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ABSTRACT

This study was motivated by the need to combine vertical derivative estimates of either potential density or
temperature with SOFAR float data for estimating vortex stretching in the main (700 m) and lower thermocline
(1300 m) of the Local Dynamics Experiment (LDE) region. Five hundred, forty-three LDE CTD casts are
used to evaluate finite difference, polynomial and exponential regression models for estimating the mesoscale
vertical derivative of potential density and temperature at 700 and 1300 m depth. The standard deviation and
bias curves of these models were examined as a function of vertical estimation interval. Smoothing the data
before derivative estimation was not necessary for estimation intervals greater than 300 m for all the models
tested. An unbiased minimum variance estimator of vertical derivatives does not exist for the models tested
because of a variance-bias trade-off,

An alternate criterion of merit is proposed for the estimation of vertical derivatives: We require that vortex
stretching estimates be robust to small changes in the estimation interval and that the vortex stretching estimates
agree with the estimates of Mariano and Rossby. According to this criterion, a cubic polynomial fit of length
800 + 100 m to the density data is the best model for estimating vertical derivatives from hydrographic data at
700 m. Because the stretching is less at 1300 m and uncertainties are great, vortex stretching could not be
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estimated using this approach with sufficient accuracy at 1300 m.

1. Introduction

Vertical derivatives of potential temperature and
potential density are fundamental dynamical quantities
that are estimated from hydrographic data. Good es-
timates of these vertical derivatives and error bounds
of those estimates are needed in the study of many
important oceanic research problems. One of these is
the study of mesoscale dynamics using the potential
vorticity equation. :

For mesoscale processes, the product of the planetary
vorticity, f, and the material derivative of the natural
log of the vertical derivative of potential density or po-
tential temperature is a very good approximation to
the stretching term in the Lagrangian formulation of
Ertel’s potential vorticity equation (Mariano and
Rossby 1989, hereafter MR89),

vortex stretching = f (d/dt[ln(gg)]) , (L.1)

where A is either potential temperature or potential
density. The following experiment was designed to in-
vestigate how well one can estimate the vortex stretch-
ing term using (1.1) by calculating the material time
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derivative from estimates of dp/dz or d0/dz based on
hydrographic profiles along SOFAR float trajectories.

In the POLYMODE Local Dynamics Experiment
(LDE) region, a 250 X 250 km region centered on
31.0°N, 69.5°W, numerous SOFAR floats were re-
leased at 700 and 1300 m to study the evolution of the
mesoscale eddy field (Rossby et al. 1986). Shore-based
receivers provided real time tracking of SOFAR floats
and enabled scientists aboard R/V Gyre cruise G-6-
78 to take salinity~temperature~depth (STD) profiles
very close to SOFAR float trajectories. Preliminary
analysis of the float and hydrographic data, with the
vertical derivative of potential density approximated
by a finite difference of 100 m length, yielded stretching
estimates an order of magnitude too large, despite pairs
of STD profiles that, to a good approximation, followed
particle trajectories.

The horizontal sampling error, which is due to a
combination of hydrocasts not exactly on particle tra-
jectories and error in estimating the particle trajectories
from constant pressure SOFAR float position data,
cannot be addressed with the given data set, but it is
probably small. The SOFAR float position and velocity
data has been filtered with a low-pass Gaussian filter
with a half-power point at 2%, days to remove sub-
mesoscale noise. Most of the float position data error,
which remains after filtering, is highly correlated (Spain
et al. 1980) and is removed by the temporal difference
in (1.1). It appears that most of the error in the stretch-
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ing estimates is due to the estimation of the vertical
derivative in (1.1). The objective of this paper is to
investigate different models for estimating the meso-
scale vertical derivative from hydrographic data.
Specifically, three common vertical derivative mod-
els and different estimation intervals are tested to see
how well one can estimate the mesoscale vertical de-
rivative of potential temperature and potential density
from hydrographic data. The evaluation and discussion
of the derivative models focuses on the vertical deriv-
ative of potential temperature, so that the results can
be extended to XBT data. The test results for temper-
ature and density are similar and the important differ-
ences are noted. The derivative models are evaluated
for a range of symmetric estimation intervals; 20 to
1200 m for the 700 m floats and 20 to 2400 m for the
1300 m floats. Five hundred, forty-three CTD profiles,
from the intensive phase of the LDE experiment, are
subsampled from 100 to 3000 m depth and are used
as the population space for evaluation. The 100 m limit
is near the seasonal thermocline (Fig. 1a) and the 3000

m limit is approximately the depth of the shallowest

CTD cast.

2. Methodology

The optimal estimate of a linear operation on a ran-
dom variable equals that linear operation on the op-
timal estimate of the same random variable (see Breth-
erton et al. 1976). Operationally, potential temperature
profiles are estimated first and then the derivative op-
erator is approximated by a discrete model for differ-
entiating the optimally estimated data. Ideally, the op-
timal estimate of the vertical derivative of potential
temperature should be both unbiased and have mini-
mum variance. The bias and standard deviation prop-
erties of common models of the vertical derivative of
potential temperature are presented as a function of
estimation interval.

a. Filtering

The first step is to optimally estimate potential tem-
perature. For mesoscale processes, hydrographic sam-
pling is dense (e.g., Gandin 1965) in the vertical, hence
a simple scheme for estimating potential temperature
profiles will suffice. The choice here is to low-pass filter
the hydrographic profiles to remove submesoscale
noise. Since the scale of interest is much greater than
100 m and the scale of the noise is typically less than
100 m, the estimation scheme chosen to interpolate
potential temperature profiles is to filter the data with
a Gaussian filter such that 99% of the variance is re-
moved on scales of less than 100 m. This strict re-
quirement forces a large filter footprint that can not
be avoided with any filtering technique (see the dis-
cussion by Thompson 1983 in the context of filtering
time series).
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To meet the specified response at the cutoff wave-
number, a Gaussian filter requires 115 points (285 m
for data spaced every 2.5 m) positioned symmetrically
about the point to be filtered. However, the profiles
are not stationary in the vertical, even in the weak sense,
as can be seen in Fig. 1. To prevent biases in the filtered
profiles, the profiles must be detrended before filtering.
The mean potential temperature profile could be used
to detrend the data before filtéring. Since the acquisition
of such a large number of profiles for calculating a
good mean profile is a rare event in oceanography, a
trend calculated for each profile is tested. The usual
method of detrending a dataset is to fit a straight line
by least squares. But with hydrographic data, the trend
is not linear in the main thermocline and the trend
changes below the thermocline. Due to the depth de-
pendent trend, the use of a variable knot cubic spline
(de Boor 1978) fitted to each profile is tested as an
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FiG. 1. (a) Mean potential temperature as a function of depth,
calculated from 543 LDE CTD drops. Asterisks are at every 100 m
in the vertical, starting at a depth of 100 m, to aid the reader in
following the discussion in the text. (b) Variance of potential tem-
perature as a function of depth. .
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alternative to using the LDE mean temperature curve
(Fig. 1a) for detrending the data. Mariano (1986, here-
after M86) demonstrated that a three knot cubic spline,
with the middle knot between 1050 and 1300 m, is the
best variable knot cubic spline for detrending hydro-
graphic data before filtering and that the vertical de-
rivative estimates using a variable knot cubic spline to
model the dependency of potential temperature with
depth was inferior to the models described next.

b. Vertical derivative models

Three of the most common models for estimating
first derivatives are tested on » data points ( z;, 8;) from
oceanic hydrographic data. The 6; is potential temper-
ature at depth z;. The variable parameter 7 is an odd
positive integer that determines the estimation interval.
The resolution of the data points is 2.5 m, the vertical
spacing of the archived CTD data from the LDE.

The first model is a simple finite difference which
uses only two of the » data points,

3 _ 6(z4) — 0(z1)

-~ (2.1)

Zp— Zh
For all the derivative models, the value of the derivative
is implied at the middle data point, z,.

The second model tested, since it is frequently as-
sumed in analytic studies, is

0(z;) = by exp(—by*z;), (2.2)

which after taking the natural logarithm of both sides
becomes a linear least-squares problem. The regression
coefficients b, and b, are estimated using the n data
points and the resulting exponential function is differ-
entiated with respect to z and evaluated at the point
of interest, z,, viz.

@ = _‘bzb; exp(—-bz*zo).
0z

The third model is a mth order Taylor polynomial
0(z;) = 6(z0) + by1*(z; — zo)

i=1,2’...,n,

(2.3)

bpx(z; — zo)™
- ( o)

+ ..
m!

, (2.4)

where the regression coefficient b; is the jth derivative.
First, second, and third order Taylor polynomials are
tested. This model reduces to model number one for
m = 1 and for two data points.

The choice of derivative model and digital filter
should be made in tandem. For instance, Miller and
Evans (1985) has shown that a Butterworth low-pass
filter must be designed to eliminate the undesirable
response of the finite difference vertical derivative
model at high wavenumber. They showed that as you
increase the estimation interval, the amount of
smoothing should also be increased. The matching of
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filter response and the response of your approximate
differentiator is crucial for estimating mean gradients
from individual hydrocasts.

¢. The error model

There are 543 estimates of the vertical derivative at
700 and 1300 m for each estimation model and esti-
mation interval tested. For a given interval and model,
the 543 estimates of vertical derivatives will not be the
same due to their stochastic nature. The differences are
due to natural variations of the vertical derivative
(which are dynamically important on synoptic time
scales) in space/time, submesoscale noise and esti-
mation error.

Estimation error is subdivided into measurement
and fitting errors. Measurement error includes the effect
of digitization on a 2.5 m scale (i.e., subgrid scale noise)
and sensor error. Fitting error is defined here to include
the error due to approximation of the derivative op-
erator by a discrete method and possible model error
resulting from the wrong choice of the functional de-
pendence of § on z. Submesoscale noise is defined here
as variations in temperature on scales between the re-
solved scale (a few meters) and the mesoscale (a few
hundred meters).

The observed temperature (subscript 0) is defined
as

BO(X’ Y, z, t)

:am(z)—l_oe(x:ya Za l)+0n(x’y’ Z’ t)’ (25)

the subscript m is for the sample mean, which for this
study is a longitude /latitude /time arithmetic mean of
the 543 estimated values at 700 and 1300 m. The sec-
ond term on the right-hand side (rhs) of (2.5) is the
dynamically important mesoscale perturbation of the
mean field (subscript e for eddy). The third term on
the rhs of (2.5) is the combined effect of measurement,
fitting and submesoscale noise (subscript 7). A vertical
derivative estimate (est.) then can be expressed as

a0 a0 a0 a9
— ={—] +{—] +|=—1, 2.6
%) - (2).+(5) (%), e
where the mean is just a function of z for a fixed es-
timation interval.

The variance of this estimate for a fixed estimation
interval is

S&t. = Ssez, + S%0/021,5 (2.7)

assuming a zero covariance term. The first term on the
rhs of (2.7) is the natural variation of the derivative.
The best estimator should minimize the second term
on the rhs of (2.7) (or its square root); the variance
(or standard deviation ) that results from the combined
effect of measurement, submesoscale and fitting error.
The best estimator should also be unbiased, i.e. the
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expected value of the estimator equals the expected

value of the population being sampled. It is well known
in the statistical literature (e.g., Seebur 1977), that for
most estimators, both of these criteria can not be met
simultaneously.

3. Bias and standard deviation curves of the vertical
derivative models

The LDE mean 86/9z curves (Figs. 2 and 4) and
the standard deviation curves (Figs. 3 and 5) at depths
700 and 1300 m are estimated using the three models.
The standard deviations are calculated in the usual
fashion:

1/2

2 (Q3) ~ Qn)?
(np—1)

where Q(i) is either the 700 or 1300 m 96/9z estimate
from the ith CTD drop and np is 543. Not all possible
combinations of filtering type and functional forms are
tested. The reason for this and the lack of resolution
in some of the estimation intervals is due to large com-
putational time required for these calculations and that
their inclusion does not change any of the results of
this study. The ten combinations tested in this study
are; 1) a finite difference (FD) of unfiltered potential
temperature data; 2) a FD of filtered data that was
detrended with the LDE mean potential temperature
curve (Fig. 1a); 3) a FD of filtered data that was de-
trended with a cubic spline fit to the entire subsampled
profile (100 m to 3000 m); 4) a straight line regression
(SL) of unfiltered data; 5) a quadratic polynomial
regression (QP) of unfiltered data; 6) a QP of filtered
data that was detrended with the LDE mean potential
temperature curve; 7) a QP of filtered data that was
detrended with a cubic spline fit; 8) an exponential
regression (EX) of filtered data that was detrended with
the LDE mean potential temperature curve; 9) an EX
of filtered data that was detrended with a cubic spline
fit; and 10) a cubic polynomial regression (CP) of un-
filtered data.

The behavior of these curves as a function of esti-
mation interval for the different models is discussed
below. It is shown that the behavior of the mean curves
is determined by the magnitude of the estimands’ (i.e.,
the data points in a given estimation interval ) vertical
derivative. The behavior of the standard deviation
curves is determined by the number and variance of
the estimands. The differences between the 700 and
1300 m curves are due to 46/9z being a maximum in
more or less symmetric temperature profile, whereas
at 1300 m, 86/0z is rapidly decreasing with depth.

SQ=

, (3.1)

a. The 700 m bias and standard deviation curves

The ten different estimation combinations cluster
about a mean of 0.0213°C m ™! for estimation intervals
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less than 200 m (Fig. 2). This value is used as the true
mean at 700 m. For estimation intervals above 200 m,
the models diverge. By 600 m there are three groupings,
the finite difference models (FD) are in group one, the
straight line (SL), quadratic polynomial (QP), and
exponential (EX) regressions are in the second group,
the cubic polynomial regression (CP) is alone in the
third group. The trend at 600 m continues as these
estimates monotonically decrease to about 1200 m. At
1200 m, the mean of the FD group 1is 0.0125°C m™!,
the mean of the QP, SL, and EX group 2 is 0.014°C
m ™! and the CP group 3 has a mean of 0.020°C m ™.
There is a hint of this trend changing at 1200 m for
the FD models (group 1).

The behavior of the 700 m bias curve can be ex-
plained easily by using the mean and variance curves
of Fig. 1. The 700 m bias curve (Fig. 2) decreases as
the estimation interval increases because the estimands’
vertical derivatives of potential temperature are smaller
than the vertical derivative of potential temperature at
700 m. For instance when the estimation interval is
600 m, data from 400 to 1000 m is used to estimate
the derivative at 700 m. The vertical derivatives of po-
tential temperature at 400 and 1000 m are less than
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FIG. 2. The mean vertical derivative of potential temperature at
700 m as a function of estimation interval. The 10 combinations
tested in this, study are placed into three groups. Group 1 consists of
a finite difference (FD) of unfiltered potential temperature data, a.
FD of filtered data that was detrended with the LDE mean potential
temperature curve (Fig. 1a), and a FD of filtered data that was de-
trended with a cubic spline fit to the entire subsampled profile (100
m to 3000 m). Group 2 consists of a straight line regression (SL) to
unfiltered data, a quadratic polynomial regression (QP) to unfiltered
data, a QP to filtered data that was detrended with the LDE mean
potential temperature curve, a QP to filtered data that was detrended
with a cubic spline, an exponential regression (EX) to filtered data
that was detrended with the LDE mean potential temperature curve,
and an EX to filtered data that was detrended with a cubic spline.
Group 3 consists of a cubic polynomial regression (CP) to unfiltered
data. Unless otherwise stated for Figs. 2-6, the estimates in each
group cluster tightly about each plotted curve and while some infor-
mation is lost due to this grouping the curves are a lot more readable.
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the vertical derivative at 700 m. As the estimation in-
terval increases, more and more estimands are used
whose vertical derivatives are less than at 700 m. This
leads to the situation shown in Fig. 2, i.e., as the esti-
mation interval increases, the vertical derivative esti-
mates for 700 m become biased lower and lower, due
to using biased estimands. The trend starts to change
at an estimation interval of 1200 m, since now one is
using estimands near 100 m, whose vertical derivatives
have a relatively larger magnitude due to the seasonal
thermocline.

The standard deviations shown in Fig. 3 almost all
(except group 3) converge to a value of 0.0005°C m !
at an estimation interval of 1200 m. Just before 1200
m, some of the standard deviations start to increase
slightly. The decrease of the standard deviation as the
estimation interval increases is expected for the regres-
sion models since more and more data points are being
used. The decrease for the finite difference model
(group 1) is due to the denominator of (2.1) domi-
nating over the numerator for the larger estimation
intervals. The slight increase seen near the 1200 m es-
timation interval is due to the use of data points whose
variance is locally larger (Fig. 1b). The standard de-
viation of group 3 exhibits very different behavior from
that of the other estimates. The reason for this is given
after discussion of the 1300 m curves.

Regardless of whether the mean LDE profile or a
spline fit to every profile was used for detrending, all
the estimators which used filtered potential temperature
profiles converge to a value of 0.0017°C m ! (Fig. 3)
as the estimation interval decreases to zero. By inspect-
ing the entire 700 m (and 1300 m) bias and standard
deviation curves, it is clear that a cubic spline fit can
be used as a proxy to a mean curve for detrending
hydrographic profiles before filtering.
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FiG. 3. The standard deviations of the vertical derivative estimates
at 700 m as a function of estimation interval. The groups are explained
in Fig. 2 and in the text. “U” denotes vertical derivative estimates
using unfiltered data.
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FIG. 4. As in Fig. 2, but for 1300 m. The lower branch of the
group 2 curve is for vertical derivative estimates using an exponential
regression.

b. The 1300 m bias and standard deviation curves

The mean value of the derivative at 1300 m is
0.0032°C m ™! for estimation intervals up to 200 m for
all the methods tested. This value is used as the true
mean at 1300 m. The 1300 m mean curves (Fig. 4)
show the same tendency of the FD grouping together,
the anomalous behavior of the CP-model (group 3),
and the SL and QP models grouping together but now
the EX model diverges from the second group and
forms the lower branch of the group 2 curve. The mean
1300 m curve starts at a value of 0.0032°C m ™! and
increases with group 1 exhibiting the largest derivative
estimates.

The same argument used for the behavior of the 700
m mean curves is used at 1300 m, but as the estimation
interval increases, estimands are used that have a larger
derivative than the derivative at 1300 m; hence the
1300 m estimate is biased on the high side. The upward
trend in Fig. 4 starts to level off as the estimation in-
terval reaches 1500 m. This leveling off is due to the
influence of 18°C water, whose vertical derivative is a
local minimum ( Worthington 1959). The influence of
18°C water can be most clearly seen in the FD models
(group 1) as the estimation interval becomes 2000 m.

For the 1300 m standard deviation curve, there are
the same three distinct groupings with the EX model
diverging from group 2 in the estimation interval from
500 to 2000 m. The models using unfiltered data (de-
noted by U) are noisier than the models using filtered
data for small estimation intervals, which is also true
for the 700 m derivative estimates (Fig. 3). Again the
CP derivative estimates are noisier at larger estimation
intervals and show less variation in the mean up to an
estimation interval of 1000 m. The local maximum in
the 1300 m standard deviation curves (Fig. 5) is due
to the use of estimands that have more variance (see
Fig. 1b). For instance at an estimation interval of 400
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FIG. 5. As in Fig. 3, but for 1300 m. The lower branch of the
group 2 curve is for vertical derivative estimates using an exponential
regression.

m, one uses potential temperature data from 1100 to
1500 m. As the estimation interval increases, more and
more estimands are used that have larger and larger
variance; this offsets the decrease expected in the stan-
dard deviation curves due to using more and more
points. The standard deviation curves start to decrease
again beyond an estimation interval of 1000 m (800-
1800 m), which is outside the window of large variances
and the effect of using more and more data points
dominates again.

For estimation intervals greater than 1000 m, the
most rapid decrease in the standard deviation of the
1300 m derivative estimates is for the FD models
(group 1). This estimate-depends on only two points,
which both have a small variance at large estimation
interval. This fact and the smoothing effect of the de-
nominator in the finite difference cause this rapid de-
crease, but there is a corresponding large positive bias.

¢. Discussion of the bias and standard curves

Four distinct patterns emerge from the mean and
standard deviation curves of the vertical derivative
models; 1) The convergence of all the models as the
estimation interval goes to zero and the convergence
of the individual models at a fixed estimation interval,
2) the relative placement of the groups is the same in
the 700 m and 1300 m standard deviation curves, 3)
there is no difference between the type of filtering or
whether filtering was done at all for large estimation
intervals, and 4) there is a bias-variance tradeoff for
all the models tested.

The convergence of all the models as the estimation
interval goes to zero and the convergence of the indi-
vidual models at a fixed estimation length is due to the
large sample size. One needs only to assume about 100
degrees of freedom from the 543 profiles and use the
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law of large numbers to easily prove the observed con-
vergences.

The grouping of models is determined by the number
of significant parameters to be estimated and hence is
independent of z,. For example, when estimating the
vertical derivative at 700 m using the Taylor polyno-
mials (2.4), the contribution to the estimate of # at an
estimation interval of 1000 m for a polynomial fit is
such that the 6(zy) term and the first derivative term
of (2.4) are the same order of magnitude [i.e., 8(z) is
the same order of magnitude as (80/9z)*(z — z)].
The magnitude of the quadratic term is an order of
magnitude smaller (determined from 543 estimates),
but the cubic term is the same order of magnitude as
6(zy) and the first derivative term. The group consisting
of SL, QP and EX models have only two significant
parameters to estimate. Since the contribution to the
regression fit by the second derivative term at a large
estimation interval is small, the second derivative term
does not help the QP model to fit the estimands farthest
from 6(zp). In turn, these distant estimands must be
accounted for by the zero and first order terms when
less than a cubic polynomial fit is used, hence the SL,
QP, and EX models have similar bias characteristics.
The CP model does not exhibit the same bias tenden-
cies as the other models for estimation intervals up to
1000 m because it has one more significant parameter,
the third derivative term, which is the same order of
magnitude as the 6(zp) term and the first derivative
term of (2.4). Thus, as the estimation interval increases,
the CP model can better fit the distant (from zy) esti-
mands and these distant estimands have less of an effect
on the derivative estimate at z,. The price to pay for
the lack of bias for the CP regression is the increased
variance, which results from the use of more param-
eters.

The standard deviation curves (Figs. 3 and 5) clearly
show the effect of smoothing the data. The models using
the unfiltered data (U) exhibit large standard deviations
for estimation intervals under 200 m. It will be shown
below that the large standard deviations are due to
measurement and submesoscale noise. For estimation
intervals less than 200 m, the data must be smoothed
in the fashion described by Miller and Evans (1985)

“and discussed above. The models using a large esti-

mation interval inherently smooth the derivative es-
timate themselves.

Beyond an estimation interval of 200 m, the. esti-
mated means are mostly biased low at 700 m and biased
high at 1300 m. Unfortunately, the models and esti-
mation intervals tested show that the estimates with
the lowest standard deviations (equivalently, the lowest
variances ) are the most biased. An optimal estimator
in the classic sense does not exist and some other cri-
terion of merit must be defined for the problem at hand.

Analogous results are seen in the estimation of the

- vertical derivatives of potential density. The only dif-

ference, of course, is that density is a decreasing func-
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tion of different magnitude. The mean vertical deriv-
ative of density at 700 m is —0.0023 (g cm ~%)/m. The
mean vertical derivative of density at 1300 m is
—0.0003 (g cm ~3)/m.

4. The vortex stretching estimates

Since there is a variance-bias trade-off, some other
criterion of merit needs to be defined for estimating
mesoscale vertical derivatives of potential temperature
and density. The problem at hand is the estimation of
the vortex stretching using hydrographic and SOFAR
float data. It is proposed that vortex stretching calcu-
lated from our best estimator of the vertical derivative
of potential temperature and density should be both
robust to small changes in the estimation interval and
not significantly different from the independent vortex
stretching estimates of MR89. In that study, vortex
stretching was calculated as the residual in the Lagran-
gian vorticity balance,

a &

d dt
The material time derivatives of the planetary vorticity
(f) and the relative vorticity ( {) were calculated using
clusters of SOFAR floats to tag water parcels. The error
in the residual method (4.1) for estimating vortex
stretching is 0.4 X 107'2 572 (MR89).

+ vortex stretching = 0. (4.1)

a. The methodology for the vortex stretching estimates

The data available consist only of pairs of hydrocasts
near float trajectories, so the time derivative of (1.1)
is a simple finite difference in time, and f, the planetary
vorticity, is the average of the 2 values of f at the CTD/
STD locations. If the bias error in the estimate of 96/
dz or dp /dz is constant from one hydrocast to the next,
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the finite difference in time would remove the entire
bias error. Then one may take advantage of a large
estimation interval with its low standard deviation. But
the biases themselves are statistical quantities that vary,
so we are forced to test the various vertical derivative
estimates and see which estimate is the best for esti-
mating vortex stretching.

Four vortex stretching estimates are shown in Fig.
6 as a function of estimation intervals for three typical
hydrographic pairs: (a) 34, 54; (b) 20, 40; and (c) 23,
42 along float trajectories 84, 64, and 62, respectively
(Fig. 7). The four vortex stretching estimates use FD,
SL, QP and CP regressions to unfiltered density profiles
for calculating the vertical derivatives. Similar vortex
stretching estimates for STD hydrographic pairs: (24,
44),(21,41),(21,42),(34, 54),(22,44), (4, 35)and
LDE CTD pairs (5, 56), (12, 56), (13, 56), (385, 404),
(14, 58), (58, 129),(17,41),(17,42) and (120, 134)
are not shown. Estimates below the 400 m estimation
interval are not shown since those estimates fluctuate
wildly. One can get a feel for this fluctuation by focusing
on the four estimates (when they are not off scale) in
the neighborhood of the 400 m estimation interval
(Fig. 6).

The two vortex stretching estimates based on a QP
and FD derivative model fluctuate the most. Estimation
intervals from 600 to 1000 m exhibit the least fluctua-
tions for all the models tested. The models and esti-
mation intervals that are most robust are clearly the SL
and CP models from 600 to 1600 m. For these models
and estimation intervals, the vortex stretching estimates
for temperature and density agree quite well (M86).

b. Comparison of vortex stretching estimates

Since the best estimation interval can not be distin-
guished, regressions of lengths 700, 800 and 900 m are

N
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F1G. 6. Vortex stretching estimates for three 700 m floats (84, 64, 62) and hydrographic pairs (a) 34, 54; (b) 20, 40; (c¢) 23,
42, respectively, as a function of estimation interval for the following mesoscale vertical derivative models and unfiltered hydrographic
data: 1) a finite difference (FD) of potential density data, 2) a straight line regression (SL) of potential density data, 3) a quadratic
polynomial regression (QP) of potential density data, and 4) a cubic polynomial regression (CP) of potential density data.
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averaged to calculate vortex stretching for comparison
with independent vortex stretching estimates based on
the residual method (4.1) for three float groups ( Table
1). The vortex stretching estimates based on the resid-
ual method uses float clusters from MR89. The first
float group is from the Gyre cruise (Fig. 7a), which
was specifically designed to estimate vortex stretching
using a Lagrangian approach. The next two float groups
in Table 1 are lucky byproducts of the Eulerian CTD
sampling strategy (Fig. 7b).

Using the residual method for floats (62, 64, 66, 67,
89), vortex stretching is estimated to be 1.02 X 10712
s2 and for floats (62, 64-69, 89) we estimate 0.95
X 107'2s72. (The first estimate uses the floats that best
correspond with the STD hydrocasts and the second
estimate uses the floats determined by M88’s cluster
selection criteria.) The vortex stretching estimate that
uses a CP regression to estimate the vertical derivative
of density agrees well with the residual estimates for
the first three hydrographic pairs (Table 1), which are
near the centroid of the float cluster (Fig. 7a). The lack
of agreement for the fourth pair of the first group is
probably because the residual estimates are represen-
tative of the centroid of the float cluster and the fourth
pair of hydrographic stations is on the perimeter of the
float cluster (Fig. 7a).

The best agreement with the residual method for the
second float group is the vortex stretching estimate that
uses a CP regression to estimate the vertical derivative
of density for CTD pair 385, 404, following float 53
(Table 1). The anomalous vortex stretching estimates
for float 60 are due to asynoptic estimation periods.
The residual method uses float data (53, 59, 60) from
days 3642-3672, float 60 vortex stretching estimates
uses hydrocasts from days 3650 and 3655. (Note that
float 53 vortex stretching estimates uses hydrocasts
from days 3669 and 3672). Mariano and Rossby
extrapolated the residual method’s vortex stretching
time series and estimated the stretching on day 3652
to be 0.45 X 1072, which is in close agreement with
the vortex stretching estimate that uses a CP regression
to density (Table 1).
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For float group three, the vortex stretching estimate
based on a CP regression to density is the closest to the
residual vortex stretching estimate (Table 1), The dif-
ferences in magnitude are attributed to a combination
of estimation noise and a sharp decrease in stretching
for float cluster (54-56, 61) after day 3653.

It is not possible to accurately estimate the vortex
stretching with the models tested in this study at 1300
m. The Gyre STD data was tested using estimation
intervals ranging from 100 to a maximum 400 m (the
deepest STD cast is 1500 m). The stretching estimates
from the Gyre STD data are all at least an order of
magnitude larger than the estimates of MR89, despite
good pairs of hydrocasts following the floats. The 1300
m results using the LDE CTD data are more discour-
aging. There are ninety-eight times when a hydrocast
and a float are within one-half of a day and 10 km of
each other in the E-W and N-S8 direction at least twice
following a float. Ninety-eight percent of the 1300 m
vortex stretching estimates calculated using SL, QP,
CP, and FD and estimation intervals of 200 to 2000
m are one to two orders of magnitude too large.

Stretching can not be estimated at 1300 m due to a
low signal-to-noise ratio. The standard deviation due
to noise at 1300 m is twice that of S, at 700 m. This
noise at 1300 m is amplified relative to 700 m, by the
order of magnitude smaller mean derivative at 1300
m [look ahead to (4.4)]. Physically, the magnitude of
wisa maximum at 1300 m (Rossby et al. 1986); hence
the stretching, — f(dw/dz), is expected to be small.

¢. Analysis of vortex stretching error

Measurement error (me), submesoscale error and
fitting error contribute to Sj,s,,, the vertical deriva-
tive estimation error. The fitting error’s contribution
is determined by calculating the root-mean-square dif-
ference between the data and estimates predicted by
the models and is much smaller O(1075) than the con-
tributions due to submesoscale and measurement er-
rors.

Since our Gaussian filtering scheme removes 99%
of the submesoscale and measurement variance on

i

TABLE 1. Vortex stretching estimates (107'% s™2) for 700 m.

CTD/STD SL CP .
Float Residual
" group Pair Time Density Temperature Density Temperature method
62 21, 42 3727-3731 0.66 0.28 1.01 0.02
62 23,42 3727-3731 0.17 0.30 097 1.03 1.02
64 20, 40 3727-3731 0.41 0.35 1.07 0.94 0.95
67 19, 39 3727-3730 —0.67 -0.76 ~1.51 ~1.11
60 17, 41 3650-3655 0.52 0.52 0.79 0.72
60 . 17, 42 3650-3655 -0.17 -0.28 0.41 0.19 —-.56
53 385, 404 3669-3672 —0.08 —0.12 -0.35 -0.32
54 5,56 3649-3657 —0.31 -0.17 ~0.88 —0.53
55 13, 56 3650-3657 ~0.63 —0.58 ~-1.23 0.95 —2.05
55 12, 56 3650-3657 ~0.31 -0.37 ~0.85 -0.69
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FIG. 7. (a) Trajectories of 700 m floats launched (open circles) in the LDE region. Time interval is in Julian day. Fixes are every 8 hours.
The larger dots are at daily intervals. The float number is given near the end of the trajectory. The numbered Xs are the STD hydrocasts
from Gyre cruise G-6-78. Most of the hydrocasts are from truncated Julian days 3727-3732. (b) As in (a) but for CTDs from the LDE
intensive survey that by luck follow float trajectories. All vortex stretching estimates using hydrographic pairs separated by less than 2 days
were an order of magnitude too large. (c) As in (a) but for trajectory of float 84 from 3723-3737.

scales less than 100 m, the total contribution by sub-
mesoscale and measurement error to Sga;, can be es-
timated as the difference in the standard deviation (3.1)
of the estimates from the unfiltered data and the esti-
mates from the filtered data at a given estimation in-

terval. The individual contributions of submesoscale
and measurement error are decoupled by estimating
the contribution of measurement error.

Here S3421,,., the contribution of measurement er-
ror in estimating the vertical derivative using a FD of
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length z, — z,, is easily derived using propagation of
errors to be

25..
(z2— z) )

Theoretically, S,,, is calculated by extrapolating the
estimated structure function, F( z;—z;), to zero (Gan-
din 1967) and using the relationship,

2S,,me = F(0).
The true structure function is defined as
F(z;— z) = [0(z) — 8(z)]>.

We must use F, rather than F, since we do not know
the true 4(z). The large curvature of F near F(0) and
estimation noise limit the practicality of extrapolating
F to zero (op cit. and M86).

The S, is estimated to be 0.02°C from a cubic
polynomial fit about the third data pomt of F (M86).
Bryden (1976) estimated 0.01°C using temperature
sensors that were close (6 to 1600 m) in the horizontal.
The measurement error is assumed to be 0.015°C, an
average of the two independent estimates.

Table 2 lists the standard deviations of the 700 m
FD vertical derivative estimate for the unfiltered and
filtered temperature data from the 543 CTD LDE
drops. Contributions by measurement and submeso-
scale error to the vertical derivative estimation error
are about equal for an estimation interval of 40 m. For
estimation intervals greater than 200 m, the subme-
soscale error contribution (2 X 107 °C) is an order
of magnitude less than the measurement error contri-
bution (15 X 1073 °C). Thus, Susz, is well approx-
imated by Sag/azhne (4.2)

Using propagation of errors with data from times ¢,
and t,, the standard deviation for vortex stretching es-
timation due to measurement error in estimating the
vertical derivative is

(4.2)

S86/0z)me =

(4.3)

szay/azl,,,e
[(,—t)00/0z]]"

Sfd/dl[ln(a()/az)] = (4.4)

For example, if d/ dt is typically 4 days, fis0.76 X 107*

TABLE 2. Standard deviations of the finite
difference method (1072 °C)

Estimation Unfiltered
interval minus  Measure- Submeso-

(m) Unfiltered Filtered Filtered ment scale

40 0.315 0.164 0.151 0.08 0.071

100 0.200 0.157 0.043 0.03 0.013
200 0.159 0.142 0.017 0.015 0.002
400 0.118 0.112 0.006 0.008 0.000

800 0.045 0.045 0.000 0.004 0.000
1000 0.024 0.025 0.001 0.002 0.000
1200 0.031 0.026 0.001 0.000

—0.005
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s~! and an order of magnitude stretching estimate is
10712 572, using a FD vertical derivative requires an
estimation interval of 650 m. It is not possible to obtain
an accuracy of 1073 s72 (i.e., 10% of the signal) with
the FD vertical derivative and hence the FD vortex
stretching estimates fluctuate wildly (Fig. 6).

For the polynomial fit (2.4) Ssaz/,. 1S given by

'S'at)/az[,,,c = (RTR)_I‘ Same, (4.5)
where
1 (2= 2) w
m!
(22— 20) (&~ )
m!
R =3
| (2 - 2) (zn = 7)™
m!

(4.5) assumes that the mth order polynomial regression
is the true model (see Seebur 1977). By substituting
(4.5) into (4.4) and assuming the same f, 1, — ¢,
So,,, and 86/ 9z as before, it is easily shown that to re-
duce the vortex stretching error to 107'3 s~2 requires
an estimation interval of about 700 m, Wthh agrees
with Fig. 6.

5. Summary

None of the vertical derivative models tested are both
unbiased and minimum variance. The proposed cri-
terion of merit is that the best method is robust with
respect to a change in estimation length for estimating
vortex stretching ax;d gives vortex stretching estimates
that are not significantly different from the independent
vortex stretching estimates of MR89. For the case dis-
cussed in section 4, the best estimator of vortex stretch-
ing is a cubic polynomial fit of length 700 to 900 m to
the density data at 700 m. Vortex stretching can not
be estimated using the time rate.of change of the vertical
derivative of density or temperature following float
clusters at 1300 m with any of the vertical derivative
models tested due to a low signal-to-noise ratio, thus
vortex stretching estimates using this approach should
not be made where dw/dz is small.

Due to the remarkable similarity of vertical profiles
of potential temperature and density below the seasonal
thermocline, the bias and standard deviation curves
given here will need little modification when estimating
mesoscale vertical derivatives from other midlatitude
hydrographic profiles. The standard deviation and bias
curves can be used as a guide for estimating vertical
derivatives given different criterion of merit. For ex-
ample, if the design criterion is to estimate the vertical
derivative of temperature at 700 m with the smallest
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estimation error possible under a strong constraint of
no bias, then Figs. 2 and 3 suggest that the data should
be filtered, the estimation interval should be on the
order of 150 m and a least-square straight line regres-
sion will suffice.

How robust are these results for hydrographic profiles
‘from other regions of the world’s oceans? The most
robust result is that the mesoscale derivatives should
be estimated using a range of data whose derivative
values are not significantly different from the derivative
at the point of estimation. This implies that for cal-
culating quantities involving vertical gradients (e.g.,
the Brunt-Viisild frequency), the estimation interval
should be variable with respect to depth in the water
column and station location. For instance, the esti-
mation interval for 18°C water would be much smaller
than the estimation interval for North Atlantic Deep
Water, which is at a nominal depth of 2500 m in Fig.
la. Also, the “best” estimation interval would be dic-
tated by the particular feature (e.g., rings, submesoscale
coherent vortices, fronts) sampled by a profile. As dis-
cussed by Mariano (1990), it is worth the extra effort
to tailor the estimation scheme for particular cases
based on features evident in the data. Thus, the results
presented herein, provide guidelines that can be applied
to a wide variety of contexts.
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