact with the web API.
We'll explain this choice later.

Microservices have the following advantages over monolithic servers:

¢ You can use different programming languages

The code base of a single server is smaller

They have an independent DevOps process to build and deploy activities

They can be scaled depending on their implementation

If one microservice fails, the rest will continue to work

They work well within containers

Increased isolation between elements leads to better security

They are suitable for projects involving the Internet of Things

[8]

Introduction to Microservices Chapter 1

¢ They are in line with the DevOps philosophy
¢ They can be outsourced

¢ They can be orchestrated after development
e They are reusable

There are, however, a few drawbacks of microservices. These include the following:

e Too many microservices overload the development process
¢ You have to design interaction protocols
e They can be expensive for small teams

A microservices architecture is a modern approach that can help you achieve the goal of
having loosely coupling elements. This is where the servers are independent from one
another, helping you to release and scale your application faster than a monolithic
approach, in which you put all your eggs in one basket.

How to deploy a microservice

Since a microservice is a small but complete web server, you have to deploy it as a complete
server. But since it has a narrow scope of features, it's also simpler to configure. Containers
can help you pack your binaries into an image of the operating system with the necessary
dependencies to simplify deployment.

This differs from the case with monoliths, in which you have a system administrator who
installs and configures the server. Microservices need a new role to carry out this
function—DevOps. DevOps is not just a job role, but a whole software engineering culture
in which developers become system administrators and vice versa. DevOps engineers are
responsible for packing and delivering the software to the end user or market. Unlike
system administrators, DevOps engineers work with clouds and clusters and often don't
touch any hardware except their own laptop.

DevOps uses a lot of automation and carries the application through various stages of the
delivery process: building, testing, packaging, releasing, or deployment, and the
monitoring of the working system. This helps to reduce the time it takes both to market a
particular software and to release new versions of it. It's impossible to use a lot of
automation for monolithic servers, because they are too complex and fragile. Even if you
want to pack a monolith to a container, you have to deliver it as a large bundle and run the
risk that any part of the application could fail. In this section, we'll have a brief look at
containers and continuous integration. We will go into detail about these topics in Chapter
15, Packing Servers to Containers, and chapter 16, DevOps of Rust Microservices — Continuous
Integration and Delivery.

[9]

Introduction to Microservices Chapter 1

Docker

When we refer to containers, we almost always mean Docker containers (https://www.
docker.com/). Docker is the most popular software tool for running programs in
containers, which are isolated environments.

Containerization is a kind of virtualization where the scope of the application's resources is
limited. This means the application works at its maximum performance level. This is
different from full virtualization, where you have to run the full operating system with the
corresponding overhead and run your application inside that isolated operating system.

Docker has become popular for a variety of reasons. One of these reasons is that it has a
registry—the place where you can upload and download images of containers with
applications. The public registry is Docker Hub (https://hub.docker.com/explore/), but
you can have a private registry for a private or permissioned software.

Continuous Integration

Continuous Integration (CI) is the practice of keeping a master copy of the software and
using tests and merging processes to expand the features of the application. The process of
Cl is integrated with the Source Code Management (SCM) process. When the source code
is updated (for example, in Git), the CI tool checks it and starts the tests. If all tests pass,
developers can merge the changes to the master branch.

CI doesn't guarantee that the application will work, because tests can be wrong, but it
removes the need to run tests from developers on an automated system. This gives you the
great benefit of being able to test all your upcoming changes together to detect conflicts
between changes. Another advantage is that the CI system can pack your solution in a
container, so the only thing that you have to do is deliver the container to a production
cloud. The deployment of containers is also simple to automate.

[10]

Introduction to Microservices Chapter 1

How to split a traditional server into multiple
microservices

Around 10 years ago, developers used to use the Apache web server with a scripting
programming language to create web applications, rendering the views on the server-side.
This meant that there was no need to split applications into pieces and it was simpler to
keep the code together. With the emergence of Single-Page Applications (SPAs), we only
needed server-side rendering for special cases and applications were divided into two
parts: frontend and backend. Another tendency was that servers changed processing
method from synchronous (where every client interaction lives in a separate thread) to
asynchronous (where one thread processes many clients simultaneously using non-
blocking, input-output operations). This trend promotes the better performance of single
server units, meaning they can serve thousands of clients. This means that we don't need
special hardware, proprietary software, or a special toolchain or compiler to write a tiny
server with great performance.

The invasion of microservices happened when scripting programming languages become
popular. By this, we are not only referring to languages for server-side scripting, but
general-purpose high-level programming languages such as Python or Ruby. The adoption
of JavaScript for backend needs, which had previously always been asynchronous, was
particularly influential.

If writing your own server wasn't hard enough, you could create a separate server for
special cases and use them directly from the frontend application. This would not require
rendering procedures on the server. This section has provided a short description of the
evolution from monolithic servers to microservices. We are now going to examine how to
break a monolithic server into small pieces.

Reasons to avoid monoliths

If you already have a single server that includes all backend features, you have a monolithic
service, even if you start two or more instances of this service. A monolithic service has a
few disadvantages—it is impossible to scale vertically, it is impossible to update and
deploy one feature without interrupting all the running instances, and if the server fails, it
affects all features. Let's discuss these disadvantages a little further. This might help you to
convince your manager to break your service down into microservices.

[11]

Introduction to Microservices Chapter 1

Impossible to scale vertically

There are two common approaches to scaling an application:

e Horizontally: Where you start a new instance of application

¢ Vertically: Where you improve an independent application layer that has a
bottleneck

The simplest way to scale a backend is to start another instance of the server. This will solve
the issue, but in many cases it is a waste of hardware resources. For example, imagine you
have a bottleneck in an application that collects or logs statistics. This might only use 15%
of your CPU, because logging might include multiple IO operations but no intensive CPU
operations. However, to scale this auxiliary function, you will have to pay for the whole
instance.

Impossible to update and deploy only one feature

If your backend works as a monolith, you can't update only a small part of it. Every time
you add or change a feature, you have to stop, update, and start the service again, which
causes interruptions.

When you have a microservice and you have find a bug, you can stop and update only this
microservice without affecting the others. As I mentioned before, it can also be useful to
split a product into separate development teams.

The failure of one server affects all features

Another reason to avoid monoliths is that every server crash also crashes all of the features,
which causes the application to stop working completely, even though not every feature is
needed for it to work. If your application can't load new user interface themes, the error is
not critical, as long as you don't work in the fashion or design industry, and your
application should still be able to provide the vital functions to users. If you split your
monolith into independent microservices, you will reduce the impact of crashes.

[12]

Introduction to Microservices Chapter 1

Breaking a monolithic service into pieces

Let's look an example of an e-commerce monolith server that provides the following
features:

User registration
Product catalog
Shopping cart
Payment integration
E-mail notifications
Statistics collecting

Old-fashioned servers developed years ago would include all of these features together.
Even if you split it into separate application modules, they would still work on the same
server. You can see an example structure of a monolithic service here:

monolith server

User registration Product catalog

Shopping cart Payment integration
E-mail notifications Statistics collecting

[13]

Introduction to Microservices Chapter 1

In reality, the real server contains more modules than this, but we have separated them into
logical groups based on the tasks they perform. This is a good starting point to breaking
your monolith into multiple, loosely coupled microservices. In this example, we can break
it further into the pieces represented in the following diagram:

Statistics collecting

balancer User registration E-mail notifications

Shopping cart Payment integration

Product catalog

As you can see, we use a balancer to route requests to microservices. You can actually
connect to microservices directly from the frontend application.

Shown in the preceding diagram is the potential communication that occurs between
services. For simple cases, you can use direct connections. If the interaction is more
complex, you can use message queues. However, you should avoid using a shared state
such as a central database and interacting through records, because this can cause a
bottleneck for the whole application. We will discuss how to scale microservices in Chapter
12, Scalable Microservices Architecture. For now, we will explore REST API, which will be
partially implemented in a few examples throughout this book. We will also discuss why
Rust is a great choice for implementing microservices.

Definition of a REST API

Let's define the APIs that we will use in our microservice infrastructure using the REST
methodology. In this example, our microservices will have minimal APIs for demonstration
purposes; real microservices might not be quite so "micro". Let's explore the REST
specifications of the microservices of our application. We will start by looking at a
microservice for user registration and go through every part of the application.

[14]

Introduction to Microservices Chapter 1

User registration microservice

The first service is responsible for the registration of users. It has to contain methods to add,
update, or delete users. We can cover all needs with the standard REST approach. We will
use a combination of methods and paths to provide this user registration functionality:

e POST request to /user/ creates a new user and returns its id
e GET request to /user/id returns information related to a user with id

PUT request to /user/id applies changes to a user with id

DELETE request to /user/id removes a user with id

This service can use the E-mail notifications microservice and call its methods to notify the
user about registration.

E-mail notifications microservice
The E-mail notifications microservice can be extremely simple and contains only a single
method:

e The POST request to /send_email/ sends an email to any address

This server can also count the sent emails to prevent spam or check that the email exists in
the user's database by requesting it from the User registration microservice. This is done to
prevent malicious use.

Product catalog microservice

The Product catalog microservice tracks the available products and needs only weak
relations with other microservices, except for the Shopping cart. This microservice can
contain the following methods:

® POST request to /product/ creates a new product and returns its id
® GET request to /product/id returns information about the product with id
e PUT request to /product/id updates information about the product with id

DELETE request to /product/id marks the product with id as deleted

e GET request to /products/ returns a list of all products (can be paginated by
extra parameters)

[15]

Introduction to Microservices Chapter 1

Shopping cart microservice

The Shopping cart microservice is closely integrated with the User registration and
Product catalog microservices. It holds pending purchases and prepares invoices. It
contains the following methods:

® POST request to /user/uid/cart/, which puts a product in the cart and returns
the id of item in the user's cart with the uid

® GET request to /user/uid/cart/id, which returns information about the item
with id

e PUT request to /user/uid/cart/id, which updates information about the item
with id (alters the quantity of items)

® GET request to /user/uid/cart/, which returns a list of all the items in the cart

As you can see, we don't add an extra "s" to the /cart/ URL and we use the same path for
creating items and to get a list, because the first handler reacts to the POST method, the
second processes requests with the GET method, and so on. We also use the user's ID in the
path. We can implement the nested REST functions in two ways:

¢ Use session information to get the user's id. In this case, the paths contain a
single object, such as /cart/id . We can keep the user's id in session cookies,
but this is not reliable.

e We can add the id of a user to a path explicitly.

Payment Integration microservice
In our example, this microservice will be a third-party service, which contains the following
methods:

e POST request to /invoices creates a new invoice and returns its id

® POST request to /invoices/id/pay pays for the invoice

Statistics collecting microservice

This service collects usage statistics and logs a user's actions to later improve the
application. This service exports API calls to collect the data and contains some internal
APIs to read the data:

e POST request to /log logs a user's actions (the id of a user is set in the body of
the request)

[16]

Introduction to Microservices Chapter 1

® GET request to /log?from=2?&to=2? works only from the internal network and
returns the collected data for the period specified

This microservice doesn't conform clearly to the REST principles. It's useful for
microservices that provide a full set of methods to add, modify, and remove the data, but
for other services, it is excessively restrictive. You don't have follow a clear REST structure
for all of your services, but it may be useful for some tools that expect it.

Transformation to microservices

If you already have a working application, you might transform it into a set of
microservices, but you have to keep the application running at the highest rate and prevent
any interruptions.

To do this, you can create microservices step by step, starting from the least important task.
In our example, it's better to start from email activities and logging. This practice helps you
to create a DevOps process from scratch and join it with the maintenance process of your

app.

Reusing existing microservices

If your application is a monolith server, you don't need to turn all modules into
microservices, because you can use existing third-party services and shrink the bulk of the
code that needs rewriting. These services can help with many things, including storage,
payments, logging, and transactional notifications that tell you whether an event has been
delivered or not.

I recommend that you create and maintain services that determine your competitive
advantage yourself and then use third-party services for other tasks. This can significantly
shrink your expenses and the time to market.

In any case, remember the product that you are delivering and don't waste time on
unnecessary units of your application. The microservices approach helps you to achieve
this simply, unlike the tiresome coding of monoliths, which requires you to deal with
numerous secondary tasks. Hopefully, you are now fully aware of the reasons why
microservices can be useful. In the next section, we will look at why Rust is a promising
tool for creating microservices.

[17]

Introduction to Microservices Chapter 1

Why Rust is a great tool for creating
microservices

If you have chosen to read this book, you probably already know that Rust is an up-to-date,
powerful, and reliable language. However, choosing it to implement microservices is not an
obvious decision, because Rust is a system programming language that is often assigned to
low-level software such as drivers or OS kernels. This is because you tend to have to write a
lot of glue code or get into detailed algorithms with low-level concepts, such as pointers in
system programming languages. This is not the case with Rust. As a Rust programmer,
you've surely already seen how it can be used to create high-level abstractions with flexible
language capabilities. In this section, we'll discuss the strengths of Rust: its strict and
explicit nature, its high performance, and its great package system.

Explicit versus implicit

Up until recently, there hasn't been a well-established approach to using Rust for writing
asynchronous network applications. Previously, developers tended to use two styles: either
explicit control structures to handle asynchronous operations or implicit context switching.
The explicit nature of Rust meant that the first approach outgrew the second. Implicit
context switching is used in concurrent programming languages such as Go, but this model
does not suit Rust for a variety of reasons. First of all, it has design limitations and it's hard
or even impossible to share implicit contexts between threads. This is because the

standard Rust library uses thread-local data for some functions and the program can't
change the thread environment safely. Another reason is that an approach with context
switching has overheads and therefore doesn't follow the zero-cost abstractions philosophy
because you would have a background runtime. Some modern libraries such as actix
provide a high-level approach similar to automatic context switching, but actually use
explicit control structures for handling asynchronous operations.

Network programming in Rust has evolved over time. When Rust was released, developers
could only use the standard library. This method was particularly verbose and not suitable
for writing high-performance servers. This was because the standard library didn't contain
any good asynchronous abstractions. Also, event hyper, a good crate for creating HTTP
servers and clients, processed requests in separate threads and could therefore only have a
certain number of simultaneous connections.

The mio crate was introduced to provide a clear asynchronous approach to make high-
performance servers. It contained functions to interact with asynchronous features of the
operating system, such as epoll or kqueue, but it was still verbose, which made it hard to
write modular applications.

[18]

Introduction to Microservices Chapter 1

The next abstraction layer over mio was a futures and tokio pair of crates. The futures
crate contained abstractions for implementing delayed operations (like the defers concept
in Twisted, if you're familiar with Python). It also contained types for assembling stream
processors, which are reactive and work like a finite state machine.

Using the futures crate was a powerful way to implement high-performance and high-
accuracy network software. However, it was a middleware crate, which made it hard to
solve everyday tasks. It was a good base for rewriting crates such as hyper, because these
can use explicit asynchronous abstractions with full control.

The highest level of abstraction today are crates that use futures, tokio, and hyper
crates, such as rocket or actix-web. Now, rocket includes high-level elements to
construct a web server with the minimal amount of lines. act ix-web works as a set of
actors when your software is broken down into small entities that interact with one
another. There are many other useful crates, but we will start with hyper as a basis for
developing web servers from scratch. Using this crate, we will be between low-level crates,
such as futures, and high-level crates, such as rocket. This will allow us to understand
both in detail.

Minimal amount of runtime errors

There are many languages suitable for creating microservices, but not every language has a
reliable design to keep you from making mistakes. Most interpreted dynamic languages let
you write flexible code that decides on the fly which field of the object to get and which
function to call. You can often even override the rules of function calling by adding meta-
information to objects. This is vital in meta-programming or in cases where your data
drives the behavior of the runtime.

The dynamic approach, however, has significant drawbacks for the software, which
requires reliability rather than flexibility. This is because any inaccuracy in the code causes
the application to crash. The first time you try to use Rust, you may feel that it lacks
flexibility. This is not true, however; the difference is in the approach you use to achieve
flexibility. With Rust, all your rules must be strict. If you create enough abstractions to
cover all of the cases your application might face, you will get the flexibility you want.

[19]

Introduction to Microservices Chapter 1

Rust rookies who come from the JavaScript or the Python world might notice that they
have to declare every case of serialization/deserialization of data, whereas with dynamic
languages, you can simply unpack any input data to the free-form object and explore the
content later. You actually have to check all cases of inconsistency during runtime and try
and work out what consequences could be caused if you change one field and remove
another. With Rust, the compiler checks everything, including the type, the existence, and
the corresponding format. The most important thing here is the type, because you can't
compile a program that uses incompatible types. With other languages, this sometimes
leads to strange compilation errors such as a case where you have two types for the same
crate but the types are incompatible because they were declared in different versions of the
same crate. Only Rust protects you from shooting yourself in the foot in this way. In fact,
different versions can have different rules of serialization/deserialization for a type, even if
both declarations have the same data layout.

Great performance

Rust is a system programming language. This means your code is compiled into native
binary instructions for the processor and runs without unwanted overhead, unlike
interpreters such as JavaScript or Python.

Rust also doesn't use a garbage collector and you can control all allocations of memory and
the size of buffers to prevent overflow.

Another reason why Rust is so fast for microservices is that it has zero-cost abstractions,
which means that most abstractions in the language weigh nothing. They turn into effective
code during compilation without any runtime overhead. For network programming, this
means that your code will be effective after compilation, that is, once you have added
meaningful constructions in the source code.

Minimal dependencies burden

Rust programs are compiled into a single binary without unwanted dependencies. It needs
libc or another dynamic library if you want to use OpenSSL or similar irreplaceable
dependencies, but all Rust crates are compiled statically into your code.

You may think that the compiled binaries are quite large to be used as microservices. The
word microservice, however, refers to the narrow logic scope, rather than the size. Even so,
statically linked programs remain tiny for modern computers.

[20]

Introduction to Microservices Chapter 1

What benefits does this give you? You will avoid having to worry about dependencies.
Each Rust microservice uses its own set of dependencies compiled into a single binary. You
can even keep microservices with obsolete features and dependencies besides new
microservices. In addition, Rust, in contrast with the Go programming language, has strict
rules for dependencies. This means that the project resists breaking, even if someone forces
an update of the repository with the dependency you need.

How does Rust compare to Java? Java has microframeworks for building microservices, but
you have to carry all dependencies with them. You can put these in a fat Java ARchive
(JAR), which is a kind of compiled code distribution in Java, but you still need Java Virtual
Machine (JVM). Don't forget, too, that Java will load every dependency with a class loader.
Also, Java bytecode is interpreted and it takes quite a while for the Just-In-Time (JIT)
compilation to finish to accelerate the code. With Rust, bootstrapping dependencies don't
take a long time because they are attached to the code during compilation and your code
will work with the highest speed from the start since it was already compiled into native
code.

Summary

In this chapter, we have mastered the basics of microservices. Simply put, a microservice is
a compact web server that handles specific tasks. For example, microservices can be
responsible for user authentication or for email notifications. They make running units
reusable. This means you don't need to recompile or restart units if they don't require any
updates. This approach is simpler and more reliable in deployment and maintenance.

We have also discussed how to split a monolithic web server that contains all of its business
logic in a single unit into smaller pieces and join them together through communication, in
line with the ideology of loose coupling. To split a monolithic server, you should separate it
into domains that are classified by what tasks the servers carry out.

In the last section of this chapter, we've looked at why Rust is a good choice for developing
microservices. We touched on dependencies management, the performance of Rust, its
explicit nature, and its toolchain. It's now time to dive deep into coding and write a
minimal microservice with Rust.

In the next chapter we will start to writing microservices with Rust using hyper crate that
provides all necessary features to write compact asynchronous HITP server.

[21]

Introduction to Microservices Chapter 1

Further reading

You have learned about the basics of microservices in this chapter, which will serve as a
point for you to start writing microservices on Rust throughout this book. If you want to
learn more about topics discussed in this chapter, please consult the following list:

e Microservices - a definition of this new architectural term, 2014, Martin Fowler,
available at https://martinfowler.com/articles/microservices.html. This
article introduces the concept of microservices.

e mio, available at https://github.com/carllerche/mio. This is a crate that is
widely used by other crates for asynchronous operations in Rust. We won't use it
directly, but it is useful to know how it works.

e Network Programming with Rust, 2018, Abhishek Chanda, available at https://
www.packtpub.com/application-development /network-programming-rust. This
book explains more about network addresses, protocols and sockets, and how to
use them all with Rust.

[22]

