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Over the past decades, advances in imaging analytics from
computer-aided diagnosis and quantitative imaging, leading
to radiomics, have provided the ability to extract clinically use-
ful quantitative measures from medical imaging data with the
goal to augment interpretation in diagnosis, risk assessment,
and response prediction.1–3 In addition, deep learning meth-
ods, such as convolutional neural networks (CNN), continue
to advance and demonstrate success in learning directly from
input image data in various medical tasks. The utilization of
CNNs in medical image analysis was first introduced by
Zhang et al. in 1994 (initially called “shift-invariant neural net-
work”), which later was translated as a clinical product for
the detection of microcalcifications on digital mammograms.4

Now such imaging analytics and machine learning tech-
niques, fueled by additional technological advances in effi-
cient training algorithms and computational resources as well
as larger datasets, are offering an unprecedented opportunity
to rapidly extract and process vast amounts of information
(i.e., radiomics) from medical images as well as utilize CNNs
with large number of layers and connections. Such quantita-
tive imaging information, especially when coupled with other
biomedical data and high-dimensional machine learning tools,
can yield methods for ultimate use in clinical decision making
as well as contribute to discovery, offering new insights into
genetic traits and molecular subtyping of disease, particularly
in cancer, that can be used as precision medicine imaging
biomarkers of disease prognosis and response to treatment.

This special section of the Journal of Medical Imaging
presents contributions on the subject of radiomics and deep
learning that highlight a wide spectrum of research areas,
including quantitative image analysis, high-dimensional
feature extraction, convolutional neural networks and deep
learning, computer-assisted diagnosis and prognosis, machine
learning and classification, and imaging genomics.

Machine Learning & Radiomics
St-Pierre et al. present a mathematical approach to reduce
the dimensionality of the input data for classification, while
preserving important volumetric features from reconstructed
three-dimensional optical imaging data. Comparing a range

of different classifiers, including support vector machines,
they demonstrate that their algorithm can optimally explore
the original feature space, while resulting into accurate and
robust classification of healthy fallopian tubes versus ovarian
cancer cells, as well as further differentiating between high-
grade serous, endometroid, and clear cells cancers.

Bakr et al. conducted a radiomics study to predict micro-
vascular invasion, a predictor of poor prognosis, in patients
with primary liver cancer. The authors extracted from
CT scans computational features describing tumor shape,
image intensities, texture and difference features across
phases of intravenous contrast enhancement, and found that
particular features were accurate predictors of microvascular
invasion.

Deep Learning for Detection and Classification
Li et al. evaluated the role of CNNs and transfer learning in
breast cancer risk assessment where digital screening mam-
mograms were fed directly into a CNN architecture and
performance was compared to that of hand-crafted features
extracted with conventional parenchymal texture analysis.
They showed that CNNs can outperform conventional texture
descriptors in classifying cancer cases versus low-risk
women, and furthermore that fusing CNNs with hand-crafted
texture can achieve best performance.

Utilizing low-dose screening chest CT data, Liu et al.
applied a 3D CNN, both as a single architecture network
as well as in an ensemble configuration, to classify likelihood
of malignancy of pulmonary nodules, aiming to minimize the
number of potentially unnecessary follow-up. They compared
the two CNN configurations with a series of conventional
machine learning models depending on domain-specific
feature extraction, showing that the 3D CNNs, especially in
their ensemble configuration, achieve the best classification
performance.

CNNs were also applied by Ordóñez et al. in fundus retinal
images to classify micro-aneurysms, which are early lesions
represented by small local features that are difficult to classify
in diabetic retinopathy. Their CNN architecture, utilizing data
augmentation, achieved high sensitivity and specificity, with
can substantially reduce false-positives tests.

Shafiee et al. presented an evolutionary deep radiomic
sequencer for pathologically proven lung cancer detection.© 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)
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Deep Learning in Segmentation
Alex et al. used stacked denoising autoencoders (SDAEs) to
achieve accurate low grade glioma segmentation by imple-
menting transfer learning from a network originally trained
with high-grade glioma images and was fine-tuned using low-
grade glioma training labels. They demonstrated the ability
to obtain good segmentation results, which generalized well
in independent data, while requiring a minimal number of
patient data.

Kovacs demonstrated a deep learning architecture to
improve the segmentation of lung in cine MRI by utilizing
sequence-specific prior information. Their approach was
applied to cine MRIs in the axial, sagittal, and coronal views,
where segmentation was used to also extract patterns of lung
motion during breathing to assist diagnosis. Comparison to
a conventional registration-based method showed robust and
superior performance for the deep learning approach.

Khalvati et al. conducted a deep learning study of fully
automated segmentation of the prostate transition zone
and whole gland on diffusion-weighted MRI. On a dataset of
104 patients, the authors achieved Dice similarity coefficients
of 0.88 and 0.93 for the transition zone and whole gland,
respectively. The algorithm used two different deep convolu-
tional neural networks, one to determine whether prostate
tissue was present and the second to perform the actual
segmentation. The segmentation deep network was a highly
modified version of the popular U-Net architecture.

Cheng et al. presented a method for the automatic
segmentation of prostates on MRI using deep learning. Their
algorithm used holistically nested networks that can automati-
cally learning the hierarchical representation of MRI scans of

the prostate, and achieved a high segmentation performance
in a 5-fold cross-validation.

Summary
Research in quantitative analytics continues to expand
through radiomics, machine learning, and deep learning.
As in the past with CAD, considerations and challenges
exist, for example, with respect to data set size and distribu-
tion, appropriate handling of inputs and outputs (to avoid
“garbage in, garbage out”), robustness assessment, training,
and statistical testing and validation. Publication of the latest
methods and findings will continue through JMI in order to dis-
seminate methods and lessons learned as well as expedite
the development and translation.
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