

Table	of	Contents
Getting	Started	with	NoSQL
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com
Support	files,	eBooks,	discount	offers	and	more

Why	Subscribe?
Free	Access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	An	Overview	of	NoSQL
Defining	NoSQL

History
What	NoSQL	is	and	what	it	is	not
Why	NoSQL?
List	of	NoSQL	Databases
Summary

2.	Characteristics	of	NoSQL
Application
RDBMS	approach
Challenges
NoSQL	approach
Summary

3.	NoSQL	Storage	Types
Storage	types

Column-oriented	databases
Advantages
Example

Document	store
Advantages
Examples

Key-value	store
Advantages
Examples

Graph	store
Advantages
Examples

Multi-storage	type	databases
Comparing	the	models
Summary

4.	Advantages	and	Drawbacks
Transactional	application

Entity	schema	requirements
Data	access	requirements
What	NoSQL	can	do
What	NoSQL	cannot	do
Decision

Computational	application
Entity	schema	requirements
Data	access	requirements
What	NoSQL	can	do
What	NoSQL	cannot	do
Decision

Web-scale	application
Entity	schema	requirements
Data	access	requirements
What	NoSQL	can	do
What	NoSQL	cannot	do
Decision

Summary
5.	Comparative	Study	of	NoSQL	Products
Comparison
Technical	comparison

Implementation	language
Engine	types
Speed
Features
Limits
Bulk	operations
Bulk	read
Bulk	insert
Bulk	update
Bulk	delete

Query	options
Get	by	ID
Composite	indexes
Views

Security
Access	management
Authentication
Authorization	or	role-based	access

Encryption
Multitenancy

RDBMS	related	features
Deployment	and	maintenance
Availability
Maintenance

Tools
Protocol

Nontechnical	comparison
Source	and	license
Community	and	vendor	support

Summary
6.	Case	Study
Application	definition
Requirement	analysis
Implementation	using	MongoDB

Features	and	constraints
Setup
Database	design
Database	queries
Database	modeling
Schema	definition

Writing	queries
Queries	for	a	single	entity,	simple	result
Queries	for	a	single	entity,	Aggregate
Queries	for	one-to-one	relationship
Queries	for	one-to-many	relationship
Queries	for	many-to-many	relationship
Miscellaneous	queries
Pagination
Limiting	items	in	an	array	in	result	set
Plugin	and	dynamic	data	support

Model	refinements
References	using	non-ID	property
Denormalization	and	document	embedding
Complete	document	embedding
Partial	document	embedding
Bucketing

Cache	document	approach
Miscellaneous	changes

Summary
A.	Taxonomy
Vocabulary
Relationship	between	CAP,	ACID,	and	NoSQL

Index

Getting	Started	with	NoSQL

Getting	Started	with	NoSQL
Copyright	©	2013	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	March	2013

Production	Reference:	1150313

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-84969-4-988

www.packtpub.com

Cover	Image	by	Will	Kewley	(<william.kewley@kbbs.ie>)

http://www.packtpub.com
mailto:william.kewley@kbbs.ie

Credits
Author

Gaurav	Vaish

Reviewer

Satish	Kowkuntla

Acquisition	Editor

Robin	de	Jonh

Commissioning	Editor

Maria	D’souza

Technical	Editors

Worrell	Lewis

Varun	Pius	Rodrigues

Project	Coordinator

Amigya	Khurana

Proofreader

Elinor	Perry-Smith

Indexer

Rekha	Nair

Graphics

Aditi	Gajjar

Production	Coordinator

Pooja	Chiplunkar

Cover	Work

Pooja	Chiplunkar

About	the	Author
Gaurav	Vaish	works	as	Principal	Engineer	with	Yahoo!	India.	He	works	primarily	in	three
domains—cloud,	web,	and	devices	including	mobile,	connected	TV,	and	the	like.	His	expertise
lies	in	designing	and	architecting	applications	for	the	same.

Gaurav	started	his	career	in	2002	with	Adobe	Systems	India	working	in	their	engineering
solutions	group.

In	2005,	he	started	his	own	company	Edujini	Labs	focusing	on	corporate	training	and
collaborative	learning.

He	holds	a	B.	Tech.	in	Electrical	Engineering	with	specialization	in	Speech	Signal	Processing
from	IIT	Kanpur.

He	runs	his	personal	blog	at	www.mastergaurav.com	and	www.m10v.com.

This	book	would	not	have	been	complete	without	support	from	my	wife,	Renu,	who	was	a
big	inspiration	in	writing.	She	ensured	that	after	a	day’s	hard	work	at	the	office	when	I	sat
down	to	write	the	book,	I	was	all	charged	up.	At	times,	when	I	wanted	to	take	a	break
off,	she	pushed	me	to	completion	by	keeping	a	tab	on	the	schedule.	And	she	ensured	me
great	food	or	a	cup	of	tea	whenever	I	needed	it.

This	book	would	not	have	the	details	that	I	have	been	able	to	provide	had	it	not	been
timely	and	useful	inputs	from	Satish	Kowkuntla,	Architect	at	Yahoo!	He	ensured	that	no
relevant	piece	of	information	was	missed	out.	He	gave	valuable	insights	to	writing	the
correct	language	keeping	the	reader	in	mind.	Had	it	not	been	for	him,	you	may	not	have
seen	the	book	in	the	shape	that	it	is	in.

http://www.mastergaurav.com
http://www.m10v.com

About	the	Reviewer
Satish	Kowkuntla	is	a	software	engineer	by	profession	with	over	20	years	of	experience	in
software	development,	design,	and	architecture.	Satish	is	currently	working	as	a	software
architect	at	Yahoo!	and	his	experience	is	in	the	areas	of	web	technologies,	frontend
technologies,	and	digital	home	technologies.	Prior	to	Yahoo!	Satish	has	worked	in	several
companies	in	the	areas	of	digital	home	technologies,	system	software,	CRM	software,	and
engineering	CAD	software.	Much	of	his	career	has	been	in	Silicon	Valley.

www.PacktPub.com

Support	files,	eBooks,	discount	offers	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to	your
book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital	book
library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.	

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

Dedicated	to	Renu	Chandel,	my	wife.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.PacktPub.com

Preface
This	book	takes	a	deep	dive	in	NoSQL	as	technology	providing	a	comparative	study	on	the
data	models,	the	products	in	the	market,	and	with	RDBMS	using	scenario-driven	case
studies

Relational	databases	have	been	used	to	store	data	for	decades	while	SQL	has	been	the	de-
facto	language	to	interact	with	RDBMS.	In	the	last	few	years,	NoSQL	has	been	a	growing
choice	especially	for	large,	web-scale	applications.	Non-relational	databases	provide	the
scale	and	speed	that	you	may	need	for	your	application.

However,	making	a	decision	to	start	with	or	switch	to	NoSQL	requires	more	insights	than	a
few	benchmarks—knowing	the	options	at	hand,	advantages	and	drawbacks,	scenarios	where
it	suits	the	most,	and	where	it	should	be	avoided	are	very	critical	to	making	a	decision.

This	book	is	a	from-the-ground-up	guide	that	takes	you	from	the	very	definition	to	a	real-
world	application.	It	provides	you	step-by-step	approach	to	design	and	implement	a	NoSQL
application	that	will	help	you	make	clear	decisions	on	database	choice,	database	model
choice,	and	the	related	parameters.	The	book	is	suited	for	a	developer,	an	architect,	as	well
as	a	CTO.

What	this	book	covers
Chapter	1,	Overview	and	Architecture,	gives	you	a	head-start	into	NoSQL.	It	helps	you
understand	what	NoSQL	is	and	is	not,	and	also	provides	you	with	insights	into	the	question
–	"Why	NoSQL?"

Chapter	2,	Characteristics	of	NoSQL,	takes	a	dig	into	the	RDBMS	problems	that	NoSQL
attempts	to	solve	and	substantiates	it	with	a	concrete	scenario.

Chapter	3,	NoSQL	Storage	Types,	explores	various	storage	types	available	in	the	market
today	with	a	deep	dive	–	comparing	and	contrasting	them,	and	identifying	what	to	use	when.

Chapter	4,	Advantages	and	Drawbacks,	brings	out	the	advantages	and	drawbacks	of	using
NoSQL	by	taking	a	scenario-based	approach	to	understand	the	possibilities	and	limitations.

Chapter	5,	Comparative	Study	of	NoSQL	Products,	does	a	detailed	comparative	study	of	ten
NoSQL	databases	on	about	25	parameters,	both	technical	and	non-technical.

Chapter	6,	Case	Study,	takes	you	through	a	simple	application	implemented	using	NoSQL.	It
covers	various	scenarios	possible	in	the	application	and	approaches	that	can	be	used	with
NoSQL	database.

Appendix,	Taxonomy,	introduces	you	to	the	common	and	not-so-common	terms	that	we
come	across	while	dealing	with	NoSQL.	It	will	also	enable	you	to	read	through	and
understand	the	literature	available	on	the	Internet	or	otherwise.

What	you	need	for	this	book
To	run	the	examples	in	the	book	the	following	software	will	be	required:

Operating	System—Ubuntu	or	any	other	Linux	variant	is	preferred
CouchDB	will	be	required	to	take	a	dig	into	document	store	in	Chapter	3,	NoSQL
Storage	Types
Java	SDK,	Eclipse,	Google	App	Engine	SDK,	and	Objectify	will	be	required	to	cover
the	examples	of	column-oriented	databases	in	Chapter	3,	NoSQL	Storage	Types
Redis	will	be	required	to	cover	the	examples	of	key-value	store	in	Chapter	3,	NoSQL
Storage	Types
Neo4J	will	be	required	to	cover	the	examples	of	graph	store	in	Chapter	3,	NoSQL
Storage	Types
MongoDB	to	run	through	the	case	study	covered	in	Chapter	3,	NoSQL	Storage
Types

The	latest	versions	are	preferable.

Who	this	book	is	for
This	book	is	a	great	resource	for	someone	starting	with	NoSQL	and	indispensable	literature
for	technology	decision	makers—be	it	architect,	product	manager	or	CTO.

It	is	assumed	that	you	have	a	background	in	RDBMS	modeling	and	SQL	and	have	had
exposure	to	at	least	one	of	the	programming	languages—Java	or	JavaScript.

It	is	also	assumed	that	you	have	at	least	heard	about	NoSQL	and	are	interested	to	explore
the	same	but	nothing	beyond	that.	You	are	not	expected	to	know	the	meaning	and	purpose
of	NoSQL—this	book	provides	all	inputs	from	the	groundup.

Whether	you	are	a	developer	or	an	architect	or	a	CTO	of	a	company,	this	book	is	an
indispensable	resource	for	you	to	have	in	your	library.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"Do	you
remember	the	JOIN	query	that	you	wrote	to	collate	the	data	across	multiple	tables	to	create
your	final	view?"

A	block	of	code	is	set	as	follows:

			"_id":	"98ef65e7-52e4-4466-bacc-3a8dc0c15c79",

			"firstName":	"Gaurav",

			"lastName":	"Vaish",

			"department":	"f0adcbf5-7389-4491-9c42-f39a9d3d4c75",

			"homeAddress":	{

						"_id":	"fa62fd39-17f8-4a16-80d6-71a5b71d758d",

						"line1":	"123,	45th	Main"

						"city"	:	"NoSQLLand",

						"country":	"India",

						"zipCode":	"123456"

			}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant	lines
or	items	are	set	in	bold:

			"_id":	"98ef65e7-52e4-4466-bacc-3a8dc0c15c79",

			"firstName":	"Gaurav",

			"lastName":	"Vaish",

			"department":	"f0adcbf5-7389-4491-9c42-f39a9d3d4c75",

			"homeAddress":	{

						"_id":	"fa62fd39-17f8-4a16-80d6-71a5b71d758d",

						"line1":	"123,	45th	Main"

						"city"	:	"NoSQLLand",

						"country":	"India",

						"zipCode":	"123456"

			}

Any	command-line	input	or	output	is	written	as	follows:

curl	–X	PUT	–H	"Content-Type:	application/json"	\

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	"clicking	the	Next	button
moves	you	to	the	next	screen".

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book
—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to	develop	titles
that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and	mention
the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you
to	get	the	most	from	your	purchase.

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in
this	book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/5689_graphics.pdf.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code
—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting
your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the	details	of	your
errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the	Errata	section	of
that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any	aspect
of	the	book,	and	we	will	do	our	best	to	address	it.

http://www.packtpub.com/sites/default/files/downloads/5689_graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter	1.	An	Overview	of	NoSQL
Now	that	you	have	got	this	book	in	your	hand,	you	must	be	both	excited	and	anxious	about
NoSQL.	In	this	chapter,	we	get	a	head-start	on:

What	NoSQL	is
What	NoSQL	is	not
Why	NoSQL
A	list	of	NoSQL	databases

For	over	decades,	relational	databases	have	been	used	to	store	what	we	know	as	structured
data.	The	data	is	sub-divided	into	groups,	referred	to	as	tables.	The	tables	store	well-
defined	units	of	data	in	terms	of	type,	size,	and	other	constraints.	Each	unit	of	data	is	known
as	column	while	each	unit	of	the	group	is	known	as	row	.	The	columns	may	have
relationships	defined	across	themselves,	for	example	parent-child,	and	hence	the	name
relational	databases.	And	because	consistency	is	one	of	the	critical	factors,	scaling
horizontally	is	a	challenging	task,	if	not	impossible.

About	a	decade	earlier,	with	the	rise	of	large	web	applications,	research	has	poured	into
handling	data	at	scale.	One	of	the	outputs	of	these	researches	is	non-relational	database,	in
general	referred	to	as	NoSQL	database.	One	of	the	main	problems	that	a	NoSQL	database
solves	is	scale,	among	others.

Defining	NoSQL
According	to	Wikipedia:

In	computing,	NoSQL	(mostly	interpreted	as	"not	only	SQL")	is	a	broad	class	of	database
management	systems	identified	by	its	non-adherence	to	the	widely	used	relational	database
management	system	model;	that	is,	NoSQL	databases	are	not	primarily	built	on	tables,	and

as	a	result,	generally	do	not	use	SQL	for	data	manipulation.

The	NoSQL	movement	began	in	the	early	years	of	the	21st	century	when	the	world	started
its	deep	focus	on	creating	web-scale	database.	By	web-scale,	I	mean	scale	to	cater	to
hundreds	of	millions	of	users	and	now	growing	to	billions	of	connected	devices	including	but
not	limited	to	mobiles,	smartphones,	internet	TV,	in-car	devices,	and	many	more.

Although	Wikipedia	treats	it	as	"not	only	SQL",	NoSQL	originally	started	off	as	a	simple
combination	of	two	words—No	and	SQL—clearly	and	completely	visible	in	the	new	term.	No
acronym.	What	it	literally	means	is,	"I	do	not	want	to	use	SQL".	To	elaborate,	"I	want	to
access	database	without	using	any	SQL	syntax".	Why?	We	shall	explore	the	in	a	while.

Whatever	be	the	root	phrase,	NoSQL	today	is	the	term	used	to	address	to	the	class	of
databases	that	do	not	follow	relational	database	management	system	(RDBMS)

principles,	specifically	being	that	of	ACID	nature,	and	are	specifically	designed	to	handle	the
speed	and	scale	of	the	likes	of	Google,	Facebook,	Yahoo,	Twitter,	and	many	more.

History
Before	we	take	a	deep	dive	into	it,	let	us	set	our	context	right	by	exploring	some	key
landmarks	in	history	that	led	to	the	birth	of	NoSQL.

From	Inktomi,	probably	the	first	true	search	engine,	to	Google,	the	present	world	leader,	the
computer	scientists	have	well	recognized	the	limitations	of	the	traditional	and	widely	used
RDBMS	specifically	related	to	the	issues	of	scalability,	parallelization,	and	cost,	also	noting
that	the	data	set	is	minimally	cross-referenced	as	compared	to	the	chunked,	transactional
data,	which	is	mostly	fed	to	RDBMS.

Specifically,	if	we	just	take	the	case	of	Google	that	gets	billions	of	requests	a	month	across
applications	that	may	be	totally	unrelated	in	what	they	do	but	related	in	how	they	deliver,	the
problem	of	scalability	is	to	be	solved	at	each	layer—right	from	data	access	to	final	delivery.
Google,	therefore,	had	to	work	innovatively	and	gave	birth	to	a	new	computing	ecosystem
comprising	of:

GFS:	Distributed	filesystem
Chubby:	Distributed	coordination	system
MapReduce:	Parallel	execution	system
Big	Data:	Column	oriented	database

These	systems	were	initially	described	in	papers	released	from	2003	to	2006	listed	as
follows:

Google	File	System,	2003:	http://research.google.com/archive/gfs.html
Chubby,	2006:	http://research.google.com/archive/chubby.html
MapReduce,	2004:	http://research.google.com/archive/mapreduce.html
Big	Data,	2006:	http://research.google.com/archive/bigtable.html

These	and	other	papers	led	to	a	spike	in	increased	activities,	specially	in	open	source,
around	large	scale	distributed	computing	and	some	of	the	most	amazing	products	were	born.
Some	of	the	initial	products	that	came	up	included:

Lucene:	Java-based	indexing	and	search	engine	(http://lucene.apache.org)
Hadoop:	For	reliable,	scalable,	distributed	computing	(http://hadoop.apache.org)
Cassandra:	Scalable,	multi-master	database	with	no	single	point	of	failure
(http://cassandra.apache.org)
ZooKeeper:	High	performance	coordination	service	for	distributed	applications
(http://zookeeper.apache.org)
Pig:	High	level	dataflow	language	and	execution	framework	for	parallel	computation
(http://pig.apache.org)

http://research.google.com/archive/gfs.html
http://research.google.com/archive/chubby.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/bigtable.html
http://lucene.apache.org
http://hadoop.apache.org
http://cassandra.apache.org
http://zookeeper.apache.org
http://pig.apache.org

What	NoSQL	is	and	what	it	is	not
Now	that	we	have	a	fair	idea	on	how	this	side	of	the	world	evolved,	let	us	examine	at	what
NoSQL	is	and	what	it	is	not.

NoSQL	is	a	generic	term	used	to	refer	to	any	data	store	that	does	not	follow	the	traditional
RDBMS	model—specifically,	the	data	is	non-relational	and	it	does	not	use	SQL	as	the	query
language.	It	is	used	to	refer	to	the	databases	that	attempt	to	solve	the	problems	of
scalability	and	availability	against	that	of	atomicity	or	consistency.

NoSQL	is	not	a	database.	It	is	not	even	a	type	of	database.	In	fact,	it	is	a	term	used	to	filter
out	(read	reject)	a	set	of	databases	out	of	the	ecosystem.	There	are	several	distinct	family
trees	available.	In	Chapter	4,	Advantages	and	Drawbacks,	we	explore	various	types	of	data
models	(or	simply,	database	types)	available	under	this	umbrella.

Traditional	RDBMS	applications	have	focused	on	ACID	transactions:

Atomicity:	Everything	in	a	transaction	succeeds	lest	it	is	rolled	back.
Consistency:	A	transaction	cannot	leave	the	database	in	an	inconsistent	state.
Isolation:	One	transaction	cannot	interfere	with	another.
Durability:	A	completed	transaction	persists,	even	after	applications	restart.

Howsoever	indispensible	these	qualities	may	seem,	they	are	quite	incompatible	with
availability	and	performance	on	applications	of	web-scale.	For	example,	if	a	company	like
Amazon	were	to	use	a	system	like	this,	imagine	how	slow	it	would	be.	If	I	proceed	to	buy	a
book	and	a	transaction	is	on,	it	will	lock	a	part	of	the	database,	specifically	the	inventory,	and
every	other	person	in	the	world	will	have	to	wait	until	I	complete	my	transaction.	This	just
doesn’t	work!

Amazon	may	use	cached	data	or	even	unlocked	records	resulting	in	inconsistency.	In	an
extreme	case,	you	and	I	may	end	up	buying	the	last	copy	of	a	book	in	the	store	with	one	of
us	finally	receiving	an	apology	mail.	(Well,	Amazon	definitely	has	a	much	better	system	than
this).

The	point	I	am	trying	to	make	here	is,	we	may	have	to	look	beyond	ACID	to	something
called	BASE	,	coined	by	Eric	Brewer:

Basic	availability:	Each	request	is	guaranteed	a	response—successful	or	failed
execution.
Soft	state:	The	state	of	the	system	may	change	over	time,	at	times	without	any
input	(for	eventual	consistency).
Eventual	consistency:	The	database	may	be	momentarily	inconsistent	but	will	be
consistent	eventually.

Eric	Brewer	also	noted	that	it	is	impossible	for	a	distributed	computer	system	to	provide
consistency,	availability	and	partition	tolerance	simultaneously.	This	is	more	commonly
referred	to	as	the	CAP	theorem.

Note,	however,	that	in	cases	like	stock	exchanges	or	banking	where	transactions	are	critical,
cached	or	state	data	will	just	not	work.	So,	NoSQL	is,	definitely,	not	a	solution	to	all	the
database	related	problems

Why	NoSQL?
Looking	at	what	we	have	explored	so	far,	does	it	mean	that	we	should	look	at	NoSQL	only
when	we	start	reaching	the	problems	of	scale?	No.

NoSQL	databases	have	a	lot	more	to	offer	than	just	solving	the	problems	of	scale	which	are
mentioned	as	follows:

Schemaless	data	representation:	Almost	all	NoSQL	implementations	offer
schemaless	data	representation.	This	means	that	you	don’t	have	to	think	too	far
ahead	to	define	a	structure	and	you	can	continue	to	evolve	over	time—including
adding	new	fields	or	even	nesting	the	data,	for	example,	in	case	of	JSON
representation.
Development	time:	I	have	heard	stories	about	reduced	development	time	because
one	doesn’t	have	to	deal	with	complex	SQL	queries.	Do	you	remember	the	JOIN
query	that	you	wrote	to	collate	the	data	across	multiple	tables	to	create	your	final
view?
Speed:	Even	with	the	small	amount	of	data	that	you	have,	if	you	can	deliver	in
milliseconds	rather	than	hundreds	of	milliseconds—especially	over	mobile	and	other
intermittently	connected	devices—you	have	much	higher	probability	of	winning	users
over.
Plan	ahead	for	scalability:	You	read	it	right.	Why	fall	into	the	ditch	and	then	try	to
get	out	of	it?	Why	not	just	plan	ahead	so	that	you	never	fall	into	one.	Or	in	other
words,	your	application	can	be	quite	elastic—it	can	handle	sudden	spikes	of	load.	Of
course,	you	win	users	over	straightaway.

List	of	NoSQL	Databases
The	buzz	around	NoSQL	still	hasn’t	reached	its	peak,	at	least	to	date.	We	see	more
offerings	in	the	market	over	time.	The	following	table	is	a	list	of	some	of	the	more	mature,
popular,	and	powerful	NoSQL	databases	segregated	by	data	model	used:

Document Key-Value XML Column Graph

MongoDB Redis BaseX BigTable Neo4J

CouchDB Membase eXist Hadoop	/	HBase FlockDB

RavenDB Voldemort 	 Cassandra InfiniteGraph

Terrastore MemcacheDB 	 SimpleDB 	

	 	 	 Cloudera 	

This	list	is	by	no	means	comprehensive,	nor	does	it	claim	to	be.	One	of	the	positive	points
about	this	list	is	that	most	of	the	databases	in	the	list	are	open	source	and	community
driven.

Chapter	4,	Advantages	and	Drawbacks,	provides	an	in-depth	study	of	the	various	popular
data	models	used	in	NoSQL	databases.

Chapter	6,	Case	Study,	does	an	exhaustive	comparison	of	some	of	these	databases	along
various	key	parameters	including,	but	not	limited	to,	data	model,	language,	performance,
license,	price,	community,	resources,	extensibility,	and	many	more.

Summary
In	this	chapter,	we	learned	about	the	fundamentals	of	NoSQL—what	it	is	all	about	and	more
critically,	what	it	is	not.	We	took	a	splash	in	the	history	to	appreciate	the	reasons	and
science	behind	it.	You	are	recommended	to	explore	the	web	for	historical	events	around	this
to	take	a	deep	dive	in	appreciating	it.

NoSQL	is	not	a	solution	to	each	and	every	application.	It	is	worth	noting	that	most	of	the
products	do	throw	away	the	traditional	ACID	nature	giving	way	to	BASE	infrastructure.
Having	said	that,	some	products	standout—CouchDB	and	Neo4j,	for	example,	are	ACID
compliant	NoSQL	databases.

Adopting	NoSQL	is	not	only	a	technological	change	but	also	change	in	mindset,	behaviour
and	thought	process	meaning	that	if	you	plan	to	hire	a	developer	to	work	with	NoSQL,
he/she	must	understand	the	new	models.

In	the	next	chapter,	we	will	have	a	quick	look	at	the	taxonomy	and	jack	up	our	vocabulary
before	we	dive	deeply	into	NoSQL.

Chapter	2.	Characteristics	of	NoSQL
For	decades,	software	engineers	have	been	developing	applications	with	relational
databases	in	mind.	The	literature,	architectures,	frameworks,	and	toolkits	have	all	been
written	keeping	in	mind	the	relational	structure	between	the	entities.

The	famous	entity-relationship	diagrams,	or	more	commonly	known	as	ER	diagrams	,
form	the	basis	for	database	design.	And	for	quite	some	time	now,	engineers	have	used
object-relational	mapping	(O/RM)	tools	to	help	them	model	relationships—is-a,	has,	one-
to-one,	one-to-many,	many-to-many,	et	al.—between	the	objects	that	the	software
architects	are	great	at	defining.

With	the	new	scenarios	and	problems	at	hand	for	the	new	applications,	specifically	for	web	or
mobile-based	social	applications	with	a	lot	of	user	generated	content,	people	realized	that
NoSQL	databases	would	be	a	stronger	fit	than	RDBMS	databases.

In	this	chapter,	we	explore	the	traditional	approach	towards	database,	the	challenges
presented	thereby,	and	the	solutions	provided	by	NoSQL	for	these	challenges.	We
substantiate	the	ecosystem	with	a	simple	application	as	an	example.

Application
ACME	Foods	is	a	grocery	shop	that	wants	to	automate	its	inventory	management.	In	this
simplistic	case,	the	process	involves	keeping	an	up-to-date	status	of	its	inventory	and
escalating	to	procurement,	if	levels	are	low.

RDBMS	approach
The	traditional	approach—using	RDBMS—takes	the	following	route:

Identify	actors:	The	first	step	in	the	traditional	approach	is	to	identify	various	actors
in	the	application.	The	actors	can	be	internal	or	external	to	the	application.
Define	models:	Once	the	actors	are	identified,	the	next	step	is	to	create	models.
Typically,	there	is	many-to-one	mapping	between	actors	and	models,	that	is,	one
model	may	represent	multiple	actors.
Define	entities:	Once	the	models	and	the	object-relationships—by	way	of	inheritance
and	encapsulation—are	defined,	the	next	step	is	to	define	the	database	entities.	This
requires	defining	the	tables,	columns,	and	column	types.	Special	care	has	to	be	taken
noting	that	databases	allow	null	values	for	any	column	types,	whereas	programming
languages	may	not	allow,	databases	may	have	different	size	constraints	as	compared
to	really	required,	or	a	language	allows,	and	much	more.
Define	relationships:	One	of	more	important	steps	is	to	be	able	to	well	define	the
relationship	between	the	entities.	The	only	way	to	define	relationships	across	tables
is	by	using	foreign	keys.	The	entity	relationships	correspond	to	inheritance,	one-to-
one,	one-to-many,	many-to-many,	and	other	object	relationships.
Program	database	and	application:	Once	these	are	ready,	engineers	program
database	in	PL/SQL	(for	most	databases)	or	PL/pgSQL	(for	PostgreSQL)	while
software	engineers	develop	the	application.
Iterate:	Engineers	may	provide	feedback	to	the	architects	and	designers	about	the
existing	limitations	and	required	enhancements	in	the	models,	entities,	and
relationships.

Mapping	the	steps	to	our	example	as	follows:

Few	of	the	actors	identified	include	buyer,	employee,	purchaser,	administrator,	office
address,	shipping	address,	supplier	address,	item	in	inventory,	and	supplier.
They	may	be	mapped	to	a	model	UserProfile	and	there	may	be	subclasses	as
required—Administrator	and	PointOfSalesUser.	Some	of	the	other	models	include
Department,	Role,	Product,	Supplier,	Address,	PurchaseOrder,	and	Invoice.
Simplistically,	a	database	table	may	map	each	actor	to	a	model.
Foreign	keys	will	be	used	to	define	the	object	relationships—one-to-many	between
Department	and	UserProfile,	many-to-many	between	Role	and	UserProfile,	and
PurchaseOrder	and	Product.
One	would	need	simple	SQL	queries	to	access	basic	information	while	queries
collating	data	across	tables	will	need	complex	JOINs.
Based	on	the	inputs	received	later	in	time,	one	or	more	of	these	may	need	to	be
updated.	New	models	and	entities	may	evolve	over	time.

At	a	high	level,	the	following	entities	and	their	relationships	can	be	identified:

A	department	contains	one	or	more	users.	A	user	may	execute	one	or	more	sales	orders
each	of	which	contains	one	or	more	products	and	updates	the	inventory.	Items	in	inventory
are	provided	by	suppliers,	which	are	notified	if	inventory	level	drops	below	critical	levels.
Representational	class	diagram	may	be	closer	to	the	one	shown	in	the	next	figure:

Note
These	actors,	models,	entities,	and	relationships	are	only	representative.	In	the	real
application,	the	definitions	will	be	more	elaborate	and	relationships	more	dense.

Let	us	take	a	quick	look	at	the	code	that	will	take	us	there.

To	start	with,	the	models	may	shape	as	follows:

class	UserProfile	{

			int	_id;

			UserType	type;

			String	firstName;

			String	lastName;

			Department	department;

			Collection<Role>	roles;

			Address	homeAddress;

			Address	officeAddress;

}

class	Address	{

			String	_id;

			String	line1;

			String	line2;

			String	city;

			Country	country;

			String	zipCode;}

enum	Country	{

			Australia,	Bahrain,	Canada,	India,	USA

}

The	SQL	statements	used	to	create	the	tables	for	the	previous	models	are:

CREATE	TABLE	Address(

			_id	INT	NOT	NULL	AUTO_INCREMENT,

			line1	VARCHAR(64)	NOT	NULL,

			line2	VARCHAR(64),

			city	VARCHAR(32)	NOT	NULL,

			country	VARCHAR(24)	NOT	NULL,	/*	Can	be	normalized	*/

			zipCode	VARCHAR(8)	NOT	NULL,

			PRIMARY_KEY	(_id)

);

CREATE	TABLE	UserProfile(

			_id	INT	NOT	NULL	AUTO_INCREMENT,

			firstName	VARCHAR(32)	NOT	NULL,

			lastName	VARCHAR(32)	NOT	NULL	DEFAULT	'',

			departmentId	INT	NOT	NULL,

			homeAddressId	INT	NOT	NULL,

			officeAddressId	INT	NOT	NULL,

			PRIMARY_KEY	(_id),

			FOREIGN_KEY	(officeAddressId)	REFERENCES	Address(_id),

			FOREIGN_KEY	(homeAddressId)	REFERENCES	Address(_id)

);

Note
The	previous	definitions	are	only	representative	but	give	an	idea	of	what	it	requires	to
work	in	RDMBS	world.

Challenges
The	aforementioned	approach	sounds	great,	however,	it	has	a	set	of	challenges.	Let	us
explore	some	of	the	possibilities	that	ACME	Foods	has	or	may	encounter	in	future:

The	technical	team	faces	a	churn	and	key	people	maintaining	the	database—schema,
programmability,	business	continuity	process	a.k.a.	availability,	and	other	aspects—
leave.	The	company	has	a	new	engineering	team	and,	irrespective	of	its	expertise,
has	to	quickly	ramp	up	with	existing	entities,	relationships,	and	code	to	maintain.
The	company	wishes	to	expand	their	web	presence	and	enable	online	orders.	This
requires	either	creating	new	user-related	entities	or	enhancing	the	current	entities.
The	company	acquires	another	company	and	now	needs	to	integrate	the	two
database	systems.	This	means	refining	models	and	entities.	Critically,	the	database
table	relationships	have	to	be	carefully	redefined.
The	company	grows	big	and	has	to	handle	hundreds	of	millions	of	queries	a	day
across	the	country.	More	so,	it	receives	a	few	million	orders.	To	scale,	it	has	tied	up
with	thousands	of	suppliers	across	locations	and	must	provide	away	to	integrate	the
systems.
The	company	ties	up	with	a	few	or	several	customer	facing	companies	and	intends	to
supply	services	to	them	to	increase	their	sales.	For	this,	it	must	integrate	with
multiple	systems	and	also	ensure	that	its	application	must	be	able	to	scale	up	to	the
combined	needs	of	these	companies,	especially	when	multiple	simultaneous	orders
are	received	in	depleting	inventory.
The	company	plans	to	provide	API	integration	for	aggregators	to	retrieve	and
process	their	data.	More	importantly,	it	must	ensure	that	the	API	must	be	forward
compatible	meaning	that	in	future	if	it	plans	to	change	their	internal	database	schema
for	whatever	reasons,	it	must—if	at	all—minimally	impact	the	externally	facing	API
and	schema	for	data-exchange.
The	company	plans	to	leverage	social	networking	sites,	such	as	Facebook,	Twitter,
and	FourSquare.	For	this,	it	seeks	to	not	only	use	the	simple	widgets	provided	but
also	gather,	monitor,	and	analyze	statistics	gathered.

The	preceding	functional	requirements	can	be	translated	into	the	following	technical
requirements	as	far	as	the	database	is	concerned:

Schema	flexibility:	This	will	be	needed	during	future	enhancements	and	integration
with	external	applications	—outbound	or	inbound.	RDBMS	are	quite	inflexible	in	their
design.

More	often	than	not,	adding	a	column	is	an	absolute	no-no,	especially	if	the	table	has
some	data	and	the	reason	lies	in	the	constraint	of	having	a	default	value	for	the	new
column	and	that	the	existing	rows,	by	default,	will	have	that	default	value.	As	a	result
you	have	to	scan	through	the	records	and	update	the	values	as	required,	even	if	it
can	be	automated.	It	may	not	be	complex	always,	but	frowned	upon	especially	when
the	number	of	rows	is	large	or	number	of	columns	to	add	is	sufficiently	large.	You	end
up	creating	new	tables	and	increase	complexity	by	introducing	relationships	across

the	tables.

Complex	queries:	Traditionally,	the	tables	are	designed	denormalized	which	means
that	the	developers	end	up	writing	complex	so-called	JOIN	queries	which	are	not	only
difficult	to	implement	and	maintain	but	also	take	substantial	database	resources	to
execute.
Data	update:	Updating	data	across	tables	is	probably	one	of	the	more	complex
scenarios	especially	if	they	are	to	be	a	part	of	the	transaction.	Note	that	keeping	the
transaction	open	for	a	long	duration	hampers	the	performance.

One	also	has	to	plan	for	propagating	the	updates	to	multiple	nodes	across	the
system.	And	if	the	system	does	not	support	multiple	masters	or	writing	to	multiple
nodes	simultaneously,	there	is	a	risk	of	node-failure	and	the	entire	application	moving
to	read-only	mode.

Scalability:	More	often	than	not,	the	only	scalability	that	may	be	required	is	for	read
operations.	However,	several	factors	impact	this	speed	as	operations	grow.	Some	of
the	key	questions	to	ask	are:

What	is	the	time	taken	to	synchronize	the	data	across	physical	database
instances?
What	is	the	time	taken	to	synchronize	the	data	across	datacenters?
What	is	the	bandwidth	requirement	to	synchronize	data?	Is	the	data
exchanged	optimized?
What	is	the	latency	when	any	update	is	synchronized	across	servers?
Typically,	the	records	will	be	locked	during	an	update.

NoSQL	approach
NoSQL-based	solutions	provide	answers	to	most	of	the	challenges	that	we	put	up.	Note
that	if	ACME	Grocery	is	very	confident	that	it	will	not	shape	up	as	we	discussed	earlier,	we
do	not	need	NoSQL.	If	ACME	Grocery	does	not	intend	to	grow,	integrate,	or	provide
integration	with	other	applications,	surely,	the	RDBMS	will	suffice.	But	that	is	not	how
anyone	would	like	the	business	to	work	in	the	long	term.

So,	at	some	point	in	time,	sooner	or	later,	these	questions	will	arise.

Let	us	see	what	NoSQL	has	to	offer	against	each	technical	question	that	we	have:

Schema	flexibility:	Column-oriented	databases	(http://en.wikipedia.org/wiki/Column-
oriented_DBMS)	store	data	as	columns	as	opposed	to	rows	in	RDBMS.	This	allows
flexibility	of	adding	one	or	more	columns	as	required,	on	the	fly.	Similarly,	document
stores	that	allow	storing	semi-structured	data	are	also	good	options.
Complex	queries:	NoSQL	databases	do	not	have	support	for	relationships	or
foreign	keys.	There	are	no	complex	queries.	There	are	no	JOIN	statements.

Is	that	a	drawback?	How	does	one	query	across	tables?

It	is	a	functional	drawback,	definitely.	To	query	across	tables,	multiple	queries	must	be
executed.	Database	is	a	shared	resource,	used	across	application	servers	and	must
not	be	released	from	use	as	quickly	as	possible.

The	options	involve	combination	of	simplifying	queries	to	be	executed,	caching	data,
and	performing	complex	operations	in	application	tier.

A	lot	of	databases	provide	in-built	entity-level	caching.	This	means	that	as	and	when	a
record	is	accessed,	it	may	be	automatically	cached	transparently	by	the	database.
The	cache	may	be	in-memory	distributed	cache	for	performance	and	scale.

Data	update:	Data	update	and	synchronization	across	physical	instances	are	difficult
engineering	problems	to	solve.

Synchronization	across	nodes	within	a	datacenter	has	a	different	set	of	requirements
as	compared	to	synchronizing	across	multiple	datacenters.	One	would	want	the
latency	within	a	couple	of	milliseconds	or	tens	of	milliseconds	at	the	best.	NoSQL
solutions	offer	great	synchronization	options.

MongoDB	(http://www.mongodb.org/display/DOCS/Sharding+Introduction),	for
example,	allows	concurrent	updates	across	nodes
(http://www.mongodb.org/display/DOCS/How+does+concurrency+work),
synchronization	with	conflict	resolution	and	eventually,	consistency	across	the
datacenters	within	an	acceptable	time	that	would	run	in	few	milliseconds.	As	such,
MongoDB	has	no	concept	of	isolation.

http://en.wikipedia.org/wiki/Column-oriented_DBMS
http://www.mongodb.org/display/DOCS/Sharding+Introduction
http://www.mongodb.org/display/DOCS/How+does+concurrency+work

Note	that	now	because	the	complexity	of	managing	the	transaction	may	be	moved
out	of	the	database,	the	application	will	have	to	do	some	hard	work.	An	example	of
this	is	a	two-phase	commit	while	implementing	transactions
(http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/).

Do	not	worry	or	get	scared.	A	plethora	of	databases	offer	Multiversion	concurrency
control	(MCC)to	achieve	transactional	consistency
(http://en.wikipedia.org/wiki/Multiversion_concurrency_control).

Surprisingly,	eBay	does	not	use	transactions	at	all
(http://www.infoq.com/interviews/dan-pritchett-ebay-architecture).	Well,	as	Dan
Pritchett	(http://www.addsimplicity.com/),	Technical	Fellow	at	eBay	puts	it,	eBay.com
does	not	use	transactions.	Note	that	PayPal	does	use	transactions.

Scalability:	NoSQL	solutions	provider	greater	scalability	for	obvious	reasons.	A	lot	of
complexity	that	is	required	for	transaction	oriented	RDBMS	does	not	exist	in	ACID
non-compliant	NoSQL	databases.

Interestingly,	since	NoSQL	do	not	provide	cross-table	references	and	there	are	no
JOIN	queries	possible,	and	because	one	cannot	write	a	single	query	to	collate	data
across	multiple	tables,	one	simple	and	logical	solution	is	to—at	times—duplicate	the
data	across	tables.	In	some	scenarios,	embedding	the	information	within	the	primary
entity—especially	in	one-to-one	mapping	cases—may	be	a	great	idea.

Revisiting	our	earlier	case	of	Address	and	UserProfile,	if	we	use	the	document	store,	we	can
use	JSON	format	to	structure	the	data	so	that	we	do	not	need	cross-table	queries	at	all.

An	example	of	how	the	data	may	look	like	is	given	as	follows:

//UserProfile

{

			"_id":	"98ef65e7-52e4-4466-bacc-3a8dc0c15c79",

			"firstName":	"Gaurav",

			"lastName":	"Vaish",

			"department":	"f0adcbf5-7389-4491-9c42-f39a9d3d4c75",

			"homeAddress":	{

						"_id":	"fa62fd39-17f8-4a16-80d6-71a5b71d758d",

						"line1":	"123,	45th	Main"

						"city"	:	"NoSQLLand",

						"country":	"India",

						"zipCode":	"123456"

			}

}

Note
We	explore	various	NoSQL	database	classes—based	on	data	models	provided—in
Chapter	3,	NoSQL	Storage	Types.

http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://www.infoq.com/interviews/dan-pritchett-ebay-architecture
http://www.addsimplicity.com/

It	is	not	that	the	new	companies	start	with	NoSQL	straightaway.	One	can	start	with	RDBMS
and	migrate	to	NoSQL—just	keep	in	mind	that	it	is	not	going	to	be	trivial.	Or	better	still,	start
with	NoSQL.	Even	better,	start	with	a	mix	of	RDBMS	and	NoSQL.	As	we	will	see	later,	there
are	scenarios	where	it	may	be	best	to	have	a	mix	of	the	two	databases.

A	big	case	in	consideration	here	is	that	of	Netflix.	The	company	moved	from	Oracle	RDBMS
to	Apache	Cassandra	(http://www.slideshare.net/hluu/netflix-moving-to-cloud),	and	they
could	achieve	over	a	million	writes	per	second.	Yes!	That	is	1,000,000	writes	per	second
(http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html)	across	the
cluster	with	over	10,000	writes	per	second	per	node	while	maintaining	the	average	latency	at
less	than	0.015	milliseconds!	And	the	total	cost	of	setting	it	all	up	and	running	on	Amazon
EC2	Cloud	was	at	around	$60	per	hour—not	per	node	but	for	a	cluster	of	48	nodes.	Per
node	cost	is	only	$1.25	per	hour	inclusive	of	the	storage	capacity	of	12.8	Terra-bytes,
network	read	bandwidth	of	22	Mbps,	and	write	bandwidth	of	18.6Mbps.

Note
The	preceding	case-in-hand	should	not	undermine	the	power	of	and	features	provided	by
Oracle	RDBMS	database.	I	have	always	considered	it	as	one	of	the	best	commercial
solutions	available	in	RDBMS	space.

http://www.slideshare.net/hluu/netflix-moving-to-cloud
http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html

Summary
In	this	chapter	we	explored	key	characteristics	of	NoSQL	and	what	they	have	to	offer	in
depth	vis-à-vis	RDBMS	databases.

We	looked	at	typical	approach	used	while	working	with	and	the	challenges	at	hand	when
dealing	with	traditional	RDMBS	approach.	We	also	looked	how	a	large	set	of	functional
requirement	lead	to	structured,	small	set	of	technical	problems	and	how	NoSQL	databases
solve	these	problems.

It	is	important	to	note	that	NoSQL	is	not	a	solution	to	all	the	problems	that	one	will	ever
come	across	while	working	with	RDBMS	though	it	does	provide	answers	to	most	of
questions.	Having	said	that,	NoSQL	may	not	be	the	ideal	solution	in	specific	cases,
especially	in	financial	applications	where	what	matters	is	immediate	and	momentous
consistency	and	not	mere	eventual	consistency.

In	the	next	chapter,	we	will	explore	various	data	models	available	in	NoSQL	databases.

Chapter	3.	NoSQL	Storage	Types
Great.	At	this	point,	we	have	a	very	good	understanding	of	what	NoSQL	databases	have	to
offer	and	what	challenges	they	solve.

The	NoSQL	databases	are	categorized	on	the	basis	of	how	the	data	is	stored.	Because	of
the	need	to	provide	curated	information	from	large	volumes,	generally	in	near	real-time,
NoSQL	mostly	follows	a	horizontal	structure.	They	are	optimized	for	insert	and	retrieve
operations	on	a	large	scale	with	built-in	capabilities	for	replication	and	clustering.	Some	of
the	functionalities	of	SQL	databases	like	functions,	stored	procedures,	and	PL	may	not	be
present	in	most	of	the	databases.

In	this	chapter,	we	explore	various	storage	types	provided	by	these	databases,	comparing
and	contrasting	them,	and	more	critically	identifying	what	to	use	when.

This	chapter	refers	to	several	commonly	understood	standards	and	rules	used	today	with
RDBMS;	for	example	table	schema,	CRUD	operations,	JOIN,	VIEW,	and	a	few	more.

Storage	types
There	are	various	storage	types	available	in	which	the	content	can	be	modeled	for	NoSQL
databases.	In	subsequent	sections,	we	will	explore	the	following	storage	types:

Column-oriented
Document	Store
Key	Value	Store
Graph

Column-oriented	databases
The	column-oriented	databases	store	data	as	columns	as	opposed	to	rows	that	is	prominent
in	RDBMS.	The	details	can	be	found	at	http://www.scribd.com/doc/92371275/Column-
Oriented-DB-Systems	and	http://dbmsmusings.blogspot.in/2009/09/tour-through-hybrid-
columnrow-oriented.html.

Note
Column	stores	have	been	in	development	since	early	DBMS	days.	TAXIR,	a	biology
information-retrieval-focused	application,	was	the	first	application	using	column-oriented
stores	way	back	in	1969.

A	relational	database	shows	the	data	as	two-dimensional	tables	comprising	of	rows	and
columns	but	stores,	retrieves,	and	processes	it	one	row	at	a	time,	whereas	a	column-

http://www.scribd.com/doc/92371275/Column-Oriented-DB-Systems
http://dbmsmusings.blogspot.in/2009/09/tour-through-hybrid-columnrow-oriented.html

oriented	database	stores	data	as	columns.

For	example,	assume	that	the	following	data	is	to	be	stored:

EmployeeID FirstName LastName Age Salary

SM1 Anuj Sharma 45 10000000

MM2 Anand 	 34 5000000

T3 Vikas Gupta 39 7500000

E4 Dinesh Verma 32 2000000

In	RDBMS,	the	data	may	be	serialized	and	stored	internally	as	follows:

SM1,Anuj,Sharma,45,10000000

MM2,Anand,,34,5000000

T3,Vikas,Gupta,39,7500000

E4,Dinesh,Verma,32,2000000

However,	in	column-oriented	databases,	the	data	will	be	stored	internally	as	follows:

SM1,MM2,T3,E4

Anuj,Anand,Vikas,Dinesh

Sharma,,Gupta,Verma,

45,34,39,32

10000000,5000000,7500000,2000000

Note
The	preceding	representation	is	over	simplified.	Databases	typically	will	have	more
sophisticated	and	optimized	mechanisms	to	store	data.	Tasks	like	partitioning,	caching,
indexing,	and	ability	to	create	OLAP	cubes,	and	others	affect	the	underlying	physical
organization	of	the	data	within	the	system.

Online	transaction	processing	(OLTP)	focused	relational	databases	are	row	oriented.
Online	analytical	processing	(OLAP)	systems	that	require	processing	of	data	need
column-oriented	access.	Having	said	that,	OLTP	operations	may	also	require	column-

oriented	access	when	working	on	a	subset	of	columns	and	operating	on	them.

Data	access	to	these	databases	is	typically	done	by	using	either	a	proprietary	protocol	in
case	of	commercial	solutions	or	open	standard	binary	(for	example,	Remote	Method
Invocation).	The	transport	protocol	is	generally	binary.

Some	of	the	databases	that	fall	under	this	category	include:

Oracle	RDBMS	Columnar	Expression
Microsoft	SQL	Server	2012	Enterprise	Edition
Apache	Cassandra
HBase
Google	BigTable	(available	as	part	of	Google	App	Engine	branded	Datastore)

Advantages
Most	of	the	solutions,	such	as	Apache	Cassandra,	HBase,	and	Google	Datastore,	allow
adding	columns	over	time	without	having	to	worry	about	filling	in	default	values	for	the
existing	rows	for	the	new	columns.	This	gives	flexibility	in	model	and	entity	design	allowing
one	to	account	for	new	columns	in	future	for	unforeseen	scenarios	and	new	requirements.

There	are	advantages	when	working	with	a	subset	of	the	available	columns.	For	example,
computing	maxima,	minima,	averages	and	sums,	specifically	on	large	datasets,	is	where
these	column-oriented	data	stores	outshine	in	performance.

Similarly,	when	new	values	are	applied	for	either	all	rows	at	once	or	with	same-column	filters,
these	databases	will	allow	partial	data	access	without	touching	unrelated	columns	and	be
much	faster	in	execution.

Since	columns	will	be	of	uniform	type	and	mostly	(except	in	cases	of	variable-length	strings)
of	the	same	length,	there	are	possibilities	of	efficient	storage	in	terms	of	size.	Such	as	a
column	with	the	same	values	across	rows	(for	example,	the	department	of	a	user	profile	or
whether	a	user's	profile	is	public	or	private	or	even	a	user's	age),	the	same	or	similar
adjacent	values	can	be	compressed	efficiently.

Example
In	the	following	example,	you	will	find	sample	code	for	working	with	Google's	Datastore	(can
be	found	at	https://developers.google.com/appengine/docs/java/datastore/)	on	Google	App
Engine	using	the	Objectify	(http://code.google.com/p/objectify-appengine/)	library:

public	class	UserProfile

{

			@Id	String	employeeID;

			String	firstName;

			String	lastName;

			String	age;

			long	salary;

}

https://developers.google.com/appengine/docs/java/datastore/
http://code.google.com/p/objectify-appengine/

ObjectifyService.register(UserProfile.class);

Objectify	ofy	=	ObjectifyService.begin();

//Adding	records

UserProfile	up1	=	new	UserProfile(...);

UserProfile	up2	=	new	UserProfile(...);

ofy.put(up1,	up2);

//Retrieve	by	Id

UserProfile	upg	=	ofy.get(UserProfile.class,	"SM1");

//Filter	all	profiles	by	first	name	

Iterator<UserProfile>	profiles

					=	ofy.query(UserProfile.class)

										.filter("firstName",	"Alice");

//Query	all	profiles	by	age	greater	than	30,	ordered	by	salary

Iterator<UserProfile>	agedProfiles

					=	ofy.query(UserProfile.class)

										.filter("age	>",	30)

										.order("salary");

Document	store
Also	referred	to	as	document-oriented	database,	a	document	store	allows	the	inserting,
retrieving,	and	manipulating	of	semi-structured	data.	Most	of	the	databases	available	under
this	category	use	XML,	JSON,	BSON,	or	YAML,	with	data	access	typically	over	HTTP
protocol	using	RESTful	API	or	over	Apache	Thrift	protocol	for	cross-language
interoperability.

Compared	to	RDBMS,	the	documents	themselves	act	as	records	(or	rows),	however,	it	is
semi-structured	as	compared	to	rigid	RDBMS.

For	example,	two	records	may	have	completely	different	set	of	fields	or	columns.	The
records	may	or	may	not	adhere	to	a	specific	schema	(like	the	table	definitions	in	RDBMS).
For	that	matter,	the	database	may	not	support	a	schema	or	validating	a	document	against
the	schema	at	all.

Even	though	the	documents	do	not	follow	a	strict	schema,	indexes	can	be	created	and
queried.	Here	are	some	examples	of	document	content	using	JSON:

One	document	may	provide	an	employee	whose	whole	details	are	not	completely	known:

{

		"EmployeeID":	"SM1",

		"FirstName"	:	"Anuj",

		"LastName"		:	"Sharma",

		"Age"							:	45,

		"Salary"				:	10000000

}

A	second	document	may	have	complete	details	about	another	employee:

{

		"EmployeeID":	"MM2",

		"FirstName"	:	"Anand",

		"Age"							:	34,

		"Salary"				:	5000000,

		"Address"			:	{

				"Line1"		:	"123,	4th	Street",

				"City"			:	"Bangalore",

				"State"		:	"Karnataka"

		},

		"Projects"		:	[

				"nosql-migration",

				"top-secret-007"

]

}

A	third	document	may	have	information	about	one	of	the	office	locations:

{

		"LocationID"								:	"Bangalore-SDC-BTP-CVRN",

		"RegisteredName"				:	"ACME	Software	Development	Ltd"

		"RegisteredAddress"	:	{

				"Line1"				:	"123,	4th	Street",

				"City"					:	"Bangalore",

				"State"				:	"Karnataka"

		},

}

If	you	notice	the	preceding	examples,	the	first	two	documents	are	somewhat	similar	with	the
second	document	having	more	details	as	compared	to	the	first.	However,	if	you	look	at	the
third	document,	the	content	has	no	correlation	to	the	first	two	documents	whatsoever—this
is	about	an	office	location	rather	than	an	employee.

The	EmployeeID	or	LocationID	may	not	be	the	document	ID.	The	databases	provide	access
using	RESTful	APIs	wherein	the	document	ID	is	part	of	the	URL	itself	or	is	provided	within
the	body	of	the	request.	Having	said	that,	it	is	not	mandatory	that	the	document	content
should	not	contain	its	ID.	In	fact,	one	of	the	best	practices	states	that	the	document	ID
must	be	embedded	in	the	document	somewhere	and	preferably	in	a	standard	location.	For
example,	the	modified	content	may	be:

{

		"docId":	"SM1",

		...

}

{

		"docId":	"MM2",

		...

}

{

		"docId":	"Bangalore-SDC-BTP-CVRN",

			...

}

Document-oriented	databases	provide	this	flexibility—dynamic	or	changeable	schema	or
even	schemaless	documents.	Because	of	the	limitless	flexibility	provided	in	this	model,	this	is
one	of	the	more	popular	models	implemented	and	used.

Some	of	popular	databases	that	provide	document-oriented	storage	include:

MongoDB
CouchDB
Jackrabbit
Lotus	Notes
Apache	Cassandra
Terrastore
Redis
BaseX

Advantages
The	most	prominent	advantage,	as	evident	in	the	preceding	examples,	is	that	content	is
schemaless,	or	at	best	loosely	defined.	This	is	very	useful	in	web-based	applications	where
there	is	a	need	for	storing	different	types	of	content	that	may	evolve	over	time.	For	example,
for	a	grocery	store,	information	about	the	users,	inventory	and	orders	can	be	stored	as
simple	JSON	or	XML	documents.	Note	that	"document	store"	is	not	the	same	as	"blob
store"	where	the	data	cannot	be	indexed.

Based	on	the	implementation,	it	may	or	may	not	be	possible	to	retrieve	or	update	a	record
partially.	If	it	is	possible	to	do	so,	there	is	a	great	advantage.	Note	that	stores	based	on
XML,	BSON,	JSON,	and	YAML	would	typically	support	this.	XML-based	BaseX	can	be	really
powerful,	while	integrating	multiple	systems	working	with	XML	given	that	it	supports	XQuery
3.0	and	XSLT	2.0.

Searching	across	multiple	entity	types	is	far	more	trivial	compared	to	doing	so	in	traditional
RDBMS	or	even	in	column-oriented	databases.	Because,	now,	there	is	no	concept	of	tables
—which	is	essentially	nothing	more	than	a	schema	definition—one	can	query	across	the
records,	irrespective	of	the	underlying	content	or	schema	or	in	other	words,	the	query	is
directly	against	the	entire	database.	Note	that	the	databases	allow	for	the	creation	of
indexes	(using	common	parameters	or	otherwise	and	evolve	over	time).

JSON-based	stores	are	easy	to	define	what	I	call	projections	.	Each	top-level	key	for	the
JSON	object	may	be	the	entity's	projection	across	other	parts	of	the	system	thereby
allowing	the	schema	to	evolve	over	time	with	backward	compatibility.

Examples
To	start	with,	let	us	have	a	look	at	a	JSON-based	document	demonstrating	the	advantages
that	we	just	discussed:

{

		"me":	{

				"id"										:	"document-uuid",

				"version"					:	"1.0.0.0",

				"create_time"	:	"2011-11-11T11:11:11Z",

				"last_update"	:	"2012-12-12T12:12:12Z"

		},

		"type":	"UserProfile",

		"personal":	{

				"firstName"	:	"Alice",

				"lastName"		:	"Matthews",

				"date_of_birth":	"1901-01-01T01:01:01Z"

		},

		"financial":	{

				"bank"											:	{	...	},

				"trading"								:	{	...	},

				"credit-history"	:	{	...	}

		},

		"criminal":	{

		}

}

The	document	structure	has	been	carefully	designed	as	the	following:

The	me	attribute	is	the	basic	information	about	the	record.	It	comprises	the	unique	id
of	the	document	which	never	changes,	version	that	must	be	updated	each	time	the
record	changes,	creation_time	marking	when	the	record	was	created,	and	last_update
indicating	when	the	record	was	last	updated.	This	can	be	mandatory	for	sanity.
The	type	attribute	specifies	the	entity	type	represented	in	this	document.	This,	again,
can	be	made	mandatory.
Other	attributes	such	as	personal,	financial,	criminal,	and	few	more	can	be	added
over	time.
It	is	these	attributes	that	I	refer	to	as	projections	that	provide	context-specific	data.
These	contexts	don't	need	to	be	initially	defined	and	generally	evolve	over	time.	The
advantage,	as	we	see,	is	that	all	the	data	associated	with	the	entity	resides	in	one
record—the	document—and	redundancy	can	help	speeding	up	the	queries.
Databases	like	MongoDB	allow	to	the	creation	of	schemaless	entities	so	that	one
can	get	rid	of	the	type	attribute	and	support	views	that	can	be	used	to	query	across
various	entity	types	similar	to	what	JOIN	does	in	SQL.

The	next	example	demonstrates	the	use	of	JSON	with	CouchDB	and	how	these	concepts
can	be	put	into	action.	Since	CouchDB	has	no	concept	of	tables	and	anything	that	you	add
is	a	simple,	unstructured	but	legal	JSON	document,	we	keep	the	document	the	same	as
before	and	concentrate	on	how	and	what	operations	can	be	performed	on	the	data.

CouchDB	provides	a	RESTful	HTTP	interface	with	the	standard	HTTP	methods	mapping	to

the	data	operations—GET 	(retrieve),	POST 	(create	or	update,	implicit	/	implied	ID),	PUT
(create	or	update,	explicit/specified	ID),	DELETE	(delete).	We	assume	that	the	CouchDB
HTTP	server	is	up	and	running	on	localhost	at	default	port	5984.

We	will	explore	CRUD	operations	along	with	basic	database	operations.	For	ease	of
operations,	we	use	the	command	line	program	curl	(http://curl.haxx.se/docs/manpage.html)
to	execute	the	HTTP	requests.	Notice	how	CouchDB	makes	use	of	the	ID,	revision,	and
looseness	in	schema:

1.	 Creating	a	database	named	ShoppingDB:

curl	–X	PUT	http://localhost:5984/ShoppingDB

You	will	get	the	following	response:

{	"ok":	true	}			

2.	 Get	a	summary	of	the	database:

curl	http://localhost:5984/ShoppingDB

{

		"db_name"		:	"ShoppingDB"

		"doc_count":	0

		//	Removed	other	attributes	for	brevity

}

3.	 Assuming	that	the	content	is	stored	in	the	data.json	file,	adding	the	document	to	the
store	using	document-uuid	as	the	ID	as	provided	in	the	document.	Technically
speaking,	the	document-uuid	can	be	any	unique	identifier—as	simple	as	123.

It	is	important	to	note	that,	if	not	provided,	MongoDB	automatically	generates	an	ID
for	each	document	inserted.	The	field	name	is	_id.

curl	–X	PUT	–H	"Content-Type:	application/json"	\

					http://localhost:5984/ShoppingDB/document-uuid	\

					-d	@data.json

You	will	get	the	following	response:

{

		"ok":	true,

		"id":	"document-uuid",

		"rev":	"1-Revision-UUID"

}

4.	 Retrieving	the	document:

curl	http://localhost:5984/ShoppingDB/document-uuid

You	will	get	the	following	response:

http://curl.haxx.se/docs/manpage.html

{

		"_id":	"document-uuid",

		"_rev":	"1-Revision-UUID",

		"me":	{

				"id":	"document-uuid",

				...

		}

		...

}

The	remaining	document	was	removed	for	brevity.	The	content	is	nothing	but
whatever	was	inserted.

5.	 Update	the	document.	Note	that	the	revision	that	is	being	updated	is	required	and
that	it	has	been	updated:

curl	–X	PUT	–H	"Content-Type:	text/json"	\

				http://localhost:5984/ShoppingDB/document-uuid

				-d	'{	"name":	"Alice	Taylor",	"_rev":	"1-Revision-UUID"	}'

You	will	get	the	following	response:

{

		"ok":	true,

		"id":	"document-uuid",

		"rev":	"2-Revision-UUID"

}

6.	 Deleting	the	document	is	as	simple	as	executing	a	DELETE	method	on	the	document
ID:

curl	–X	DELETE	http://localhost:5984/ShoppingDB/document-uuid

You	will	get	the	following	response:

{	"ok":	true	}

7.	 These	were	simple	operations,	and	looked	mostly	trivial.	The	fun	and	unleashing
power	starts	when,	for	example,	one	needs	to	execute	a—probably	hypothetical—
query	to	fetch	all	documents	across	the	database	that	has	an	attribute	title	or
expertise	that	contains	NoSQL	without	worrying	about	the	capitalization.	Let	title
be	a	simple	string	and	expertise	be	an	array	in	the	JSON	document.

The	case	in	hand	is	profiles	may	have	their	technical	expertise	listed	or	there	may	be
a	company	whose	name	contains	the	string.

This—we	know—is	quite	a	daunting	task	in	any	database	that	has	the	notion	of
tables	because	then	searching	across	tables	and	then	presenting	in	a	unified	manner
is	next	to	impossible.	However	theoretical	or	hypothetical	this	query	may	be,	it
demonstrates	the	power	behind	such	an	implementation	of	NoSQL	database.

CouchDB	does	support	views	and	the	output	of	the	view	is	also	a	JSON	document
with	the	language	for	implementing	the	logic	to	define	the	view	is	JavaScript	and	the
functions	are	referred	to	as	map	and	reduce	functions
(http://en.wikipedia.org/wiki/Mapreduce).	The	function	takes	the	document	(JSON
object)	as	a	parameter	and	emits	out	a	JSON	object	representing	the	output	of	the
view	and	a	unique	ID	to	identify	the	record	(can	be	any	valid	JavaScript	type).

The	map	function	emits	out	the	value	that	will	be	consumed	by	the	reduce	function
(we	use	the	document	ID	as	the	ID	of	the	record	returned):

function(doc)	{

		var	pattern	=	/nosql/i;

		if(pattern.test(doc.title))	{

				emit(doc['_id'],	doc);

		}	else	if(doc.expertise	&&	doc.expertise.length)	{

				pattern	=	/,nosql,/i;

				if(pattern.test(','	+	doc.expertise.join(',')	+	','))	{

							emit(doc['_id'],	doc);

				}

		}

}

The	reduce	function	gives	the	final	data	that	can	be	consumed	in	the	business
application	layer.	Following	are	some	reduce	functions:

Returns	the	complete	document:

function(key,	value,	rereduce)	{

		return	value;

}

Returns	the	id	and	address	attribute	from	the	document:

function(key,	value,	rereduce)	{

		return	{

				"_id":	value["_id"],

				"address":	value["address"]

		};

}

Returns	all	attributes	other	than	the	address	attribute:

function(key,	value,	rereduce)	{

		delete	value.address;

		return	value;

}

The	next	example	demonstrates	using	JSON	with	MongoDB	that	allows	segregation	of
records	using	the	notion	of	collections	(similar	to	tables	in	SQL).	MongoDB,	interestingly,
does	not	need	a	database	to	be	created	before	data	insertion	is	done.	As	the	official
documentation	reads:

http://en.wikipedia.org/wiki/Mapreduce

...	MongoDB	does	not	require	that	you	do	so	(create	a	database).	As	soon	as	you	insert
something,	MongoDB	creates	the	underlying	collection	(similar	to	databases	in	RDBMS
world)	and	database.	If	you	query	a	collection	that	does	not	exist,	MongoDB	treats	it	as	an

empty	collection	(means,	you	never	get	errors).	(Found	at
http://www.mongodb.org/display/DOCS/Tutorial).

The	emphasis	is	mine.

Since	MongoDB	does	not	provide	RESTful	interface	over	HTTP	out	of	the	box,	we	execute
the	code	on	the	MongoDB	console.

1.	 Even	though	not	mandatory,	here	is	how	to	create	a	collection:

>	db.createCollection("userprofile");

2.	 Inserting	a	record	into	userprofile	collection	(document	stripped	for	brevity):

Note
Note	that	the	document	does	not	contain	the	type	attribute	since	MongoDB
supports	the	notion	of	collection,	which	is	nothing	but	type.

>	db.userprofile.insert({

			"me":	{

					"id":	"document-uuid",

					...

			},

			"personal":	{

					"firstName":	"Alice",

					...

			}

});

Note
While	working	with	MongoDB,	it	is	always	a	good	idea	to	have	the	record	ID	in
the	document	itself,	like	for	our	case	it	is	me	=>	id.

3.	 To	update	a	record,	use	the	update	method	that	expects	two	arguments.	The	first
argument	is	a	query	to	filter	the	record	to	be	updated.	The	second	argument	provides
details	about	the	updated	values.	These	steps	are	similar	to	that	in	SQL	for	an
UPDATE	statement	where	the	first	argument	is	similar	to	the	WHERE	clause	and	the
second	argument	similar	to	the	SET	clause:

>	db.userprofile.update({

http://www.mongodb.org/display/DOCS/Tutorial

				"me.id":	"uuid-to-search-for"

		},	{

				"$set":	{

						"personal.lastName":	"Taylor"

				}

		}

);

Note
Notice	that	MongoDB	treats	dot	(.)	as	a	separator	to	traverse	within	the	object.
As	such,	it	is	advisable	not	to	use	dot	in	attribute	names.

Treat	firstName	as	a	legal	attribute	while	name.first	as	an	attribute	name	to	be
avoided.

4.	 To	retrieve	records,	we	can	use	any	of	the	attributes:

>	db.userprofile.find({

				"personal.firstName":	"Bob"

		}

);

5.	 To	delete	a	record	or	records,	all	that	is	required	is	to	be	able	to	query	for
appropriate	attribute	or	attributes.	For	example,	to	remove	profiles	whose	age	is
greater	than	30	and	the	city	of	thier	personal	address	is	Madrid:

>	db.userprofile.remove({

				"personal.age":	{	$gt:	30	},

				"personal.address.city":	"Madrid"

		}

);

6.	 After	exploring	some	of	these	basic	operations,	let	us	get	into	some	complex,	real-
world	scenarios	of	querying	the	data,	configuring	specific	indexes,	and	returning
partial	document.

To	start	with,	let	us	reintroduce	the	problem	that	we	discussed	earlier	while	dealing
with	CouchDB,	that	is,	querying	for	"NoSQL"	in	title	as	well	as	expertise,	and	look
at	the	solution	that	MongoDB	has	to	offer.	Additionally,	now	that	we	understand	that
the	collection—userprofile—is	merely	a	collection	of	documents,	we	can	safely
rename	it	to	shoppingDB	for	incorporating	the	larger	scope	that	we	operate	with	in
subsequent	examples:

>	db.shoppingDB.find({

				$or:	[

						{	"title":	/NoSql/i	},

						{	"expertise":	/NoSql/i	}

]

		}

);

In	another	scenario,	let	us	assume	that	profiles	have	sales—an	array	of	objects
corresponding	to	monthly	sales	since	the	time	the	user	joined	the	company	with	each
object	having	information	about	the	month	and	sales	figures.	What	we	want	to	query
is	all	the	profiles	that	cross	the	sales	of	500,000	in	their	first	month	of	joining:

//Sample	document

{

			"me":	{	...	},

			"sales":	[{	"month":	201201",	"value":	100000	},	...]

}

//The	query

>	db.shoppingDB.find({

				"sales.0.value	>=	":	500000

		}

);

If	you	notice	in	the	query	the	first	argument	to	the	find	method,	you	notice	a	strange
syntax—sales.0.value.	The	interpretation	is,	for	the	array	sales,	take	the	item	at
index	0	and	for	that	item,	pickup	the	value	for	the	property	value,	and	if	the	value	if
greater	than	or	equal	to	500000,	select	the	item.	For	complete	details	on	dot	notation
in	query,	have	a	look	at	http://docs.mongodb.org/manual/core/document/#dot-
notation.

Let	us	now	explore	the	other	side	of	the	query—the	results.	So	far	whatever	we
searched	for,	we	received	the	complete	documents.	Let	us	take	some	cases	where
we	need	only	a	part	of	the	document—similar	to	creating	a	view	in	CouchDB.	To	do
so,	we	make	use	of	the	optional	second	parameter	wherein	we	can	specify	the
document	fragment	to	be	included	or	excluded.

In	the	first	case,	we	select	only	personal	=>	firstName	and	sales:

>	db.shoppingDB.find({	...	},	{

				"personal.firstName":	1,

				"sales":	1

		}

);

In	the	next	case,	we	select	all	fields	except	criminal	record:

>	db.shoppingDB.find({	...	},	{

				"criminal":	0

		}

);

In	the	last	case,	we	select	only	the	last	five	sales	elements	across	all	the	documents
(cool!):

http://docs.mongodb.org/manual/core/document/#dot-notation

>	db.shoppingDB.find({	},	{

				"sales":	{	$slice:	-5	}

		}

);

Note
Note	that	even	though	MongoDB	supports	collections,	it	does	not	enforce	restrictions
on	the	schema.	This	essentially	means	that	MongoDB	is	akin	to	having	multiple	instances
of	CouchDB	running	under	a	single	umbrella.

Key-value	store
A	Key-value	store	is	very	closely	related	to	a	document	store—it	allows	the	storage	of	a
value	against	a	key.	Similar	to	a	document	store,	there	is	no	need	for	a	schema	to	be
enforced	on	the	value.	However,	there	a	are	few	constraints	that	are	enforced	by	a	key-
value	store	(http://ayende.com/blog/4459/that-no-sql-thing-document-databases):

Unlike	a	document	store	that	can	create	a	key	when	a	new	document	is	inserted,	a
key-value	store	requires	the	key	to	be	specified
Unlike	a	document	store	where	the	value	can	be	indexed	and	queried,	for	a	key-value
store,	the	value	is	opaque	and	as	such,	the	key	must	be	known	to	retrieve	the	value

If	you	are	familiar	with	the	concept	of	maps	or	associative	arrays
(http://en.wikipedia.org/wiki/Associative_array)	or	have	worked	with	hash	tables
(http://en.wikipedia.org/wiki/Hash_table),	then	you	already	have	worked	with	a	in-memory
key-value	store.

The	most	prominent	use	of	working	with	a	key-value	store	is	for	in-memory	distributed	or
otherwise	cache.	However,	implementations	do	exist	to	provide	persistent	storage.

A	few	of	the	popular	key	value	stores	are:

Redis	(in-memory,	with	dump	or	command-log	persistence)
Memcached	(in-memory)
MemcacheDB	(built	on	Memcached)
Berkley	DB
Voldemort	(open	source	implementation	of	Amazon	Dynamo)

Advantages
Key-value	stores	are	optimized	for	querying	against	keys.	As	such,	they	serve	great	in-
memory	caches.	Memcached	and	Redis	support	expiry	for	the	keys—sliding	or	absolute—
after	which	the	entry	is	evicted	from	the	store.

http://ayende.com/blog/4459/that-no-sql-thing-document-databases
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Hash_table

At	times,	one	can	generate	the	keys	smartly—say,	bucketed	UUID—and	can	query	against
ranges	of	keys.	For	example,	Redis	allows	retrieving	a	list	of	all	the	keys	matching	a	glob-
style	pattern.

Note
While	the	time	complexity	for	this	operation	(search	for	keys	matching	a	pattern)	is	O(N),
the	constant	times	are	fairly	low.	For	example,	Redis	running	on	an	entry	level	laptop	can
scan	a	1	million	key	database	in	40	milliseconds.	(source	found	at
http://redis.io/commands/keys).

Though	the	key-value	stores	cannot	query	on	the	values,	they	can	still	understand	the	type
of	value.	Stores	like	Redis	support	different	value	types—strings,	hashes,	lists,	sets,	and
sorted	sets.	Based	on	the	value	types,	advanced	functionalities	can	be	provided.	Some	of
them	include	atomic	increment,	setting/updating	multiple	fields	of	a	hash	(equivalent	of
partially	updating	the	document),	and	intersection,	union,	and	difference	while	working	with
sets.

Examples
Let	us	explore	some	basic	data	operations	using	the	Redis	(http://redis.io	database).	Note
that	there	is	no	concept	of	database	or	table	in	Redis:

Set	or	update	value	against	a	key:

SET	company	"My	Company"									//String

HSET	alice	firstName	"Alice"					//Hash	–	set	field	value

HSET	alice	lastName	"Matthews"			//Hash	–	set	field	value

LPUSH	"alice:sales"	"10"	"20"				//List	create/append

LSET	"alice:sales"	"0"	"4"							//List	update

SADD	"alice:friends"	"f1"	"f2"			//Set	–	create/update

SADD	"bob:friends"	"f2"	"f1"					//Set	–	create/update

Having	done	that,	let	us	explore	some	interesting	operations	on	sets	and	lists:

Set	operations:

//Intersection	–	Get	mutual	friends	of	Alice	and	Bob

SINTER	"alice:friends"	"bob:friends"

//Difference	–	Friends	in	Alice's	list	absent	in	Bob's

SDIFF	"alice:friends"	"bob:friends"

//Union	–	All	friends	that	need	invitation	in	their	marriage

SUNION	"alice:friends"	"bob:friends"

List	operations:

//Pop	the	first	item,	or	return	null

http://redis.io/commands/keys
http://redis.io database

POP	"key:name"

//Blocking	pop	–	pop	the	first	item,	or	wait	until	timeout	or	next	

is	available	(check	across	lists	–	l1,	l2,	l3)

BLPOP	l1	l2	l3

//Pop	item	from	list1,	append	to	list2	and	return	the	value

RPOPLPUSH	list1	list2

Note
Key-value	stores	are	not	designed	for	applications	that	need	indexes	on	the
values.	Because	of	optimization	on	key-queries,	implementations	like	Memcached
or	Redis	are	great	candidates	for	distributed,	scalable,	in-memory	cache.

Graph	store
Graph	databases	represent	a	special	category	of	NoSQL	databases	where	relationships	are
represented	as	graphs.	There	can	be	multiple	links	between	two	nodes	in	a	graph—
representing	the	multiple	relationships	that	the	two	nodes	share.

The	relationships	represented	may	include	social	relationships	between	people,	transport
links	between	places,	or	network	topologies	between	connected	systems.

Graphical	representation	of	a	graph	may	look	similar	to	the	following	graph
(http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html):

http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html

Graph	databases	are	fairly	new	in	the	market	with	only	a	few	proven	solutions	out	there:

Neo4j
FlockDB	(from	Twitter)

Advantages
An	article	found	at	http://www.infoq.com/articles/graph-nosql-neo4j	quotes	the	advantages
as	follows:

Graph	theory	has	seen	a	great	usefulness	and	relevance	in	many	problems	across	various
domains.	The	most	applied	graph	theoretic	algorithms	include	various	types	of	shortest	path
calculations,	geodesic	paths,	centrality	measures	like	PageRank,	eigenvector	centrality,

closeness,	betweenness,	HITS,	and	many	others.

Graph	databases	can	be	considered	as	special	purpose	NoSQL	databases	optimized	for
relation-heavy	data.	If	there	is	no	relationship	among	the	entities,	there	is	no	usecase	for
graph	databases.

The	one	advantage	that	graph	databases	have	is	easy	representation,	retrieval	and

http://www.infoq.com/articles/graph-nosql-neo4j

manipulation	of	relationships	between	the	entities	in	the	system.

It	is	not	uncommon	to	store	data	in	a	document	store	and	relationships	in	a	graph	database.

Examples
The	following	code	demonstrates	how	to	create	a	simple	relationship	between	two	nodes
with	Neo4J:

//Assume	that	we	get	the	underlying	database	service	somehow

GraphDatabaseService	db	=	...

Node	node1	=	db.createNode();

node1.setProperty("documentId",	"alice");

Node	node2	=	db.createNode();

node2.setProperty("documentId",	"bob");

RelationType	friendRel	=	new	RelationType()	{

			public	String	name()	{	return	"friend";	}

};

Relationship	reln	=	node1.createRelationshipTo(node2,	

																																															friendRel);

reln.setProperty("initatedBy",	"alice");

reln.setProperty("createdOn",	"1980-01-01T07:30+0530");

The	next	example	demonstrates	how	to	retrieve	all	adjacent	nodes	against	a	relationship	and
pivot	node:

//Define	an	index

Index<Node>	nodeIndex	=	db.index().forNodes("nodes");

//While	creating	a	node,	add	it	to	the	index

nodeIndex.add(node1,	"documentId",

														(String)	node1.getProperty("documentId"));

//Search	for	a	specific	node

Node	aliceNode	=	nodeIndex.get("documentId,	"alice").single();

//Get	all	friend	relationships

Iterable<Relationship>	rels	=

											aliceNode.getRelationships(friendRel);

//Get	friends	on	the	other	side	of	the	relationship

for(Relationship	r:	rels)

{

			Node	friendNode	=	r.getEndNode();

			assert	"bob".equals(friendNode.getProperty("documentId"))

}

Note

Use	graph	databases	to	store	the	relationships.	Do	not	use	them	for	complete	data
store;	the	performance	may	degrade.	Neo4j	is	full	ACID-compliant	database—something
that	one	may	want	while	dealing	with	relationships.

Multi-storage	type	databases
Apart	from	the	databases	that	we	discussed	earlier,	following	is	a	list	of	databases	that
support	multiple	storage	types,	giving	you	flexibility:

OrientDB:	Supports	document	store,	key-value	as	well	as	graph.	The	official	website
is	http://www.orientdb.org.
ArangoDB:	Universal	database	with	support	for	document	store,	key-value	and
graph	models.	Official	website	is	http://www.arangodb.org.
Aerospike:	A	very	interesting	database	that	is	a	hybrid	between	RDBMS	and	NoSQL
store.	It	supports	document	store,	key-value,	graph	as	well	as	RDBMS.	Source	code
can	be	found	at	https://github.com/JakSprats/Alchemy-Database.

http://www.orientdb.org
http://www.arangodb.org
https://github.com/JakSprats/Alchemy-Database

Comparing	the	models
Now	that	we	have	explored	the	popular	storage	or	data	models,	let	us	compare	them	on	key
parameters	of	features:

Feature Column
Oriented

Document
Store

Key	Value
Store Graph

Table-like	schema	support
(columns) Yes No No Yes

Complete	update/fetch Yes Yes Yes Yes

Partial	update/fetch Yes Yes Yes No

Query/Filter	on	value Yes Yes No Yes

Aggregates	across	rows Yes No No No

Relationships	between	entities No No No Yes

Cross-entity	view	support No Yes No No

Batch	fetch Yes Yes Yes Yes

Batch	update Yes Yes Yes No

Note	that	although	we	have	Yes	as	well	as	No	across	the	columns,	the	difference	between	the
various	models	is	getting	blurred	over	time.

For	example,	a	couple	of	years	back	the	key-value	stores	would	consider	values	are	opaque
blobs	where	as	today	they	support	granular	query	and	update	today.

Similarly,	earlier	document	stores	allowed	ID-based	CRUD	operations	but	databases	such	as
MongoDB	support	bulk	updates	today.

The	key	question	is—what	model	to	use	in	what	scenario?

Well,	if	you	have	just	landed	from	RDBMS	world,	modeling	with	column-oriented	databases
may	give	you	quick	hands-on	experience	with	NoSQL	modeling.	One	more	real-world	case	is
when	you	have	more	need	to	work	with	aggregate	values	as	compared	to	individual	values—
for	example,	social-heavy	applications.	If	you	intend	to	work	with	the	Google	App	Engine—
well,	you	have	no	choice	but	to	use	this	model.	Facebook	uses	HBase	to	power	their
messages	infrastructure	while	Yahoo!	uses	the	same	to	store	document	fingerprint	to	detect
near-duplications	(http://wiki.apache.org/hadoop/Hbase/PoweredBy).

Document-oriented	store	systems	are	one	type	that	can	serve	you	across	the	application
types	including	where	you	have	a	heavy	need	for	aggregates	across	the	entities.
MapReduce-based	implementations	give	you	amazing	control	over	querying	the	data	such	as
working	with	JSON	using	nested	properties,	and	with	XML	using	XQuery;	and	creating
response	structures	such	as	creating	aggregates,	and	custom	views	across	entity	types.
Companies	like	Facebook	(HBase),	Netflix,	Twitter,	and	eBay	(Cassandra)	have	given
tremendous	impetus	to	the	evolution	of	document	stores	and	it	continues	to	lead	the	pack
by	a	huge	margin	(http://www.datastax.com/cassandrausers).

Key-value	stores	are	great	options	similar	to	document-oriented	stores.	The	only	missing
feature	is	querying	against	the	value.	However,	with	time,	this	differentiation	seems	to	be
headed	for	blurriness.	One	case	where	key-value	stores	win	hands-down	is	distributed	in-
memory	cache.	Extensive	use	of	Memcached	and	Redis	prove	the	same.

Graph	databases	are	particularly	useful	in	defining	relationships	across	entities	at	database
level	as	opposed	to	in	other	models	where	the	relationships	are	only	visible	at	application
level.	Twitter	has	open	sourced	FlockDB	that	it	uses	exclusively	to	store	social	graphs
(https://github.com/twitter/flockdb).

However,	if	you	are	designing	the	database	for	the	lightweight	shopping	application,	the
RDBMS	approach	is	the	perfect	fit	for	the	same.

http://wiki.apache.org/hadoop/Hbase/PoweredBy
http://www.datastax.com/cassandrausers
https://github.com/twitter/flockdb

Summary
In	this	chapter	we	discussed	key	data	models	available	while	working	with	NoSQL	databases.
We	looked	at	some	of	the	key	features	available	with	these	models.	These	models,	however,
are	not	exhaustive.	There	are	some	other	models	also	available:

Object	databases
Multidimensional	databases
Multi-value	databases

Last	but	not	the	least,	we	compared	these	models	across	some	key	parameters	and	looked
at	some	common	scenarios	describing	which	model	to	use.

Although	NoSQL	databases	are	great,	they	may	not	always	be	a	good	choice	always.	In	the
next	chapter	we	take	a	deeper	dive,	to	identify	what	fits	into	which	scenario.

Chapter	4.	Advantages	and	Drawbacks
Having	understood	the	modeling	options	available	in	NoSQL	along	with	the	RDBMS
knowledge	that	we	already	had,	we	are	now	in	a	position	to	understand	the	pros	and	cons	of
using	NoSQL.

In	this	chapter,	we	will	take	three	different	representative	application	requirements	and
discuss	advantages	and	disadvantages	of	using	NoSQL,	and	conclude	whether	or	not	to	use
NoSQL	in	that	specific	scenario.

We	will	analyze	by	understanding	the	database	requirements,	identifying	the	advantages	and
drawbacks,	and	finally	coming	to	a	conclusion	on	NoSQL	use	as	follows:

Entity	schema	requirements:	What	is	the	density	of	relationships	across	entities,
whether	or	not	the	schema	change	over	time	and	if	so,	what	is	the	frequency
Data	access	requirements:	Should	the	data	be	always	consistent	or	can	be
eventually	consistent	(say,	after	10	ms	or	10	days	or	whatever),	would	the	data
access	be	more	horizontal	(row-wise)	or	vertical	(column-wise)
What	NoSQL	can	do:	What	does	NoSQL	have	to	offer	in	the	given	scenario
What	NoSQL	cannot	do:	Where	NoSQL	fails	or	leaves	a	lot	of	work	to	be	done	at
the	application	tier	in	the	given	scenario.
Whether	or	not	to	use	NoSQL:	If	NoSQL	is	a	good	choice,	which	data	model	fits
best	with	it.

At	a	broad	level,	I	have	classified	the	applications	into	the	following	categories:

Relational-data	driven,	transaction-heavy	applicatios
Data-driven,	computation-heavy	applications
Web-scale,	data-driven	applications	where	minor	latencies	are	acceptable

Transactional	application
This	type	of	application	has	data	that	is	highly	relational	in	nature.	Important	application
characteristics	are:

The	application	relies	on	the	consistency	and	integrity	of	the	data
The	concurrency	(usage)	is	relatively	lower

Lower	is	a	relative	adjective—all	that	we	are	looking	for	here	is	that	the
application	can	be	served	by	a	single	database	instance	without	any
replication	or	load-balance	requirements
It	may	choose	to	have	mirrors	or	replication	for	automatic	failover	or
otherwise	but	the	application	talks	to	a	maximum	of	one	instance—may	switch
over	in	case	of	failover

An	example	of	this	is	the	application	at	the	point-of-sales	at	a	grocery	shop	or	an	enterprise

resource	management	application.	The	key	here	is	data	consistency.

Entity	schema	requirements
For	a	transactional	application,	general	requirements	for	the	entity	schema	include:

Highly	structured	definition—properties,	types,	and	constraints,	if	applicable
Ability	to	define	relationships—parent	versus	child	keys
Schema	does	not	evolve	or	vary	too	much	over	time.

Data	access	requirements
From	a	data	access	perspective,	we	would	have	the	following	requirements:

Consistency—any	read	should	return	latest	updated	data
More	often	than	not,	the	entire	record	(row)	will	be	retrieved
Cross-entity	(table)	data	access	may	be	frequent

What	NoSQL	can	do
For	a	transactional	application,	NoSQL	can	help	as	follows:

Column-oriented	database	helps	define	structure.	If	need	be,	it	can	be	changed	over
time.
Document-oriented	database	can	help	implement	JOIN	or	create	views.

What	NoSQL	cannot	do
Using	NoSQL	will	result	in	a	few	limitations	for	a	transactional	application:

Inability	to	define	relationships
Absence	of	transactions	(Neo4j	is	an	exception)
Unavailability	of	ACID	properties	in	operations	(CouchDB	and	Neo4j	are	the
exceptions)
Using	Cassandra	or	CouchDB	can	be	overkill	if	we	compare	them	to,	for	example,
MySQL	or	PostgreSQL—they	do	not	unleash	their	true	power	in	a	single-machine
installation
Absence	of	support	for	JOIN	and	cross-entity	query,	though	document-oriented
stores	support	it	by	way	of	MapReduce	but	the	efforts	may	be	substantial	as	the
queries	get	complex

Decision
Choose	RDBMS	rather	than	NoSQL.	The	disadvantages	outweigh	the	advantages.

Computational	application
This	type	of	application	does	a	lot	of	computation	in	the	application.	Key	characteristics	of
this	application	type	are:

Most	of	the	operations	are	along	a	given	set	of	properties	across	the	records
The	data	stored	may	still	be	relational	but	the	computation-centric	data	definitely	has
sparse	relations,	if	any

An	example	of	this	type	of	application	is	a	survey	application	or	a	sales	record	management
application.	The	key	here	is	that	the	computation	is	across	the	records	but	on	a	subset	of
the	properties	or	columns	available	(the	subset	in	an	extreme	case	can	be	100	percent	of	the
available	columns).	Also,	a	survey	application	would	require	ability	to	define	custom	fields	and
operations.

Entity	schema	requirements
For	a	computational	application,	general	requirements	on	the	entity	schema	include:

Structured	schema	definition—properties,	types,	and	constraints,	if	applicable.
Schema	does	not	evolve	or	vary	too	much	over	time.

Data	access	requirements
From	a	data	access	perspective,	we	would	have	the	following	requirements:

Partial	record	access.
Vertical,	that	is,	column-wise	processing.

For	example,	for	an	entity	holding	the	data	of	daily	revenues	and	expenses	at	a	given
location	of	operation,	one	would	compute	across	the	revenue	column	and/or	expense
column	more	often	than	working	on	the	entire	row.

Cross-entity	data	access	is	infrequent.

For	example,	to	create	the	final	balance	sheet	for	a	location,	I	may	use	the	location
ID	once	to	get	the	details	about	the	location.

Consistency—data	should	be	consistent.	However,	in	some	cases,	minor	latencies
are	allowed.

For	example,	since	the	reports	may	be	generated	daily	rather	than	in	real-time,	the
user	is	happy	working	with	day-old	data.

What	NoSQL	can	do

For	a	computational	application,	NoSQL	can	help	as	follows:

Column-oriented	databases	would	help	define	rigorous	schema.	Document	or	key-
value	databases	can	still	be	used.

For	example,	JSON	formats	can	be	used	to	define	a	formal	schema.	Just	that	these
stores	cannot	enforce	the	schema.

They	(column-oriented,	key-value	as	well	as	document	stores)	can	provide	speed	and
scale	while	fetching	partial	data.
Document	stores	coupled	with	MapReduce	processing	can	help	performing
computation	right	up	close	to	the	data-tier	thereby	substantially	increasing	the	speed
of	execution.	You	do	not	want	unnecessary	data	to	be	floating	across	the	network.
Document	stores	can	help	implement	JOIN	or	create	views.

What	NoSQL	cannot	do
Using	NoSQL	will	result	in	a	few	limitations	for	a	computational	application:

Defining	relationships	can	be	tricky.	Except	for	graph	databases,	these	relationships
must	be	maintained	in	application.
Because	relationships	do	not	exist	in	the	database,	data	can	be	inconsistent—even	if
momentarily.

Decision
The	list	of	tasks	that	are	possible	in	NoSQL	are	also	possible	with	RDBMS.	The	only
brownie	point	that	NoSQL	gets	here,	which	can	turn	out	to	be	a	big	differentiator,	is	the
speed	and	scale	at	which	data	can	be	partitioned	horizontally	and	fetched	property-wise.

RDBMS	systems	do	allow	the	filtering	of	queries	such	as	the	one	given	in	the	following:

SELECT	revenue,	expense	FROM	location_finance	WHERE	location_id=1234

However,	internally	RDBMS	systems	are	tuned	to	fetch	the	entire	row	at	the	time	from	the
underlying	physical	store	and	then	apply	the	filter—especially	the	columns	selected	using	the
SELECT	statement.

On	the	other	hand,	NoSQL	databases—especially	column-oriented	databases—are	highly
optimized	to	retrieve	partial	records	and	can	result	in	a	dramatic	performance	difference
against	RDBMS	while	dealing	with	hundreds	of	millions	or	billions	of	records.

To	conclude,	it	is	a	tough	choice	between	RDBMS	and	NoSQL	databases	in	this	case.	If	the
application	is,	say,	an	enterprise	application	wherein	the	number	of	records	will	be	limited	to
around,	for	example,	a	hundred	million	or	lower,	RDBMS	can	just	serve	it	right,	though
NoSQL	can	also	be	used.	For	any	size	less	than	a	million	records,	NoSQL	can	have

overheads	in	terms	of	setup	and	tuning;	while	for	over	a	few	hundred	million	records,
RDBMS	will	taper	down	in	performance.

Web-scale	application
This	last	application	type	is	probably	more	relevant	today	in	consumer	applications,	whether
they	are	completely	web-based	or	mobile-native	apps	or	a	combination	of	both.

Some	of	the	key	characteristics	of	this	type	of	application	are:

The	application	should	be	able	to	scale	because	of	the	enormous	volume	of	content
that	it	operates	on,	the	sheer	number	of	users,	and	the	vast	geography	where	the
users	access	it	because	of	which	one	datacenter	is	unfeasible.
The	users	of	this	application	may	be	fine	working	with	non-real-time,	relatively	stale
data.	The	staleness	may	range	from	few	tens	of	milliseconds	to	few	days,	but	the
latest	data	may	definitely	not	be	available	within	the	fraction	of	millisecond.
The	schema	may	evolve	over	time	as	the	application	allows	integration	with	other
applications.
Since	the	data	can	never	be	completely	normalized	or	denormalized,	the	relationships
will	exist.

An	example	of	this	application	is	a	web	analytics	application	or	a	social	microblogging
platform.	The	key	here	is	the	scale	of	operation	and	staleness	of	data.

Another	set	of	examples	includes	SaaS-based	enterprise-grade	applications	such	as	CRM	or
ERP.	One	brilliant	example	of	this	is	SalesForce—it	is	a	SaaS	application	that	allows	you	to
integrate	the	data	of	your	schema.

Entity	schema	requirements
For	a	web-scale	application,	general	requirements	on	the	entity	schema	include:

Structured	schema	definition
The	ability	to	change	schema	over	time	without	affecting	existing	records	in	any
manner—in	extreme	case,	latent	schema
Relationships	may	be	optional	at	database	layer	and	can	be	pushed	to	application
layer	mainly	because	of	the	low	density

Data	access	requirements
From	a	data	access	perspective,	we	would	have	the	following	requirements:

Partial	record	access
Speed	of	operation	execution—CRUD
Inconsistent	data—for	a	short	moment—is	tolerable

What	NoSQL	can	do

For	a	web-scale	application,	NoSQL	can	help	as	follows:

Everything	already	covered	in	the	previous	scenario.

Document	stores	would	be	a	fantastic	choice	for	latent	schema.

It	can	provide	scale	of	operations	because	it	does	not	implement	ACID	operations
but	mostly	provide	BASE	properties.

What	NoSQL	cannot	do
I	do	not	see	any	requirement	that	NoSQL	cannot	fulfill	in	this	case.	Note	that	we	do	not
have	ACID	constraints—one	of	the	main	reasons	why	NoSQL	was	invented.

Decision
Use	NoSQL.	The	choice	of	the	type	of	store	(data	model)	can	vary	depending	upon	the
actual	underlying	requirement:

In	case	of	SaaS	applications	where	the	schema	has	to	be	flexible	to	incorporate	user-
specific	attributes,	document	stores	are	the	optimal	choice.	Examples	of	this	subtype
include	applications	such	as	CRM,	ERP—mainly	enterprise-targeted	applications
where	each	end	consumer	(organization)	may	have	their	own	specific	schema.
In	case	of	applications	like	e-learning	or	other	social	applications,	whose	underlying
schema	changes	and	evolves	at	a	fast	pace	and	would	need	the	ability	to	change
schema	over	time	but	still	be	under	the	tight	control	of	the	application	developer,
column-oriented	database	is	a	great	choice.
In	the	case	of	social	applications	that	need	ability	to	integrate	with	other	application,
it	may	want	to	use	a	mix	of	column-oriented	and	document-oriented	store	to	mitigate
the	risk	of	complete	schema	overhaul	of	unforeseen	data	format	of	a	new	application
that	becomes	a	rage	and	this	application	must	integrate	with	the	new	application	in
the	market.
To	store	relationships,	graph	databases	may	be	an	addendum	to	the	actual	data
store.	For	example,	Twitter	uses	graph	database,	FlockDB
(https://github.com/twitter/flockdb),	to	store	relationships	while	it	uses	Cassandra	for
real-time	analytics	(http://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-
twitter-strata-2011),	and	most	likely	HBase	for	persistent	store.

Note
Note	that	for	Twitter,	the	latency	requirement	is	less	than	100	ms,	as	given	in	the
presentation.

https://github.com/twitter/flockdb
http://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011

Summary
In	this	chapter,	we	did	a	comparative	analysis	of	RDBMS	versus	NoSQL	and	the	various
models	available	in	our	quest	to	figure	out	what	is	the	most	suitable	option,	given	a	specific
scenario.

Note	however	that	these	scenarios	are	only	representational.	In	the	application	that	you
may	be	working	on,	you	may	still	have	to	apply	more	brains	to	come	up	with	the	final
solution.	It	is	also	possible	that	the	final	solution	is	a	composite	choice;	one	part	data	being
in	RDBMS	while	the	other	being	in	NoSQL	store.

In	the	next	chapter,	we	will	compare	the	various	databases	and	solutions	available	in	the
market.	So,	assuming	that	you	plan	to	go	ahead	with	at	least	some	part	of	the	data	in	a
NoSQL	store,	the	next	chapter	is	a	must	read	for	you.

Chapter	5.	Comparative	Study	of	NoSQL
Products
Thus	far	we	have	looked	at	NoSQL	from	a	purely	technical	perspective,	comparing	it	with
RDBMS	as	a	technology	choice.	We	also	dug	deep	into	understanding	the	various	data
models	available	while	working	with	NoSQL.

In	this	chapter,	we	will	do	a	comparative	study	of	the	various	products	available	in	the	market
for	implementing	NoSQL—both	open	source	as	well	as	commercial.

Specifically,	we	compare	the	following	products:

Amazon	SimpleDB:	http://aws.amazon.com/simpledb
BaseX:	http://www.basex.org
Cassandra:	http://cassandra.apache.org
CouchDB:	http://couchdb.apache.org
Google	Datastore:	http://developers.google.com/appengine
HBase:	http://hbase.apache.org
MemcacheDB:	http://memcachedb.org
MongoDB:	http://www.mongodb.com
Neo4j:	http://www.neo4j.org
Redis:	http://redis.io

This	chapter	is	structured	such	that	we	first	explore	each	point	for	comparison	and	then
compare	it	across	the	products.

Comparison
Choosing	a	technology	does	not	merely	involve	a	technical	comparison.	Several	other
factors	related	to	documentation,	maintainability,	stability	and	maturity,	vendor	support,
developer	community,	license,	price,	and	the	future	of	the	product	or	the	organization	behind
it	also	play	important	roles.	Having	said	that,	I	must	also	add	that	technical	comparison
should	continue	to	play	a	pivotal	role.

We	will	start	a	deep	technical	comparison	of	the	previously	mentioned	products	and	then
look	at	the	semi-technical	and	non-technical	aspects	for	the	same.

http://aws.amazon.com/simpledb
http://www.basex.org
http://cassandra.apache.org
http://couchdb.apache.org
http://developers.google.com/appengine
http://hbase.apache.org
http://memcachedb.org
http://www.mongodb.com
http://www.neo4j.org
http://redis.io

Technical	comparison
From	a	technical	perspective,	we	compare	on	the	following	parameters:

Implementation	language
Engine	types
Speed

Implementation	language
One	of	the	more	important	factors	that	come	into	play	is	how	can,	if	required,	the	product	be
extended;	the	programming	language	in	which	the	product	itself	is	written	determines	a	large
part	of	it.	Some	of	the	database	may	provide	a	different	language	for	writing	plugins	but	it
may	not	always	be	true:

Amazon	SimpleDB:	It	is	available	in	cloud	and	has	a	client	SDK	for	Java,	.NET,	PHP,
and	Ruby.	There	are	libraries	for	Android	and	iOS	as	well.
BaseX:	Written	in	Java.	To	extend,	one	must	code	in	Java.
Cassandra:	Everything	in	Java.
CouchDB:	Written	in	Erlang.	To	extend	use	Erlang.
Google	Datastore:	It	is	available	in	cloud	and	has	SDK	for	Java,	Python,	and	Go.
HBase:	It	is	Java	all	the	way.
MemcacheDB:	Written	in	C.	Uses	the	same	language	to	extend.
MongoDB:	Written	in	C++.	Client	drivers	are	available	in	several	languages	including
but	not	limited	to	JavaScript,	Java,	PHP,	Python,	and	Ruby.
Neo4j:	Like	several	others,	it	is	Java	all	the	way.
Redis:	Written	in	C.	So	you	can	extend	using	C.

Great,	so	the	first	parameter	itself	may	have	helped	you	shortlist	the	products	that	you	may
be	interested	to	use	based	on	the	developers	available	in	your	team	or	for	hire.	You	may	still
be	tempted	to	get	smart	people	onboard	and	then	build	competency	based	on	the	choice
that	you	make,	based	on	subsequent	dimensions.

Note	that	for	the	databases	written	in	high-level	languages	like	Java,	it	may	still	be	possible
to	write	extensions	in	languages	like	C	or	C++	by	using	interfaces	like	JNI	or	otherwise.

Amazon	SimpleDB	provides	access	via	the	HTTP	protocol	and	has	SDK	in	multiple
languages.	If	you	do	not	find	an	SDK	for	yourself,	say	for	example,	in	JavaScript	for	use	with
NodeJS,	just	write	one.

However,	life	is	not	open	with	Google	Datastore	that	allows	access	only	via	its	cloud
platform	App	Engine	and	has	SDKs	only	in	Java,	Python,	and	the	Go	languages.	Since	the
access	is	provided	natively	from	the	cloud	servers,	you	cannot	do	much	about	it.	In	fact,	the
top	requested	feature	of	the	Google	App	Engine	is	support	for	PHP	(See
http://code.google.com/p/googleappengine/issues/list).

http://code.google.com/p/googleappengine/issues/list

Engine	types
Engine	types	define	how	you	will	structure	the	data	and	what	data	design	expertise	your
team	will	need.	As	we	discussed	in	Chapter	4,	Advantages	and	Drawbacks	NoSQL	provides
multiple	options	to	choose	from.

Database Column	oriented Document	store Key	value	store Graph

Amazon	SimpleDB No No Yes No

BaseX No Yes No No

Cassandra Yes Yes No No

CouchDB No Yes No No

Google	Datastore Yes No No No

HBase Yes No No No

MemcacheDB No No Yes No

MongoDB No Yes No No

Neo4j No No No Yes

Redis No Yes Yes No

You	may	notice	two	aspects	of	this	table	–	a	lot	of	No	and	multiple	Yes	against	some
databases.	I	expect	the	table	to	be	populated	with	a	lot	more	Yes	over	the	next	couple	of
years.	Specifically,	I	expect	the	open	source	databases	written	in	Java	to	be	developed	and
enhanced	actively	providing	multiple	options	to	the	developers.

Speed
One	of	the	primary	reasons	for	choosing	a	NoSQL	solution	is	speed.	Comparing	and
benchmarking	the	databases	is	a	non-trivial	task	considering	that	each	database	has	its	own
set	of	hardware	and	other	configuration	requirements.

Having	said	that,	you	can	definitely	find	a	whole	gambit	of	benchmark	results	comparing	one
NoSQL	database	against	the	other	with	details	of	how	the	tests	were	executed.

Of	all	that	is	available,	my	personal	choice	is	the	Yahoo!	Cloud	Serving	Benchmark
(YCSB)	tool.	It	is	open	source	and	available	on	Github	at
https://github.com/brianfrankcooper/YCSB.	It	is	written	in	Java	and	clients	are	available	for
Cassandra,	DynamoDB,	HBase,	HyperTable,	MongoDB,	Redis	apart	from	several	others
that	we	have	not	discuss	in	this	book.

Before	showing	some	results	from	the	YCSB,	I	did	a	quick	run	on	a	couple	of	easy-to-set-up
databases	myself.	I	executed	them	without	any	optimizations	to	just	get	a	feel	of	how	easy	it
is	for	software	to	incorporate	it	without	needing	any	expert	help.

I	ran	it	on	MongoDB	on	my	personal	box	(server	as	well	as	the	client	on	the	same	machine),
DynamoDB	connecting	from	a	High-CPU	Medium	(c1.medium)	box,	and	MySQL	on	the	same
High-CPU	Medium	box	with	both	server	and	client	on	the	same	machine.	Detailed
configurations	with	the	results	are	shown	as	follows:

Server	configuration:

Parameter MongoDB DynamoDB MySQL

Processor 5	EC2	Compute	Units N/A 5	EC2	Compute	Units

RAM
1.7	GB	with	Apache	HTTP	server
running	(effective	free:	200	MB,
after	database	is	up	and	running)

N/A

1.7GB	with	Apache	HTTP
server	running	(effective
free:	500MB,	after	database
is	up	and	running)

Hard	disk Non-SSD N/A Non-SSD

Network
configuration N/A US-East-1 N/A

https://github.com/brianfrankcooper/YCSB

Operating
system

Ubuntu	10.04,	64	bit N/A Ubuntu	10.04,	64	bit

Database
version 1.2.2 N/A 5.1.41

Configuration Default

Max	write:
500,

Max	read:
500

Default

Client	configuration:

Parameter MongoDB DynamoDB MySQL

Processor 5	EC2	Compute	Units 5	EC2	Compute	Units 5	EC2	Compute	Units

RAM

1.7GB	with	Apache
HTTP	server	running
(effective	free:	200MB,
after	database	is	up	and
running)

1.7GB	with	Apache
HTTP	server	running
(effective	free:	500MB,
after	database	is	up	and
running)

1.7GB	with	Apache
HTTP	server	running
(effective	free:	500MB
after	database	is	up	and
running)

Hard	disk Non-SSD Non-SSD Non-SSD

Network
configuration Same	Machine	as	server US-East-1 Same	Machine	as	server

Operating
system Ubuntu	10.04,	64	bit Ubuntu	10.04,	64	bit Ubuntu	10.04,	64	bit

Record
count 1,000,000 1,000 1,000,000

Max
connections

1 5 1

Operation
count
(workload	a)

1,000,000 1,000 1,000,000

Operation
count
(workload	f)

1,000,000 100,000 1,000,000

Results:

Workload Parameter MongoDB DynamoDB MySQL

Workload-
a	(load) Total	time 290	seconds 16	seconds 300	seconds

	 Speed
(operations/second)

2363	to	4180

(approximately
3700)

Bump	at	1278

50	to	82
(operations/second)

3135	to	3517
(approximately	3300)

	 Insert	latency

245	to	416
microseconds

(approximately
260)

Bump	at	875
microseconds

12	to	19
milliseconds

275	to	300
microseconds

(approximately	290)

Workload-
a	(run) Total	time 428	seconds 17	seconds 240	seconds

	 Speed 324	to	4653 42	to	78 3970	to	4212

	 Update	latency 272	to	2946
microseconds

13	to	23.7
microseconds

219	to	225.5
microseconds

	 Read	latency 112	to	5358
microseconds

12.4	to	22.48
microseconds

240.6	to	248.9
microseconds

Workload-
f	(load) Total	time 286	seconds Did	not	execute 295	seconds

	 Speed 3708	to	4200 	 3254	to	3529

	 Insert	latency 228	to	265
microseconds 	 275	to	299

microseconds

Workload-
f	(run) Total	time 412	seconds Did	not	execute 1022	seconds

	 Speed 192	to	4146 	 224	to	2096

	 Update	latency 219	to	336
microseconds 	

216	to	233
microseconds,	with	two
bursts	at	600	and	2303
microseconds

	 Read	latency 119	to	5701
microseconds 	 1360	to	8246

microseconds

	 Read	Modify	Write
(RMW)	latency

346	to	9170
microseconds 	 1417	to	14648

microseconds

Do	not	read	too	much	into	these	numbers	as	they	are	a	result	of	the	default	configuration,
out-of-the-box	setup	without	any	optimizations.

Some	of	the	results	from	YCSB	published	by	Brian	F.	Cooper
(http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf)	are	shown	next.

For	update-heavy,	50-50	read-update:

For	read-heavy,	under	varying	hardware:

http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf

There	are	some	more	from	Sergey	Sverchkov	at	Altoros	(http://altoros.com/nosql-research)
who	published	their	white	paper	recently.

For	update-heavy,	50-50	read-update:

For	read-heavy,	95-5	read-update:

To	conclude,	there	is	no	perfect	NoSQL	solution.	As	you	will	notice	from	the	results,	each
database	has	its	own	profile	and	works	amazingly	under	a	set	of	conditions	but	may	give
horrendous	results	in	other	scenarios.	A	database	that	works	awesomely	in	a	read-heavy

http://altoros.com/nosql-research

scenario	may	not	be	an	optimal	choice	in	an	application	that	is	write-heavy.	Similarly,
hardware	configurations	may	affect	some	databases	while	others	may	operate	independently
allowing	linear	scaling	out.

There	are	some	more	results	from	http://www.cubrid.org/blog/dev-platform/nosql-
benchmarking/,	comparing	MongoDB,	Cassandra,	and	HBase—just	in	case	you	are
interested	in	exploring	some	more.

Features
Next	we	will	compare	the	databases	on	the	basis	of	various	features	like	query	language,
support	for	bulk	operations,	record-size	limits,	limits	on	indexes,	and	anything	related.

Limits
Most	of	the	databases	have	limits	on	one	or	the	other	parameters	that	we	will	explore	next.

Amazon	SimpleDB:	Earlier	it	had	a	limit	of	1000	bytes	per	value.	As	of	today,
unknown—most	likely	limited	to	few	MBs.	It	can	hold	up	to	10	GB	or	1	billion	records
per	domain.	See	this	old	but	relevant	discussion	http://bit.ly/SWuj8y	at	stackoverflow.
BaseX:	BaseX	stores	complete	XML	documents,	has	a	massive	limit	of	512GB,	and
allows	for	storage	of	a	maximum	of	229	files.	An	amazing	illustration	of	the	largest
files	created	by	its	users—including	Twitter,	Wikipedia,	MedLine—is	available	at
http://docs.basex.org/wiki/Statistics.	The	largest	file	stored	is	about	420	GB.	This
limit	is	only	per	database	instance.	You	can	always	cluster	and	increase	your	limits
(except	single	file	size).
Cassandra:	All	data	for	one	row	must	fit	in	one	physical	disk.	Each	column	value
should	not	be	larger	than	2	GB	(231	bytes).	Maximum	number	of	columns	per	row	is	2
billion	(2	x	109),	implying	that	each	record	may	be	no	larger	than	262	bytes.	The
column	name	has	an	additional	limit	of	64	KB.	See	the	official	documentation	on
limitations	at	http://wiki.apache.org/cassandra/CassandraLimitations.	Note	that
versions	prior	to	0.7	had	smaller	limitations.
CouchDB:	Interestingly,	the	official	document	at
http://wiki.apache.org/couchdb/Frequently_asked_questions#How_Much_Stuff_can_I_Store_in_CouchDB.3F
says	that	the	practical	limits	are	unknown	(read:	never	hit	till	date).	Another
discussion	at	http://stackoverflow.com/questions/11019360/couchdb-document-size-
limits	points	that	the	configuration	puts	a	limit	of	4	GB,	but	again	that	may	only	be	a
default	limit.
Google	Datastore:	Maximum	entity	(row)	size	is	only	1	MB	while	maximum
transaction	size	is	10	MB.	For	a	given	entity,	the	maximum	number	of	indexes	is
20,000	and	the	maximum	number	of	bytes	in	any	index	allowed	is	2	MB.	See	official
documentation	at
https://developers.google.com/appengine/docs/python/datastore/overview#Quotas_and_Limits
HBase:	Per-record	value	must	fit	in	the	physical	disk.	However,	cell	value	size	is
limited	to	20	MB.
MemcacheDB:	Maximum	object	size	is	1	MB.

http://www.cubrid.org/blog/dev-platform/nosql-benchmarking/
http://bit.ly/SWuj8y
http://docs.basex.org/wiki/Statistics
http://wiki.apache.org/cassandra/CassandraLimitations
http://wiki.apache.org/couchdb/Frequently_asked_questions#How_Much_Stuff_can_I_Store_in_CouchDB.3F
http://stackoverflow.com/questions/11019360/couchdb-document-size-limits
https://developers.google.com/appengine/docs/python/datastore/overview#Quotas_and_Limits

MongoDB:	Maximum	document	size	is	16	MB.	Well,	use	GridFS	API	to	store	larger
documents—practically	unlimited	size.	Any	composite/compound	index	may	not	have
more	than	31	fields	while	a	single	collection	cannot	have	more	than	64	indexes	and
each	index	cannot	be	larger	than	1	KB.	See
http://docs.mongodb.org/manual/reference/limits/	for	all	details.
Neo4j:	Documentation	says	that	theoretically	there	are	no	limits.	The	default	limit
values	are	imposed	only	because	of	the	typically	available	hardware.	See
http://docs.neo4j.org/chunked/stable/capabilities-capacity.html#capabilities-data-size
for	details.
Redis:	String	value	is	limited	to	512	MB	while	the	upper	limit	on	the	size	of	the	value
for	a	key	in	general	is	2	GB.	Read	http://redis.io/topics/data-types	for	details.

Bulk	operations
By	bulk	operations,	I	refer	to	operations	that	involve	multiple	entities	in	a	single	go.In	a
typical	SQL-based	system,	I	can	execute	DELETE	FROM	my_table	where	_id=1	or	_id=2
allowing	the	deletion	of	multiple	records	at	one	go.	Similarly	for	read,	insert,	and	update
operations.

Bulk	read

It	is	interesting	to	note	that	not	all	databases	support	bulk	reading	of	the	records,	that	is	a
counterpart	of	the	SQL	statement	SELECT	col1	FROM	my_table	where	col2='val2'	may	not
exist	for	all	NoSQL	databases.

Document-oriented	databases	typically	will	support	retrieval	by	a	single	record	ID;	and	so	will
key-value	stores.	Column-oriented	databases	will,	in	general,	allow	multi-record	read	through
one	query.

Database Supported Example

SimpleDB Yes

https://sdb.amazonaws.com/

?Action=Select

&SelectExpression=select%20col1%20from%20	my_table%20where

%20col2%20%2D%20%27val2%27

BaseX Yes

for	$doc	in	collection()

where	value-of($doc//col2)	=	'val2'

return	$doc//col1

http://docs.mongodb.org/manual/reference/limits/
http://docs.neo4j.org/chunked/stable/capabilities-capacity.html#capabilities-data-size
http://redis.io/topics/data-types
https://sdb.amazonaws.com/

Cassandra Yes select	col1	from	my_table

where	col2='val2'

CouchDB Yes

function	map(doc)	{

		if(doc.col2	==	'val2')	{

				emit(doc._id,	doc.col1);

		}

}

function	reduce(k,	v,	rr)	{

		return	v;

}

Datastore Yes
q	=	new	Query('my_table').setFilter(

		new	FilterPredicate('col2',

					FilerOperator.EQUAL,	'val2'));

datastoreSvc.prepare(q).asIterable();

HBase Yes
scan	=	new	Scan().addColumn("col2".getBytes(),

"val2".getBytes());

results	=	htable.getScanner(scan);

MemcacheDB No N/A

MongoDB Yes db.my_table.find({	'col2':	'val2'	},	{	'col1':	1	});

Neo4j No Use	Batch	REST	API.	See
http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html.

Redis No N/A

Bulk	insert

By	bulk	insert	I	mean	inserting	multiple	records	using	one	command.	The	SQL	counterpart	of
the	same	is	shown	as	follows:

INSERT	INTO	my_table(_id,	col1,	col2)	VALUES('_id1',	'v1',	1),	('_id2',	

'v2',	2)

It	is	very	unlikely	that	databases	that	have	only	a	HTTP-RESTful	interface	will	support	this
since	the	record	ID	is	part	of	the	URL	and	document	is	part	of	the	POST-body	and	multi-
parts	are	not	supported,	at	least	not	today.	Having	said	that,	it	may	still	be	supported	in

http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html

some	more	interesting	ways,	for	example	look	at	the	SimpleDB	option.

Database Supported Example

SimpleDB

Yes

(Max	25
items,	256
attributes)

https://sdb.amazonaws.com/

?Action=BatchPutAttributes

&Item.1.ItemName=_id1

&Item.1.Attribute.1.Name=col1

&Item.1.Attribute.1.Value=v1

BaseX Yes N/A.	Could	not	find	any	reference	to	multiple	documents	at
http://docs.basex.org/wiki/Commands#ADD.

Cassandra Yes
CQL	is	very	similar	to	SQL.	Use	standard	SQL	INSERT
command	syntax.	See
http://cassandra.apache.org/doc/cql/CQL.html#INSERT.

CouchDB Yes

curl	-d	'{"docs":

[{"key":"baz","name":"bazzel"},

		{"key":"bar","name":"barry"}]}'

-X	POST

http://127.0.0.1:5984/my_db/_bulk_docs

Datastore Yes
List<Entity>	entities	=	...

datastoreSvc.put(entities);

HBase Yes
Since	HBase	follows	MapReduce,	the	solution	comprises	of	a
lot	of	code.	See	http://archive.cloudera.com/cdh/3/hbase/bulk-
loads.html.

MemcacheDB No N/A

MongoDB Yes db.my_table.insert	([{	"_id":	"doc1"	},{	"_id":	"doc2"

}]);

https://sdb.amazonaws.com/
http://docs.basex.org/wiki/Commands#ADD
http://cassandra.apache.org/doc/cql/CQL.html#INSERT
http://archive.cloudera.com/cdh/3/hbase/bulk-loads.html

Neo4j Yes
Use	Batch	REST	API.	See
http://docs.neo4j.org/chunked/snapshot/rest-api-batch-
ops.html.

Redis No N/A

Bulk	update

Bulk	update	refers	to	the	feature	wherein	multiple	records	may	be	updated	using	a	single
operation.	Using	SQL,	we	will	execute:

UPDATE	my_table	SET(col1='new_value')	WHERE	col2	>=	3

Note	that	UPDATE	is	quite	different	from	INSERT	even	though	both	change	the	state	of	the
store.	The	UPDATE	operation	requires	a	record	to	exist.	Even	though	a	database	may	not
support	bulk	insert,	it	is	likely	that	it	still	may	support	bulk	updates.

Database Supported Example

SimpleDB

Yes

(Max	25
items,	256
attributes)

https://sdb.amazonaws.com/

?Action=BatchPutAttributes

&Item.1.ItemName=_id1

&Item.1.Attribute.1.Name=col1

&Item.1.Attribute.1.Value=v1

BaseX Yes Use	XQUF	to	update	multiple	documents	at	one	go.
http://docs.basex.org/wiki/Update.

Cassandra Yes
CQL	is	very	similar	to	SQL.	Use	the	standard	SQL	UPDATE
command	syntax.	See
http://cassandra.apache.org/doc/cql/CQL.html#UPDATE.

CouchDB Yes
Use	Bulk	Document	API	to	first	fetch	required	and	then	update
them,	or	Update	Handlers	if	the	IDs	are	known.	See
http://stackoverflow.com/a/8011725/332210.

http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html
https://sdb.amazonaws.com/
http://docs.basex.org/wiki/Update
http://cassandra.apache.org/doc/cql/CQL.html#UPDATE
http://stackoverflow.com/a/8011725/332210

Datastore Yes
List<Entity>	entities	=	...

datastoreSvc.put(entities);

HBase Yes

HTableInterface	ht	=	...

List<Put>	items	=	...

ht.put(items);

MemcacheDB No N/A

MongoDB No
db.collection.update({	'col2':	{$gte:	3	}	},

	{	$set:	{	'col1':	'new	value'	}	},	false,	

true);

Neo4j Yes Use	Batch	REST	API.	See
http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html.

Redis No N/A

Bulk	delete

Similar	to	the	other	bulk	operations,	the	question	is	whether	or	not	it	is	possible	to	delete
multiple	documents	by	issuing	a	single	command.	In	SQL	world,	we	execute	the	following
statement:

DELETE	FROM	my_table	WHERE	_id='_id1'

Most	of	the	NoSQL	databases	do	support	bulk	delete	operations.

Database Supported Example

SimpleDB Yes

https://sdb.amazonaws.com/

?Action=BatchDeleteAttributes

&Item.1.ItemName=_id1

http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html
https://sdb.amazonaws.com/

BaseX Yes <delete	path='xml-doc-prefix'	/>

Cassandra Yes

CQL	can	be	used	to	delete	not	only	rows	but	also	columns	from
multiple	rows.

DELETE	col1	FROM	my_table	WHERE	_id='id1'	to	delete	specific
column.

DELETE	FROM	my_table	WHERE	id='_id1'	to	delete	the	entire	row.

CouchDB Yes
As	http://bit.ly/SUtPP8	points,	a	deleted	document	has	attribute
"_deleted":	true.	You	can	use	batch	update	to	batch	delete
documents.	See	also	http://bit.ly/VSUXBb.

Datastore
Yes

(Keys	only)

List<Key>	keys	=	...

datastoreSvc.delete(keys);

HBase Yes

HTableInterface	ht	=	...

List<Delete>	items	=	...

ht.delete(items);

MemcacheDB No N/A

MongoDB Yes db.my_table.remove({	'_id':	'id1'	});

Neo4j No Use	Batch	REST	API.	See
http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html.

Redis
Yes

(Keys	only)

DEL	key1	key2

HDEL	key1	key2

Query	options

http://bit.ly/SUtPP8
http://bit.ly/VSUXBb
http://docs.neo4j.org/chunked/snapshot/rest-api-batch-ops.html

What	is	a	database	if	we	cannot	search	it	without	having	to	know	the	primary	key	or	the
record	ID.	If	you	are	just	moving	out	from	the	RDBMS	databases,	you	will	be	very	much
used	to:

Defining	custom	indexes	for	faster	searches
Searching	across	tables	to	create	the	final	result	using	JOIN
Creating	complex	views	that	will	act	as	pseudo	tables	that	can	be	queried	upon

Get	by	ID

All	databases	support	it.	No	questions	asked.

Composite	indexes

Now,	this	is	a	tricky	requirement.	Most	of	these	databases	allow	searching	across	multiple
attributes	or	columns	or	properties.	Whether	or	not	they	allow	defining	custom	composite
index	is	a	different	question	altogether.

Here,	we	are	talking	about	searching	within	a	table	or	model	type.	Note	that	since	each
database	has	its	own	terminology	for	defining	the	model	structure,	I	will	refer	to	it	as	model
type	(the	tables	in	SQL	world,	entity	for	Datastore,	and	so	on).

Database Query	with	filters Custom	index

SimpleDB Yes No

BaseX Yes No

Cassandra Yes Yes

CouchDB Yes No

Datastore Yes Yes

HBase Yes Yes

MemcacheDB No No

MongoDB Yes Yes

Neo4j Yes Yes

Redis No No

Datastore	does	not	allow	non-equality	comparison	on	more	than	one	property.

If	you	look	at	the	preceding	table,	you	will	notice	that	the	key	value	stores,	specifically,	do
not	support	filter	queries.

Datastore	mandates	you	to	define	a	custom	index	before	you	can	use	it.	Single-property
queries	are	always	supported	unless	the	property	is	marked	non-indexed,	however,	a	query
spanning	multiple	properties	requires	an	explicit	index	to	be	created.

For	document-oriented	databases,	multi-property	queries	are	always	supported	irrespective
of	whether	or	not	custom	index	definitions	are	allowed	or	required.	MongoDB	requires
custom	index	definition	for	faster	access	whereas	CouchDB	always	indexes	it	for	you.

Cassandra	uses	the	notion	of	what	are	known	as	secondary	indexes	for	filter	queries,	while
HBase	supports	using	Hypertable	(HTableInterface).

Views

Great,	now	that	we	know	which	database	supports	query	by	properties	other	than	the	key
and	support	creating	custom	indexes	before	querying	them,	it	is	now	time	to	look	at	if	and
how	the	different	databases	support	querying	across	multiple	model	types.

While	working	with	RDBMS/SQL,	we	use	JOIN	statements	to	create	queries	spanning	across
multiple	tables.

The	following	is	a	table	lists	all	possibilities.

Database Cross-type	query Custom	view	definition

SimpleDB Yes No

BaseX Yes No

Cassandra Yes No

CouchDB Yes Yes

Datastore No No

HBase Yes No

MemcacheDB No No

MongoDB Yes No

Neo4j Yes No

Databases	that	do	not	support	query	filters	can	definitely	not	support	cross-type	queries
since	that	requires	non-ID	field-based	queries.

Among	others,	Datastore	specifically	does	not	support	cross-type	queries	which	means	you
cannot	do	things	that	you	were	so	used	to	while	working	with	RDBMS/SQL.

Document-oriented	databases	that	are	agnostic	of	the	underlying	document	schema	are	the
ones	that	do	and	will	support	cross-type	queries,	mainly	because	as	far	as	the	underlying
database	is	concerned,	it	does	not	have	any	notion	of	type	or	schema.	Each	piece	of
content	is—simply	put—a	semi-structured	document	that	can	be	indexed	and	searched.

CouchDB	is	the	only	database	in	our	list	that	supports	creating	custom	view	definition	that
persists	as	well.	Note	that	other	document-oriented	databases	support	indexing—either
implicit	or	explicit—but	do	not	support	creating	named	views	that	can	be	queried	upon.
Additionally,	these	views	do	not	compare	to	RDBMS	views.	CouchDB	views	do	not	have	any
schema	prescribed	and	are	a	result	of	the	reduce-step	in	the	operation.	As	such,	the
performance	benefit	is	not	comparable	to	as	in	RDBMS	views.	More	details	on	CouchDB
views	are	available	at	http://wiki.apache.org/couchdb/HTTP_view_API.

Security
The	next	aspect	that	we	compare	is	security.	Well,	no	database	has	been	implemented
without	keeping	security	in	mind	but	then	each	database	defines	various	aspects	of	security
in	its	own	way.

http://wiki.apache.org/couchdb/HTTP_view_API

Access	management
Under	access	management,	we	compare	the	following:

Authentication
Authorization

Authentication

Well,	a	basic	requirement	for	any	database	server	is	authentication	and	authorized	access.
Let's	look	at	what	access	mechanisms	are	available	with	each	database:

Database Authentication	support

SimpleDB Each	request	requires	a	access	key	and	HMAC-based	signature	to	validate
the	requests.

BaseX
Gives	commands	–	CREATE	USER,	ALTER	USER,	DROP	USER.

It	has	a	simple	username-	and	password-based	login.

Cassandra Uses	a	username/password	combo.	Passwords	can,	optionally,	be	MD5-
hashed.	But	always	kept	in	a	text	file.

CouchDB

Provides	RESTful	access	to	manage	users.

Authentication	can	be	either	HTTP-Basic	or	Cookie-based.

Since	Version	0.11,	OAuth	authentication	is	supported.

See	http://bit.ly/UhKHwc.

Datastore No	authentication.	Runs	directly	from	Google	App	Engine.

HBase Kerberos-based	authentication	is	supported.

MemcacheDB N/A

http://bit.ly/UhKHwc

MongoDB

Username/password	combo.	Admin	is	a	special	user.

The	REST	API	for	admin	must	be	either	disabled	or	firewalled	as	it	does	not
provide	any	security.

Neo4j Provides	an	API-based	highly	flexible	authentication	support.	Allows	you	to
write	custom	logic.

Redis N/A

Authorization	or	role-based	access

Role-based	access	allows	you	to	configure	what	permissions	each	account	or	group	of
accounts	is	granted.	You	do	not	want	all	users	to	always	have	administrative	privileges.	A
comparison	table	enlisting	options	available	with	each	database	is	shown	next.

In	general	there	can	be	the	following	permissions	associated	with	an	account:

None	(N)	–	akin	to	disabled	account.
Read	(R)	–	can	only	read	data,	per	database	or	collection.
Write	(W)	–	can	read	as	well	as	write	(includes	insert,	edit,	and	delete),	per	database
or	collection.
Create	(C)	–	can	read,	write,	and	also	create	table,	per	database	or	collection.
Database	Admin	(D)	–	can	administer	a	specific	database	or	collection.
Server	Admin	(A)	–	can	RWC	and	also	add	database	or	collection,	administer
accounts	and	permissions.	Can	do	everything	possible	with	the	server.

Database Authorization	support

SimpleDB No.	Each	AccessKey	that	can	be	authenticated	has	all	privileges.

BaseX Can	configure	one	or	more	of	NRWCA	permissions	with	any	account.	Can
configure	at	database	level.

Cassandra Can	configure	permissions	at	keyspace	(akin	to	tables)	or	column-family
level.	Permissions	are	restricted	to	R/W.

CouchDB Can	configure	permissions	at	database	level.	Permissions	available	–	RDA.
See	http://bit.ly/SOZ3Fj.

Datastore N/A

HBase Supports	configuring	access	control	lists.	Permissions	available	–	RWCA.
See	http://bit.ly/TDwRGf	and	http://bit.ly/RO28b3.

MemcacheDB N/A

MongoDB Permissions	available	at	server	level.	No	collection-level	permissions
available.	Permissions	available	are	RA.

Neo4j API-based	authorization	gives	you	complete	control	over	what	you	wan—can
be	as	fine-grained	or	coarse-grained	as	you	need.	See	http://bit.ly/RO2uyj.

Redis N/A

Encryption
Access	control	is	only	one	form	of	security	that	one	would	require.	In	real	enterprises,	there
is	a	definitive	need	for	stronger	security.	Specifically,	one	may	want	encryption	support.	Data
stored	and/or	data	transferred	may	need	to	be	encrypted	while	synchronizing	across	data
centers.

Database Store	encryption Protocol	encryption

SimpleDB No No

BaseX No No

Cassandra No
Yes

Internode	access	uses	TLS/SSL

http://bit.ly/SOZ3Fj
http://bit.ly/TDwRGf and http://bit.ly/RO28b3
http://bit.ly/RO2uyj

CouchDB No
Yes

(http://bit.ly/POrAx6	and	http://bit.ly/TACUcl)

Datastore No No

HBase No
No

(http://bit.ly/VVmx0O)

MemcacheDB No No

MongoDB Yes
Yes

(http://bit.ly/RO40R1)

Neo4j
Yes

(http://bit.ly/XwvX3m)
Yes

Redis No No

Third-party	tools	like	zNcrypt	support	store-level	encryption.	See	list	of	supported
applications	at	http://www.gazzang.com/support/supported-applications.

Note
I	do	not	personally	endorse	this	product.	Do	evaluate	before	you	use	it.

Multitenancy
Multitenancy	allows	you	to	scale	your	database	to	classify	and	segregate	data	across
multiple	applications	or	organizations	without	having	a	need	for	a	separate	installation.

According	to	Wikipedia:

http://bit.ly/POrAx6
http://bit.ly/TACUcl
http://bit.ly/VVmx0O
http://bit.ly/RO40R1
http://bit.ly/XwvX3m
http://www.gazzang.com/support/supported-applications

Multitenancy	refers	to	a	principle	in	software	architecture	where	a	single	instance	of	the
software	runs	on	a	server,	serving	multiple	client	organizations	(tenants).

The	question	is,	at	database	level,	what	does	multitenancy	really	mean?There	are	two	ways
that	your	application	using	one	of	these	databases	can	be	multitenant:

The	application	is	multitenant	irrespective	of	the	underlying	database.	It	is	so	by	the
way	underlying	model	and	entities	are	defined.	For	example,	portal	servers	like
SharePoint	and	Liferay	are	multitenant	within	a	single	database.
The	entities	are	not	modeled	keeping	multitenancy	deployment,	for	example	in	case
of	legacy	applications	wherein	you	may	just	want	to	rewrite	the	data-access	layer
rather	than	the	data-processing	(business	logic)	layer.	In	this	case,	you	want	support
for	multiple	databases	or	collections	within	one	server	installation.

When	I	say	multitenant	database,	I	refer	to	the	second	option.

Database Multitenancy	support

SimpleDB No

BaseX Yes

Cassandra Yes

CouchDB Yes

Datastore No

HBase No

MemcacheDB No

MongoDB Yes

Neo4j Yes

Redis No

SimpleDB	and	Datastore	are	multitenant	by	very	nature	of	cloud	deployment.	However,
within	one	instance,	there	is	no	further	subclassification.	So,	you	cannot	use	the	second
approach,	mentioned	previously,	to	make	your	application	multitenant.	In	fact,	it	will	not	even
be	required	for	database	to	support	it.

RDBMS	related	features
One	of	the	more	common	queries	that	I	have	seen	people	having	is	support	for	counterparts
for	the	RDBMS	features,	specifically	support	for	JOIN,	VIEW,	and	transactions	(ACID).

Well,	as	we	discussed	in	previous	chapters,	that	is	not	really	what	NoSQL	has	been	invented
for.	But	nevertheless,	the	vendors	and	community	have	striven	to	provide	some	of	these	in
as	much	capacity	as	possible.

We	have	already	discussed	about	JOIN	(cross-type	queries)	and	VIEW	earlier.

As	far	as	transaction	support	is	concerned,	I	have	not	read	or	heard	any	database	writing	or
talking	about	it	except	for	Neo4j.	See	http://bit.ly/TAHcAs	for	the	official	documentation	of
Neo4j	on	transaction	support.

Deployment	and	maintenance
Let	us	shift	our	focus	from	core	development	to	service	engineering	and	explore	the
parameters	of	support	and	features	under	availability,	automatic	failover,	replication,	backup,
restore,	recovery	from	crash,	and	so	on.

Availability
A	database	is	a	shared	resource	used	by	a	cluster	of	application	servers.	As	such,	it
becomes	highly	desirable	that	it	supports	clustering,	load	balancing,	and	automatic	failover.

The	table	listing	what	is	available	with	which	database	is	shown	as	follows:

Database Clustering Load	balancing Automatic	failover

SimpleDB N/A N/A N/A

http://bit.ly/TAHcAs

BaseX NO	[1] No No

Cassandra Yes	[2] Yes	[3] Yes	[4]

CouchDB No	[5] Yes	[6] Yes

Datastore N/A N/A N/A

HBase Yes	[7] Yes	[8,9] Yes

MemcacheDB Yes	[10] No No	[11]

MongoDB Yes	[12] Yes	[13] Yes	[14]

Neo4j Yes	[15] Yes	[16] Yes

Redis No	[17] NO No

For	cloud-hosted	databases,	such	as	SimpleDB	and	Datastore,	we	are	not	much	concerned
about	the	internal	service	engineering	aspects	as	long	as	the	database	is	available	from	the
application.

References	used	in	the	preceding	table	are	as	follows:

[1]	http://www.mail-archive.com/basex-talk@mailman.uni-konstanz.de/msg01477.html
[2]	http://www.datastax.com/docs/0.8/cluster_architecture/cluster_planning
[3]	http://wiki.apache.org/cassandra/Operations#Load_balancing
[4]	http://prettyprint.me/2010/03/03/load-balancing-and-improved-failover-in-hector/
[5]	http://guide.couchdb.org/draft/clustering.html
[6]	http://guide.couchdb.org/draft/balancing.html
[7]	http://hbase.apache.org/replication.html
[8]	http://hbase.apache.org/book/architecture.html#arch.overview.nosql
[9]	http://hstack.org/why-were-using-hbase-part-1/
[10]	http://osdir.com/ml/memcachedb/2009-03/msg00027.html
[11]	http://www.couchbase.com/forums/thread/load-balance-memcached
[12]	http://docs.mongodb.org/manual/core/sharding/
[13]	http://stackoverflow.com/questions/5500441/mongodb-load-balancing

http://www.mail-archive.com/basex-talk@mailman.uni-konstanz.de/msg01477.html
http://www.datastax.com/docs/0.8/cluster_architecture/cluster_planning
http://wiki.apache.org/cassandra/Operations#Load_balancing
http://prettyprint.me/2010/03/03/load-balancing-and-improved-failover-in-hector/
http://guide.couchdb.org/draft/clustering.html
http://guide.couchdb.org/draft/balancing.html
http://hbase.apache.org/replication.html
http://hbase.apache.org/book/architecture.html#arch.overview.nosql
http://hstack.org/why-were-using-hbase-part-1/
http://osdir.com/ml/memcachedb/2009-03/msg00027.html
http://www.couchbase.com/forums/thread/load-balance-memcached
http://docs.mongodb.org/manual/core/sharding/
http://stackoverflow.com/questions/5500441/mongodb-load-balancing

[14]	http://www.mongodb.org/display/DOCS/Replica+Sets
[15]	http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html
[16]	http://docs.neo4j.org/chunked/stable/ha-haproxy.html
[17]	http://redis.io/topics/cluster-spec

Maintenance
Next	in	line	are	the	backup	options	–	full	and	incremental,	and	database	import/export
options.

Database Full	backup Incremental	backup Import/export

SimpleDB N/A N/A N/A

BaseX Yes	[1] No No

Cassandra Yes	[2] Yes	[2] Yes	[3]

CouchDB Yes	[4] Yes	[5] No[6]

Datastore N/A N/A N/A

HBase Yes	[7] Yes	[8] Yes	[9]

MemcacheDB Yes	[10] No No

MongoDB Yes	[11] No[12] Yes	[13]

Neo4j Yes	[14] Yes	[14] No

Redis Yes	[15,	16] No No

The	table	has	been	compiled	using	the	following	references:

http://www.mongodb.org/display/DOCS/Replica+Sets
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html
http://docs.neo4j.org/chunked/stable/ha-haproxy.html
http://redis.io/topics/cluster-spec

[1]	http://docs.basex.org/wiki/Commands#CREATE_BACKUP
[2]	http://www.datastax.com/docs/1.0/operations/backup_restore
[3]	http://wiki.apache.org/cassandra/Operations#Import_.2BAC8_export
[4]	http://wiki.apache.org/couchdb/How_to_make_filesystem_backups
[5]	http://comments.gmane.org/gmane.comp.db.couchdb.user/11410
[6]	http://www.rossbates.com/2009/07/data-migration-for-couchdb/
[7]	http://hbase.apache.org/book/ops.backup.html
[8]	http://www.slideshare.net/neallee/hbase-incremental-backup
[9]	http://hbase.apache.org/book/ops_mgt.html#export
[10]	http://www.docunext.com/wiki/MemcacheDB#Backing_Up_MemcacheDB_Data
[11]	http://www.mongodb.org/display/DOCS/Backups
[12]	http://www.mongodb.org/display/DOCS/Backups#Backups-IncrementalBackups
[13]	http://docs.mongodb.org/manual/administration/import-export/
[14]	http://docs.neo4j.org/chunked/stable/operations-backup.html
[15]	http://redis.io/topics/persistence
[16]	http://redis4you.com/articles.php?id=010&name=Redis+save+and+backup+script

Tools
Working	with	API	and	libraries	is	great,	but	how	about	some	easy	to	use,	quick	to	start
tools?	It	does	not	matter	if	the	tool	is	an	official	tool	from	the	team	or	a	third-party	tool,	as
long	as	one	exists,	I	have	documented	it.

The	following	table	summarizes	the	support	for	various	kinds	of	tools	–	Command	Line
Interface	(CLI)	aka	shell,	GUI	tools,	and	web-based	management.

Database CLI

Desktop	GUI

Web

Windows Mac Linux

SimpleDB Yes	[1] Yes	[25] Yes	[25] Yes	[25] N/A

BaseX Yes	[2] Yes	[3] Yes	[3] Yes	[3] No

Cassandra Yes	[4,	8] Yes	[5] Yes	[5] Yes	[5] Yes	[6,	7]

CouchDB
Yes	[9]

(CURL)
Yes	[9,	10] Yes	[9] Yes	[9]

Yes	[9]

(CURL)

http://docs.basex.org/wiki/Commands#CREATE_BACKUP
http://www.datastax.com/docs/1.0/operations/backup_restore
http://wiki.apache.org/cassandra/Operations#Import_.2BAC8_export
http://wiki.apache.org/couchdb/How_to_make_filesystem_backups
http://comments.gmane.org/gmane.comp.db.couchdb.user/11410
http://www.rossbates.com/2009/07/data-migration-for-couchdb/
http://hbase.apache.org/book/ops.backup.html
http://www.slideshare.net/neallee/hbase-incremental-backup
http://hbase.apache.org/book/ops_mgt.html#export
http://www.docunext.com/wiki/MemcacheDB#Backing_Up_MemcacheDB_Data
http://www.mongodb.org/display/DOCS/Backups
http://www.mongodb.org/display/DOCS/Backups#Backups-IncrementalBackups
http://docs.mongodb.org/manual/administration/import-export/
http://docs.neo4j.org/chunked/stable/operations-backup.html
http://redis.io/topics/persistence
http://redis4you.com/articles.php?id=010&name=Redis+save+and+backup+script

Datastore No No No No No

HBase Yes	[11] Yes	[12] Yes	[12] Yes	[12]
Yes	[13]

(Built-in)

MemcacheDB Yes	[14] No No No No

MongoDB Yes	[15] Yes	[16,	18] Yes	[16,	17] Yes	[16] Yes	[19]

Neo4j Yes	[20] No No No Yes	[21]

Redis Yes	[22] Yes	[23] Yes	[23] Yes	[23] Yes	[24]

References:

[1]	http://code.google.com/p/amazon-simpledb-cli/
[2]	http://docs.basex.org/wiki/Standalone_Mode
[3]	http://docs.basex.org/wiki/Graphical_User_Interface
[4]	http://wiki.apache.org/cassandra/CassandraCli
[5]	http://code.google.com/a/apache-extras.org/p/cassandra-gui/
[6]	http://wiki.apache.org/cassandra/Administration%20Tools
[7]	https://github.com/hmsonline/virgil
[8]	http://wiki.apache.org/cassandra/NodeTool
[9]	http://wiki.apache.org/couchdb/Related_Projects
[10]	http://kanapeside.com/
[11]	http://wiki.apache.org/hadoop/Hbase/Shell
[12]	http://sourceforge.net/projects/hbasemanagergui/
[13]	http://hbaseexplorer.wordpress.com/hbaseexplorer/
[14]	https://github.com/andrewgross/memcache-cli
[15]	http://www.mongodb.org/display/DOCS/mongo+-+The+Interactive+Shell
[16]	http://www.mongodb.org/display/DOCS/Admin+UIs
[17]	http://mongohub.todayclose.com/
[18]	http://www.mongovue.com/
[19]	http://www.mongodb.org/display/DOCS/Http+Interface
[20]	http://docs.neo4j.org/chunked/stable/shell.html
[21]	http://docs.neo4j.org/chunked/stable/tools-webadmin.html
[22]	http://redis.io/topics/quickstart
[23]	http://bit.ly/VW7owf

http://code.google.com/p/amazon-simpledb-cli/
http://docs.basex.org/wiki/Standalone_Mode
http://docs.basex.org/wiki/Graphical_User_Interface
http://wiki.apache.org/cassandra/CassandraCli
http://code.google.com/a/apache-extras.org/p/cassandra-gui/
http://wiki.apache.org/cassandra/Administration%20Tools
https://github.com/hmsonline/virgil
http://wiki.apache.org/cassandra/NodeTool
http://wiki.apache.org/couchdb/Related_Projects
http://kanapeside.com/
http://wiki.apache.org/hadoop/Hbase/Shell
http://sourceforge.net/projects/hbasemanagergui/
http://hbaseexplorer.wordpress.com/hbaseexplorer/
https://github.com/andrewgross/memcache-cli
http://www.mongodb.org/display/DOCS/mongo+-+The+Interactive+Shell
http://www.mongodb.org/display/DOCS/Admin+UIs
http://mongohub.todayclose.com/
http://www.mongovue.com/
http://www.mongodb.org/display/DOCS/Http+Interface
http://docs.neo4j.org/chunked/stable/shell.html
http://docs.neo4j.org/chunked/stable/tools-webadmin.html
http://redis.io/topics/quickstart
http://bit.ly/VW7owf

[24]	http://webd.is/
[25]	http://www.razorsql.com/features/simpledb_features.html

Protocol
The	final	technical	bit	that	I	will	touch	upon	is	transport	protocol	that	is	used	for	data
transfer—between	the	server	and	the	client.	For	the	sake	of	simplicity,	I	will	classify	the
protocols	under	the	following	heads:

HTTP:	Standard	protocol.	May	or	may	not	support	RESTful	interface,	but	that	is
fine.	The	message	format	is	expected	to	be	text	(JSON	or	XML	or	otherwise).
TCP:	The	TCP	protocol	that	optimizes	bandwidth	consumption	(binary)	or	otherwise
(text).	If	it 's	binary,	it	is	generally	non-interoperable	except	using	the	provided	drivers
or	tools.
Thrift:	Also	known	as	the	Apache	Thrift	protocol.	It	is	an	Interface	Definition
Language	(IDL)	to	implement	services	that	can	be	consumed	from	across	the
languages.	Originally	developed	by	Facebook,	it	is	now	maintained	by	the	Apache
Foundation.	As	per	the	Apache	Thrift	website:

The	Apache	Thrift	software	framework,	for	scalable	cross-language	services
development,	combines	a	software	stack	with	a	code	generation	engine	to	build

services	that	work	efficiently	and	seamlessly	between	C++,	Java,	Python,	PHP,	Ruby,
Erlang,	Perl,	Haskell,	C#,	Cocoa,	JavaScript,	Node.js,	Smalltalk,	OCaml	and	Delphi,

and	other	languages.

Database Protocol

SimpleDB H

BaseX TCP-Text

Cassandra Thrift

CouchDB HTTP

Datastore N/A

HBase Thrift

http://webd.is/
http://www.razorsql.com/features/simpledb_features.html

MemcacheDB TCP-Binary

MongoDB TCP-Binary

Neo4j Multiple

Redis TCP-Binary

Nontechnical	comparison
Let	us	shift	gears	a	bit	and	look	at	some	nontechnical	parameters	to	compare	the
databases.

Source	and	license
License	plays	a	critical	role	in	taking	a	final	business	decision	on	choosing	a	database.	While
commercial	license—with	or	without	source	code—had	been	the	norm	especially	in	the
enterprise	application	where	the	main	drivers	were	vendor	support	and	protection	of
intellectual	property,	things	have	started	to	change	in	recent	times.

Because	of	strong	vendor	and	community	support,	companies	have	started	to	adopt	open
source	libraries	and	applications.	Given	comparable	metrics	on	other	parameters,	the	final
decision	boils	down	to	the	license.

Distributable	applications	prefer	Apache,	BSD,	MIT,	X11,	and	other	compatible	licenses	while
in-the-cloud	applications	also	use	GPL-licensed	code.	AGPL	is	a	license	to	fret	unless	there
is	dual	licensing	available	for	commercial	license	to	protect	intellectual	properties.

Database Commercial OSS	Commercial OSS	Open License

SimpleDB N/A N/A N/A N/A

BaseX N/A Yes No BSD

Cassandra N/A Yes No 	

CouchDB No Yes No 	

Datastore N/A N/A N/A N/A

HBase No Yes No 	

MemcacheDB No Yes No BSD-like

MongoDB Yes No Yes G

Neo4j Yes No Yes GPL,	G

Redis N/A Yes No BSD

In	SimpleDB	and	Datastore,	neither	the	source	code	nor	the	binaries	are	available,	hence
the	concept	of	license,	as	we	are	evaluating,	is	not	applicable.

OSS	Commercial	refers	to	the	licenses	that	allow	you	to	develop	commercial	applications
while	protecting	your	intellectual	property	by	not	forcing	you	to	contribute	the	code	back	to
the	community,	while	OSS	Open	refers	to	the	license	that	asks	you	to	contribute	the	code
back	to	the	community	to	ensure	that	everyone	benefits	at	large	(like	the	way	you	did	by
forking	the	code	from	the	community).

The	last	column	shows	the	actual	license	under	which	the	code	is	available.

In	the	databases	that	we	have	covered	in	this	chapter,	three	of	them—Cassandra,
CouchDB,	and	HBase—are	maintained	by	the	Apache	Foundation	and	use	one	of	the	most
liberal	open	source	licenses	–	Apache	License	v2.

Source	code	of	MongoDB	is	available	under	dual	licenses	–	AGPL	and	commercial.	Should
you	wish	to	use	MongoDB	in	your	applications,	distributed	or	otherwise,	do	not	forget	to	buy
a	commercial	license.

Community	and	vendor	support
Last	but	not	least,	we	compare	these	databases	on	the	key	parameter	of	support	availability.
This	can	be	further	subclassified	into	two	parts:

Community:	A	strong	community	means	a	lot.	It	shows	that	a	lot	of	people	are	using
it,	which	in	turn	implies	that	it	is	a	good	option.	It	results	in	faster	response	time	to
the	queries,	you	no	longer	have	to	depend	on	the	developers	or	a	vendor	to	always
respond.
Vendor	support:	A	vendor	providing	complete	solution	support	means	a	lot	to	the
company	whose	core	competency	is	not	technology.	Imagine	a	travel	or	a	finance
company	having	to	spend	more	time	in	trying	to	get	around	provisioning	a	database
to	suit	their	conditions	rather	than	on	implementing	the	actual	business	layer	of	the
application.

I	have	classified	community	support	into	four	broad	categories:

Forums:	Open	discussion	forums	and	mailing	lists	which	one	can	subscribe,	ask

questions,	and	get	a	response	from	the	community.
Users:	Number	of	users	discussing	on	the	forum.	I	am	interested	in	Monthly	Active
Users	(MAU).
Discussions:	Number	of	discussions	on	the	forums.
StackOverflow:	Whether	there	is	a	tag	for	the	databases	or	not,	and	if	so,	total
number	of	questions	tagged.

The	sizing	has	been	done	as	follows:

Small

One,	or	at	best,	a	couple	of	discussion	forums
Activity	from	less	than	100	users	a	month
Total	discussions	that	are	less	than	300	per	month
Total	number	of	questions	tagged	and	responded	to	that	are	less	than	1,000

Medium

Three	discussion	forums
Activity	from	over	100	but	less	than	1,000	users	a	month
Total	discussions	that	are	less	than	3,000	per	month
Total	number	of	questions	tagged	and	responded	to	that	are	less	than	5,000

Large

A	value	bigger	than	that	in	large	on	any	each	parameter

Database Forum User Discussion

StackOverflow

Vendor

Tag Size

SimpleDB S S S Yes S Yes

BaseX S S S Yes S Yes

Cassandra M M M Yes M Yes

CouchDB M M M Yes M Yes

Datastore S M M Yes M Yes

HBase M M M Yes M Yes

MemcacheDB Defunct S S Yes S No

MongoDB M L L Yes L Yes

Neo4j S M M Yes S Yes

Redis S S S Yes S Yes

The	Tag	column	indicates	whether	or	not	StackOverflow	has	a	special	category	for	this
database.

Summary
In	this	chapter,	we	did	a	detailed	comparative	study	of	a	subset	of	NoSQL	databases
available	in	the	market	on	various	parameters—both	technical	and	nontechnical.

Note	that	this	comparison	holds	good	at	the	time	of	writing	this	book.	As	databases	evolve
and	get	contributions	especially	from	the	open	source	community,	the	comparison	tables	are
bound	to	change.

As	a	result	of	the	feature	enhancements,	expect	an	upsurge	in	the	community	size	and	more
vendors	to	start	providing	solutions	and	support.

The	next	and	the	last	chapter	of	the	book	will	give	you	the	run	down	of	a	case	study	showing
how	to	effectively	use	and	implement	NoSQL	in	your	application	or	organization.

Chapter	6.	Case	Study
So,	with	all	the	text	that	you	have	read	so	far,	do	you	feel	confident	enough	to	go	ahead
with	implementing	your	next	application	using	NoSQL?

If	you	have	even	the	slightest	of	doubts,	this	chapter	is	for	you.

In	this	chapter,	we	will	run	through	a	simple	application,	from	the	concept	to	the	final
implementation.	We	implement	the	application	using	MongoDB—a	document	store.

Note
There	is	no	particular	reason	for	choosing	MongoDB	except	that	it	is	easy	to	set	up	and
quick	to	go.	As	such,	we	spend	less	time	in	exploring	and	setting	up	the	database	and
rather	focus	and	spend	more	time	on	the	actual	implementation.

The	purpose	of	this	walk-through	is	multifold:

First,	we	look	at	how	to	attack	the	problem.
Next,	we	look	at—based	on	the	database	choice—what	constraints	we	are	working
against.
Then,	we	identify	the	tools	that	we	need	to	have.
Subsequently,	we	do	the	database	design,	the	same	old	stuff	of	schema	definition,
normalization,	denormalization.	Be	ready	for	some	surprises	here.
Finally,	we	look	at	the	actual	code	to	implement	it.

Application	definition
People	have	been	keeping	a	log	of	their	daily	activities	for	ages.	With	the	advent	of	the
internet,	they	got	a	new	place	to	write	and	share.	We	call	this	Weblog	or,	simply,	blog.	A	blog
comprised	of	of	posts,	typically	shown	in	reverse	chronology.

For	our	case	study,	we	will	create	a	simple	blog	application	that	supports	the	following:

Showing	up	latest	posts,	with	support	for	pagination,	in	reverse	chronology	and	a
specific	post.
Writing	new	posts,	editing,	and	deleting	the	same.

Support	for	multiple	authors	in	a	blog

Hierarchical	categories.	Map	posts	to	a	specific	category.
Flat,	nonhierarchical	tags.	Map	post	to	multiple	tags.
Support	for	comments	on	individual	posts.
Support	for	custom	plugins	that	may	have	custom	data	requirements.

Requirement	analysis
We	can	translate	these	user	features	into	the	following	technical	requirements	as	far	as	the
database	and	schema	is	concerned:

Multitenant,	high	scalable	database
More	reads	than	writes	to	the	databases
Role-based	access	to	the	application—extensible	model
Extensible	schema
Support	to	store	searchable	text,	computable	numeric,	and	raw-binary	data	store
Data	access	may	require	cross-entity	access	(aka	JOIN)

Note	that	these	technical	requirements	are	only	representational,	they	will	help	us	focus	on
the	database	than	the	actual	application.

Implementation	using	MongoDB
The	first	database	that	we	use	to	implement	the	store	for	the	application	is	MongoDB.	The
engine	type	is	document	store	with	JSON	as	the	underlying	structure.

Features	and	constraints
Given	next	are	some	of	the	features	available	with	MongoDB:

Document-oriented	store	with	latent	schema
Uses	the	binary	JSON	(BSON)	format
Typed	values	–	string,	int,	double,	boolean,	date,	bytearray,	object,	array
Support	for	multiple	databases,	known	as	collections
Support	for	map-reduce	(useful	in	batch	processing	and	aggregations)
Support	for	ad	hoc	queries	using	user-defined	functions	(in	JavaScript)
Master-slave	replications,	load-balancing	using	sharding

MongoDB	has	its	own	set	of	challenges.	Some	of	them	are	given	next
(http://blog.engineering.kiip.me/post/20988881092/a-year-with-mongodb,
http://blog.iprofs.nl/2011/11/25/is-mongodb-a-good-alternative-to-rdbms-databases-like-
oracle-and-mysql/):

Field	name's	storage	is	not	optimized.	It	is	advised	to	use	short	names.	See
http://www.mongodb.org/display/DOCS/Optimizing+Storage+of+Small+Objects	for
some	guidelines.
Indexes	are	memory	heavy	(http://qr.ae/1QSdm).
Unreliable	–	if	it	crashes	during	an	update,	you	lose	all	data	(http://qr.ae/1QSdm).
Map-reduce	is	not	blazingly	fast.
Imposed	limit	of	24,000	namespaces	(collections	and	indexes)	per	database
(http://blog.serverdensity.com/notes-from-a-production-mongodb-deployment/).

Setup
Download	MongoDB	server	from	http://www.mongodb.org/downloads.	Although	there	are
Java	drivers	available,	they	are	not	very	friendly	as	the	queries	still	use	the	native	BSON
syntax.	Let	us	use	Mongoose,	the	official	driver	from	10gen.	You	can	download	it	from
http://mongoosejs.com/docs/index.html.	It	requires	Node.js	that	can	be	downloaded	from
http://nodejs.org/download.

For	the	purpose	of	our	case	study,	we	will	name	the	collection	–	blog.	Note	that	in
MongoDB,	it	is	not	required	to	create	a	collection	before	it	is	used.

Database	design
One	of	the	tenets	of	database	modeling	for	NoSQL	is	that	you	design	less	based	on	the

http://blog.engineering.kiip.me/post/20988881092/a-year-with-mongodb
http://blog.iprofs.nl/2011/11/25/is-mongodb-a-good-alternative-to-rdbms-databases-like-oracle-and-mysql/
http://www.mongodb.org/display/DOCS/Optimizing+Storage+of+Small+Objects
http://qr.ae/1QSdm
http://qr.ae/1QSdm
http://blog.serverdensity.com/notes-from-a-production-mongodb-deployment/
http://www.mongodb.org/downloads
http://mongoosejs.com/docs/index.html
http://nodejs.org/download

data	entities	and	their	relationships	and	more	on	the	basis	of	queries	that	you	would	run
against	the	database.

There	are	a	few	things	that	you	will	probably	need	to	unlearn	and	forget;	normalization,
foreign	keys,	and	JOIN.

One	thing	that	you	will	need	to	learn,	practice,	and	master	is	appropriate	granularity	of
denormalization.	Whenever	in	doubt,	ask	yourself	a	simple	question,	"What	do	I	want	to
fetch?"	and	you	will	be	very	close	to	the	denormalization	granularity.

Database	queries
Defining	database	queries	is	a	critical	step	before	modeling.	You	don"t	have	to	know	of	the
distant	future	but	it"s	always	better	to	know	as	many	queries	as	possible	at	the	start	of	a
development	cycle.

At	a	high	level,	queries	will	be	required	for	the	following:

Post-related	queries:

Retrieve	a	list	of	all	posts	in	reverse	chronology	or	the	latest	N	posts
Add	or	edit	one	post,	with	support	for	revision	history
Delete	one	or	more	posts
Retrieve	details	of	one	post	including	categories,	tags,	and	comments

Category-related	queries:

Retrieve	all	categories	hierarchically
Add	or	edit	a	category
Delete	one	or	more	categories
Link	or	delink	one	or	more	posts	against	a	category

Tag-related	queries:

Mostly	same	as	for	category	except	that	the	tags	are	not	hierarchical
Link	or	delink	one	or	more	posts	against	one	or	more	categories

I	have	deliberately	omitted	user-	and	role-related	queries	including	CRUD	operations	for	a
user	and	associating	roles	for	a	user	for	brevity.

Along	with	the	queries	mentioned	earlier,	we	need	to	support	extensible	schema
requirements	for	new	plugins	that	the	application	must	support.

Database	modeling
Now	that	we	have	a	fair	idea	of	our	queries,	it	is	time	to	define	the	database	entities.	It	is
important	to	note	that	though	we	may	end	up	with	data	redundancy,	the	degree	of
denormalization	granularity	will	not	be	single	handedly	driven	by	queries.	The	data	model

supported	by	the	database	also	plays	a	key	role.

Using	the	query	requirements	mentioned	earlier,	we	can	come	up	with	the	following	basic
entities	to	support	core	functionality:

Post	and	PostRevision
Comment
Category
Tag

PostRevision	keeps	track	of	versions	of	a	post.	One	of	these	revisions	is	visible	to	the
users.

We	will	look	at	supporting	plugin-specific	data	in	a	while.

The	following	relationships	exist	for	the	entities:

One-to-many	between	Post	and	Comment
One-to-many	between	Post	and	PostRevision
Many-to-one	between	Post	and	Category
Many-to-many	between	Post	and	Category

With	the	relationships	in	mind	for	these	entities,	we	get	the	structure	as	follows:

All	entities	are	assumed	to	have	a	unique	identifier.	MongoDB	uses	the	_id	field	for	the
unique	identifier	for	the	entity.	It	can	either	be	provided	or	autogenerated.	I	prefer	use	an
autogenerated	identifier	as	opposed	to	that	provided	while	working	with	MongoDB.	See	the
discussion	at	http://snmaynard.com/.

Schema	definition
With	document-store	we	have	great	leverage	over	the	entity	schema.	Although	MongoDB
supports	latent	schema,	it	makes	a	definite	sense	to	start	with	a	schema	and	update	it	over
time	as	the	need	may	be.

http://snmaynard.com/

//	Entity	Tag

var	entityTag	=	{

		name:	String,

		slug:	String

};

//	Entity	Category

var	entityCategory	=	{

		name:	String,

		slug:	String,

		parent:	{	type:	Schema.Types.ObjectId,	ref:	"Category"	}

};

//	Entity	Comment

var	entityComment	=	{

		author:	String,

		text:	String,

		creationTime:	{	type:	Date,	"default":	Date.now	},

		post:	{	type:	Schema.Types.ObjectId,	ref:	"Post"	}

};

The	Post	entity	can	be	defined	in	one	of	the	following	two	ways:

Comprising	only	of	references	to	PostRevision	indicating	which	revision	is	the
published	revision
Comprising	of	copy	of	content	from	PostRevision,	duplicating	the	records

The	former	approach	optimizes	the	storage	space	whereas	the	latter	approach	reduces	the
time	to	retrieve	the	published	posts	so	that	the	load	time	of	the	pages	is	reduced.
PostRevision,	on	the	other	hand,	has	a	reference	to	the	main	Post	against	which	the
revisions	are	created.

I	would	take	up	the	latter	approach,	sacrificing	space	in	favor	of	speed.	Based	on	this,	the
structure	of	Post	and	PostRevision	is	shown	as	follows,	with	the	portion	of	the	schema
duplicating	the	post-related	content	highlighted:

	//	Entity	Post

var	entityPost	=	{

		title:	String,

		slug:	String,

		author:	String,

		creationTime:	{	type:	Date,	"default":	Date.now	},

		lastUpdateTime:	{	type:	Date,	"default":	Date.now	},

		text:	String,

		category:	{	type:	Schema.Types.ObjectId,

														ref:	"Category"	},

		tags:	[{	type:	Schema.Types.ObjectId,

														ref:	"Category"	}]

};

//	Entity	PostRevision

var	entityPostRevision	=	{

		updateTime:	{	type:	Date,	"default":	Date.now	},

		author:	String,

		text:	String,

		hits:	int,

		post:	{	type:	Schema.Types.ObjectId,	ref:	"Post"	}

};

With	these	schema	definitions,	we	now	need	to	register	them	with	Mongoose:

//	Register	schemas	using	Mongoose

var	db	=	require("mongoose"),

				Schema	=	db.Schema;

var	schemaTag	=	new	Schema(entityTag),

				schemaCategory	=	new	Schema(entityCategory),

				schemaComment	=	new	Schema(entityComment),

				schemaPost	=	new	Schema(entityPost),

				schemaPostRevision	=	new	

																	Schema(PentityostRevision);

var	Tag	=	db.model(schemaTag),

				Category	=	db.model(schemaCategory),

				Comment	=	db.model(schemaComment),

				Post	=	db.model(schemaPost),

				PostRevision	=	db.model(schemaPostRevision);

Even	though	it	looks	complex,	it	actually	gives	you	a	lot	of	power.	The	driver	is	obtained	and
stored	in	the	db	variable.	The	model	method	of	the	driver	registers	the	Schema	and	provides
helper	methods	and	properties	(autogenerated).	We	will	explore	them	as	we	go	along	with
the	case	study.

Note	that	Mongoose	will	ensure	a	_id	field	that	will	be	an	autogenerated	primary	key,	unless
specified	otherwise.

Writing	queries
Let	us	analyze	writing	queries	for	the	following	scenarios:

A	simple	query	involving	one	entity.	The	result	set	may	comprise	one	or	more
records.
A	query	involving	one	entity	with	a	subset	of	columns	that	may	be	used	for	aggregate
results	(for	example,	count,	sum,	average,	and	so	on)	or	otherwise.
A	query	across	entities	with	one-to-one	relationship.
A	query	across	entities	with	one-to-many	relationship.
A	query	across	entities	with	many-to-many	relationship.

Queries	for	a	single	entity,	simple	result
Let	us	look	at	the	code	for	the	CRUD	operations	on	a	Tag	entity:

//	Insert	a	new	record

var	t	=	new	Tag({

		name:	"NoSQL",

		slug:	"nosql"

});

//	Auto-generated	method	save,	async	call

t.save(function(err,	tag)	{

		if(err)	{

				//handle	rror

		}

});

//	Update	the	tag

t.name	=	"No	SQL";

t.save(function(err,	tag)	{	});

//	Retrieve	by	id

id	=	db.Types.ObjectId.fromString("abcdef0123456789abcdefab");

Tag.findById(id,	function(err,	tag)	{

			

});

//	Delete	a	tag

t	=	getTagToDelete();

t.remove(function(err,	resp)	{	});

//	Delete	a	tag,	given	its	slug

var	s	=	getSlugToRemove();

Tag.remove({	"slug":	s	},	function(err,	resp)	{	});

Queries	for	a	single	entity,	Aggregate
The	query	to	get	a	count	of	all	tags	and	to	get	count	of	all	posts	for	a	given	tag	is	as
follows:

//	Simple	count,	all	tags

Tag.count(function(err,	count)	{

		console.log("Total	number	of	tags:	"	+	count);

});

//	Count	of	posts	for	a	given	tag

var	t	=	getTagToSearchFor();

Post.count({	tags:	t	},

		function(err,	count)	{

				console.log("Total	posts	for	tag	"	+	t.name

						+	"	is:	"	+	count);

});

//	Total	hits	for	a	post

Post.findOne({	"slug":	"beginiing-nosql-database"	},

		function(err,	post)	{

				if(!err	&&	post)	{

						PostRevision.find({	"post":	post	}).

								.select({	count:	1	})

								.function(e,	postRevisions)	{

										var	totalHits	=	0;

										if(!e	&&	postRevisions)	{

												postRevisions.forEach(function(p)	{

														totalHits	+=	(p.hits	||	0);

												});

										}

						});

				}

});

Note
Older	versions	of	MongoDB	do	not	perform	well	with	the	count	command.	It	is	advisable

to	not	use	this	command	frequently.	The	ticket	on	this	issue
—https://jira.mongodb.org/browse/SERVER-1752—is	closed.	The	fix,	however,	will	be
available	from	v2.3.2,	which	is	not	a	production	release	as	of	the	writing	of	this	book.

Queries	for	one-to-one	relationship
Well,	in	our	case	study,	we	do	not	have	any	one-to-one	relationship.	While	working	with
NoSQL,	it	is	always	advisable	to	merge	the	one-to-one	relationship	entities.	Since	most	of
the	databases	allow	the	adding	of	properties	or	columns	on	demand,	extending	schema	is
mostly	trivial.

Queries	for	one-to-many	relationship
In	the	blog	application,	one	category	may	have	multiple	posts.	Similarly,	we	can	have	multiple
revisions	and	comments	for	a	given	post.	At	a	high	level,	we	have	the	following	two
scenarios	in	this	category:

One-to-many:	All	posts	within	a	category,	comments	for	a	post,	and	all	revisions	for
a	post
Many-to-one	perspective:	Category	of	a	post,	post	associated	with	a	particular
comment,	and	main	post	for	a	revision

Note	that	we	have	a	reference	to	Category	in	Post	and	of	Post	in	PostRevision.	We	can	use
this	to	filter	the	Post	or	PostRevision	data.	The	code	will	be	as	given	next:

//	Retrieve	all	posts	for	category	with	slug,	say,	"nosql"

Category.findOne({	"slug":	"nosql"},

		function(err,	category)	{

				if(!err)	{

						Post.find({	"category":	category	},

								function(e,	posts)	{

										for(var	p	in	posts)	{

												console.log("Post:	"	+	p.title);

										}

						});

		}

});

//	Retrieve	category	associated	with	a	post

var	id	=	getIdOfPost();

Post.findById(id,	function(err,	post)	{

		if(!err)	{

				var	c	=	post.category;

				console.log(p.title	+	"	belongs	to	"	+	c.title);

		}

});

As	you	see,	retrieval	queries	require	two	finds—one	for	the	category	and	second	for	the
actual	post—in	the	first	case.	Reason	is	that	the	category	information	is	not	duplicated	in
the	post	records.	So,	we	first	get	the	category	reference	and	then	the	list	of	posts	in	that
particular	category.

https://jira.mongodb.org/browse/SERVER-1752

Can	we	do	better?	We	will	explore	this	question	in	the	Model	refinements	section	given	later
in	the	chapter.

Let	us	now	see	the	queries	required	to	update	the	details	associated	with	category	and
posts.	We	will	explore	the	following	scenarios:

Changing	the	category	of	a	post
Changing	the	details	of	a	category	for	a	given	post
Deleting	all	posts	or	posts	within	a	date-range	inside	a	category
Deleting	a	category	and	moving	all	posts	to	a	default	category

//	Move	a	post	to	a	different	category

var	cat	=	getNewCategoryToMoveTo();

Post.findById("0123456789abcdef01234567",

		function(err,	post)	{

				if(!err)	{

						post.category	=	cat;

						post.save(function(err,	savedPost)	{	});

				}

});

//	Change	the	details	of	category	associated	with	a	post

var	postSlug	=	getSlugOfPostToChange();

Post.findOne({	"slug":	postSlug	}).

		.populate("category")

		.exec(function(err,	post)	{

				if(!err)	{

						var	c	=	post.category;

						c.name	=	"NoSQL	Databases";

						c.slug	=	"nosql-databases";

						c.save(function(e,	cat)	{	});

				}

});

//	Add	a	post	and	associate	it	with	a	new	category

var	catDatabases	=	getParentCategory();

var	cat	=	new	Category({

		name:	"Non-Relational	Database",

		slug:	"non-relational-database"

		parent:	catDatabases

});

cat.save(function(e,	c)	{

		if(!e)	{

				var	post	=	new	Post({

						title:	"What	are	non-relational	datbases",

						slug:	"what-are-non-relational-databases",

						text:	"Main	content	of	the	post",

						category:	c,

						author:	"Gaurav	Vaish",

						tags:	[tag1,	tag2,	tag3]

				});

				post.save(function(e,	savedPost)	{	});

		}

});

//	Delete	all	posts	within	a	category

var	catId	=	getCategoryId();

Category.findById(catId,	function(err,	category)	{

		if(!err)	{

				Post.remove({	"category":	category	},

						function(err,	response)	{

						});

		}

});

//	Delete	a	category

//				and	move	all	related	posts	to	a	default	category

var	oldCat	=	getCategoryToDelete();

var	newCat	=	getDefaultCategory();

Post.find({	"category":	oldCat	},	function(e,	posts)	{

		posts.forEach(function(p)	{

				p.category	=	newCat;

		});

		//Mongoose-hack.	See	http://bit.ly/13n6UCN

		oldCat.remove();

		Post.collection.insert(posts,	function(e,	r)	{	});

});

Queries	for	many-to-many	relationship
Many-to-many	relationship	exists	between	the	Tag	and	Post	entities.

Various	queries	related	to	tags	and	posts	are	given	next:

//	Retrieving	all	posts	for	a	tag,	given	its	slug

Tag.findOne({	"slug":	"nosql-engines"	},

		function(err,	tag)	{

				Post.find({	"tag":	tag	},	function(err,	posts)	{

						posts.forEach(function(p,	i)	{

								console.log("%d:	%s",	i,	p.title);

						});

		});

});

//	Retrieve	all	associated	tags	for	a	post,	given	its	slug

Post.findOne({	"slug":	"starting-with-no-sql"	})

		.populate("tags")

		.exec(function(err,	post)	{

				if(!err)	{

						console.log("Post:	"	+	post.title);

						post.tags.forEach(function(tag)	{

								console.log("	Tag:	"	+	tag.name);

						});

				}

});

//	Inserting	a	post	and	associating	tags

Tag.find({	"tags":	{	$in:	["nosql",	"benefits"]	}	},

		function(err,	tags)	{

		var	post	=	new	Post({

				"title":	"Benefits	of	NoSQL",

				"slug":	"benefits-of-nosql",

				"tags":	tags

		});

		post.save(function(err,	post)	{

				if(!err)	{

						console.log("post	saved	successfully");

				}

		});

});

//	Associating	a	new,	non-existent,	tag	to	a	post

var	tag	=	new	Tag({

		name:	"Technology",

		slug:	"technology"

});

tag.save(function(err,	savedTag)	{

		if(!err)	{

				Post.findOne({	slug:	"benefits-of-nosql"	})

						.populate("tags")

						.exec(function(err,	post)	{

								if(!err	&&	post)	{

										post.tags.push(savedTag);

										post.save(function(err,	savedPost)	{	});

								}

						});

		}

});

//	Disassociating	a	tag	from	a	post

Tag.findOne({	"slug":	"future-technologies"	},

		function(err,	tag)	{

				if(!err	&&	tag)	{

						Post.findOne({	"slug":	"benefits-of-nosql",

								function(err,	post)	{

										var	idx	=	post.tags.indexOf(tag._id);

										post.tags.removeAt(idx);

										post.save(function(e,	savedPost)	{	});

						});

				}

});

//	Deleting	a	tag	and	updating	all	associated	posts

Tag.findOne({	"slug":	"sql-arena"	},

		function(err,	tag)	{

				if(!err	&&	tag)	{

						var	id	=	tag._id;

						Post.find({	"tags":	tag	},

								function(e,	posts)	{

										posts.forEach(function(p)	{

													p.removeAt(p.indexOf(id));

										});

										Post.collection.insert(posts,

												function(e,	savedPosts)	{

										});

										tag.remove(function(e)	{	});

						});

				}

});

Miscellaneous	queries
The	queries	that	we	have	explored	so	far	have	tried	to	address	the	relational	nature	of	the
data	and	how	to	query	a	non-relational	database.

Let	us	investigate	some	more	queries	that	may	be	required	in	general	for	this	application	and
what	changes	may	be	required,	either	in	the	model	or	otherwise,	to	support	effective

execution	of	these	queries.

Pagination

On	the	landing	page,	we	do	not	want	to	show	all	the	posts	but	limit	them	to	a	maximum
number.	Similarly,	we	may	want	to	create	archive	pages—annual	and	monthly—which
requires	limiting	retrieval	by	creation	date.	Additionally,	the	posts	must	be	sorted	in	reverse
chronology.

In	yet	another	scenario	of	pagination,	we	may	want	to	show	only	two	latest	comments	for	a
post	and	load	all	comments	only	on	demand,	say,	when	a	user	clicks	on	a	"Show	More"	link
or	otherwise.

Limiting	result	set	size:	All	databases,	NoSQL	or	otherwise,	support	limiting	the
records	returned	by	a	query.	MongoDB	provides	the	limit	function
(http://bit.ly/ZDRYvh)	that	controls	the	number	of	records	returned.
Skipping	records:	MongoDB	provides	the	skip	function	(http://bit.ly/ZLUEKZ)	to
control	from	where	it	begins	returning	results.	Though	available,	this	method	is	best
avoided.	According	to	the	official	documentation:

The	cursor.skip()	method	is	often	expensive	because	it	requires	the	server	to	walk
from	the	beginning	of	the	collection	or	index	to	get	the	offset	or	skip	position	before
beginning	to	return	results.	As	offset	increases,	cursor.skip()	will	become	slower	and
more	CPU	intensive.	With	larger	collections,	cursor.skip()	may	become	IO	bound.

Consider	using	range-based	pagination	for	these	kinds	of	tasks.	That	is,	query	for	a
range	of	objects,	using	logic	within	the	application	to	determine	the	pagination	rather
than	the	database	itself.	This	approach	features	better	index	utilization,	if	you	do	not

need	to	easily	jump	to	a	specific	page.

Sorting	result	set:	Not	all	NoSQL	databases	provide	support	for	sorting	the	result
set.	For	example,	CouchDB	always	returns	data	sorted	by	key.	Cassandra,	on	the
other	hand,	supports	sorting	at	configuration	level,	which	means	that	you	cannot	sort
a	column	that	is	not	preconfigured	for	sorting	http://bit.ly/Xr3Jox.	Cassandra
configuration	to	support	sorting	will	be	similar	to	the	code	shown	as	follows:

//Cassandra	ColumnFamily	configuration	for	sorting

<Keyspace	Name="Post">

		<ColumnFamily	Name="CreationTime"

																CompareWith="TimeUUIDType"	/>

		<ColumnFamily	Name="Author	"

																CompareWith="UTF8Type"	/>

</Keyspace>

As	far	as	MongoDB	is	concerned,	it	provides	the	sort	function	to	sort	the	result	set.
However,	one	must	be	careful	not	to	sort	a	large	result	based	on	a	property	that	is
not	indexed	http://docs.mongodb.org/manual/reference/method/cursor.sort/.	It	would
be	advisable	to	first	limit	the	result	set	and	then	sort	the	subset.

http://bit.ly/ZDRYvh
http://bit.ly/ZLUEKZ
http://bit.ly/Xr3Jox
http://docs.mongodb.org/manual/reference/method/cursor.sort/

Having	said	that,	we	can	get	into	a	more	complex	scenario	where	we	may	want	to
show	limited	records	by	first	sorting.	The	best	that	can	be	done	is	to	ensure	that	the
property	or	properties	on	which	the	sorting	is	required	must	be	indexed.

Coming	back	to	our	scenario	of	supporting	pagination	while	viewing	the	posts	that
must	be	shown	in	reverse	chronology,	the	final	code	is	as	follows:

//	Pagination:	Show	5	posts	per	page

//	Define	and	ensure	indexes

Post.collection.ensureIndex({	lastUpdateTime:	-1	});

//	Show	posts	on	the	main	page	–	latest	5	posts

Post.find()

		.sort({	lastUpdateTime:	-1	})

		.limit(5)

		.exec(function(e,	posts)	{

				if(!e)	{

						posts.forEach(function(p)	{

								console.log(p.title);

						});

				}

});

//	Showing	5	posts	on	nth	page

var	n	=	getPageNumber();

Post.find()

		.sort({	lastUpdateTime:	-1	})

		.skip((n	–	1)	*	5)

		.limit(5)

		.exec(function(e,	posts)	{

				if(!e)	{

						posts.forEach(function(p)	{

								console.log(p.title);

						});

				}

});

//	Retrieving	all	comments	with	the	associated	post

var	pslug	=	getPostSlug();

Post.findOne({	slug:	pslug	},	function(e,	p)	{

		if(!e	&&	p)	{

				Comment.find({	post:	p	},	function(e,	comments)	{

				});

		}

});

Limiting	items	in	an	array	in	result	set

In	our	current	schema,	we	do	not	really	have	a	use	case	to	limit	the	number	of	items	in	an
array	in	result	set.	We	will	revisit	this	when	we	discuss	refinements	to	the	models.

Plugin	and	dynamic	data	support

The	scariest	part	of	designing	a	store	for	an	application	that	supports	plugin	model	is
extensibility	of	the	schema	itself	with,	optional,	support	for	query	across	its	properties.

With	a	document	store,	this	becomes	simpler	to	do.	Each	plugin	can	define	its	own	schema
and	store	data	in	the	format	appropriate	for	consumption.

Mongoose	provides	a	Schema.Types.Mixed	data	type	http://bit.ly/12jACJr	to	support	latent
schema.

At	a	high	level,	plugin	schema	may	be	similar	to	the	following:

//	Schema	for	Plug-in

var	entityPlugin	=	{

		pluginId:	String,	//	unique	id	for	the	plugin

		owner:	String,				//	the	plugin	owner

		pluginData:	Schema.Types.Mixed

};

//	Making	any	changes	to	mixed	value	requires	care

var	pluginObj	=	new	Plugin({

		pluginId:	"com.m10v.blog.plugins.p1",

		owner:	"Gaurav	Vaish",

		pluginData:	{

				"prop1":	["value",	"1"]

		}

});

//	Initial	save,	results	in	insert

pluginObj.save();

//	Update	the	value

pluginObj.pluginData["prop2"]	=	{	"something":	"new"	};

//	Must	mark	this	property	as	modified,	save	again

pluginObj.markModified("pluginData");

pluginO

bj.save();

Model	refinements
As	you	notice	in	one-to-many	and	many-to-many	relationship	scenarios,	we	need	to	fire
multiple	queries.	The	primary	reason	is	that	we	still	have	a	strong	normalized	structure	with
cross-entity	references	using	IDs.

References	using	non-ID	property
In	our	application,	we	would	typically	have	slug	from	incoming	request—of	the	post,	tag,	or
category.	Since	the	slug	uniquely	identifies	the	item,	we	can	use	the	slug	as	the	record
identified	(value	of	the	_id	property).	We,	however,	lose	a	couple	of	things:

The	_id	property	is	immutable.	MongoDB	does	not	allow	any	change	in	its	value.	The
only	way	out	is	by	deleting	existing	records	and	creating	a	new	one.	Generally,	slug	is
closely	related	to	the	title	of	the	post	or	name	of	the	category	or	tag.	As	such,	we
lose	the	ability	to	change	them.
By	default,	the	autogenerated	value	has	the	timestamp	of	record	creation	in	its
leading	12	bits.	As	such,	sorting	by	_id	automatically	sorts	in	order	of	the	creation
time—useful	for	sorting	posts	in	reverse	chronology.	Choosing	a	type	that	is	not
ObjectId	means	we	need	to	create	another	property	to	hold	the	information	and

http://bit.ly/12jACJr

ensure	that	it	is	indexed.

Because	of	these	two	key	considerations,	it	is	generally	not	advisable	to	use	the	custom	_id
property	but	to	use	default	instead.

So,	to	get	the	latest	posts	in	a	category	or	for	a	tag,	what	can	we	do	better?

How	about	storing	the	tag	or	category	slug	in	the	post	record	itself?	Whenever	we	get	the
slug	from	incoming	requests,	we	do	not	have	to	first	fetch	the	tag	or	category	and	then	get
all	the	posts.

Note
Some	of	the	scenarios	mentioned	in	this	section	are	inspired	by	the	presentation	Schema
Design	By	Example,	Emily	Stolfo.	Original	presentation	is	available	at	http://bit.ly/YX9Bax.

The	updated	code	with	these	changes	reflected	therein	will	be	as	follows:

//	Post	–	no	creationTime,	updated	types	of	category,	tags

var	entityPost	=	{

		title:	String,

		slug:	String,

		author:	String,

		lastUpdateTime:	{	type:	Date,	"default":	Date.now	},

		text:	String,

		category:	{	type:	String	},

		tags:	[String]

};

Post.collection.ensureIndex({	category:	-1	},

		{	unique:	true	},

		function(e)	{

});

//	Get	all	posts	in	a	category

var	slug	=	getCategorySlugFromRequest();

Post.find({	category:	slug	},	function(e,	posts)	{

		if(!e	&&	posts)	{

				posts.forEach(function(p)	{

						console.log(p.title	+	"	posted	at	"

										p._id.getTimestamp());

				});

		}

});

//	Change	category	of	a	post

var	catSlug	=	getSlugOfNewCategory();

//	Note	that	post	can	be	searched	by	using	any	method

//		findOne,	findById	or	find	for	multiple	posts

Post.findById(idOfPost,	function(e,	post)	{

		if(!e	&&	post)	{

				post.category	=	catSlug;

				post.save();

		}

});

//	Delete	a	category	and	move	orphan	posts	to	default

http://bit.ly/YX9Bax

var	oldCat	=	getSlugOfCategoryToDelete();

var	newCat	=	getSlugOfDefaultCategory();

Post.find({	category:	oldCat	},	function(e,	posts)	{

		if(!e	&&	posts)	{

				posts.forEach(function(p)	{

						p.category	=	newCat;

				});

				Post.collection.insert(posts,	function(e)	{	});

				Category.findOne({	slug,	oldCat	},

						function(e,	c)	{

								c.remove();

				});

		}

});

Similar	code	will	apply	for	working	with	tags.

Note
We	are	able	to	use	slug	instead	of	id	for	two	reasons.	Firstly,	slug	is	unique.	Secondly,
slug	is	the	only	information	that	we	get	from	an	incoming	request	on	category	or	tag
pages.	Had	we	a	different	scenario,	different	inputs	available,	our	approach	may	have
been	different.

Denormalization	and	document	embedding
When	a	user	visits	a	post	page,	comments	must	also	be	shown—either	latest	few	or	all.
From	the	incoming	request,	we	have	access	to	the	post	slug.

We	need	to	fire	two	queries	to	retrieve	this	information	because	Post	and	Comment	are	stored
in	separate	documents	(see	the	following	code):

//	Retrieving	all	comments	with	the	associated	post

var	pslug	=	getPostSlug();

Post.findOne({	slug:	pslug	},	function(e,	p)	{

		if(!e	&&	p)	{

				Comment.find({	post:	p	},	function(e,	comments)	{

				});

		}

});

Complete	document	embedding

We	can	denormalize	and	embed	the	comments	along	with	the	post	so	that	when	comments
can	be	retrieved	with	the	pos	in	a	single	query.

To	implement	this,	the	updated	schema	of	the	Post	entity	will	be	as	shown	in	the	following
code	snippet:

//	Entity	Post

var	entityPost	=	{

		title:	String,

		slug:	String,

		author:	String,

		lastUpdateTime:	{	type:	Date,	"default":	Date.now	},

		text:	String,

		category:	String,

		tags:	[String]

		comments:	[{

				time:	Date,

				author:	String,

				comment:	String

		}]

};

Notice	that	the	comments	property	is	no	longer	an	array	of	many	ObjectId,	but	a	well-defined
document	structure.	This	approach	is	also	referred	to	as	subdocument	because	the	item	in
a	document	with	a	schema	of	its	own	but	part	of	a	larger	document	is	referred	to	as	its
parent	document	.

With	this	schema,	the	updated	queries	will	be	as	follows:

//	Retrieve	a	post	with	comments

var	pslug	=	getSlugFromRequest();

Post.findOne({	slug:	pslug	},	function(e,	post)	{

		if(!e	&&	post)	{

				var	comments	=	post.comments;

		}

});

//	Add	a	comment

var	newComment	=	getCommentJSONToAdd();

Post.findOne({	slug:	pslug	},	function(e,	post)	{

		if(!e	&&	post)	{

				post.comments.push(newComment);

				post.markModified("comments");

				post.save();

		}

});

//	Comments	Pagination:	Retrieve	latest	5	comments

Post.findOne({	slug:	pslug	})

		.slice("comments",	-5)

		.exec(function(e,	post)	{

});

//	Comments	Pagination:	Show	Nth	set	of	comments

Post.findOne({	slug:	pslug	})

		.slice("comments",	[-	5*N,	5])

		.exec(function(e,	post)	{

});

Key	advantages	of	this	approach	are:

Single	query	for	all	CRUD	operations	related	to	a	post	and	its	comments
All	comments	and	post	are	co-located	in	the	cluster—faster	query

All	operations,	because	they	are	done	in	a	single	query,	are	atomic

Though	this	approach	looks	awesome,	there	is	a	risk	of	the	document	quickly	growing	large
and	hitting	the	document	size	limit.

Partial	document	embedding

One	of	the	options	to	solve	the	previous	problem	is	to	decouple	Post	and	Comments	but	keep
all	comments	at	one	place.	So,	we	come	up	with	a	different	entity—Comments—and	update
the	schema	of	Post	to	reflect	the	changes.

//	Entity	Comments

var	entityComments	=	{

		postSlug:	String,

		entries:	[{

				name:	String,

				time:	Date,

				comment:	String

		}]

};

var	entityPost	=	{

		//Other	properties	are	same,	only	comments	changes

		comments:	{	type:	Schema.Types.ObjectId,

														ref:	"Comments"	}

};

//	Pagination:	Latest	5	comments	for	a	post

Comments.findOne({	postSlug:	pslug	})

		.slice("entries",	-5)

		.exec(function(e,	c)	{

});

//	Pagination:	Nth	set	of	comments

Comments.findOne({	postSlug:	pslug	})

		.slice("entries",	[-5*N,	5])

		.exec(function(e,	c)	{

});

//	Inserting	a	new	comment

var	commentObj	=	getJSONForNewComment();

Comments.findOne({	postSlug:	pslug	},

		function(e,	c)	{

				c.entries.push(commentObj);

});

This	approach	ensures	fixed	Post	document	size	(barring	the	actual	content	size	restriction)
as	well	as	atomic	commits	to	the	related	Comments	record.

There	are	a	few	disadvantages	to	this	approach:

Comments	records	still	can	hit	the	document	size	limit.
Comments	can	be	stored	in	a	separate	physical	location	in	the	cluster	as	compared	to
the	associated	Post.	Query,	as	such,	can	be	slower.

Bucketing

In	both	the	approaches	of	document	embedding	discussed	earlier,	we	run	into	the	risk	of

hitting	document	size	limit.	Using	the	earlier	denormalized	form	means	slower	retrievals
because	records	can	be	anywhere	in	the	cluster	and	non-atomic	commits	becaus	all	records
are	independent.

How	about	using	a	mix	of	the	two?	What	I	mean	is,	store	multiple	comments	in	one	record
but	limit	the	number	of	comments—we	store	no	more	than	a	fixed	number	of	comments	per
record—say,	10.

Make	one	change	to	the	Comments	schema,	add	a	commentCount	property	that	keeps	a	track	of
number	of	actual	comments	in	the	record:

//	Entity	Post

var	entityComments	=	{

		postSlug:	String,

		commentCount:	int,

		entries:	[{

				name:	String,

				time:	Date,

				comment:	String

		}]

};

//	Inserting	a	new	comment	–	use	upsert

var	commentObj	=	getJSONForNewComment();

Comments.update({

		postSlug:	slug,

		commentCount:	{	$lt:	10	},	{

				$inc:	{	commentCount:	1	},

				$push:	{	entries:	commentObj	},

		},	{

				upsert:	true

		}

		function(e,	c)	{

});

Note	that	we	not	only	have	been	able	to	limit	the	document	size	but	also	achieve	atomicity
while	adding	a	new	comment	that	can	result	in	either	updating	an	existing	record	or	creating
a	new	record.

We	still	have	storage	fragmentation	but	a	controlled	one	this	time.

As	another	optimization,	you	may	want	to	update	the	Post	record	with	the	reference	of	the
Comments	record	updated	or	created.	This	will	help	retrieving	the	latest	comments	given	in	a
post	without	searching	across	the	comments	collection.

Cache	document	approach
A	feature	that	I	would	want	on	my	blog	is	latest	comments	across	posts.	It	will	give	the
viewers	a	picture	about	what	is	being	currently	discussed	on	my	blog.	Similarly,	I	may	want	to
show	latest	comments	by	a	specific	user.

If	we	use	completely	normalized	form	where	each	comment	is	stored	separately,	this	is	a
trivial	problem	to	solve.	However,	because	using	one	comment	per	record	can	result	in	slow

retrieval,	we	want	to	solve	this	problem	by	using	the	embedded	document	approach.

//	Latest	comments	in	normalized	form

Comment.find()

		.sortBy({	_id:	-1	})

		.limit(10).exec(function(e,	comments)	{

});

//	Latest	comments	by	a	user

Comment.find({	author:	name	})

		.sortBy({	_id:	-1	})

		.imit(10).exec(function(e,	comments)	{

});

One	of	the	options	to	solve	this	problem	is	to	keep	the	latest	comments	in	cache	that	can	be
updated;	better	to	persist	with	this	so	that	they	doesn"t	get	evicted	if	not	used	for	long.

We	can	have	records	to	keep	these	frequently	queried	and	less-frequently	updated	data.
Specifically	for	comments,	there	can	be	one	document	that	keeps	a	list	of	the	latest
comments	added.	If	we	need	to	show	10	latest	comments,	it	may	have	more	than	10,	even
100	comments.	A	representative	structure	may	be:

//	Cache	document	definition

var	entityCacheDoc	=	{

		_id:	String,

updateTime:	Date,

		validity:	Date,

		value:	[{	}]

};

//	Retrieving	latest	5	comments	from	cache	document

CacheDoc.findById("comments")

		.slice("value",	-5)

		.exec(function(e,	doc)	{

});

The	following	steps	are	required	to	maintain	this	structure:

When	adding	a	comment,	add	it	to	Comments	as	well	as	the	CacheDoc	collection
When	retrieving	the	latest	comments	to	show,	use	the	CacheDoc	collection
Run	a	job	at	optimal	frequency,	based	on	the	frequency	at	which	new	comments	are
created,	that	will	cleanup	the	comments	in	CacheDoc

Miscellaneous	changes
The	last	scenario	that	we	will	look	into	is	retrieving	comments	by	a	specific	user.

In	embedded	document	mode,	searching	for	comments	by	a	specific	user	can	be	a	very
costly	affair.	The	code	to	search	for	all	comments	is:

//Search	for	comments	by	a	user

Post.find({	"comments.author":	name	})

		.select({	comments:	1	})

		.exec(function(e,	posts)	{

});

This	works	perfectly	fine.	The	only	problem	is	performance.	If,	on	an	average,	there	are	100
comments	per	post	and	an	author	commented	on	5	posts,	500	comments	will	be	scanned.
One	way	to	solve	this	problem	is	create	another	set	of	documents	that	will	have	reference	to
comments	made	by	a	user	per	post—that"s	redundancy,	commonly	used	with	NoSQL.

In	case	of	normalized	comments	where	we	have	one	comment	per	record,	scanning	for
comments	by	a	user	is	extremely	efficient.	Note	that	this	has	severe	performance	drawbacks
as	noticed	earlier.

As	with	any	storage	system,	it	is	impossible	to	optimize	all	the	parameters.	You	can	trade-off
one	against	the	other.

Summary
In	this	chapter	we	took	a	pragmatic	view	of	working	with	NoSQL.	The	scenarios	covered	—
single	entity	query,	aggregates,	one-to-one,	one-to-many,	and	many-to-many	relationships—
should	give	you	a	strong	head	start	implementing	NoSQL	for	your	application.

We	learnt	two	key	aspects	of	modeling	for	NoSQL—denormalization	of	data	and	modeling
for	queries.	Denormalization	ensures	that	cross-entity	accesses	(aka	JOIN)	are	reduced	while
query-driven	modeling	ensures	that	you	do	not	invent	new	fancy	techniques	while	writing
queries	rather	than	use	the	models	directly.	The	latter	approach	not	only	ensures	simplified
and	maintainable	queries	but	also	faster	execution.

We	explored	various	approaches	of	modeling	in	document	store	and	went	deep	into	pros
and	cons	of	each	approach,	what	they	offer	and	where	they	negatively	impact	the
application.

More	often	than	not,	the	applications	where	NoSQL	is	desirable	have	a	lot	more	reads	than
writes.	Apart	from	caching	the	responses	at	the	HTTP	layer,	using	cache	documents	is	also
a	useful	approach	where	the	caches	can	not	only	be	persisted	but	also	queried	and	partially
updated.

You	may	have	to	use	one	approach	for	one	entity	and	another	for	a	different	entity.	Pick	the
ones	that	suit	you	best	in	your	specific	case.	Just	to	reiterate,	the	answer	may	work	in	SQL
as	well.

Appendix	A.	Taxonomy
The	taxonomy	introduces	you	to	common	and	not-so-common	terms	that	we	come	across
while	dealing	with	NoSQL.	This	also	enables	you	to	read	through	and	understand	the
literature	available	on	the	Internet	or	otherwise.

Vocabulary
In	this	section,	we	will	glance	through	the	vocabulary	that	you	need	to	understand;	and	take
a	deep	dive	into	NoSQL	databases	later	in	the	book.

Data	store:	A	store	that	keeps	the	data	persisted	so	that	it	can	be	retrieved	even	after
application	ends	or	computer	restarts.

Database:	A	data	store	that	keeps	and	allows	access	to	the	data	in	a	structured	manner.

Database	Management	System	(DBMS):	A	software	application	that	controls	working
(creation,	access,	maintenance,	and	general	purpose	use)	with	a	database.

Relational	DBMS	(RDBMS)	:	A	software	application	that	not	only	stores	the	data	but	also
the	relation	between	them.	RDBMS	is	based	on	the	relational	model	developed	by	Edgar
Frank	Codd	in	1970.	RDBMS	uses	the	notion	of	tables,	columns,	and	rows	to	manipulate	the
data,	and	of	foreign	keys	to	specify	the	relationships.

Structured	Query	Language	(SQL)	:	A	special-purpose	programming	language	to	interact
with	RDBMS.

Foreign	key	constraint:	This	is	a	referential	constraint	between	two	tables.	It	is	a	column
or	a	set	of	columns	in	one	table	referred	to	as	the	child	table	that	refers	to	a	column	or	a	set
of	columns	in	another	table	referred	to	as	the	parent	table.	The	values	in	a	row	of	the	child
table	must	be	one	of	the	values	in	the	rows	of	the	parent	table	for	the	corresponding	column
or	columns.

NoSQL:	A	class	of	DBMS	that	does	not	use	SQL.	Specifically,	the	NoSQL	databases	do	not
store	any	relationships	across	the	data	in	itself.	They	must	be	manipulated	at	the	application
level.,	if	at	all.

Normalization:	The	process	of	organizing	the	records	(tables	and	columns)	to	minimize	the
redundancy.	The	process	typically	involves	splitting	the	data	across	multiple	tables	and
defining	relationships	between	them.	Edgar	F.	Codd,	the	inventor	of	the	relational	model,
introduced	this	concept	in	1970.

Normal	Form:	The	structure	of	database	left	after	the	process	of	normalization	is	referred
to	as	Normal	Form.	Codd	introduced	the	first	Normal	Form	(1NF)	in	1970.	Subsequently,	he
defined	the	second	and	the	third	Normal	Forms	(2NF	and	3NF)	in	1971.	Together	with
Raymond	F.	Boyce,	he	created	Boyce-Codd	Normal	Form	(BCNF	or	3.5NF)	in	1974.	Each

Normal	Form	is	progressively	built	upon	the	previous	one	and	adds	stronger	rules	to	remove
redundancy.

Denormalization:	The	inverse	of	normalization,	this	process	increases	the	speed	of	data
access	by	grouping	related	data,	introducing	duplicity	and	redundancy.

Primary	key:	A	key	to	uniquely	identify	a	record	or	row	in	a	table	in	database—relational	or
otherwise.	Primary	keys	are	indexed	by	a	DBMS	to	allow	faster	access.

Transaction:	Group	of	operations	in	database	that	must	all	succeed	or	cause	the	entire
group	to	rollback	for	database	to	operate	meaningfully.

CRUD:	Four	key	operations	with	the	records	of	a	database—create,	retrieve,	update,	and
delete.

Atomicity,	Consistency,	Isolation,	Durability	(ACID):	ACID	is	the	set	of	properties	that
database	transactions	should	have.

JavaScript	Object	Notation	(JSON):	JSON	is	a	compact	format	to	represent	objects.	It
was	originally	specified	by	Douglas	Crockford	and	outlined	in	RFC	4627.	Though	a	subset	of
the	JavaScript	language	specification,	JSON	is	a	language-independent	format	and	the
parsers	and	serializers	are	available	in	most	of	the	languages	today.	Most	of	the	NoSQL
databases	support	JSON	for	entity	representation.

Multi-Version	Concurrency	Control	(MVCC)	:	It	is	a	mechanism	to	provide	concurrent
access.	For	ACID	compliance,	MVCC	helps	implement	isolation.	It	is	used	by	RDBMS
database	PostgreSQL	as	well	as	NoSQL	databases	like	CouchDB	and	MongoDB.

Basic	availability:	Each	query	or	request	must	be	responded	to	with	either	a	success	or
failed	result.	More	the	successful	results,	the	better	the	system.

Soft	state:	The	state	of	the	system	may	change	over	time,	at	times	without	input.	The	few
the	changes	without	input,	the	better	the	system.

Eventual	consistency:	The	system	may	be	momentarily	inconsistent	but	will	be	consistent
eventually.	The	duration	of	eventuality	is	left	to	the	system.	It	may	range	from	microseconds
to	tens	of	milliseconds	to	even	seconds.	The	shorter	the	duration,	the	better	the	system.

BASE:	The	set	of	properties—basic	availability,	soft	state,	and	eventual	consistency—that	a
distributed	database	can	inhibit.

CAP	theorem:	Also	known	as	the	Brewer’s	theorem,	states	that	it	is	impossible	for	a
distributed	computer	system	to	simultaneously	provide	consistency,	availability,	and	partition
tolerance,	maximum	two	of	the	three	can	be	provided	at	any	given	point	in	time.

Relationship	between	CAP,	ACID,	and
NoSQL

Though	there	is	no	rule	that	NoSQL	databases	cannot	provide	ACID	transactions,	their	very
purpose	is	defeated.	That’s	why	you	see	them	providing	availability	and	horizontal	scaling.

Having	said	that,	CouchDB	and	Neo4j	are	two	examples	of	NoSQL	databases	that	provide
strong	consistency	and	are	ACID	compliant.

Because	of	the	need	for	speed	with	eventual	(not	immediate)	consistency,	denormalization
may	be	brought	in	to	increase	redundancy	at	the	cost	of	space	and	immediate	consistency.

Index
A

access	management

authentication	/	Authentication
role-based	access(authorization)	/	Authorization	or	role-based	access

account	permissions

None	(N)	/	Authorization	or	role-based	access
Read	(R)	/	Authorization	or	role-based	access
Write	(W)	/	Authorization	or	role-based	access
Create	(C)	/	Authorization	or	role-based	access
Database	Admin	(D)	/	Authorization	or	role-based	access
Server	Admin	(A)	/	Authorization	or	role-based	access

ACID	/	What	NoSQL	is	and	what	it	is	not
address	attribute	/	Examples
Aerospike	/	Multi-storage	type	databases
application

defining	/	Application	definition
supported	cases	/	Application	definition
technical	requirements	/	Requirement	analysis

applications

transactional	/	Transactional	application
computational	/	Computational	application
web-scale	/	Web-scale	application

application	store	implementation

MongoDB,	using	/	Implementation	using	MongoDB

application	store	implementation,	MongoDB	used

constraints	/	Features	and	constraints
features	/	Features	and	constraints
setup	/	Setup
database	design	/	Database	design
database	queries	/	Database	queries
database	modelling	/	Database	modeling
writing	queries,	analyzing	/	Writing	queries

model	requirements	/	Model	refinements

ArangoDB	/	Multi-storage	type	databases

B
BASE	/	What	NoSQL	is	and	what	it	is	not,	Vocabulary
Big	Data	/	History
bucketing	/	Bucketing
bulk	operations

about	/	Bulk	operations
bulk	read	/	Bulk	read
bulk	insert	/	Bulk	insert
bulk	update	/	Bulk	update
bulk	delete	/	Bulk	delete

C
cache	document	approach	/	Cache	document	approach
CAP	theorem	/	Vocabulary
Cassandra	/	History
challenges

about	/	Challenges
schema	flexibility	/	Challenges
complex	queries	/	Challenges
data	update	/	Challenges
scalability	/	Challenges

Chubby	/	History
CLI	/	Tools
column-oriented	databases

about	/	Column-oriented	databases
example	/	Column-oriented	databases,	Example
list	/	Column-oriented	databases
advantages	/	Advantages

commentCount	property	/	Bucketing
community	support

forums	/	Community	and	vendor	support
users	/	Community	and	vendor	support
discussion	/	Community	and	vendor	support
stack	overflow	/	Community	and	vendor	support
small	size	/	Community	and	vendor	support

medium	size	/	Community	and	vendor	support
large	size	/	Community	and	vendor	support

computational	application

characteristics	/	Computational	application
entity	schema	requirements	/	Entity	schema	requirements
data	requirements	/	Data	access	requirements
NoSQL	help	/	What	NoSQL	can	do
NoSQL	limitation	/	What	NoSQL	cannot	do
decision	/	Decision

CRUD	/	Vocabulary

D
database	/	Vocabulary
database	design

about	/	Database	design
queries	/	Database	queries
database	modelling	/	Database	modeling
schema	definition	/	Schema	definition

database	limits

Amazon	SimpleDB	/	Limits
BaseX	/	Limits
Cassandra	/	Limits
CouchDB	/	Limits
Google	Datastore	/	Limits
HBase	/	Limits
MemcacheDB	/	Limits
MongoDB	/	Limits
Neo4j	/	Limits
Redis	/	Limits

database	modeling

result	set,	sorting	/	Database	modeling

data	store	/	Vocabulary
DBMS	/	Vocabulary
DELETE	/	Examples
denormalization	/	Vocabulary
document	embedding

about	/	Denormalization	and	document	embedding

complete	process	/	Complete	document	embedding
partial	process	/	Partial	document	embedding

document	store

about	/	Document	store
list	/	Document	store
advantages	/	Advantages
example	/	Examples
design	/	Examples

E
Engine	types	/	Engine	types
eventual	consistency	/	Vocabulary

F
find	method	/	Examples
FlockDB	/	Decision
foreign	key	constraint	/	Vocabulary

G
GET	/	Examples
GFS	/	History
Graph	store

about	/	Graph	store
Neo4j	/	Graph	store
FlockDB	/	Graph	store
advantages	/	Advantages
examples	/	Examples

H
Hadoop	/	History
HTTP	/	Protocol

I
IDL	/	Protocol

J

JSON	/	Vocabulary

K
Key-value	store

about	/	Key-value	store
Redis	/	Key-value	store
Memcached	/	Key-value	store
MemcacheDB	/	Key-value	store
Berkley	DB	/	Key-value	store
Voldemort	/	Key-value	store
advantages	/	Advantages
example	/	Examples

L
Lucene	/	History

M
map	and	reduce	functions	/	Examples
MapReduce	/	History
MAU	/	Community	and	vendor	support
MCC	/	NoSQL	approach
me	attribute	/	Examples
miscellaneous	queries

about	/	Miscellaneous	queries
pagination	/	Pagination
arrays,	limiting	/	Limiting	items	in	an	array	in	result	set
plugin	/	Plugin	and	dynamic	data	support
dynamic	data	support	/	Plugin	and	dynamic	data	support

model	refinements

about	/	Model	refinements
references,	non-ID	property	used	/	References	using	non-ID	property
document	embedding	/	Denormalization	and	document	embedding,	Complete
document	embedding,	Partial	document	embedding,	Bucketing
denormalization	/	Denormalization	and	document	embedding,	Complete
document	embedding,	Partial	document	embedding,	Bucketing
cache	document	approach	/	Cache	document	approach
miscellaneous	changes	/	Miscellaneous	changes

models

comparing	/	Comparing	the	models

MongoDB	/	Examples

used,	for	store	application	implementation	/	Implementation	using	MongoDB,
Features	and	constraints
about	/	Features	and	constraints
setup	/	Setup

multi-storage	type	databases

OrientDB	/	Multi-storage	type	databases
ArangoDB	/	Multi-storage	type	databases
Aerospike	/	Multi-storage	type	databases

multitenancy	/	Multitenancy
MVCC	/	Vocabulary

N
nontechnical	comparison

license	/	Source	and	license
source	/	Source	and	license
community	/	Community	and	vendor	support
vendor	support	/	Community	and	vendor	support

normal	form	/	Vocabulary
normalization	/	Vocabulary
NoSQL

defining	/	Defining	NoSQL
history	/	History
computing	ecosystem	/	History
need	for	/	Why	NoSQL?
databases	/	List	of	NoSQL	Databases

NoSQL	approach

about	/	NoSQL	approach
schema	flexibility	/	NoSQL	approach
complex	queries	/	NoSQL	approach
data	update	/	NoSQL	approach
scalability	/	NoSQL	approach

O

OLAP	/	Column-oriented	databases
OLTP	/	Column-oriented	databases
OrientDB	/	Multi-storage	type	databases

P
pagination

about	/	Pagination
result	set	size,	limiting	/	Pagination
records,	skipping	/	Pagination
result	set,	sorting	/	Pagination

parent	document	/	Complete	document	embedding
Pig	/	History
POST	/	Examples
primary	key	/	Vocabulary
projections	/	Advantages
protocol

HTTP	/	Protocol
TCP	/	Protocol
Thrift	/	Protocol

PUT	/	Examples

Q
queries

written	analysis	/	Writing	queries
for	a	single	entity,	simple	result	/	Queries	for	a	single	entity,	simple	result
for	a	single	entity,	Aggregate	/	Queries	for	a	single	entity,	Aggregate
for	one-to-one	relationship	/	Queries	for	one-to-one	relationship
one-to-many	relationship	/	Queries	for	one-to-many	relationship
for	many-to-many	relationship	/	Queries	for	many-to-many	relationship
miscellaneous	queries	/	Miscellaneous	queries

Query	options

about	/	Query	options
Get	by	ID	/	Get	by	ID
composite	indexes	/	Composite	indexes
views	/	Views

R

RDBMS	/	Defining	NoSQL,	Vocabulary
RDBMS	approach

actors,	identifying	/	RDBMS	approach
modes,	defining	/	RDBMS	approach
entities,	defining	/	RDBMS	approach
relationships,	defining	/	RDBMS	approach
iteration	/	RDBMS	approach
about	/	RDBMS	approach
class	diagram	/	RDBMS	approach

relationship

between	CAP	and	ACID	/	Relationship	between	CAP,	ACID,	and	NoSQL
between	CAP	and	NoSQL	/	Relationship	between	CAP,	ACID,	and	NoSQL

Remote	Method	Invocation	/	Column-oriented	databases

S
security

access	management	/	Access	management
encryption	/	Encryption
multitenancy	/	Multitenancy

soft	state	/	Vocabulary
SQL	/	Vocabulary
storage	types

about	/	Storage	types
column-oriented	databases	/	Column-oriented	databases
document	store	/	Document	store
Key-value	store	/	Key-value	store
graph	store	/	Graph	store
multi-storage	type	databases	/	Multi-storage	type	databases

subdocument	/	Complete	document	embedding

T
TCP	/	Protocol
technical	comparison

language	implementation	/	Implementation	language
engine	types	/	Engine	types
speed	/	Speed

features	/	Features
database	limits	/	Limits
security	/	Security
RDBMS	related	features	/	RDBMS	related	features
availability	/	Availability
maintenance	/	Maintenance
tools	/	Tools
protocol	/	Protocol

Thrift	/	Protocol
transaction	/	Vocabulary
transactional	application

characteristics	/	Transactional	application
entity	schema	requirements	/	Entity	schema	requirements
data	access	requirements	/	Data	access	requirements
NoSQL	help	/	What	NoSQL	can	do
NoSQL	limitations	/	What	NoSQL	cannot	do
decision	/	Decision

U
update	method	/	Examples

V
vocabulary

data	store	/	Vocabulary
database	/	Vocabulary
DBMS	/	Vocabulary
RDBMS	/	Vocabulary
SQL	/	Vocabulary
Foreign	key	constraint	/	Vocabulary
NoSQL	/	Vocabulary
normalization	/	Vocabulary
normal	form	/	Vocabulary
denormalization	/	Vocabulary
primary	key	/	Vocabulary
transaction	/	Vocabulary
CRUD	/	Vocabulary
ACID	/	Vocabulary
JSON	/	Vocabulary
MVCC	/	Vocabulary
basic	availability	/	Vocabulary
soft	state	/	Vocabulary

BASE	/	Vocabulary
CAP	theorem	/	Vocabulary

W
web-scale	application

characteristics	/	Web-scale	application
entity	schema	requirements	/	Entity	schema	requirements
data	access	requirements	/	Data	access	requirements
NoSQL	help	/	What	NoSQL	can	do
NoSQL	limitation	/	What	NoSQL	cannot	do
decision	/	Decision

Y
YCSB	/	Speed

Z
ZooKeeper	/	History

	Getting Started with NoSQL
	Table of Contents
	Getting Started with NoSQL
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers and more
	Why Subscribe?
	Free Access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. An Overview of NoSQL
	Defining NoSQL
	History

	What NoSQL is and what it is not
	Why NoSQL?
	List of NoSQL Databases
	Summary

	2. Characteristics of NoSQL
	Application
	RDBMS approach
	Challenges
	NoSQL approach
	Summary

	3. NoSQL Storage Types
	Storage types
	Column-oriented databases
	Advantages
	Example

	Document store
	Advantages
	Examples

	Key-value store
	Advantages
	Examples

	Graph store
	Advantages
	Examples

	Multi-storage type databases

	Comparing the models
	Summary

	4. Advantages and Drawbacks
	Transactional application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Computational application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Web-scale application
	Entity schema requirements
	Data access requirements
	What NoSQL can do
	What NoSQL cannot do
	Decision

	Summary

	5. Comparative Study of NoSQL Products
	Comparison
	Technical comparison
	Implementation language
	Engine types
	Speed
	Features
	Limits
	Bulk operations
	Bulk read
	Bulk insert
	Bulk update
	Bulk delete

	Query options
	Get by ID
	Composite indexes
	Views

	Security
	Access management
	Authentication
	Authorization or role-based access

	Encryption
	Multitenancy

	RDBMS related features
	Deployment and maintenance
	Availability
	Maintenance

	Tools
	Protocol

	Nontechnical comparison
	Source and license
	Community and vendor support

	Summary

	6. Case Study
	Application definition
	Requirement analysis
	Implementation using MongoDB
	Features and constraints
	Setup
	Database design
	Database queries
	Database modeling
	Schema definition

	Writing queries
	Queries for a single entity, simple result
	Queries for a single entity, Aggregate
	Queries for one-to-one relationship
	Queries for one-to-many relationship
	Queries for many-to-many relationship
	Miscellaneous queries
	Pagination
	Limiting items in an array in result set
	Plugin and dynamic data support

	Model refinements
	References using non-ID property
	Denormalization and document embedding
	Complete document embedding
	Partial document embedding
	Bucketing

	Cache document approach
	Miscellaneous changes

	Summary

	A. Taxonomy
	Vocabulary
	Relationship between CAP, ACID, and NoSQL

	Index

