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We have developed a deep generative model, generative tenso-
rial reinforcement learning (GENTRL), for de novo small-mole-
cule design. GENTRL optimizes synthetic feasibility, novelty, 
and biological activity. We used GENTRL to discover potent 
inhibitors of discoidin domain receptor 1 (DDR1), a kinase tar-
get implicated in fibrosis and other diseases, in 21 days. Four 
compounds were active in biochemical assays, and two were 
validated in cell-based assays. One lead candidate was tested 
and demonstrated favorable pharmacokinetics in mice.

Drug discovery is resource intensive, and involves typical time-
lines of 10–20 years and costs that range from US$0.5 billion to 
US$2.6 billion1,2. Artificial intelligence promises to accelerate this 
process and reduce costs by facilitating the rapid identification of 
compounds3,4. Deep generative models are machine learning tech-
niques that use neural networks to produce new data objects. These 
techniques can generate objects with certain properties, such as 
activity against a given target, that make them well suited for the 
discovery of drug candidates. However, few examples of generative 
drug design have achieved experimental validation involving syn-
thesis of novel compounds for in vitro and in vivo investigation5–16.

Discoidin domain receptor 1 (DDR1) is a collagen-activated pro-
inflammatory receptor tyrosine kinase that is expressed in epithelial 
cells and involved in fibrosis17. However, it is not clear whether DDR1 
directly regulates fibrotic processes, such as myofibroblast activa-
tion and collagen deposition, or earlier inflammatory events that 
are associated with reduced macrophage infiltration. Since 2013, at 
least eight chemotypes have been published as selective DDR1 (or 
DDR1 and DDR2) small-molecule inhibitors (Supplementary Table 
1). Recently, a series of highly selective, spiro-indoline-based DDR1 
inhibitors were shown to have potential therapeutic efficacy against 
renal fibrosis in a Col4a3–/– mice model of Alport syndrome18. A 
wider diversity of DDR1 inhibitors would therefore enable further 
basic understanding and therapeutic intervention.

We developed generative tensorial reinforcement learning 
(GENTRL), a machine learning approach for de novo drug design. 
GENTRL prioritizes the synthetic feasibility of a compound, its 
effectiveness against a given biological target, and how distinct it 
is from other molecules in the literature and patent space. In this 
work, GENTRL was used to rapidly design novel compounds that 
are active against DDR1 kinase. Six of these compounds, each  
complying with Lipinski’s rules1, were designed, synthesized, and 

experimentally tested in 46 days, which demonstrates the potential of 
this approach to provide rapid and effective molecular design (Fig. 1a).

To create GENTRL, we combined reinforcement learning, varia-
tional inference, and tensor decompositions into a generative two-
step machine learning algorithm (Supplementary Fig. 1)19. First, we 
learned a mapping of chemical space, a set of discrete molecular 
graphs, to a continuous space of 50 dimensions. We parameterized the 
structure of the learned manifold in the tensor train format to use par-
tially known properties. Our auto-encoder-based model compresses 
the space of structures onto a distribution that parameterizes the 
latent space in a high-dimensional lattice with an exponentially large 
number of multidimensional Gaussians in its nodes. This parameter-
ization ties latent codes and properties, and works with missing values 
without their explicit input. In the second step, we explored this space 
with reinforcement learning to discover new compounds.

GENTRL uses three distinct self-organizing maps (SOMs) as 
reward functions: the trending SOM, the general kinase SOM, and 
the specific kinase SOM. The trending SOM is a Kohonen-based 
reward function that scores compound novelty using the applica-
tion priority date of structures that have been disclosed in patents. 
Neurons that are abundantly populated with novel chemical entities 
reward the generative model. The general kinase SOM is a Kohonen 
map that distinguishes kinase inhibitors from other classes of mol-
ecules. The specific kinase SOM isolates DDR1 inhibitors from the 
total pool of kinase-targeted molecules. GENTRL prioritizes the 
structures it generates by using these three SOMs in sequence.

We used six data sets to build the model: (1) a large set of mole-
cules derived from a ZINC data set, (2) known DDR1 kinase inhibi-
tors, (3) common kinase inhibitors (positive set), (4) molecules that 
act on non-kinase targets (negative set), (5) patent data for biologi-
cally active molecules that have been claimed by pharmaceutical 
companies, and (6) three-dimensional (3D) structures for DDR1 
inhibitors (Supplementary Table 1). Data sets were preprocessed to 
exclude gross outliers and to reduce the number of compounds that 
contained similar structures (see Methods).

We started to train GENTRL (pretraining) on a filtered ZINC 
database (data set 1, described earlier), and then continued train-
ing using the DDR1 and common kinase inhibitors (data set 2 and 
data set 3). We then launched the reinforcement learning stage 
with the reward described earlier. We obtained an initial output 
of 30,000 structures (Supplementary Data Set), which were then  

Deep learning enables rapid identification of 
potent DDR1 kinase inhibitors
Alex Zhavoronkov   1*, Yan A. Ivanenkov1, Alex Aliper1, Mark S. Veselov1, Vladimir A. Aladinskiy1, 
Anastasiya V. Aladinskaya1, Victor A. Terentiev1, Daniil A. Polykovskiy1, Maksim D. Kuznetsov1, 
Arip Asadulaev1, Yury Volkov1, Artem Zholus1, Rim R. Shayakhmetov1, Alexander Zhebrak1, 
Lidiya I. Minaeva1, Bogdan A. Zagribelnyy1, Lennart H. Lee   2, Richard Soll2, David Madge2, Li Xing2, 
Tao Guo   2 and Alán Aspuru-Guzik3,4,5,6

NATuRe BIoTecHNoLoGY | VOL 37 | SEPTEMBER 2019 | 1038–1040 | www.nature.com/naturebiotechnology1038

mailto:alex@insilico.com
http://orcid.org/0000-0001-7067-8966
http://orcid.org/0000-0002-7102-5446
http://orcid.org/0000-0001-6055-0985
http://www.nature.com/naturebiotechnology


Brief CommuniCationNature BiotechNology

automatically filtered to remove molecules bearing structural alerts 
or reactive groups, and the resulting chemical space was reduced by 
clustering and diversity sorting (Supplementary Table 2). We then 
evaluated structures using (1) the general and specific kinase SOMs, 
and (2) pharmacophore modeling on the basis of crystal structures of 
compounds in complex with DDR1 (Supplementary Figs. 2 and 3).  
On the basis of the values of molecular descriptors and root-mean-
square deviation (RMSD) calculated in two previous steps (steps 6 
and 7), we used Sammon mapping to assess the distribution of the 
remaining structures.

To narrow our focus to a smaller set of molecules for analy-
sis, we randomly selected 40 structures that smoothly covered 
the resulting chemical space and distribution of RMSD values 
(Supplementary Fig. 4 and Supplementary Table 3). Of the 40 
selected structures, 39 were likely to fall outside the scope of any 
published patents or applications (Supplementary Table 4). Six of 
these were chosen for experimental validation on the basis of syn-
thetic accessibility. Of note, our approach led to several examples 
of nontrivial potentially bioisosteric replacements and topological 
modifications (Fig. 1b).

By day 23 after target selection, we had identified six lead candi-
dates, and by day 35, these molecules had been successfully synthe-
sized (Fig. 1c). They were then tested for in vitro inhibitory activity 
in an enzymatic kinase assay (Supplementary Fig. 5). Compounds 
1 and 2 strongly inhibited DDR1 activity (half-maximum inhibi-
tory concentration (IC50) values of 10 and 21 nM, respectively), 
compounds 3 and 4 demonstrated moderate potency (IC50 values of 
1 μM and 278 nM, respectively), and compounds 5 and 6 were inac-
tive. Compounds 1 and 2 both exhibited selectivity towards DDR1 

over DDR2 (Fig. 1c). Furthermore, compound 1 exhibited a rela-
tively high selectivity index compared to those of 44 diverse kinases 
(Supplementary Fig. 6).

Next, we investigated the DDR1 inhibitory activity of com-
pound 1 and compound 2 as measured by autophosphorylation in 
U2OS cells. The compounds showed IC50 values of 10.3 and 5.8 nM, 
respectively (Supplementary Fig. 7). Both molecules inhibited the 
induction of fibrotic markers α-actin and CCN2 in MRC-5 lung 
fibroblasts (Supplementary Fig. 8). These molecules also inhibited 
the expression of collagen (a hallmark of fibrosis) in LX-2 hepatic 
stellate cells, with compound 1 showing potent activity at 13 nM 
(Supplementary Fig. 9).

We then performed in vitro microsomal stability studies to char-
acterize the metabolic stability of compounds 1 and 2 in human, 
rat, mouse, and dog liver microsomes. Compounds 1 and 2 had 
half-life and clearance values that were similar to or more favor-
able than those of routinely used control molecules (Supplementary 
Table 5). Compound 2 was also found to be very stable in buffer 
conditions (Supplementary Table 6). Neither compound strongly 
inhibited cytochrome P450, and both compounds showed favor-
able physiochemical properties, including satisfying Lipinski’s rules 
(Supplementary Tables 7 and 8).

Finally, we tested compound 1 in a rodent model. Compound 1  
was delivered to mice intravenously (i.v.) (10 mg kg–1) and orally 
(p.o., 15 mg kg–1). The two administrations resulted in similar 
half-lives, ~3.5 h (Fig. 2a and Supplementary Tables 9 and 10). I.v. 
administration conferred a peak plasma concentration of 2,357 ng 
ml–1 on initial delivery, whereas p.o. administration resulted in a 
lower maximum of 266 ng ml–1, which peaked 1 h after delivery.
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Fig. 1 | GeNTRL model design, workflow, and nanomolar hits. a, The general workflow and timeline for the design of lead candidates using GENTRL. IP, 
intellectual property. b, Representative examples of generated structures compared to the parent DDR1 kinase inhibitor. c, Generated compounds with the 
highest inhibition activity against human DDR1 kinase.
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Quantum mechanical analysis was used to explore the mechanis-
tic basis of the activity of compound 1. The predicted conformation 
of compound 1 according to pharmacophore modeling was very 
similar to the conformation predicted to be preferred and stable by 
quantum mechanical calculations (Fig. 2b). We proposed a ‘lock 
and key’ entropy-driven binding mechanism between compound 1  
and DDR1, and further characterized this binding via molecular 
docking. The putative binding mode suggests a type II inhibition 
mechanism (Fig. 2c). In summary, compound 1 forms multiple 
hydrogen bonds and has favorable charge and hydrophobic inter-
actions with the active site residues of DDR1 kinase. The comple-
mentarity of compound 1 to the ATP site may help to explain its 
inhibitory activity against DDR1.

Despite reasonable microsomal stability and pharmacokinetic 
properties, the compounds that have been identified here may 
require further optimization in terms of selectivity, specificity, and 
other medicinal chemistry properties.

In this work, we designed, synthesized, and experimentally vali-
dated molecules targeting DDR1 kinase in less than 2 months and 
for a fraction of the cost associated with a traditional drug discovery 
approach1. This illustrates the utility of our deep generative model 
for the successful, rapid design of compounds that are synthetically 
feasible, active against a target of interest, and potentially innovative 
with respect to existing intellectual properties. We anticipate that 
this technology will be improved further as a useful tool to identify 
drug candidates.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41587-019-0224-x.
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Fig. 2 | Pharmacokinetic characterization and structural basis of hit activity. a, Plasma concentrations of compound 1 in mouse pharmacokinetic study 
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Methods
Pretraining data set. For the pretraining procedure, we have prepared a data set 
of structures using the Clean Leads set from the ZINC database20 and proprietary 
databases from our partners. We have removed structures containing atoms other 
than carbon, nitrogen, oxygen, sulfur, fluorine, chlorine, bromine, and hydrogen. 
Routine medicinal chemistry filters were applied to exclude compounds with 
potentially toxic and reactive groups.

Kinase inhibitors and ‘negative’ data set. The data set of molecules that actively 
inhibit and do not inhibit various kinases was prepared using the data available in 
the Integrity and ChEMBL databases.

Compounds from patent records by priority date. The Integrity database was 
used to collect the data set of structures claimed as new drug substances in patent 
records from 1950 to the present day by the top ten pharmaceutical companies (as 
ranked by market capitalization in 2017 according to https://www.globaldata.com). 
The final data set contained 17,000 records.

Model. Our generative pipeline was created using the GENTRL model, a 
variational auto-encoder with a rich prior distribution in the latent space 
(Supplementary Code and Supplementary Fig. 1). We used tensor decomposition 
to encode the relationships between molecular structures and their properties, 
and trained a model in a semisupervised fashion without imputing unknown 
biochemical properties of molecules.

The tensor-train decomposition21 approximates high-dimensional tensors 
using a relatively small number of parameters. A joint distribution p(r1, r2, …, rn) 
of discrete random variables ri ∈ {0, …Ni – 1} can be represented as elements of 
n-dimensional tensor:
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constant. With larger core sizes, the flexibility of the model improves, although  
the number of parameters grows quadratically with core size m. In tensor train,  
we can efficiently marginalize the distribution with respect to any variable,  
as follows:
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 can be computed efficiently. With marginal distributions, 

we can compute the conditional distributions and sample using a chain rule. The 
normalizing constant Z is given by
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As generative auto-encoders use continuous latent codes, we use continuous 
tensor-train representation. For simplicity of notation, assume that latent codes z 
are continuous and properties y are discrete. We approximate distributions pψ(zi) as 
mixtures of Gaussians with component index si. The joint distribution on z and y is
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For conditional distribution pψ(z|y,s), we select a fully factorized Gaussian that 
does not depend on y:
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Our model is a variational auto-encoder with a prior distribution pψ(z,y), 
encoder qφ, and a decoder pθ. Consider a training example (x, yob), where x is a 
molecule and yob are its known properties. The lower bound on a log-marginal 
likelihood (also known as the evidence lower bound) for our model is
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As the molecule determines its properties, we assume that qφ(z|x,yob) = qφ(z|x). 
We also assume that pθ(x|z,yob) = pθ(x|z), indicating that an object is fully defined 
by its latent code. The resulting evidence lower bound is
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where zi ~ qφ(z|x). For the proposed joint distribution pψ(z, y), we can compute the 
density of the posterior distribution on the latent codes, given observed properties 
pψ(z|yob), analytically.

By maximizing the evidence lower bound, we trained an auto-encoder and 
a prior distribution on three data sets described above (pretraining, kinase and 
patent data sets): we sampled molecules in a simplified molecular input line entry 
system (SMILES) format from the data set along with their properties, including 
MCE-18, pIC50 (negative common logarithm of IC50) and a binary feature that 
indicates whether a molecule passed medicinal chemistry filters (MCFs). We 
trained this model and obtained a mapping from the chemical space to the latent 
codes. This mapping was aware of the relationship between molecules and their 
biochemical properties.

In the next stage of training, we fine-tuned the model to preferentially generate 
DDR1 kinase inhibitors. We used reinforcement learning to expand the latent 
manifold towards discovering novel inhibitors with reward functions (general 
kinase SOM, specific kinase SOM, and trending SOM), which are described in the 
next section. We used the REINFORCE22 algorithm (also known as a log-derivative 
trick) to directly optimize the model:
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ψ
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We reduced the variance of the gradient using a standard variance reduction 
technique called a ‘baseline’. The rewards for each molecule in a batch are 
calculated and averaged, and the average reward is then subtracted from each 
individual reward:
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To preserve the mapping of the chemical space, we fixed the parameters of 
the encoder and decoder, and trained only the manifold distribution pψ(z). We 
combined exploration and exploitation approaches. For exploration, we sampled 

N μ σ~z ( , (2 ) )explore 2  outside from the currently explored latent space, where μ and 
σ2 are the mean and variance of pψ(z) for all dimensions. If the reward R(zexplore) 
for a newly discovered area was high, the latent manifold expanded toward it 
(Supplementary Fig. 1).

The comparison of generative chemistry models is very important for the 
advancement of this emerging field, and there are several benchmarking platforms 
in development12,23. We successfully compared the performance of GENTRL 
with previous approaches, including objective-reinforced generative adversarial 
networks (ORGAN)24,25, reinforced adversarial neural computer (RANC)10, and 
adversarial threshold neural computer (ATNC)9. Training details are provided in 
the Supplementary Note.

Reward function. A reward function was developed on the basis of the Kohonen 
self-organizing maps (SOM)26 (Supplementary Fig. 3). This algorithm was 
introduced by Teuvo Kohonen as a unique unsupervised machine- learning 
dimensionality reduction technique. It can effectively reproduce an intrinsic 
topology and patterns hidden in the input chemical space in a faithful and 
unbiased fashion. The input chemical space is usually described in terms of 
molecular descriptors (input vector), and the output typically includes a 2D or 3D 
feature map for convenient visual inspection. An ensemble of three SOMs was used 
as a reward function: the first SOM (general kinase SOM, Rgeneral) was trained to 
predict the activity of compounds against kinases, the second SOM (specific kinase 
SOM, Rspecific) was developed to select compounds located in neurons associated 
with DDR1 inhibitors within the whole kinase map, and the last SOM (trending 
SOM, Rtrending) was trained to assess the novelty of chemical structures in terms of 
the current trends in medicinal chemistry. During learning, the generative model 
was rewarded when the generated structures were classified as molecules acting on 
kinases, positioned in neurons attributed to DDR1 inhibitor. The model was also 
rewarded for generating novel structures.

Pharmacophore hypotheses. On the basis of X-ray data available in the Protein 
Data Bank (PDB) database (PDB codes 3ZOS, 4BKJ, 4CKR, 5BVN, 5BVO, 5FDP, 
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5FDX, and 6GWR), we have developed three pharmacophore models describing 
DDR1 inhibitors. To obtain the superposition of the ligands, 3D alignment of the 
complexes was carried out. These three-, four- and five-centered pharmacophore 
hypotheses contain key features that are responsible for binding to the active site of 
DDR1 kinase, including a hydrogen bond acceptor at the hinge region, an aromatic 
or hydrophobic linker, and a hydrophobic center in the pocket located in proximity 
to the DFG motif. For detailed information on pharmacophore features and 
distances, see Supplementary Fig. 2.

Nonlinear Sammon mapping. To make the final selection, we used a Sammon-
based mapping technique27. The main goal of this algorithm lies in the 
approximation of local geometric and topological relationships hidden in the input 
chemical space on a visually intelligible 2D or 3D plot. The fundamental idea of 
this method is to substantially reduce the high dimensionality of the initial data set 
into the low-dimensional feature space, and, in this aspect, it resembles an SOM 
approach with multidimensional scaling. However, in contrast to other algorithms, 
a classical Sammon-based method allows scientists to construct a projection that 
reflects global topographic relationships as pair-wise distances between all of the 
objects within the whole space of input vector samples. Structures that successfully 
passed all of the selection procedures described earlier were used as an input 
chemical space. For mapping, we used the same set of molecular descriptors that 
was applied for specific kinase SOM and added RMSD values obtained during 
pharmacophore modeling as additional inputs. Euclidean distances were used 
as a similarity metric. The stress threshold was 0.01, the interaction number was 
300, the optimization step was 0.3 and the structural similarity factor was 0.5. The 
resulting map (Supplementary Fig. 4) demonstrates that structures are normally 
distributed within the Sammon plot.

Molecule generation and selection procedure. Using our model, we generated 
30,000 unique valid structures by sampling latent codes from the learned 
manifold pψ(z) and sampling structures from the decoder distribution pθ(x|z). To 
select the batch of molecules for synthesis and biological studies, we developed 
a prioritization pipeline (for examples of rejected molecules, see Supplementary 
Fig. 10). At the initial step, the data set was reduced to 12,147 compounds using the 
following molecular descriptor thresholds: –2 < logP < 7, 250 < MW < 750, HBA 
+ HBD < 10, TPSA < 150, and NRB < 10. After that, 150 in-house MCFs were 
applied to remove potentially toxic structures and compounds containing reactive 
and undesirable groups. These include substrates for 1,4-addition (Michael-
bearing moieties) and other electrophilic species (for example, para- or ortho-
halogen-substituted pyridines, 2-halogen-substituted furans and thiophenes, alkyl 
halides, and aldehydes and anhydrides), disulfides, isatins, barbiturates, strained 
heterocycles, fused polyaromatic systems, detergents, hydroxamic acids and 
diazo-compounds, peroxides, unstable fragments, and sulfonyl ester derivatives. 
In addition, we used more trivial filtering rules that excluded the following: <2 
NO2 groups, <3 Cl, <2 Br, <6 F, and <5 aromatic rings, and undesired atoms, 
such as silicon, cobalt or phosphorus. This reduced the number of structures 
spread within the entire chemical space to drug-like molecules without structural 
alerts. This procedure resulted in 7,912 structures. A clustering analysis was 
then performed using Tanimoto similarity as a metric and standard Morgan 
fingerprints implemented in the RDKit package. All compounds that satisfied a 
0.6 similarity threshold were assigned to the same cluster, with a minimum value 
of five structures per cluster. Inside each cluster, the compounds were sorted 
according to their internal dissimilarity coefficient to output the top five items 
with the maximum diversity in structure. As a result, the data set was reduced to 
5,542 molecules. Then, we performed a similarity search using vendors’ collections 
(MolPort (https://www.molport.com) and ZINC18) and removed a further 
900 compounds with similarity >0.5 to increase the novelty of the generated 
structures. General kinase SOM and specific kinase SOM were used to prioritize 
the compounds by their potential activity against DDR1 kinase. Out of 2,570 
molecules classified as kinase inhibitors by general kinase SOM, 1,951 molecules 
were classified as DDR1 inhibitors by specific kinase SOM and were used for 
pharmacophore-based virtual screening. For every molecule, ten conformations 
were generated and minimized using RDKit’s implementation of the universal 
force field28. Using the developed hypotheses, the screening procedure was carried 
out, resulting in a set of RMSD values for 848 molecules matching at least one 
pharmacophore hypothesis. On the basis of Sammon mapping, we uniformly 
selected 20 molecules from ellipses corresponding to four- and five-centered 
pharmacophores (Supplementary Table 3 and Supplementary Fig. 4). Forty 
molecules were selected for synthesis and subsequent biological evaluation.

Ab initio calculation details. We carried out first-principles calculations to the 
lowest conformer as predicted with the universal-force-field methodology presented 
earlier. Geometry optimization was performed using a local correlated coupled-cluster 
method that included single and double excitations (LCCSD) with the 6-31++G basis 
set. Final energies were calculated at the LCCSD(T) level of theory. The localized 
Pipek–Mezey procedure was used to obtain the initial molecular orbitals.

Docking simulations. Molecular modeling was performed in the Maestro suite 
(https://www.schrodinger.com). PDB structure 3ZOS was preprocessed and energy 

minimized using the Prep module. The binding site grid was generated around 
the ATP binding site with 20 Å buffer dimensions. Docking poses were generated 
by extra-precision (XP) Glide runs using the optimized ligand structure. The final 
model was selected on the basis of its docking score of –15 kcal mol−1, which is 
lowest among all of the obtained models.

In vitro activity assays. The activity of the molecules against human DDR1 and 
human DDR2 kinases was assessed using KinaseProfiler (Eurofins Scientific).

Cell-culture activity assay. To measure autophosphorylation, the gene encoding 
human DDR1b with a hemagglutinin tag was cloned into pCMV Tet-On vector 
(Clontech), and stable inducible cell lines established in U2OS were used for the 
IC50 test. DDR1 expression was induced for 48 h before DDR1 activation by rat tail 
collagen I (Sigma 11179179001). The cells were detached with trypsinization and 
transferred to a 15 ml tube. Then after pretreatment with the compound for 0.5 h, 
the cells were treated with compounds in the presence of 10 μg ml−1 rat tail collagen 
I for 1.5 h at 37 °C.

Cell-culture fibrosis assay. MRC-5 or human hepatic LX-2 cells were grown in 
reduced serum medium and treated with compounds for 30 minutes. Subsequently, 
the cells were stimulated with 10 ng ml–1 or 4 ng ml–1 TGF-β (R&D Systems, 240-
B-002) for 48 or 72 h. The cells were lysed in radioimmunoprecipitation assay 
buffer and cell lysate of each sample was loaded onto a Wes automated western blot 
system (ProteinSimple, a Bio-Techne brand).

Cytochrome inhibition. Water used in the assay and analysis was purified by 
ELGA Lab purification systems. Potassium phosphate buffer (PB, concentration 
of 100 mM) and MgCl2 (concentration of 33 mM) were used. Test compounds 
(compound 1 and compound 2) and standard inhibitors (α-naphthoflavone, 
sulfaphenazole, (+)-N-3-benzylnirvanol, quinidine, and ketoconazole) working 
solutions (100×) were prepared. Microsomes were taken out of a freezer (–80 °C) 
to thaw on ice, labeled with the date, and returned to the freezer immediately after 
use. Next, 20 µl of the substrate solutions was added to corresponding wells, 20 µl 
PB was added to blank wells, and 2 µl of the test compounds and positive control 
working solution was added to corresponding wells. We then prepared a working 
solution of human liver microsomes (HLM), and 158 µl of the HLM working 
solution was added to all wells of the incubation plate. The plate was prewarmed 
for approximately 10 minutes in a water bath at 37 °C. Then, reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) cofactor solution was prepared and 
20 µl NADPH cofactor was added to all incubation wells. The solution was mixed 
and incubated for 10 minutes in a water bath at 37 °C. At this point, the reaction 
was terminated by adding 400 µl cold stop solution (200 ng ml–1 tolbutamide and 
200 ng ml–1 labetalol in acetonitrile (ACN)). The samples were centrifuged at 
4,000 r.p.m. for 20 minutes to precipitate protein. Then, 200 µl supernatant was 
transferred to 100 µl HPLC water and shaken for 10 minutes. XLfit was used to plot 
the per cent of vehicle control versus the test compound concentrations, and for 
nonlinear regression analysis of the data. IC50 values were determined using three- 
or four-parameter logistic equation. IC50 values were reported as >50 µM when per 
cent inhibition at the highest concentration (50 µM) was less than 50%.

Microsomal stability. The microsomal stability of compound 2 was assessed as 
follows: working solutions of compound 2 and control compounds (testosterone, 
diclofenac, and propafenone) were prepared. The appropriate amount of 
NADPH powder (β-nicotinamide adenine dinucleotide phosphate reduced form, 
tetrasodium salt, NADPH·4Na, catalog no. 00616; Chem-Impex International) 
was weighed and diluted into MgCl2 (10 mM) solution (working solution 
concentration, 10 units ml–1; final concentration in reaction system, 1 unit ml–1). 
The appropriate concentration of microsome working solutions (human: HLM, 
catalog no. 452117, Corning; SD rat: RLM, catalog no. R1000, Xenotech; CD-1  
mouse: MLM, catalog no. M1000, Xenotech; Beagle dog: DLM, catalog no. D1000, 
Xenotech) was prepared with 100 mM PB. Cold ACN, including 100 ng ml–1  
tolbutamide and 100 ng ml–1 labetalol as internal standard (IS), was used for 
the stop solution. Compound or control working solution (10 μl per well) was 
added to all plates (T0, T5, T10, T20, T30, T60, and NCF60), except the matrix 
blank. Dispensed microsome solution (80 μl per well) was added to every plate 
by Apricot and the mixture of microsome solution and compound was incubated 
at 37 °C for approximately 10 minutes. After prewarming, dispensed NADPH 
regenerating system (10 μl per well) was added to every plate by Apricot to start a 
reaction. The solution was then incubated at 37 °C. Stop solution (300 μl per well, 
4 °C) was then added to terminate the reaction. The sampling plates were shaken 
for approximately 10 minutes. The samples were centrifuged at 4,000 r.p.m. for 
20 minutes at 4 °C. While centrifuging, new 8 × 96-well plates were loaded with 
300 μl HPLC water, and then 100 μl supernatant was transferred and mixed for 
liquid chromatography–tandem mass spectrometry (LC/MS/MS).

Buffer stability. The stability of compound 2 was assessed in phosphate buffer 
(pH 7.0 and 7.4). Test compounds (at 10 μM) were incubated at 25 °C with 50 mM 
phosphate buffer (pH 7.4), 8 mM MOPS (pH 7.0), and 0.2 mM EDTA (pH 7.0). 
Duplicate samples were used. Time samples (0, 120, 240, 360, and 1,440 minutes) 
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were removed and immediately mixed with cold 50% aqueous ACN solution 
containing IS. Curcumin was used as positive control in this assay at neutral–basic 
condition. The samples were analyzed by LC/MS/MS, and the disappearance of the 
test compound was assessed on the basis of peak area ratios of the analyte and IS 
(no standard curve).

Pharmacokinetic studies. A study was permitted by the Institutional Animal 
Care and Use Committee, Shanghai Site (IACUC-SH, WuXi AppTec (Shanghai) 
Co., Ltd.). The pharmacokinetic profiling of compound 1 was performed on 
male C57BL/6 mice (7–9 weeks old). Then, we performed i.v. (10 mg kg–1) and 
p.o. (15 mg kg–1) administration of compound 1. Each group consisted of three 
mice. N-Methyl-2-pyrrolidone:polyethylene glycol 400:H2O = 1:7:2 solution was 
used as a vehicle at 5 and 3 ml kg–1 for i.v. and PO, respectively. All blood samples 
(approximately 25 μl blood per time point) were transferred into prechilled 
commercial K2-EDTA tubes, and then placed on wet ice. The blood samples were 
immediately processed for plasma by centrifugation at approximately 4 °C, 3,200g 
for 10 minutes. The plasma was transferred into one prelabeled polypropylene 
microcentrifuge tube, quick frozen over dry ice, and kept at –70 ± 10 °C until LC/
MS/MS analysis. Plasma concentration versus time data was analyzed by non-
compartmental approaches using the Phoenix WinNonlin 6.3 software program.

Statistics and reproducibility. The sample sizes can be found in the figures and 
tables or corresponding legends. For microsomal stability experiments, R2 values 
were calculated. The number of samples for each experiment can be found in the 
footnote to Supplementary Table 4. All western blot experiments were performed 
at least twice with similar results.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available in the main text or the supplementary materials.

code availability
The code for the GENTRL model is available at http://github.com/
insilicomedicine/gentrl and in Supplementary Code.
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Mouse anti- human COL1A1 antibody (3G3) (Santa Cruz,  sc-293182); mouse anti-human CTGF antibody (E-5) (Santa Cruz, 

sc-365970); mouse anti human α-smooth muscle actin antibody (SPM332) (Santa Cruz, sc-56499); mouse anti-human 
GLYCERALDEHYDE-3-PDH, (Merck-Millipore, Merck-MAB374); rabbit anti-Phospho-DDR1 (Tyr513) (E1N8F) (Cell Signaling, 
14531S); mouse anti-HA antibody (Sigma, H9658-200UL); goat Anti-Mouse IgG H&L (HRP) (Abcam, ab205719); goat Anti-Rabbit 
IgG H&L (HRP) (Abcam, ab205718)

Validation The antibodies were validated by the manufacturers for Western blot.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) MRC-5 was from ATCC (CCL-171); LX-2 was from Merck Millipore (SCC064); U-2 OS-DDR1 stable cell line was made at RSD 
Biology Department, WuXi Apptec, Inc. from U-2 OS parent cell line from ATCC® (HTB96™); 

Authentication The cells were authenticated by STR.

Mycoplasma contamination All cell lines used have been tested free of mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

None.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse, C57BL/6, male, 7- 9 weeks

Wild animals Study did not involve wild animals

Field-collected samples Following arrival at WuXi AppTec animals were assessed as to their general health by a member of the veterinary staff or other 
authorized personnel. Animals were acclimated for at least 3 days (upon arrival at WuXi AppTec) before being placed on study. 
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Animals were group housed during acclimation and individually housed during the study. The animal room environment ws 
controlled (target conditions: temperature 18 to 26°C, relative humidity 30 to 70%, 12 hours artificial light and 12 hours dark). 
Temperature and relative humidity was monitored daily. The animals were overnight fasted. They had access to Certified Rodent 
Diet ad libitum 4 hr post dose. The lot number and specifications of each lot used were archived at WuXi AppTec. Water was 
autoclaved before provided to the animals ad libitum. Periodic analyses of the water was performed and the results archived at 
WuXi AppTec. There are no known contaminants in the diet or water that, at the levels of detection, is expected to interfere with 
the purpose, conduct or outcome of the study.

Ethics oversight Study was permitted by IACUC (Institutional Animal Care and Use Committee).

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Deep learning enables rapid identification of potent DDR1 kinase inhibitors
	Online content
	Acknowledgements
	Fig. 1 GENTRL model design, workflow, and nanomolar hits.
	Fig. 2 Pharmacokinetic characterization and structural basis of hit activity.




