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Abstract

Decision making in the presence of uncertainty and multiple conflicting objectives is a real-life issue

in many areas of human activity. To address this type of problem, we study highly robust efficient

solutions to uncertain multiobjective linear programs (UMOLPs) with objective-wise uncertainty

in the objective function coefficients. We develop properties of the highly robust efficient set,

provide its characterization using the cone of improving directions associated with the UMOLP,

derive several bound sets on the highly robust efficient set, and present a robust counterpart for a

class of UMOLPs. As various results rely on the acuteness of the cone of improving directions, we

also propose methods to verify this property.

Keywords: multiple objective programming, robust multiobjective optimization, objective-wise

uncertainty, polar cones, acute cones

1. Introduction

Practical problems often involve conflicting goals and uncertainty present during the decision-

making process. Problems with conflicting criteria typically do not have a unique optimal solution,

and multiobjective optimization instead provides a solution set of alternatives that is indispensable

in revealing a compromise. Independently of conflict, problems involving uncertainty require robust

solutions that are desirable in some sense across all realizations of uncertainty. To account for un-

certainty in single-objective optimization, Ben-Tal & Nemirovski (1998) developed a deterministic

methodology known as robust optimization that uses crisp sets to define regions within which the
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uncertainty varies. Solutions are computed by solving a robust counterpart (RC), which is a related

deterministic problem whose data is certain or determined.

In the field of robust multiobjective optimization, which integrates robust and multiobjective

optimization, uncertainty may be associated with multiobjective programs (MOPs) in a variety

of ways yielding an uncertain MOP (UMOP). Depending on the sources of uncertainty that are

considered, the formulation changes to reflect the specific situation. For each formulation, a variety

of robustness concepts are defined and studied. Refer to Wiecek & Dranichak (2016) for a tutorial.

That being said, in this paper, we focus on uncertain multiobjective linear programs (UMOLPs)

in which only objective coefficients are uncertain (and the feasible set is deterministic) as in, e.g.,

Ehrgott et al. (2014), Ide & Schöbel (2015), and Kuhn et al. (2016).

The following notation is used throughout. The Euclidean space of dimension n is given by Rn.

The closure of a set V ⊆ Rn is denoted by cl(V ), the interior by int(V ), the relative interior by

rel int(V ), and the dimension by dim(V ). The Minkowski sum of two sets V,W ⊆ Rn is given by

V ⊕W := {v + w : v ∈ V,w ∈W}, and the Cartesian product by V ×W := {(v,w) : v ∈ V,w ∈

W}. The rank of a matrix M ∈ Rp×n is denoted by rank(M), and the vector of all zeros by 0. For

all v,w ∈ Rn, we write v 5 w if vj ≤ wj for all j = 1, . . . , n; v ≤ w if vj ≤ wj for all j = 1, . . . , n,

and v 6= w; and v < w if vj < wj for all j = 1, . . . , n. When n = 1, the symbols 5 and ≤ coincide.

The symbols =,≥, > are used similarly.

A deterministic MOLP is a problem of the form:

min
x∈X

Cx =
[
c1x · · · cpx

]T
(1.1)

where ck, k = 1, . . . , p, is the k-th row of the p× n cost (objective) matrix C, p ≥ 2, n ≥ 1, x ∈ Rn

is the decision vector, X := {x ∈ Rn : Ax 5 b,x = 0} ⊂ Rn,A ∈ Rm×n,b ∈ Rm, is the (bounded

polyhedral) feasible region, and Rn is the decision (solution) space.

The commonly used solution concept for MOLP (1.1) is that of Pareto efficiency, or simply

efficiency. A feasible solution x̂ ∈ X to MOLP (1.1) is said to be (weakly) efficient if there does

not exist x ∈ X such that Cx (<) ≤ Cx̂. The set of all (weakly) efficient solutions x̂ ∈ X is

denoted by (wE(X,C)) E(X,C) and is called the (weakly) efficient set. Since we assume that X

is bounded, (weakly) efficient solutions to MOLP (1.1) are guaranteed to exist (see Corollary 2.26

and Theorem 2.19, Ehrgott 2005, respectively).

Considering uncertain input data in the cost matrix coefficients of MOLP (1.1), we obtain a
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UMOLP. We define a UMOLP, denoted MOLP(U), to be the collection of MOLPs, which are

denoted by MOLP(u), indexed by the (uncertain) parameter u:{
min
x∈X

C(u)x

}
u∈U,

(1.2)

where U ⊆ Rq is a nonempty set modeling the uncertainty referred to as the uncertainty set or set

of scenarios, and C(u) is the cost matrix under uncertainty u ∈ U . Every problem MOLP(u) in the

collection, which is called an instance of MOLP(U), is associated with a particular value of u ∈ U

that is referred to as a realization or scenario. Note that if the set of scenarios U is a singleton,

then the uncertain problem (1.2) reduces to the deterministic problem (1.1). While the solution

concept for MOLP(U) is not obvious, the concept for each instance is clear since MOLP(u) is a

deterministic MOLP given the scenario u ∈ U . Accordingly, (wE(X,C(u))) E(X,C(u)) denotes

the (weakly) efficient set of MOLP(u) for some realization u ∈ U .

In practical problems, conflicting objective functions are unlikely to depend on the same uncer-

tainties. To accommodate this reality, we assume that the uncertainty, or MOLP(U), is objective-

wise. In particular, MOLP(U) is said to be objective-wise if the uncertainties of the cost vectors

c1, . . . , cp are independent of each other, that is, if U = U1×· · ·×Up, where Uk ⊆ Rn, k = 1, . . . , p,

such that

C(u) =


c1(u1)

...

cp(up)

 =


c11u11 · · · c1nu1n

...
. . .

...

cp1up1 · · · cpnupn

 (1.3)

with u =
[
u1 · · · up

]T ∈ U , and uk ∈ Uk, k = 1, . . . , p. Based on the formulation of C(u), it is

easy to show that the function C(u)x is bilinear in x and u.

Perhaps the first type of objective-wise UMOLP with only uncertain objective coefficients

considered in the literature is from the field of interval multiobjective programming in which the

uncertain coefficients fall within a closed interval that is assumed to be known. In Bitran (1980),

an interval MOLP (IMOLP) is the collection of MOLPs indexed by the cost matrix C:{
min
x∈X

Cx

}
C∈Φ,

(1.4)

where Φ ⊆ Rp×n is the nonempty set of p×n matrices with elements ckj ∈ [cL
kj , c

U
kj ], k = 1, . . . , p, j =

1, . . . , n. The lower bounds cL
kj and upper bounds cU

kj are assumed to be known.
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It is clear that all IMOLPs can be reformulated as objective-wise UMOLPs by taking ckj = 1

in (1.3) for all k = 1, . . . , p, j = 1, . . . , n, and Uk = {uk ∈ Rn : cL
k1 ≤ uk1 ≤ cU

k1, . . . , c
L
kn ≤ ukn ≤

cU
kn}, k = 1, . . . , p, which is often referred to as a box uncertainty set. On the other hand, it is

equally clear that not all objective-wise UMOLPs can be reformulated as IMOLPs, which is the

case, for instance, when U is finite. As an example, consider min
x∈X

u11 u12

u21 u22

x


u1∈U1,u2∈U2,

(1.5)

where U1 = {(1, 1), (2, 3)}, and U2 = {(1, 2)}. Here, we have that U = {(1, 1, 1, 2), (2, 3, 1, 2)}. As

UMOLP (1.5) is a collection of two MOLPs, it cannot possibly be reformulated as an IMOLP that

is necessarily an infinite collection of MOLPs or a singleton (if cL
kj = cU

kj for all k and j). Since all

IMOLPs can be reformulated as objective-wise UMOLPs with box uncertainty sets, which is only

one of many possible types of uncertainty sets, and UMOLPs with finite uncertainty sets cannot

be reformulated as IMOLPs, it is evident that UMOLP (1.2) is more general than IMOLP (1.4)

and permits a wider variety of problems to study.

To solve objective-wise UMOLPs with uncertain objective function coefficients, a variety of

possible solution concepts may be chosen. For a comprehensive survey of ten different concepts of

robust efficiency for this type of problem and their numerous relationships, refer to Ide & Schöbel

(2015). We choose to adopt the conservative concept of necessary efficiency (see Inuiguchi & Kume

1991) that is first mentioned in 1980 by Bitran (1980). Such solutions are efficient with respect to

every realization of the uncertain data. However, in keeping with the recent literature on robust

multiobjective optimization, we refer to these solutions as highly robust efficient.

Definition 1.1. A solution x∗ ∈ X to MOLP(U) is said to be highly robust (weakly) efficient

(HR(W)E) if for every u ∈ U , there does not exist x ∈ X such that C(u)x (<) ≤ C(u)x∗.

In other words, a solution x∗ ∈ X is an HR(W)E solution to MOLP(U) if and only if (x∗ ∈⋂
u∈U wE(X,C(u))) x∗ ∈

⋂
u∈U E(X,C(u)) (see p. 242, Ide & Schöbel 2015). The highly robust

(weakly) efficient set of MOLP(U) is denoted by (wE(X,C(u), U)) E(X,C(u), U).

Note that, as in the deterministic setting with efficiency, the HRE set is contained in the HRWE

set. However, it is important to recognize a key difference between the solutions to deterministic and

uncertain MOLPs. In the deterministic case, provided that X is bounded, the weakly efficient and
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(a) The weakly efficient (pur-

ple) and efficient (teal) sets under

u1 = (1, 0, 0, 1)

(b) The weakly efficient (grey)

and efficient (green) sets under

u2 = (−1, 0, 0, 1)

(c) The HRWE set (red)

Figure 1: Weakly efficient, efficient, and HRWE points of UMOLP (1.5) with U1 = {(1, 0), (−1, 0)}, U2 = {(0, 1)},

and feasible set X1

efficient sets of MOLP (1.1) are nonempty (cf. Corollary 2.26 and Theorem 2.19, Ehrgott 2005). On

the other hand, in the uncertain case, the HRWE set of UMOLP (1.2) may be nonempty while the

HRE set is empty. For example, consider UMOLP (1.5) with U1 = {(1, 0), (−1, 0)}, U2 = {(0, 1)},

and the bounded feasible set (refer to Example 1, Wiecek & Dranichak 2016) given by

X1 := {x ∈ R2 : −x1 + 2x2 ≤ 6, x1 + x2 ≤ 6, x1 ≥ 0, x2 ≥ 0}. (1.6)

We have, as shown in Figure 1c, that the HRWE set is nonempty while the HRE set is empty.

With this in mind, we only address HRWE solutions in certain cases.

In the interval multiobjective programming literature, solution methods for computing nec-

essarily efficient solutions to IMOLPs are presented by Bitran (1980), Benson (1985), Inuiguchi

& Kume (1992), Ida (1996), Inuiguchi & Sakawa (1996), Oliveira & Antunes (2007), and Hlad́ık

(2010), while complexity analysis is studied by Hlad́ık (2012). However, as IMOLPs are a special

case of objective-wise UMOLPs, it is desirable to study the more general context.

Independently of the interval multiobjective programming studies, in recent years, Ide &

Schöbel (2015), Goberna et al. (2015), Kuhn et al. (2016), and Wiecek & Dranichak (2016) study

HRE solutions to UMOPs. In particular, Kuhn et al. (2016) examine the special case of an un-

certain biobjective problem with only one uncertain objective. Meanwhile, when the uncertainty

set is both objective-wise and a bounded polyhedron and the objective functions are affine with

respect to the uncertainty, Ide & Schöbel (2015) prove that solving a UMOP with respect to the

original uncertainty set is equivalent to solving the UMOP with respect to the finite set of extreme
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points of the uncertainty set (see Theorem 46, Ide & Schöbel 2015). Moreover, the authors show

in Example 48 that this theorem does not hold if the assumption of objective-wise uncertainty is

relaxed.

In view of this work, the use of objective-wise uncertainty takes on more significance and, since

C(u)x is linear in u, we restrict our attention to finite uncertainty sets for the remainder of the

paper. Although certain results may also be true for general infinite uncertainty sets, we do not

address this in more detail. Throughout, the finite set of scenarios is defined to be

U := {u1, . . . ,us} ⊂ Rq,

where we assume WLOG that each scenario is distinct.

The state of the art in research on highly robust efficiency offers several research directions

that we undertake in this paper. Our first contribution is a characterization of the HRE set by

means of the strict polar cones of the cones of improving directions associated with every instance

of MOLP(U). This characterization is a consequence of the preliminaries that we present on polars

and strict polars of convex cones and unions of convex cones. Here, the strict polar of a single

convex cone is used in the context of MOLP (1.1) (or a single-scenario UMOLP) and efficiency,

while the strict polar of a union of cones is used in the context of MOLP(U) (associated with a

collection of scenarios) and highly robust efficiency. A second contribution is several bound sets

on the HRE set whose associated MOLPs lead to an RC of MOLP(U) and a condition for the

existence of HRE solutions.

The paper is organized as follows. In Section 2, we develop theory on polar and strict polar

cones in preparation for the main results given in Section 3 regarding the characterization of and

bound sets on the HRE set. Concluding remarks are given in Section 4.

2. Preliminary Results

Since each instance of MOLP(U) is a deterministic problem, we briefly review two relevant

deterministic efficiency results, one of which we reformulate using the language of and theory

regarding three related cones. Before we accomplish this in Section 2.2, we derive algebraic rep-

resentations of the polars and strict polars of these cones in Section 2.1. In addition, since highly

robust efficiency relies on efficiency to each instance, we consider finite collections of the same

6



three cones in Section 2.3 and derive formulas for the polars and strict polars of unions of these

collections. All of this theory becomes useful when developing a characterization of the HRE set

in Section 3.

2.1. On Polars and Strict Polars of Convex Cones

A set K ⊆ Rn is called a cone if x ∈ K implies that λx ∈ K for all λ > 0. Accordingly, cones

do not have to contain the origin. A cone K ⊆ Rn is called acute if cl(K) ⊆ H ∪ {0}, where H is

an open half-space whose generating hyperplane passes through the origin; pointed if x ∈ K and

x 6= 0 implies that −x /∈ K; and convex if for any two points x1,x2 ∈ K, then x1 + x2 ∈ K.

Relating acute and pointed cones, we have the following proposition.

Proposition 2.1. Let K ⊆ Rn be a cone. If K is acute, then it is pointed.

Proof. Let K be acute. By definition, there is an open half-space H generated by the hyperplane

passing through the origin, {x ∈ Rn : aTx = 0}, where a ∈ Rn and a 6= 0, such that cl(K) ⊆

H ∪ {0}. WLOG, we have H = {x ∈ Rn : aTx > 0}, and cl(K) ⊆ {x ∈ Rn : aTx > 0} ∪ {0}.

Now, assume that K is not pointed. By definition, there exists an x ∈ K,x 6= 0, such that

−x ∈ K. Since x ∈ K ⊆ cl(K) and x 6= 0, we know that aTx > 0. Similarly, since −x ∈ K ⊆ cl(K)

and −x 6= 0, we know that aT (−x) > 0, which gives aTx < 0, a contradiction.

With regards to convex cones, one type we use in our study is the normal cone. The normal cone

to X at x̄ ∈ X is a convex cone defined to be NX(x̄) := {p ∈ Rn : pT (x− x̄) ≤ 0 for all x ∈ X}.

Note that the normal cone NX(x) contains 0 for all x ∈ X and is thus always nonempty.

In addition, we examine finite and polyhedral convex cones. A nonempty convex cone K ⊆ Rn is

called finite if for gj ∈ Rn, j = 1, . . . , r, then K := {x ∈ Rn : x =
∑r

j=1 λjgj , λj ≥ 0, j = 1, . . . , r}.

Here, K is said to be spanned or generated by the finite set of generators {g1, . . . ,gr}. Moreover,

a nonempty convex cone K ⊆ Rn is called polyhedral convex if it is the intersection of a finite num-

ber of closed half-spaces whose generating hyperplanes pass through the origin. The well-known

Minkowski-Weyl Theorem (see Theorem 4.7.2, Panik 1993) relates finite cones and polyhedral con-

vex cones in that a nonempty cone K ⊆ Rn is polyhedral convex if and only if it is finite. In view of

the Minkowski-Weyl Theorem, every polyhedral convex cone has two representations: (i) generator

form K(GT ) = {x ∈ Rn : x = GTλ,λ = 0}, where GT =
[
g1 · · · gr

]
∈ Rn×r and {g1, . . . ,gr}

is a finite set of generators of K, and (ii) inequality form K5(M) = {x ∈ Rn : Mx 5 0}, where
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M ∈ Rp×n and the rows of M are the normals to the generating hyperplanes whose half-spaces

form K. We may convert between the two forms using, e.g., SageMath’s polyhedron base class,

The Sage Developers (2017). As is clear in the inequality form representation of a polyhedral

convex cone, K5(M) contains 0 for all M and is thus always nonempty.

Two convex cones closely related to polyhedral convex cones are K≤(M) := {x ∈ Rn : Mx ≤ 0}

and K<(M) := {x ∈ Rn : Mx < 0}. It is clear that K<(M) is open, while K≤(M) may be open,

closed, or neither. Although K5(M) is always nonempty, K≤(M) and K<(M) may be empty.

For a cone K ⊆ Rn, not necessarily convex, its polar cone is the set K+ := {y ∈ Rn : xTy ≥

0 for all x ∈ K}, and its strict polar cone is the set Ks+ := {y ∈ Rn : xTy > 0 for all x ∈ K \{0}}.

Note that if K 6= ∅, then K+ 6= ∅ as well (as it must contain 0), while Ks+ may be empty.

We derive the polars and strict polars of the convex cones K5(M),K≤(M), and K<(M), which

we need for the deterministic case of efficiency. Given the cones K5(M), K≤(M), and K<(M), we

denote their polars by K+
5 (M), K+

≤ (M), and K+
< (M), and their strict polars by Ks+

5 (M), Ks+
≤ (M),

and Ks+
< (M), respectively. The algebraic representations of the polars of the three convex cones,

which are equivalent under a specific condition, are given in the following.

Proposition 2.2. (i) The equality K+
5 (M) = {x ∈ Rn : x = −MTλ,λ = 0} holds.

(ii) Let cl(K<(M)) = cl(K≤(M)) = K5(M). Then K+
< (M) = K+

≤ (M) = K+
5 (M).

Proof. (i) Given by Proposition 2.1.13, Sawaragi et al. (1985).

(ii) Follows directly from Proposition 2.1.5(iii), Sawaragi et al. (1985).

Since K5(M) 6= ∅ and cl(K<(M)) = cl(K≤(M)) = K5(M), it follows that K<(M) 6= ∅ and

K≤(M) 6= ∅ as well. Hence, the polars derived in Proposition 2.2 are always nonempty. Similarly,

under certain assumptions, it is clear in the following derivation that Ks+
5 (M),Ks+

≤ (M), and

Ks+
< (M) are also nonempty.

Proposition 2.3. (i) Let K5(M) be acute. Then Ks+
5 (M) = {x ∈ Rn : x = −MTλ,λ > 0}.

(ii) Let K5(M) be acute. Then Ks+
≤ (M) = Ks+

5 (M).

(iii) Let cl(K<(M)) = K5(M). Then Ks+
< (M) = {x ∈ Rn : x = −MTλ,λ ≥ 0}.
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Proof. (i) Since K5(M) 6= ∅ is closed (by definition) and acute (by assumption), we have that

Ks+
5 (M) = int(K+

5 (M)) by Theorem 2.1(ii), Yu (1974). Further, since int(K+
5 (M)) 6= ∅

by Theorem 2.1(i), Yu (1974), the interior and relative interior coincide (see formula (14),

Dattorro 2015). Hence, Proposition 2.2(i) and Theorem 2.3.37, Greer (1984), yield the result.

(ii) By assumption, K5(M) is acute, which implies that K5(M) is pointed by Proposition 2.1.

Hence, rank(M) = n by Theorem 3.1, Hunt et al. (2010), so that x = 0 is the only solution to

Mx = 0 by Theorem 2.3, Bronson (1989). The latter implies that K≤(M) = K5(M) \ {0}.

Thus, by definition, we have that Ks+
5 (M) = {y ∈ Rn : xTy > 0 for all x ∈ K5(M) \ {0}},

which is equal to {y ∈ Rn : xTy > 0 for all x ∈ K≤(M)}. Since 0 /∈ K≤(M), the latter is

equal to Ks+
≤ (M) by definition, which yields Ks+

≤ (M) = Ks+
5 (M).

(iii) SinceK<(M) is open, we know by Proposition 2.1.5(iv), Sawaragi et al. (1985), thatKs+
< (M)∪

{0} = K+
< (M), which implies that Ks+

< (M) = K+
< (M) \ {0}. As K+

< (M) = K+
5 (M) =

{x ∈ Rn : x = −MTλ,λ = 0} by Proposition 2.2(ii) and λ = 0 forces x = 0, we obtain

Ks+
< (M) = {x ∈ Rn,x 6= 0 : x = −MTλ,λ ≥ 0}. Since K<(M) 6= ∅ (which is implied by

our assumption), Mx < 0 has a solution. Equivalently, by Gordan’s Theorem (Mangasarian

1969), the system −MTλ = 0,λ ≥ 0 has no solution, which yields the result.

In the next section, Proposition 2.3 is used to a offer a new perspective on the efficiency of

solutions to MOLPs.

2.2. On Multiobjective Linear Programming Efficiency

The results on efficiency we give in this section involve the cone of improving directions.

Definition 2.4. The cone of improving directions of MOLP (1.1) is defined to be D≤(C) := {d ∈

Rn : Cd ≤ 0}. The open and closed cones D<(C) and D5(C) are defined accordingly.

Note that the cones of improving directions are equivalent to the cones K<(M), K≤(M), and

K5(M). As such, their properties and related results are applicable. Using the cones of improving

directions, we characterize the (weak) efficiency of solutions to MOLP (1.1).

Proposition 2.5. Let x̂ ∈ X. Then

(i) x̂ ∈ E(X,C) if and only if (D≤(C)⊕ {x̂}) ∩X = ∅;
9



(ii) x̂ ∈ E(X,C) if (D5(C)⊕ {x̂}) ∩X = {x̂};

(iii) x̂ ∈ wE(X,C) if and only if (D<(C)⊕ {x̂}) ∩X = ∅.

Proof. Analogous to Proposition 1, Thoai (2012).

In a separate theorem, Luc (2016) uses the normal cone to give a different necessary and

sufficient condition for the (weak) efficiency of solutions to MOLP (1.1).

Theorem 2.6. (Luc, 2016, Theorem 4.2.6) Let x̂ ∈ X. Then

(i) x̂ ∈ E(X,C) if and only if NX(x̂) contains some vector −CTλ,λ > 0;

(ii) x̂ ∈ wE(X,C) if and only if NX(x̂) contains some vector −CTλ,λ ≥ 0.

Given the cones of improving directions D5(C), D≤(C), and D<(C), we denote their polars by

D+
5(C), D+

≤(C), and D+
<(C), and their strict polars by Ds+

5 (C), Ds+
≤ (C), and Ds+

< (C), respectively.

Under certain assumptions such as the acuteness or closure of the cones of improving directions,

their polars and strict polars are given by Propositions 2.2 and 2.3, respectively. In Theorem 2.7,

we provide a different point of view on Theorem 2.6 by considering these polars and strict polars.

Theorem 2.7. Let x̂ ∈ X.

(i) Assume D5(C) is acute. Then x̂ ∈ E(X,C) if and only if NX(x̂) ∩Ds+
5 (C) 6= ∅.

(ii) Assume cl(D<(C)) = D5(C). Then x̂ ∈ wE(X,C) if and only if NX(x̂) ∩Ds+
< (C) 6= ∅.

Proof. (i) Since D5(C) is acute, we know that Ds+
5 (C) = {x ∈ Rn : x = −CTλ,λ > 0} by

Proposition 2.3(i). Hence, the result follows from Theorem 2.6(i).

(ii) Since cl(D<(C)) = D5(C), we know that Ds+
< (C) = {x ∈ Rn : x = −CTλ,λ ≥ 0} by

Proposition 2.3(iii). Hence, the result follows from Theorem 2.6(ii).

We note that Theorem 2.7(i) may be equivalently stated with Ds+
≤ (C) instead of Ds+

5 (C) since

Ds+
≤ (C) = Ds+

5 (C) when D5(C) is acute. In addition, even though NX(x) 6= ∅ for all x ∈ X

and Ds+
5 (C) 6= ∅ for all C ∈ Rp×n such that D5(C) is acute (cf. Proposition 2.3(i)), this does

not guarantee that NX(x) ∩ Ds+
5 (C) 6= ∅ also. That being said, since E(X,C) 6= ∅ (as X is
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bounded), there exists x̂ ∈ X such that NX(x̂) ∩ Ds+
5 (C) 6= ∅. Although Theorem 2.7 is weaker

than Theorem 2.6 due to the additional assumptions about the cones of improving directions, the

advantage of reframing Theorem 2.6 by means of Ds+
5 (C) and Ds+

< (C) is the added insight that

we gain regarding HR(W)E solutions in Sections 3.1 and 3.2.

2.3. On Polars and Strict Polars of Unions of Convex Cones

Let M1, . . . ,M` ∈ Rp×n. We consider finite collections of the three types of cones obtained by

means of the matrices Mk, k = 1, . . . , `, and derive algebraic formulas for the polar and strict polar

cones of the unions of these collections. Our interest here in the unions of these convex cones is

with regard to the relationship to the finite set of scenarios, which is evident in Section 3.1.

Proposition 2.8. (i) The equality
[⋃`

k=1K5(Mk)
]+

=
⋂`

k=1K
+
5 (Mk) holds.

(ii) Let cl(K<(Mk)) = cl(K≤(Mk)) = K5(Mk) hold for all k = 1, . . . , `. Then
[⋃`

k=1K<(Mk)
]+

=[⋃`
k=1K≤(Mk)

]+
=
[⋃`

k=1K5(Mk)
]+

.

Proof. (i) Follows directly from Proposition 2.1.6(i), Sawaragi et al. (1985).

(ii) By assumption, K<(Mk) 6= ∅ andK≤(Mk) 6= ∅ for all k = 1, . . . , `. Thus, Proposition 2.1.6(i),

Sawaragi et al. (1985), Proposition 2.2(ii), and part (i), respectively, give the result.

Since the polar obtained in Proposition 2.8 is the intersection of polyhedral convex cones, we

may use, e.g., SageMath’s polyhedron base class, The Sage Developers 2017, to compute its

algebraic representation. Related to this intersection, we also have the following proposition.

Proposition 2.9. (i) The polar
[⋃`

k=1K5(Mk)
]+

is a polyhedral convex cone given by {x ∈

Rn : x = −M̃Tλ,λ = 0} for some suitable matrix M̃T ∈ Rn×p̃.

(ii) Let cl(K<(Mk)) = cl(K≤(Mk)) = K5(Mk) hold for all k = 1, . . . , `. Then
[⋃`

k=1K<(Mk)
]+

=[⋃`
k=1K≤(Mk)

]+
is a polyhedral convex cone given by {x ∈ Rn : x = −M̃Tλ,λ = 0} for

some suitable matrix M̃T ∈ Rn×p̃.

Proof. (i) Since
[⋃`

k=1K5(Mk)
]+

=
⋂`

k=1K
+
5 (Mk) by Proposition 2.8(i), and K+

5 (Mk) is a

polyhedral convex cone (in generator form) for each k = 1, . . . , `, by Proposition 2.2(i), we

conclude
[⋃`

k=1K5(Mk)
]+

is also a polyhedral convex cone (see p. 84, Panik 1993). Thus,

we may express it in generator form for some suitable matrix M̃T ∈ Rn×p̃.

11



(ii) Follows from part (i) and Proposition 2.8(ii).

Remark 2.10. As previously noted, the polar of any nonempty cone is always nonempty as well

since it is at least the origin. Hence, the matrix M̃T in Proposition 2.9 is guaranteed to exist,

although we do not claim how to compute it. Moreover, in each instance above, the phrase “for

some suitable matrix M̃T ∈ Rn×p̃” means “where the columns of −M̃T ∈ Rn×p̃ are a finite set of

generators of
[⋃`

k=1K5(Mk)
]+

”. This notion is maintained throughout the paper.

We now determine algebraic formulas for the strict polar cones of the unions of collections of

the three types of cones obtained by means of the matrices Mk, k = 1, . . . , `. In order to do so, we

need the following proposition that relates the intersection of the strict polars of two cones to the

strict polar of the union of the two cones (cf. Proposition 2.1.6(i), Sawaragi et al. 1985).

Proposition 2.11. Let K1,K2 ⊆ Rn be nonempty cones. Then (K1 ∪K2)s+ = Ks+
1 ∩K

s+
2 .

Proof. Let z ∈ Ks+
1 ∩K

s+
2 , or equivalently, z ∈ Ks+

1 and z ∈ Ks+
2 . By definition, xT z > 0 for any

x ∈ K1 \{0} and xT z > 0 for any x ∈ K2 \{0}. Equivalently, xT z > 0 for any x ∈ (K1∪K2)\{0},

i.e., z ∈ (K1 ∪K2)s+ as desired.

We next extend Proposition 2.11 to the union of finite collections of the three convex cones

under investigation.

Proposition 2.12. (i) The equality
[⋃`

k=1K5(Mk)
]s+

=
⋂`

k=1K
s+
5 (Mk) holds.

(ii) Let K≤(Mk) 6= ∅ and K5(Mk) be acute for all k = 1, . . . , `. Then
[⋃`

k=1K≤(Mk)
]s+

=[⋃`
k=1K5(Mk)

]s+
.

(iii) Let K<(Mk) 6= ∅ for all k = 1, . . . , `. Then
[⋃`

k=1K<(Mk)
]s+

=
⋂`

k=1K
s+
< (Mk).

Proof. (i) & (iii) Follow directly from Proposition 2.11.

(ii) Follows from part (i), Proposition 2.3(ii), and Proposition 2.11, respectively.

Under an acuteness condition and a condition on the closure of K<(Mk) (similar to that used

in Proposition 2.3), we obtain algebraic formulas for the strict polars given in Proposition 2.12.

Theorem 2.13. (i) Let
⋃`

k=1K5(Mk) be acute. Then
[⋃`

k=1K5(Mk)
]s+

= {x ∈ Rn : x =

−M̃Tλ,λ > 0} for some suitable matrix M̃T ∈ Rn×p̃.

12



(ii) Let
⋃`

k=1K5(Mk) be acute. Then
[⋃`

k=1K≤(Mk)
]s+

= {x ∈ Rn : x = −M̃Tλ,λ > 0} for

some suitable matrix M̃T ∈ Rn×p̃.

(iii) Let cl(K<(Mk)) = K5(Mk) hold for all k = 1, . . . , `. Then
[⋃`

k=1K<(Mk)
]s+

= {x ∈

Rn,x 6= 0 : x = −M̃Tλ,λ ≥ 0} for some suitable matrix M̃T ∈ Rn×p̃. Moreover, if

K<(M̃) 6= ∅, then
[⋃`

k=1K<(Mk)
]s+

= {x ∈ Rn : x = −M̃Tλ,λ ≥ 0}.

Proof. (i) Since
⋃`

k=1K5(Mk) 6= ∅ is acute and closed (as a finite union of closed sets is closed),

Theorem 2.1, Yu (1974), and Proposition 2.9(i) give
[⋃`

k=1K5(Mk)
]s+

= int({x ∈ Rn : x =

−M̃Tλ,λ = 0}) 6= ∅ for some suitable matrix M̃T ∈ Rn×p̃. Thus, applying Theorem 2.3.37,

Greer (1984), we obtain the result.

(ii) Since
⋃`

k=1K5(Mk) is acute, K5(Mk) is also acute for all k = 1, . . . , `. Hence, we obtain⋃`
k=1K≤(Mk) =

[⋃`
k=1K5(Mk)

]
\ {0} and the desired result as in Proposition 2.3(ii).

(iii) Since
⋃`

k=1K<(Mk) is open (as an arbitrary union of open sets is open), we know by Propo-

sition 2.1.5(iv), Sawaragi et al. (1985), that
[⋃`

k=1K<(Mk)
]s+

=
[⋃`

k=1K<(Mk)
]+
\ {0}.

That is,
[⋃`

k=1K<(Mk)
]s+

= {x ∈ Rn : x = −M̃Tλ,λ = 0} \ {0} for some suitable matrix

M̃T ∈ Rn×p̃ by Proposition 2.9(ii). Since λ = 0 forces x = 0, the first part of the result

follows. For the second part, let K<(M̃) 6= ∅. Thus, Gordan’s Theorem (Mangasarian 1969)

yields the result.

As with Proposition 2.3, the strict polars derived in Theorem 2.13 are clearly nonempty. In

the next section, Proposition 2.12 and Theorem 2.13 lead toward a sufficient condition for highly

robust (weak) efficiency and a lower bound set on the HRE set, respectively.

3. Regarding the HRE Set

In this section, we explore properties of the HRE set such as those that we extend from de-

terministic efficiency, as well as those specific to UMOLPs and the definition of highly robust

efficiency. The former are examined directly below, while the latter, including a characterization

of the HRE set and bound sets on the HRE set, are presented in the subsequent subsections. As

acuteness emerges as an important element in the course of this analysis, we address this property

in more detail at the end of this section.
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Various properties of the efficient set of MOLP (1.1) are known in the literature. We examine

how some of these properties extend from efficient solutions in the deterministic case to HRE

solutions in the uncertain case. In particular, we provide five properties of the efficient set of

MOLP (1.1) that directly extend to the HRE set of MOLP(U), and one that does not. In the

following, a set that is not disconnected (see p. 78, Carothers 2000) is connected.

Proposition 3.1. (i) E(X,C(u), U) is closed.

(ii) E(X,C(u), U) is not necessarily convex.

(iii) If E(X,C(u), U) 6= ∅, then it is either the entire set X or on the boundary of X.

(iv) If E(X,C(u), U) 6= ∅, then there exists an HRE extreme point.

(v) If E(X,C(u), U) 6= ∅ and a point on the relative interior of a face of X is HRE, then so is

the entire face.

(vi) E(X,C(u), U) is not necessarily connected.

Proof. (i) Since MOLP(u) is a deterministic MOLP for each u ∈ U , we have that E(X,C(u))

is closed for each u ∈ U by Theorem 4.1.20, Luc (2016). Hence, as an arbitrary intersection

of closed sets is closed, the result follows by Definition 1.1.

(ii)-(v) Similarly, (ii)-(v) follow by Definition 1.1 and Example 7.24, Lemma 7.17, Lemma 7.1,

and Theorem 7.20, Ehrgott (2005), respectively.

(vi) As E(X,C(u), U) is the intersection of possibly nonconvex sets, it may be disconnected.

Although E(X,C) is connected when X is bounded (see Theorem 6.5.4, Ehrgott 2005) and the

first five properties in Proposition 3.1 extend directly from the deterministic to uncertain setting,

the same is not true of connectedness. As an illustration, consider the following example.

Example 3.2. Consider the following UMOLP: min
x∈X1

3u11 −9u12

−u21 9u22

x


u1∈U1,u2∈U2,

(3.1)

where U1 = {(1, 1)}, U2 = {(1, 1), (2,−1/9)}, and X1 is given by (1.6). We observe that the HRE

set is disconnected, as shown in Figure 2c.
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(a) The efficient set under sce-

nario (1, 1, 1, 1) (purple)

(b) The efficient set under sce-

nario (1, 1, 2,−1/9) (grey)

(c) The HRE set of UMOLP (3.1)

(red)

Figure 2: Efficient and HRE points for Example 3.2

3.1. Characterization of the HRE Set

Similarly to properties of the HRE set, we extend known results about the efficient set of MOLP

(1.1) that use convex cones (such as the cone of improving directions and the normal cone) to those

regarding the HRE set in the uncertain setting.

We first examine the cone of improving directions. As each instance of MOLP(U) is a deter-

ministic MOLP, we may denote the cones of improving directions of MOLP(u) for each scenario

u ∈ U as in the deterministic setting, where C is replaced by C(u). In addition, we may define the

cones of improving directions of MOLP(U) by accounting for the improving directions associated

with every scenario u ∈ U .

Definition 3.3. The cone of improving directions of MOLP(U) is defined to be D≤(C(u), U)

:=
⋃

u∈U D≤(C(u)). The open and closed cones D<(C(u), U) and D5(C(u), U) are defined ac-

cordingly.

In the deterministic setting, the cones of improving directions of MOLP (1.1) may be used to

characterize the (weak) efficiency of solutions as in Proposition 2.5. Analogously to the determin-

istic case, we may characterize the highly robust (weak) efficiency of solutions to MOLP(U) using

the cones of improving directions given in Definition 3.3.

Theorem 3.4. Let x∗ ∈ X. Then

(i) x∗ ∈ E(X,C(u), U) if and only if (D≤(C(u), U)⊕ {x∗}) ∩X = ∅;

(ii) x∗ ∈ E(X,C(u), U) if (D5(C(u), U)⊕ {x∗}) ∩X = {x∗};
15



(iii) x∗ ∈ wE(X,C(u), U) if and only if (D<(C(u), U)⊕ {x∗}) ∩X = ∅.

Proof. (i) Since x∗ ∈ E(X,C(u)) if and only if (D≤(C(u)) ⊕ {x∗}) ∩ X = ∅ by Proposition

2.5(i), we can likewise say that x∗ ∈ E(X,C(u), U) if and only if (D≤(C(ui))⊕{x∗})∩X = ∅

for all i = 1, . . . , s. Equivalently,
[
(D≤(C(u1)) ⊕ {x∗}) ∩X

]
∪ · · · ∪

[
(D≤(C(us)) ⊕ {x∗}) ∩

X
]

= ∅, i.e.,
[
(D≤(C(u1))⊕ {x∗}) ∪ · · · ∪ (D≤(C(us))⊕ {x∗})

]
∩X = ∅ by the Distributive

Law of Intersections. Moreover, by formula 1-5-5, Matheron (1975), we equivalently obtain[(⋃
u∈U D≤(C(u))

)
⊕ {x∗}

]
∩X = ∅. Applying Definition 3.3, we obtain the result.

(ii) Let (D5(C(u), U) ⊕ {x∗}) ∩ X = {x∗}. By definition,
[
(D5(C(u1)) ∪ · · · ∪ D5(C(us))) ⊕

{x∗}
]
∩X = {x∗}. Equivalently, by formula 1-5-5, Matheron (1975), and the Distributive Law

of Intersections, respectively, we have
[
(D5(C(u1))⊕{x∗})∩X

]
∪· · ·∪

[
(D5(C(us))⊕{x∗})∩

X
]

= {x∗}. That is, either (D5(C(ui))⊕ {x∗}) ∩X = {x∗} or (D5(C(ui))⊕ {x∗}) ∩X = ∅

for each i = 1, . . . , s, with at least one equal to {x∗}. However, it is clear that (D5(C(ui))⊕

{x∗}) ∩X 6= ∅, i ∈ {1, . . . , s}, since D5(C(ui))⊕ {x∗} must contain at least x∗ ∈ X. Hence,

(D5(C(ui))⊕ {x∗}) ∩X = {x∗} for all i = 1, . . . , s, which implies that x∗ ∈ E(X,C(ui)) for

all i = 1, . . . , s, by Proposition 2.5(ii). Thus, x∗ is HRE by definition.

(iii) Follows similarly to the proof of part (i).

Remark 3.5. It is worth noting that if D≤(C(u), U) = ∅, then E(X,C(u), U) = X since ∅ ⊕

{x∗} = ∅ (see p. 16, Matheron 1975) so that the condition in (i) holds trivially for all x∗ ∈ X.

Similarly, if D<(C(u), U) = ∅, then wE(X,C(u), U) = X. Moreover, if D≤(C(u), U) = Rn, then

E(X,C(u), U) = ∅ since Rn⊕{x∗} = Rn so that the condition in (i) does not hold for any x∗ ∈ X.

Likewise, if D<(C(u), U) = Rn, then wE(X,C(u), U) = ∅.

We may also extend Theorems 2.6 and 2.7, which use the normal cone, from the deterministic

to uncertain setting. As mentioned earlier, by reframing the theorem due to Luc in the context

of the strict polars of the cones of improving directions, we achieve a different perspective that

leads to further insight in the form of conditions on highly robust (weak) efficiency. Recasting

this theorem also allows us to exploit properties of cones. To this end, as each instance MOLP(u)

of MOLP(U) is a deterministic MOLP, the strict polars of the cones of improving directions of

MOLP(u) are given by Proposition 2.3, where M is replaced by C(u).
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Remark 3.6. (i) We extend Theorem 2.6 as follows. For a solution x∗ ∈ X, it is HR(W)E if and

only if NX(x∗) contains some vector −C(u)Tλ,λ (≥) > 0, for all u ∈ U . It is worth noting

that if −C(u)Tλ = 0 for some u ∈ U and some λ > 0, then the entire feasible set is efficient

in that scenario since NX(x∗) necessarily contains 0. Similarly, if for all u ∈ U there exists a

λ > 0 such that −C(u)Tλ = 0, then the entire feasible set is in fact HRE. (The same line of

thought may be followed for λ ≥ 0 and the HRWE set.)

(ii) Similarly, we extend Theorem 2.7 (under the same assumptions, but for all u ∈ U) by saying

that x∗ ∈ X is HR(W)E if and only if (NX(x∗) ∩Ds+
< (C(u)) 6= ∅) NX(x∗) ∩Ds+

5 (C(u)) 6= ∅

for all u ∈ U . As in Theorem 2.7, we may equivalently use Ds+
≤ (C(u)) since Ds+

≤ (C(u)) =

Ds+
5 (C(u)) when D5(C(u)) is acute by Proposition 2.3(ii). Moreover, as we need NX(x∗) ∩

Ds+
5 (C(u)) 6= ∅, it is important to know when Ds+

5 (C(u)) 6= ∅ since if it is not, the result

never holds. (We are only concerned with the nonemptiness of Ds+
5 (C(u)) since NX(x∗) 6= ∅.)

To this end, it is clear that Ds+
5 (C(u)) 6= ∅ for all u ∈ U by Proposition 2.3(i).

In order to obtain a result that does not require checking the necessary and sufficient conditions

of Theorems 2.6 and 2.7 for every scenario u ∈ U , we use the strict polars of the cones of improving

directions of MOLP(U) (cf. Proposition 2.12, where Mk is replaced by C(u)). Given the cones of

improving directions D5(C(u), U), D≤(C(u), U), and D<(C(u), U) of MOLP(U), we denote their

strict polars by Ds+
5 (C(u), U), Ds+

≤ (C(u), U), and Ds+
< (C(u), U), respectively.

Theorem 3.7. Let x∗ ∈ X.

(i) Let D5(C(u)) be acute for all u ∈ U . If NX(x∗)∩Ds+
5 (C(u), U) 6= ∅, then x∗ ∈ E(X,C(u), U).

(ii) Let cl(D<(C(u))) = D5(C(u)) for all u ∈ U . If NX(x∗) ∩ Ds+
< (C(u), U) 6= ∅, then x∗ ∈

wE(X,C(u), U).

Proof. (i) Let NX(x∗) ∩ Ds+
5 (C(u), U) 6= ∅. Equivalently, by Proposition 2.12(i), NX(x∗) ∩⋂

u∈U D
s+
5 (C(u)) 6= ∅. That is,

[
NX(x∗) ∩Ds+

5 (C(u1))
]
∩Ds+

5 (C(u2))∩· · ·∩Ds+
5 (C(us)) 6= ∅

by the Associative Law of Intersections. Accordingly, the associative law yields NX(x∗) ∩

Ds+
5 (C(ui)) 6= ∅ for all i = 1, . . . , s. Thus, the result follows from Theorem 2.7(i).

(ii) Follows similarly to the proof of part (i), where cl(D<(C(u))) = D5(C(u)) implies that

D<(C(u)) 6= ∅ for all u ∈ U so that we may use Proposition 2.12(iii).
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(a) D5(C(u1)) (purple) and

D5(C(u2)) (teal)

(b) Ds+
5 (C(u1)) (purple) and

Ds+
5 (C(u2)) (teal)

(c) The HRE set (red) and nor-

mal cones (green)

Figure 3: Normal cones to X1, and the closed cones of improving directions and their strict polars for Example 3.9

Remark 3.8. As in Remark 3.6(ii), it is of interest to know when Ds+
5 (C(u), U) 6= ∅ since if it is

not, then NX(x∗) ∩ Ds+
5 (C(u), U) 6= ∅ never holds. To this end, since D5(C(u), U) is a closed

cone, we know that Ds+
5 (C(u), U) 6= ∅ when D5(C(u), U) is acute due to Theorem 2.1, Yu (1974).

Moreover, with the additional assumption that D≤(C(u)) 6= ∅ for all u ∈ U (which is needed for

Proposition 2.12(ii)), we may rewrite Theorem 3.7(i) using Ds+
≤ (C(u), U).

For an illustration of Theorem 3.7(i), as well as the extension of Theorem 2.7(i) described in

Remark 3.6(ii), consider the following example.

Example 3.9. Consider UMOLP (3.1) with U1 = {(1, 1)} and U2 = {(1, 1), (2,−1/9)} as in Example

3.2. We have two scenarios u1 = (1, 1, 1, 1) and u2 = (1, 1, 2,−1/9). The closed cones of improving

directions D(C(u1)) and D(C(u2)) are shown in Figure 3a, while their strict polars are shown in

Figure 3b. Since D5(C(ui)) is acute for i = 1, 2, the assumptions of Theorems 2.7(i) (for each

u ∈ U) and 3.7(i) hold. As illustrated in Figure 3, the only points at which Theorem 2.7(i) holds for

each u ∈ U are the two HRE points (2, 4) and (6, 0). However, as Ds+
5 (C(u1)) ∩Ds+

5 (C(u2)) = ∅

(clearly shown in Figure 3b), the sufficient condition of Theorem 3.7(i) does not hold (trivially) at

either HRE point, so we are unable to identify either point via this theorem.

Similarly, using the union of strict polars rather than the intersection, we obtain a necessary

condition for highly robust (weak) efficiency.

Theorem 3.10. Let x∗ ∈ X.

(i) Assume D5(C(u)) is acute for all u ∈ U . If x∗ ∈ E(X,C(u), U), then
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NX(x∗) ∩
⋃

u∈U D
s+
5 (C(u)) 6= ∅.

(ii) Assume cl(D<(C(u))) = D5(C(u)) for all u ∈ U . If x∗ ∈ wE(X,C(u), U), then

NX(x∗) ∩
⋃

u∈U D
s+
< (C(u)) 6= ∅.

Proof. (i) Let x∗ ∈ E(X,C(u), U). Equivalently, NX(x∗) ∩ Ds+
5 (C(u)) 6= ∅ for all u ∈ U

by Theorem 2.7(i). Since NX(x∗) ∩
⋃

u∈U D
s+
5 (C(u)) =

[
NX(x∗) ∩Ds+

5 (C(u1))
]
∪ · · · ∪[

NX(x∗) ∩Ds+
5 (C(us))

]
by the Distributive Law of Intersections, the result follows.

(ii) Follows similarly to the proof of part (i).

It is important to note that since Theorem 2.7, which is both necessary and sufficient, is split

into two separate theorems, Theorems 3.7 and 3.10, one that is sufficient and the other that is

necessary, respectively, we lose the strength of the original theorem. This is supported by Example

3.9 in which applying Theorem 2.7(i) for each scenario yields the entire HRE set, while applying

Theorem 3.7(i) does not yield any HRE solutions yet the entire boundary satisfies the consequent

of Theorem 3.10(i) even though the entire boundary is not HRE.

3.2. Bound Sets and a Robust Counterpart

In robust optimization, an RC, which is a deterministic (scalar or vector) optimization problem

associated with the original uncertain optimization problem whose solutions are the desired robust

solutions, is commonly used. The solution set of an RC may be interpreted as both an upper and

lower bound set on the set of robust solutions to the original uncertain problem. Working toward

an RC to obtain HRE solutions to MOLP(U), in this section, we develop several bound sets on

the HRE set, and then present an RC for a special class of UMOLPs.

First, we know that, in general, the efficient set of any instance MOLP(u) is an upper bound

set on the HRE set of MOLP(U).

Proposition 3.11. The containment E(X,C(u), U) ⊆ E(X,C(u)) holds for every u ∈ U .

Proof. Immediate since E(X,C(u), U) =
⋂

u∈U E(X,C(u)).

Another upper bound set on the HRE set is given by the efficient set of the so-called all-

in-one problem. The all-in-one problem, denoted AIOP(U), is given by minx∈X C(U)x, where

C(U) :=
[
C(u1) · · · C(us)

]T ∈ Rps×n is a deterministic cost matrix given U . Immediately, since
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AIOP(U) is a deterministic MOLP whose efficient solutions are determined by ps criteria, we

know that HRE solutions to MOLP(U) are at least weakly efficient solutions to AIOP(U) based

on Proposition 1, Engau & Wiecek (2008). Even more, as shown in Wiecek & Dranichak (2016),

the HRE set is contained in the efficient set of AIOP(U), which is denoted E(X,C(U)).

Proposition 3.12. (Wiecek & Dranichak, 2016, Proposition 8) The containment E(X,C(u), U) ⊆

E(X,C(U)) holds.

Third, for a special class of UMOLPs, we may obtain an additional upper bound set. In order

to obtain the upper bound set, we need the following lemma.

Lemma 3.13. Let minx∈X C1x and minx∈X C2x be given. If D≤(C1) ⊆ D≤(C2), then E(X,C2) ⊆

E(X,C1).

Proof. Suppose D≤(C1) ⊆ D≤(C2), and assume for the sake of contradiction that E(X,C2) *

E(X,C1), i.e., there exists x̂ ∈ E(X,C2) such that x̂ /∈ E(X,C1). The former implies that

D≤(C1) ⊕ {x} ⊆ D≤(C2) ⊕ {x} for all x ∈ X, while the latter yields [D≤(C2) ⊕ {x̂}] ∩ X = ∅,

but [D≤(C1)⊕ {x̂}] ∩X 6= ∅ by Proposition 2.5(i). Hence, ∅ 6= [D≤(C1)⊕ {x̂}] ∩X ⊆ [D≤(C2)⊕

{x̂}]∩X = ∅, which is a contradiction. Thus, it must be that E(X,C2) ⊆ E(X,C1) as desired.

Using this lemma, we prove the following upper bound set on the HRE set, which is an extension

of Proposition 3.1, Bitran (1980).

Theorem 3.14. Suppose each column of C(u) is either nonnegative for all u ∈ U or nonpos-

itive for all u ∈ U with no column all 0. Let I be the diagonal matrix with a 1 corresponding

to the nonnegative columns of C(u) and a −1 for the nonpositive columns. The containment

E(X,C(u), U) ⊆ E(X, I) holds.

Proof. Let I and J be subsets of the index set {1, . . . , n} for which the columns of C(u) are

nonnegative for all u ∈ U and nonpositive for all u ∈ U , respectively. The cones of improving

directions associated with minx∈X Ix and an instance MOLP(u) are given by D≤(I) = {d ∈

Rn : di ≤ 0, i ∈ I, dj ≥ 0, j ∈ J, at least one strict}, and D≤(C(u)) = {d ∈ Rn : c11u11d1 +

· · · + c1nu1ndn ≤ 0, . . . , cp1up1d1 + · · · + cpnupndn ≤ 0, at least one strict}, respectively, where

ckiuki ≥ 0 for all k = 1, . . . , p, i ∈ I, and ckjukj ≤ 0 for all k = 1, . . . , p, j ∈ J , by assumption. If

d ∈ D≤(I), then di ≤ 0, i ∈ I, and dj ≥ 0, j ∈ J , with at least one strict. Since ckiuki ≥ 0 for
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all i ∈ I and ckjukj ≤ 0 for all j ∈ J , clearly d ∈ D≤(C(u)) also (which is not true, however,

without the assumption that no column is entirely 0). Hence, D≤(I) ⊆ D≤(C(u)) for all u ∈ U ,

which implies that E(X,C(u)) ⊆ E(X, I) for all u ∈ U by Lemma 3.13. Thus, E(X,C(u), U) =⋂
u∈U E(X,C(u)) ⊆ E(X, I) as desired.

The assumptions in Theorem 3.14, although conspicuous, are realistic in practice. For exam-

ple, problems in bank balance sheet management, portfolio management, and knapsack packing

generally satisfy these assumptions.

For MOLP(U) in general, we can obtain another bound set (either upper or lower) with a

theorem similar to Lemma 3.13. As the theorem involves two different uncertainty sets, it can also

be used to provide additional information to decision makers by presenting the effects of adding or

removing scenarios from a given uncertainty set.

Theorem 3.15. Let {minx∈X C(u)x}u∈U ′ and {minx∈X C(u)x}u∈U ′′ be given. If D≤(C(u), U ′) ⊆

D≤(C(u), U ′′), then E(X,C(u), U ′′) ⊆ E(X,C(u), U ′).

Proof. Follows similarly to the proof of Lemma 3.13, except that Theorem 3.4(i) is used instead of

Proposition 2.5(i).

In order to obtain a lower bound set on the HRE set, we utilize the sufficient condition of

Theorem 3.7(i).

Theorem 3.16. Assume D5(C(u), U) is acute. Then E(X, C̃) ⊆ E(X,C(u), U) for some suitable

matrix C̃T ∈ Rn×p̃.

Proof. We have that Ds+
5 (C(u), U) = {x ∈ Rn : x = −C̃Tλ,λ > 0} for some suitable matrix

C̃T ∈ Rn×p̃ by Theorem 2.13(i). Hence, we may write Ds+
5 (C(u), U) = Ds+

5 (C̃), where D5(C̃)

is associated with the deterministic MOLP given by minx∈X C̃x. Equivalently, for x∗ ∈ E(X, C̃),

we have that NX(x∗) ∩ Ds+
5 (C(u), U) 6= ∅ by Theorem 2.7(i). Consequently, since D5(C(u), U)

being acute implies that D5(C(u)) is acute for all u ∈ U , we have that x∗ ∈ E(X,C(u), U) also

by Theorem 3.7(i). Therefore, E(X, C̃) ⊆ E(X,C(u), U) as desired.

With regard to obtaining an MOLP whose efficient set is equal to the HRE set rather than

a bound set as in the above results, we need an assumption that is stronger than those made

previously.
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(a) E(X1,C(u1)) (purple) and

D5(C(u1))⊕ {x∗} (green)

(b) E(X1,C(u2)) (grey) and

D5(C(u2))⊕ {x∗} (green)

(c) The HRE set of UMOLP (3.3)

(red)

Figure 4: Efficient and HRE points for Example 3.18

Theorem 3.17. Assume D5(C(u), U) is a polyhedral convex cone. Then E(X,C) = E(X,C(u), U)

for some suitable matrix C ∈ Rp̄×n.

Proof. By assumption, we may write D5(C(u), U) = {d ∈ Rn : Cd 5 0} for some suitable matrix

C ∈ Rp̄×n. Here, the suitability of C means that the rows of C are the normals to the generating

hyperplanes whose half-spaces form D5(C(u), U). Hence, D≤(C(u), U) = {d ∈ Rn : Cd ≤ 0} =

D≤(C), which is the cone of improving directions of the deterministic MOLP given by minx∈X Cx.

Since D≤(C(u), U) is the cone of improving directions of both MOLP(U) and minx∈X Cx, we

obtain E(X,C(u), U) = E(X,C) by Proposition 2.5(i) and Theorem 3.4(i).

The deterministic MOLP implied by Theorem 3.17, which is given by

min
x∈X

Cx, (3.2)

is an RC of MOLP(U) since a solution to MOLP(U) is HRE if and only if it is an efficient solution

to MOLP (3.2). For an illustration of Theorems 3.16 and 3.17, including computing the associated

RC, consider the following example.

Example 3.18. Consider the following UMOLP: min
x∈X1

u11 −3u12

u21 u22

x


u1∈U1,u2∈U2,

(3.3)

where U1 = {(1, 1)} and U2 = {(1,−1), (1, 1)}. For scenarios u1 = (1, 1, 1,−1) and u2 = (1, 1, 1, 1),

it is clear that D5(C(u1))∪D5(C(u2)) is an acute polyhedral convex cone (as the union is simply
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D5(C(u1))), which is shown in Figure 4. Hence, we have that the cost matrix of the RC is

C =

1 −3

1 −1

 ,
and observe that C̃ = C in this example since D5(C(u), U) is both acute and polyhedral convex.

As a final result in this section, we use Theorem 3.16 or 3.17 in order to show the conditions

under which the HRE set is nonempty.

Corollary 3.19. Let D5(C(u), U) be an acute or polyhedral convex cone. Then E(X,C(u), U) 6= ∅.

Proof. Since P is bounded, the efficient set of any deterministic MOLP is nonempty. Using Theo-

rem 3.16 or 3.17, we obtain E(X,C(u), U) 6= ∅.

While Theorem 3.17 and Corollary 3.19 address the special case that D5(C(u), U) is polyhedral

convex, in general, this cone is nonconvex since it is a union (rather than an intersection). Hence,

we may not always be able to formulate an RC that is a deterministic MOLP as in Theorem

3.17. In particular, when the HRE set is disconnected, any RC would have at least one nonconvex

objective (cf. Theorem 3.40, Ehrgott 2005). Despite these facts, as shown in Theorem 3.17, there

exists a class of UMOLPs, those that have D5(C(u), U) being polyhedral convex, whose RC is

a deterministic MOLP. Since MOLPs are readily solvable and their solution sets have desirable

properties like connectedness, it is of interest to identify UMOLPs that have this characteristic.

Consequently, recognizing the polyhedrality of D5(C(u), U) and computing its representation in

order to obtain the cost matrix C of RC (3.2) become important tasks. An algorithm to accomplish

these two tasks is available in, e.g., Bemporad et al. (2001).

3.3. Acuteness Recognition and Discussion

Since the assumption of acuteness is key to several of the results we have already presented, it is

important to examine this property in more detail. We first discuss the algebraic implication of the

assumption that D5(C(u)) is acute for at least one u ∈ U . (Note that this discussion encompasses

the deterministic context and D5(C), as well as the situation that D5(C(u), U) is acute since

D5(C(u), U) being acute implies that D5(C(u)) is acute for all u ∈ U .) Since D5(C(u)) is

closed, being acute is equivalent to being pointed by Proposition 2.1.4, Sawaragi et al. (1985).

Hence, we implicitly assume that rank(C(u)) = n by Theorem 3.1, Hunt et al. (2010). Since
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rank(C(u)) ≤ min{p, n}, we obtain that the number of criteria p is greater than or equal to

the number of decision variables n. The consequence of this is that models that incorporate the

numerous preferences of multiple decision makers explicitly through many criteria may be used.

Although algorithms are available to recognize polyhedrality, such methods have not been

presented in the literature for recognizing the acuteness of a cone. It is worth noting that an acute

cone need not be polyhedral (as it may not even be convex), and a polyhedral cone need not be

acute. Hence, recognizing acuteness is a much different task than recognizing polyhedrality. We

specifically examine an acuteness recognition method for the cones D5(C(u)) for some u ∈ U

(equivalently, D5(C)) and D5(C(u), U).

Given the cone D5(C(u)) for some u ∈ U , we know that it may be expressed in both inequality

form {x ∈ Rn : C(u)x 5 0} (which is the form immediately available) and generator form {x ∈ Rn :

x = G(u)Tλ,λ = 0}, where G(u)T is an n× r matrix whose columns are a finite set of generators

of D5(C(u)). If D5(C(u)) is given in inequality form, then its polar is given in generator form as

in Proposition 2.2(i). Similarly, if D5(C(u)) is given in generator form, then its polar is given in

inequality form. Namely,

{x ∈ Rn : x = G(u)Tλ,λ = 0}+ = {x ∈ Rn : −G(u)x 5 0}, (3.4)

which follows from the statement on p. 90, Panik (1993). With this in mind, we have the following

method for recognizing the acuteness of D5(C(u)) for some u ∈ U .

Theorem 3.20. For some u ∈ U , let D5(C(u)) be given in generator form. Then D5(C(u)) is

acute if and only if −G(u)x < 0 is consistent.

Proof. Since D5(C(u)) 6= ∅, we know that D5(C(u)) is acute if and only if int(D+
5(C(u))) 6= ∅ by

Theorem 2.1(i), Yu (1974). As int({x ∈ Rn : −G(u)x 5 0}) = {x ∈ Rn : −G(u)x < 0}, the result

follows from (3.4).

More generally, we have a second recognition method given by the following theorem.

Theorem 3.21. If dim(D+
5(C(u))) = n, then D5(C(u)) is acute.

Proof. Let dim(D+
5(C(u))) = n. Hence, int(D+

5(C(u))) = rel int(D+
5(C(u))) as on p. 44, Rock-

afellar (1970). Moreover, since D+
5(C(u)) 6= ∅ (as discussed earlier) and convex (see Proposition

2.1.5(i), Sawaragi et al. 1985), we obtain that rel int(D+
5(C(u))) 6= ∅ by Theorem 6.2, Rockafellar

(1970). Thus, since D5(C(u)) 6= ∅, Theorem 2.1(i), Yu (1974), gives the result.
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Observe that Theorem 3.21 does not depend on the form, inequality or generator, of D5(C(u)),

but instead relies on dim(D+
5(C(u))). Even though we do not have a system to solve as in

Theorem 3.20, we do have a condition to verify, namely that dim(D+
5(C(u))) = n. In par-

ticular, if D+
5(C(u)) is in generator form (as it is when D5(C(u)) is in inequality form), then

dim(D+
5(C(u))) = rank(C(u)) (see p. 86, Panik 1993). Otherwise, software such as SageMath’s

polyhedron base class, The Sage Developers (2017), can readily provide the dimension. We

also note that Theorem 3.21 is applicable to any nonempty cone, while Theorem 3.20 is not. Using

Theorems 3.20 and 3.21, we may similarly verify the acuteness of D5(C(u), U).

Corollary 3.22. Let D5(C(u)) be given in generator form for each u ∈ U . Then D5(C(u), U) is

acute if and only if −G(ui)x < 0 is consistent for all i = 1, . . . , s.

Proof. Follows from Theorem 3.20, Proposition 2.8(i), where Mk is replaced by C(ui), and the

fact that int(
⋂s

i=1D
+
5(C(ui))) =

⋂s
i=1 int(D+

5(C(ui))) (see p. 6, Steen & Seebach, Jr. 1970).

Likewise, we have the following extension of Theorem 3.21.

Proposition 3.23. If dim(D+
5(C(u), U)) = n, then D5(C(u), U) is acute.

Proof. Follows similarly to the proof of Theorem 3.21.

It is important to note that when the proposed methods to verify acuteness are applied to

D5(C(u), U), they do not necessarily compute the cost matrix C̃ that appears in Theorem 3.16.

Regardless, as a demonstration of both recognition methods, specifically Corollary 3.22 and Propo-

sition 3.23, consider the following example.

Example 3.24. Consider UMOLP (3.1) with U1 = {(1, 1)} and U2 = {(1, 1), (2,−1/9)}. We

have two scenarios u1 = (1, 1, 1, 1) and u2 = (1, 1, 2,−1/9). The generators of D5(C(u1))

and D5(C(u2)) are g1(u1) =
[
− 3 − 1

]T
,g2(u1) =

[
− 9 − 1

]T
,g1(u2) =

[
3 1

]T
, and

g2(u2) =
[
− 1 2

]T
, respectively. Hence, the polars D+

5(C(u1)) and D+
5(C(u2)) arex ∈ R2 :

3 1

9 1

x 5 0

 and

x ∈ R2 :

−3 −1

1 −2

x 5 0

 ,

respectively, by (3.4). Applying Corollary 3.22, D5(C(u1))∪D5(C(u2)) is acute if and only if the
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system given by

3x1 + x2 < 0

9x1 + x2 < 0

−3x1 − x2 < 0

x1 − 2x2 < 0

(3.5)

is consistent. It is clear that (3.5) is inconsistent as the first and third inequalities are inconsistent.

Thus, as confirmed in Figure 3a, D5(C(u1)) ∪D5(C(u2)) is not acute.

Moreover, note that D+
5(C(u), U) is the ray in the second quadrant emanating from the origin

with slope −3 (cf. Figure 3b). Hence, dim(D+
5(C(u), U)) = 1 6= n. With Proposition 3.23 in mind,

this means that we should not expect D5(C(u), U) to be acute.

4. Conclusion

In this paper, we have presented the first in-depth analysis of HRE solutions to objective-

wise UMOLPs under finite sets of scenarios. The assumed objective-wise uncertainty has three

main benefits including that it permits (1) the model to incorporate the practical reality that

conflicting criteria are unlikely to depend on the same uncertainty, (2) interval multiobjective

linear programming to be considered as special case, and (3) the application of an existing polytopal

uncertainty set reduction, which consequently motivates the use of finite sets of scenarios.

We first develop a variety of properties of the HRE set including clear extensions of known

results regarding the efficient set of a deterministic MOLP. More importantly, under a condition of

acuteness, we provide a characterization of the HRE set by means of the normal cone and the strict

polar of the closed cone of improving directions associated with every instance of the UMOLP. The

acuteness of the closed cone of improving directions also leads to a lower bound set on the HRE set

and guarantees that the HRE set is nonempty. Furthermore, the polyhedrality of the latter cone

leads to an MOLP that is an RC of the UMOLP. The polyhedrality of the cone may be verified

and its algebraic representation computed by an existing algorithm that immediately leads to a

closed form representation of the previously mentioned RC. On the other hand, acuteness of the

cone may be checked by either of two proposed methods, solving a system of linear inequalities or

computing the dimension of the cone, both of which are easily performed using readily available

software.
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Our work immediately opens up several avenues for continued research. In particular, methods

to compute HRE solutions, as well as the entire HRE set, remain to be developed in the absence

of the above polyhedrality condition. Additionally, an algorithm to determine the cost matrix of

the MOLP whose efficient set is a lower bound set on the HRE set is needed. Finally, it is also

desirable to relax the acuteness condition in order to address a more general class of UMOLPs.
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