
A Study on Bayesian Estimation of Parameters of
Some Well Known Distribution Functions

Thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Science

by

Ms. Subhasmita Sahoo

Under the guidance of

Prof. Manas Ranjan Tripathy

Department of Mathematics
National Institute of Technology

Rourkela-769008

India

May 2014



ii



Certificate

This is to certify that the thesis entitled “A Study on Bayesian Estimation of Pa-

rameters of Some Well Known Distribution Functions”, which is being submitted

by Subhasmita Sahoo in the Department of Mathematics, National Institute of Tech-

nology, Rourkela, in partial fulfilment for the award of the degree of Master of Science,

is a record of bonafide review work carried out by her in the Department of Mathematics

under my guidance. She has worked as a project student in this Institute for one year.

In my opinion the work has reached the standard, fulfilling the requirements of the regu-

lations related to the Master of Science degree. The results embodied in this thesis have

not been submitted to any other University or Institute for the award of any degree or

diploma.

Dr. M. R. Tripathy
Assistant Professor

Place: NIT Rourkela Department of Mathematics
Date: May 2014 NIT Rourkela-769008

India



iv



Acknowledgement

It is a great pleasure and proud privilege to express my deep sense of gratitude to my

guide, Prof. M. R. Tripathy. I am grateful to him for his, continuous encouragement and

guidance throughout the period of my project work. Without his active guidance it would

not have been possible for me to complete the work.

I acknowledge my deep sense of gratitude to the Head of the Department, all faculty mem-

bers, all nonteaching staff members of the department of mathematics and the authorities

of NIT Rourkela.

I also thank to all my friends for their support, co-operation and sincere help in various

ways. I express my sincere thank with gratitude to my parents and other family members,

for their support, blessings and encouragement. Finally, I bow down before the almighty

who has made everything possible.

Place: NIT Rourkela

Date: May 2014 (Subhasmita Sahoo)

Roll No-412MA2080



vi



Abstract

The thesis addresses the problem of estimation of parameters of some well known distri-

bution functions. The problem of estimation of parameters of binomial, Poisson, normal

and exponential distribution function has been considered. In particular, the maximum

likelihood, method of moment, and Bayes estimators has been derived. Further the prob-

lem of estimating the parameter of binomial, Poisson, normal and exponential distribution

function by Lindley’s Approximation is considered. Similar type of estimators are also

derived for this case using different types of prior.
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Chapter 1

Introduction and Motivation

The problem of estimation of parameters of a distribution function is one of the important

and major areas in the area of statistical inference. Statistical inference is the process by

which information from a sample data is used to draw conclusions about the population

from which the sample was selected. The theory of point estimation was first studied by

prof. R. A. Fisher. Estimation theory traces its origin to the efforts of astronomers many

years ago to predict the motion of our solar system. Estimate is calculated approximately

of the result which is given even if the input data is uncertain. It is one of the core topics in

mathematical statistics. This problem of estimation finds applications in industries, stock

markets, business analytics, social sciences, socioeconomic study, reliability study etc. In

various agricultural, physical and industrial experiments, one comes across situations,

where parameters associated with the data are to be estimated. For example,

(i) In business, a chamber of commerce may want to know the average income of the

families in its community.

(ii) In science, a mineralogist may wish to determine the average iron content of a given

core.

(iii) Suppose a manufacturer of tube lights wants to know the average life times of certain

bulbs. In this case the data which will be taken randomly may follow an exponential

distribution, and hence we may estimate the average life span of the tube lights.
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Basically two types of estimation procedures are known. One is the point estimation

and another is interval estimation or confidence interval. Here we mainly focus on point

estimation of the parameters associated with a distribution function. This normally refers

to the process of approximating a parameter (which is assumed to be unknown) using the

sample data which may have certain probability distribution. Suppose some observed

data X follows N(µ, σ2), where µ is unknown and σ2. let us take a sample X1, X2, ..., Xn

from X ∼ N(µ, σ2), where n is the sample size. The statistic T =
∑n

i=1Xi is the best es-

timate for µ. For sufficient statistic please see Chapter 2. The value of T (X1, X2, . . . , Xn)

for given sample values x1, x2, ..., xn is the estimate of µ. The process of estimating the

parameters by using the sample values is known as estimation. Suppose we are interested

to know the quality of production of rice across the country (say India) in last ten years.

If the collected data follows normal distribution, then by estimating the parameter µ we

can have an idea about the average rice production during that period and and estimating

the parameter σ2 we can talk about the variability of production of rice in the country.

Sometimes we may get a better approximate regarding the parameter by having some

prior information about the parameter. This type of study is known as Bayesian study. In

this process we assume that the parameter has certain distribution that is the parameter

which has to be estimated is considered as a random variable. For this purpose we

may consider informative prior or non-informative prior for the unknown parameter. For

example, the Binomial(n, p) distribution taking prior as g(p) = 1; 0 < p < 1. It is a

noninformative prior. In this project work we have discussed some discrete distribution

function and estimation of its parameters. The rest of the work can be organized in the

following way.

The main goal of this project work is to learn different estimation techniques for esti-

mating the parameters. In Chapter 2, we have discussed some basic results related to the

point estimation and Bayesian estimation which will be usefull in the subsequent chapters.

We study the problem of estimating the parameters of a binomial, Poisson, normal and

exponential in Chapter 3. In Chapter 4, we learn a different technique for obtaining Bayes

estimator. The technique is due to Lindley (1980) which is known for approximating a

ratio of integrals.



Chapter 2

Definitions and Basic Results

In this chapter some definitions and basic results are discussed which are very much

essential for the development of the entire project work. Below we start from a very basic

concept known as random experiment or statistical experiment which arises in either

nature or by some statistician.

2.1 Some Basic Definitions

Definition 2.1 (Random experiment) An experiment in which all outcomes are known

in advance, any performance of the experiment that results in an outcome is not known in

advance and the experiment can be repeated under identical conditions, is called a random

experiment.

Definition 2.2 (Sample space) The sample space of a statistical experiment is a pair

(Ω, S), where Ω is the set of all possible outcomes of an experiment and S is the σ-field

of subsets of Ω.

Definition 2.3 (Event) An event is a subset of the sample space Ω in which we are

interested. Any set A ∈ S is known as the events.

3
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Definition 2.4 (Probability measure) Let (Ω, S) be a sample space and S be the σ−
algebra defined over Ω. A set function P defined on S is called probability measure or

simply probability if it satisfies the following conditions,

(i) P (A) ≥ 0, ∀ A ∈ S.

(ii)P (Ω) = 1.

(iii) Let Aj , Aj ∈ S, j = 1, 2, . . . be a disjoint sequence of sets. That is Aj

⋂

Ak = ∅
for j 6= k. Then

P
(

∞
⋃

j=1

)

=
∞

∑

j=1

P
(

Aj

)

.

Definition 2.5 (Random variable) Let (Ω, S) be a sample space. A finite single valued

function which maps Ω into R is called a random variable if the inverse images under X

of all Borel sets in R are events.

Definition 2.6 (Distribution function) Let X be a random variable defined on (Ω,

S, P ). Define a function F on (−∞,∞) by F (x) = P{w : X(w) ≤ x} for all x ∈ R. F is

nondecreasing, right continues and F (−∞) = 0, F (∞) = 1. Then the function F is called

the distribution function of the random variable X.

Depending upon the nature of sample space we may categorize the random variables

as discrete type and continuous type.

Definition 2.7 (Discrete random variable) An rv X defined on (Ω,S, P ) is said to

be of discrete type or simply discrete if there exist a countable set E ⊆ R such that

P (x ∈ E) = 1. The collection of numbers {pi} satisfying P{X = xi} = pi ≥ 0 for all i

and
∑∞

i=1 pi = 1, is called the probability mass function of an rv X.

Definition 2.8 (Continuous random variable) Let X be a random variable defined

on (Ω,S, P ) with distribution function F . Then X is said to be continuous random variable
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if F is absolutely continuous that is if there exists a nonnegative function f(x) such

that, for every real number x, we have F (x) =
∫ x

−∞
f(t) dt. The function f is called the

probability density function of the random variable X and
∫ ∞

−∞
f(t) dt = 1.

Next we discuss some basic results and terminologies related to the estimation of pa-

rameters of a distribution function.

2.2 Estimation of Parameters of a Distribution Func-

tion

In this project we will only concentrate on the problem of point estimation on a classical

point of view and some of its extensions to Baysian studies.

Suppose X1, X2, . . . , Xn are collected from a population which has a distribution func-

tion Fθ(x). This is normally a family of distribution functions as for each value of the

parameter θ we have a distribution F. Here θ may lie in some set say Θ (parameter space),

is the unknown parameter associated with the distribution function F. Our aim is to get

an approximate value or an estimate of θ using the samples X. We will study the theory

of point estimation (classical approach) and particularly parametric point estimation.

Definition 2.9 (Parameter space) The set of all possible values of the parameters of

a distribution function F is called the parameter space. This set is usually denoted by Θ.

Definition 2.10 (Statistic) Any function of the random sample X1, X2, . . . , Xn those

are being observed say T (X1, X2, . . . , Xn) is called a statistic. The value of a statistic is

denoted by T (x1, x2, . . . , xn).

Definition 2.11 (Estimator) If a statistic is used to estimate an unknown parameter

θ of a distribution, then it is called an estimator and a particular value of the estimator

say Tn(X1, X2, . . . , Xn) is called an estimate of θ.
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Next, we discuss some of the properties which an estimator may enjoy.

2.3 Characteristics of Estimators

Various statistical properties of an estimators can be used to decide which estimator is

most appropriate in a given situation.

Definition 2.12 (Unbiasedness) : A statistic T (X1, X2, . . . , Xn) is an unbiased esti-

mator of the parameter θ if and only if E[T (X1, X2, . . . , Xn)] = θ. If E[T (X1, X2, . . . , Xn)] >

θ then we say T over estimates and if E[T (X1, X2, . . . , Xn)] < θ we say it underestimates.

Example 2.1 Let X1, X2, X3 be a random sample of size 3 from a normal population

N(µ, σ2). Suppose µ, and σ2 are unknown. It can be easily seen that a statistic T =
1
4
(X1 + 2X2 +X3) is an unbiased estimate of µ. Since,

E(T ) = E

([

1

4
(X1 + 2X2 +X3

])

=
1

4
(µ+ 2µ+ µ)

= µ.

Definition 2.13 (Consistency) Let X1, X2, . . . be a sequence of iid random variables

with common distribution function Fθ ,θ ∈ Θ. A sequence of point estimators Tn(X1, X2,

. . . , Xn) = Tn will be called consistent for ψ(θ) if Tn converges to ψ(θ) in probability, that

is,

P (|Tn − ψ(θ)| > ε) → 0, as n→ ∞,

where ε is a very small arbitrary positive number.

Below we discuss some of the consequences of the above definition.
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Remark 2.1 If Tn is a consistent estimator of θ and ψ(θ) is a continuous function of θ,

then ψ(Tn) is a consistent estimator of ψ(θ).

Remark 2.2 If Tn is a sequence of consistent estimators such that E[Tn] → ψ(θ) and

V ar[Tn] → 0 as n→ ∞, then Tn is a consistent estimator of ψ(θ).

Next we discuss a property of an estimator which tells us how much an estimator is

good with respect to another estimator.

Definition 2.14 (Efficiency) In general it is possible to have more than one consistent

estimators among all unbiased estimators. Thus it is necessary to find some criteria

to choose between the estimators. Such a criterion which is based on the variances of

sampling distributions of estimators is known as efficiency.

Definition 2.15 (Sufficiency) An estimator is said to be sufficient for a parameter

θ, if it contains all the information in the sample regarding the parameter. Let X =

(X1, X2, . . . , Xn) be a sample from a family of distributions Fθ : θ ∈ Θ. A statistic T is

sufficient for θ if and only if the conditional distribution of X given T = t, does not

depend upon θ.

Next, we discuss a technique known as ”Fisher-Neymann factorization criterion” to

determine sufficient statistics for a given distribution.

Theorem 2.1 (Fisher-Neymann Factorization Criterion) A statistic T = t(X) is

a sufficient statistic for the parameter θ if and only if the joint probability distribution or

density of the random sample can be expressed in the form:

f(x1, x2, . . . , xn; θ) = gθ(t(x)) × h(x1, x2, . . . , xn),

where gθ(t(x)) depends on θ and x and h(x1, x2, . . . , xn) does not depend on θ.
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2.4 Methods of Estimation

Normally there are two different approaches for obtaining a point estimator for unknown

parameter θ. Namely classical method and decision theoretic approach. Now we outline

some of the most important methods for obtaining point estimators. Most commonly

used methods under classical estimation are as follows.

2.4.1 Method of Moments

Suppose X be a random variable with distribution function F. Let X1, X2, . . . , Xn be a

random sample of size n from X. Defining the first k sample moments about origin as

m
′

r = 1
n

∑n
i=1X

r
i , r = 1, 2, . . . , k. The first k population moments about origin are given

by µ
′

r = E(Xr), which are in general functions of k unknown parameters. Equating the

sample moments and population moments yields k simultaneous equations in k unknowns.

µ
′

r = m
′

r, r = 1, 2, . . . , k. The solutions to the above equations denoted by θ̂1, θ̂2, . . . , θ̂k

yields the moment estimators of θ1, θ2, . . . , θk.

Example 2.2 Extimate α and β in the case of Pearson’s Type III distribution by the

method of moments:

f(x;α, β) =
βα

Γ(α)
xα−1e−βx, 0 ≤ x <∞.

Solution: We have

µ
′

r =
βα

Γ(α)

∫ ∞

0

xrxα−1e−βxdx

=
βα

Γ(α)

∫ ∞

0

xr+α−1e−βxdx

=
βα

Γ(α)

Γ(α+ r)

βα+r

=
Γ(α + r)

Γ(α)βr
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µ
′

1 =
Γ(α+ 1)

Γ(α)β

=
α

β ′

µ
′

2 =
Γ(α+ 2)

Γ(α)β2

=
(α+ 1)α

β2

µ
′

2

µ
′

1
2 =

α + 1

α

=
1

α
+ 1.

⇒ 1

α
=

µ
′

2

µ
′

1
2 − 1

⇒ 1

α
=

µ
′

2 − µ
′

1

2

µ
′

1
2

⇒ α =
µ

′

1

2

µ
′

2 − µ
′

1
2

We know that

α

β
= µ

′

1

⇒ β =
α

µ
′

1

⇒ β =

µ
′

1

2

µ
′

2−µ
′

1

2

µ
′

1

⇒ β =
µ

′

1

µ
′

2 − µ
′

1
2 .

Hence α̂ =
m

′

1

2

m
′

2−m
′

1

2 and β̂ =
m

′

1

m
′

2−m
′

1

2

where m
′

1 and m
′

2 are sample moments.
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2.4.2 Method of Maximum Likelihood Estimation

Suppose (X1, X2, . . . , Xn) be a random vector with PDF fθ(x1, x2, . . . , xn), θ ∈ Θ, where θ

is a multidimensional vector valued unknown parameter. The likelihood function is given

by L(θ;x1, x2, . . . , xn) = fθ(x1, x2, . . . , xn) which is a function of unknown parameter θ for

fixed sample sizes. If X1, X2, . . . , Xn are iid with PDF fθ(x), then the likelihood function

is

L(θ;x1, x2, . . . , xn) =
n

∏

i=1

fθ(xi).

The maximum likelihood estimator (MLE) of θ is the value of θ say θ̂ that maximizes the

likelihood function L(θ;x1, x2, . . . , xn). Note that in many cases, the likelihood function

can be infinitesimal and it is much easier to deal with the log-likelihood function that

is logL(θ;x1, x2, . . . , xn). Since log is a monotone function, when likelihood function is

maximized, log-likelihood function is also maximized, and vice versa.

Example 2.3 In random sampling from normal population N(µ, σ2), find the maximum

likelihood estimators for

(i) µ when σ2 is known,

(ii) σ2 when µ is known.

Solution: It is given that X ∼ N(µ, σ2), then the likelihood function is,

L(µ, σ2|(x)) =
n

∏

i=1

[

1

σ
√

2π
exp

{

− 1

2σ2
(xi − µ)2

}]

=

(

1

σ
√

2π

)n

exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}

.

Taking logarithm of the likelihood function we have,

logL = log

(

1

σ
√

2π

)n

+ log

[

exp

{

− 1

2σ2

n
∑

i=1

(xi − µ)2

}]

= −n
2

log(2π) − n

2
log(σ2) − 1

2σ2

n
∑

i=1

(xi − µ)2.
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(i) When σ2 is known, the likelihood equation for estimating µ is:

∂

∂µ
logL = 0

⇒ − 1

2σ2

n
∑

i=1

2(xi − µ)(−1) = 0

⇒
n

∑

i=1

(xi − µ) = 0

⇒ µ̂ =
1

n

n
∑

i=1

xi = x̄.

(ii) When µ is known, the likelihood equation for estimating σ2 is:

∂

∂σ2
logL = 0

⇒ − n

2σ2
+

1

2σ4

n
∑

i=1

(xi − µ)2 = 0

⇒ n− 1

σ2

n
∑

i=1

(xi − µ)2 = 0

⇒ 1

σ2

n
∑

i=1

(xi − µ)2 = n

⇒ σ̂2 =
1

n

n
∑

i=1

(xi − µ)2.

Remark 2.3 Let T be a sufficient statistic for the family of probability density functions

fθ(x); θ ∈ Θ. If an MLE of θ exists, it is a function of T.

Remark 2.4 If MLE exists then it is the most efficient in the class of such estimators.

Remark 2.5 (Invariance property) If T is the MLE of θ and ψ(θ) is one-to-one func-

tion of θ, then ψ(T ) is the MLE of ψ(θ).
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When we estimate the unknown parameter θ of a distribution function Fθ(x), by an

estimator δ(X) some loss is incurred. Hence we use some loss functions to know the

amount of loss incurred as below.

Definition 2.16 (Loss Function) Loss function represents the loss incurred when the

true value of the parameter is θ and we are estimating θ by δ(x). Throughout the discussion

the loss function L(θ, δ(x)) is taken as nonnegative and real valued in both its arguments.

When the correct estimate is chosen the loss becomes zero. Depending on the loss function

Bayes estimators are different. Different types of loss functions are discussed below.

Definition 2.17 (Linear Loss Function) The linear loss function is defined as

L(θ, δ(x)) = c1

(

δ(x) − θ
)

, δ(x) ≥ θ

= c2

(

θ − δ(x)
)

, δ(x) < θ

The constants c1 and c2 reflect the effect over and under estimating θ. If c1 and c2 are

functions of θ, the above loss function is called weighted linear loss function.

Definition 2.18 (Absolute Error Loss Function) The absolute error loss function is

defined as

L(θ, δ(x)) = |δ(x) − θ|.

Definition 2.19 (Squared Error Loss Function) The squared error loss function is

defined as

L(θ, δ(x)) = k(δ(x) − θ)2.

It is also called as quadratic loss function.

Throughout our discussion we have used squared error loss function.
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Definition 2.20 (Risk Function) The average loss of an estimator δ(x) is known as

its risk function and is defined as

R(θ, δ) = E[L(θ, δ(x))].

The goal of an estimation problem is to look for an estimator δ which has uniformly

minimum risk for all values of the parameter θ ∈ Θ.

2.4.3 Bayesian Estimation

In Bayesian Principle the unknown parameter θ which is treated as random variable

assumes a probability distribution known as a priori of θ denoted by Π(θ).

To start the estimation of parameters we have the prior information about the unknown

parameter θ. Different types of prior are discussed below.

(a) Noninformative Prior: A probability density function Π(θ) of θ is said to be

a noninformative prior if it contains no information about θ. Some simple examples of

noninformative priors are Π(θ) = 1, and Π(θ) = 1
θ
.

(b) Natural conjugate prior: To simplify the calculations, statisticians use natural

conjugate priors. Usually there is a natural parameter family of distributions such that

the posterior distributions also belong to the same family. These priors make the compu-

tations much simpler. Conjugate priors are usually associated with the exponential family

of distributions. Some example of natural conjugate priors are: with sampling from pdf

N(θ, σ2) we take prior distribution N(µ, τ 2), the posterior distribution is

N
(σ2µ+ xτ 2

σ2 + τ 2
,
σ2τ 2

σ2 + τ 2

)

.

With sampling distribution Binomial and prior distribution Beta the posterior distribution

is Beta. For some more results one may see the Book by Rohatgi and Saleh (2003).

(c) Jeffreys’ invariant prior: Sir Harold Jeffreys suggested a general rule for choos-

ing the non-informative prior for θ,

Π(θ) ∝
√

I(θ),



14

where θ vector valued parameter, and

I(θ) = −E
[∂2 log f(x|θ)

∂θi∂θj

]

,

where I(θ) is Fisher information matrix.

Definition 2.21 (Posterior distribution) The posterior distribution of θ given X = x

is obtained by dividing the joint density of θ and X by the marginal distribution of X.

Mathematically
Π(θ)fθ(x)

∫

Θ
Π(θ)fθ(x)dθ

where Θ is the parameter space.

Definition 2.22 (Bayes risk) Bayes risk associated with an estimator δ is defined as

the expected value of the risk function R(θ, δ) with respect to the prior distribution Π(θ)

of θ and is given by,

R∗(θ, δ) = E[R(θ, δ)]

=

∫

R(θ, δ)Π(θ)dθ

=

∫

E[L(θ, δ)]Π(θ)dθ.

Definition 2.23 (Bayes estimator) A Bayes estimator is that which minimizes the

Bayes risk defined above. Accordingly if δo is Bayes estimator of θ with prior distribution

Π(θ), then we must have

R∗(θ, δo) = inf R∗(θ, δ).

Theorem 2.2 The Bayes estimator of a parameter θ ∈ Θ with respect to the qudratic

loss function L(θ, δ) = (θ − δ)2 turns out to be

δ(x) = E{θ|X = x}.



Chapter 3

Bayesian Estimation of Parameters
of Binomial, Poisson, Normal and
Exponential Distribution

In this chapter, we consider the problem of estimating the parameters of some well known

distributions such as binomial, Poisson, Exponential and Normal. We consider some non-

informative priors and conjugate priors for their parameters. We first take the binomial

distribution and study the estimation of their parameters.

3.1 Binomial Distribution

Let X1, X2, . . . , XN be N samples taken from binomial distribution with parameter n and

p. The method of moment estimator of the parameter p is given by 1
n

∑N
i=1 xi. This is also

the MLE of p. Now we try to get a Bayes estimator of parameter p.

The probability mass function of the random variable X is given by,

f(x|(n, p)) =

(

n

x

)

pxqn−x, q = 1 − p; x = 0, 1, 2, ..., n.

15
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The likelihood function is given by,

L((x1, x2, . . . , xN ), p) =
N
∏

i=1

(

n

xi

)

pxiqn−xi

= ps(1 − p)Nn−S

N
∏

i=1

(

n

xi

)

,

where S =
∑N

i=1 xi.

Consider the conjugate prior distribution of p :

g(p) ∝ pa−1(1 − p)b−1, a, b > 0.

The joint probability distribution of p and X is given by,

h(x, p) = KpS+a−1(1 − p)Nn+b−S−1

N
∏

i=1

(

n

xi

)

.

The marginal probability distribution is given by,

fX(x) =

∫ 1

0

h(x, p)dp

= K
N
∏

i=1

(

n

xi

)
∫ 1

0

pS+a−1(1 − p)Nn+b−S−1dp

= K

N
∏

i=1

(

n

xi

)

B(S + a,Nn+ b− S).

Now the posterior probability is given by,

Π(p|x) =
1

B(S + a,Nn+ b− S)
pS+a−1(1 − p)Nn+b−S−1.
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Hence Bayes estimator of p is given by,

p∗ = E(p|x∗)

=

∫ 1

0

pΠ(p|x)dp

=

∫ 1

0

p
1

B(S + a,Nn+ b− S)
pS+a−1(1 − p)Nn+b−S−1dp

=
1

B(S + a,Nn+ b− S)

∫ 1

0

pS+a(1 − p)Nn+b−S−1dp

=
B(S + a+ 1, Nn+ b− S)

B(S + a,Nn+ b− S)

=
Γ(S + a+ 1)Γ(Nn+ b− S)

Γ(S + a+Nn+ b− S + 1)

Γ(S + a+Nn+ b− S)

Γ(S + a)Γ(Nn+ b− s)

=
(S + a)!(S + a+Nn+ b− S − 1)!

(S + a− 1)!(S + a+Nn+ b− S)!

=
S + a

a+ b+Nn
.

3.2 Poisson Distribution

Let x = (x1, x2, ..., xn) be a random sample from Poisson distribution. The method of

moment and the MLE of parameter λ is λ̂ = 1
n

∑n
i=1 xi. Now we try to get a Baye estimator

of paramere λ by the following way.

The probability mass function of the random variable is given by,

f(x|λ) = e−λλ
x

x!
, x = 0, 1, 2, ...

The likelihood function,

L(λ|x) =
e−nλλS

x1!x2!...xn!
, S =

n
∑

i=1

xi.

Consider the natural conjugate prior(NCP) for λ is given by,

g(λ|a, b) =
ba

Γ(a)
λa−1e−bλ, a, b, λ > 0.
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The joint pdf is given by,

h(x, λ) =
ba

Γ(a)x1!, x2!, ..., xn!
λS+a−1e−λ(n+b).

The marginal pdf of λ is given by,

fX(x) =

∫ ∞

0

h(x, λ)dλ

=
ba

Γ(a)x1!, x2!, ..., xn!

∫ ∞

0

λS+a−1e−λ(n+b)dλ

=
ba

Γ(a)x1!, x2!, ..., xn!

∫ ∞

0

(

t

n+ b

)S+a−1

e−t dt

n+ b
, (put t = (n+ b)λ)

=
ba

Γ(a)x1!, x2!, ..., xn!(n+ b)S+a

∫ ∞

0

tS+a−1e−tdt

=
baΓ(S + a)

Γ(a)x1!, x2!, ..., xn!(n+ b)S+a
.

Now the posterior distribution is given by,

Π(λ|x) =
(n+ b)S+a

Γ(S + a)
λS+a−1e−λ(n+b).

The Bayes estimator of λ with respect to the squared error loss function is given by,

λ∗ = E(λ|x)

=
(n+ b)S+a

Γ(S + a)

∫ ∞

0

λ.λS+a−1e−λ(n+b)dλ

=
(n+ b)S+a

Γ(S + a)

∫ ∞

0

(

t

n+ b

)S+a

e−t dt

n+ b
, (put t = (n+ b)λ)

=
(n+ b)S+a

Γ(S + a)(n+ b)S+a+1

∫ ∞

0

t(S+a+1)−1e−tdt

=
(n+ b)S+aΓ(S + a+ 1)

Γ(S + a)(n+ b)S+a+1

=
(n+ b)S+a(S + a)!

(n+ b)S+a+1(S + a− 1)!

=
S + a

n+ b
.
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3.3 Normal Distribution

Let X1, X2, . . . , Xn be identically and independently distributed random samples taken

from normal distribution X ∼ N(µ, σ2). Here the method of moments of estimator µ and

σ2 are µ̂ = X̄ and σ̂2 = S2

n
which is also the MLE of µ and σ2. Now we try to get the

Bayes estimator of parameters µ and σ2.

The probability density function of the random variable X is

f(x) =
1√
2π
e−

(x−µ)2

2σ2 , −∞ < x <∞; σ > 0; −∞ < µ <∞.

Taking σ2 = 1 we estimate the unknown parameter µ. The likelihood function is given

by,

L(x, µ) =
n

∏

i=1

[ 1√
2π
e−

(xi−µ)2

2

]

=
1

(2π)
n
2

e
−1
2

(

∑n
i=1 x2

i−2µ
∑n

i=1 xi+µ2

)

.

Let the prior PDF of µ be N(0, 1) which is given by,

g(µ) =
1√
2π
e

−µ2

2 .

The joint PDF of X and µ is given by,

f(x, µ) =
1

(2π)
n+1

2

e
−(

∑n
i=1 x2

i −2µnx̄+(n+1)µ2)

2 .

The marginal PDF of X is given by,

h(x) =

∫ ∞

−∞

f(x, µ)dµ

=

∫ ∞

−∞

1

(2π)
n+1

2

e
−(

∑n
i=1 x2

i −2µnx̄+(n+1)µ2)

2 dµ

=
1

(2π)
n+1

2

e
−1
2

∑n
i=1 x2

i

∫ ∞

−∞

e
−(n+1)

2
[(µ− nx̄

n+1
)2−( nx̄

n+1
)2]dµ

=
1

(2π)
n+1

2

e
−1
2

∑n
i=1 x2

i e(
n
2
)( nx̄

n+1
)2 1√

2π

∫ ∞

−∞

e
−(n+1)

2
(µ− nx̄

n+1
)2dµ

=
1

(2π)
n+1

2

e
−1
2

(
∑n

i=1 x2
i−

n2x̄2

n+1
) 1

(n+ 1)
1
2

.
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Now the posterior PDF is given by,

f(µ|x) =
f(x, µ)

h(x)

=
(n+ 1)

1
2√

2π
e

−(n+1)
2

(µ− nX̄
n+1

))2 .

The Bayes estimator of µ with respect to the squared error loss function L(µ, δ) = (µ−δ)2,

is given by,

µ̂ = E(µ|x)

=

∫ ∞

−∞

µf(µ|x)dµ

=
(n+ 1)

1
2√

2π

∫ ∞

−∞

µe−( n+1
2

)(µ− nX̄
n+1

)2

=
nX̄

n+ 1
.

3.4 Exponential Distribution(one-parameter)

In this section we will discuss the estimation problem for one-parameter exponential

distribution.

Let X1, X2, . . . , Xn be identically and independently distributed random samples taken

from one-parameter exponential distribution Ex(β). The method of moments of estimator

and MLE of the parameter β is X̄. Now we try to get the Bayes estimator of the parameter

β as following.

The probability density function of the random variable X is given by,

f(x; β) =
1

β
e−

x
β , x > 0, β > 0.
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The likelihood function is given by,

L(x; β) =
n

∏

i=1

e
−xi

β

β

=
1

βn
e

−1
β

∑n
i=1 xi

=
1

βn
e

−S
β , where S =

n
∑

i=1

xi.

Considering the inverted gamma prior, the prior pdf of β is given by,

g(β|a, b) =
ab

Γ(b)

e
−a
β

βb+1
, a > 0, b > 0, β > 0.

The joint pdf of X and β is given by,

f(x, β) =
ab

Γ(b)

e
−1
β

(S+a)

βn+b+1
, a > 0, b > 0, β > 0.

The marginal pdf of X is given by,

h(x) =

∫ ∞

0

f(x, β)dβ

=
ab

Γ(b)

∫ ∞

0

e
−1
β

(S+a)

βn+b+1
dβ,

=
ab

Γ(b)

∫ ∞

0

e−t tn+b+1

(S + a)n+b
dt, (put t =

S + a

β
),

=
abΓ(n+ b)

Γ(b)(S + a)n+b
.

Now the posterior PDF is given by,

f(β|x) =
(S + a)n+be

−(S+a)
β

βn+b+1Γ(n+ b)
.

The Bayes estimator of β with respect to the squared error loss function L(β, δ) =

(β − δ)2, is given by,
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β̂ = E(β|x)

=

∫ ∞

0

βf(β|x)dβ

=

∫ ∞

0

β
(S + a)n+be

−(S+a)
β

βn+b+1Γ(n+ b)
dβ

=
nX̄ + a

n+ b− 1
.

3.5 Exponential Distribution(two-parameter)

In this section we will discuss the estimation problem for two-parameter exponential

distribution.

Let X1, X2, . . . , Xn be identically and independently distributed random samples taken

from two-parameter exponential distribution Ex(α, β). We know the method of moments

of estimator as well as the maximum likelihood estimator of the parameter (α, β) are

α̂ = X̄ − 1

n

n
∑

i=1

(Xi − X̄)2,

β̂ =
1

n

n
∑

i=1

(Xi − X̄)2.

Now we try to get the Bayes estimator of the parameters (α, β).

The probability density function of the random variable X is given by,

f(x;α, β) =
1

β
e−(x−α)/β; α < x <∞, −∞ < α <∞, β > 0.

The likelihood function is given by,

L(X;α, β) =
n

∏

i=1

1

β
e−(x−α)/β

=
1

βn
e−

1
β

∑n
i=1(Xi−α)

=
1

βn
e

−1
β

{S+n(X(1)−α)}.
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where X(1) is the first order statistic in the sample. Here X = (X1, X2, . . . , Xn) and S =
∑n

i=1(Xi −X(1)).

The joint pdf is given by,

Π(X;α, β) = L(X;α, β)g(α, β)

=
1

βn+1
e

−1
β

{S+n(X(1)−α)}.

The marginal pdf of α is given by,

Π1(α|X) =

∫ ∞

0

Π(X;α, β)dβ

=
k

[S + n(X(1) − α)]n
, −∞ < α < X(1),

where

k−1 =

∫ X(1)

−∞

dα

[S + n(X(1) − α)]n
.

Let

S + n(X(1) − α) = V,

then

dα = −dV/n.

Finally we get,

k−1 =
1

n(n− 1)Sn−1
.

Substituting k in Π1(α|x) we have

Π1(α|X) =
n(n− 1)Sn−1

[S + n(X(1) − α)]n
.

Now the Bayes estimator of α with respect to the squared error loss function is given by,

α̂ = E(α|X)

=

∫ X(1)

−∞

α
n(n− 1)Sn−1

[S + n(X(1) − α)]n
dα.

After certain calculations we get,

α̂ = X(1) −
S

n(n− 2)
.
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The marginal pdf of β is given by,

Π2(β|X) =

∫ X(1)

−∞

Π(X;α, β)dα

=
Sn−1

Γ(n− 1)βn
e−S/β.

The Bayes estimator of β with respect to the squared error loss function is given by,

β̂ = E(β|X)

=
S

n− 2
, n > 2.



Chapter 4

Bayesian Estimation Using Lindley’s
Approximation

4.1 Introduction

In this chapter, we will take up a problem of estimating parameter of some well known

distribution functions, such as binomial, Poisson, normal and exponential distribution

functions using Lindley’s approximation.

The basic idea in Lindley’s approach is to obtain Talyor series expansion of the function

involved in posterior moment,

E {u(θ)|x} =

∫

Ω
u(θ)v(θ)eL(θ)dθ
∫

Ω
v(θ)eL(θ)dθ

.

where u(θ) and v(θ) are arbitrary functions of θ and Ω is the parameter space of θ. L(θ) is

the logarithm of likelihood function. About the maximum likelihood estimator θ̂. Lindley

approximated that posterior moment by,

E {u(θ)|x} =

[

u+
1

2

∑

i

∑

j

(uij + 2uiρj)σij +
1

2

∑

i

∑

j

∑

k

∑

r

Lijkσijσkr

]

+O

(

1

n2

)

.(4.1)

where

i, j, k, r = 1, 2, . . . ,m;

25
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θ = (θ1, θ2, . . . , θm),

θ̂ is the MLE of θ,

ui =
∂u

∂θi

, uij =
∂2L

∂θi∂θj

, Lijk =
∂3L

∂θi∂θj∂θk

ρ = ρ(θ) = log v(θ), ρi =
∂ρ

∂θi

,

and σij is the (i, j)th element in [−Lij]
−1.

For a single parameter case m = 1, (4.1) reduces to

E(u|x) =

[

u+
1

2
(u2 + 2u1ρ1)σ

2 +
σ4

2
L3u1 +O

(

1

n2

)]

θ̂

(4.2)

In the following section 4.2 we will discuss about the binomial parameter, in section 4.3

we will discuss about the Poisson parameter, in section 4.4 we will discuss about the

exponential parameter and in section 4.5 we will discuss about the normal parameter for

finding the Bayesian estimator using Lindley’s approximation.

4.2 Bayesian estimation of binomial parameter using

Lindley’s approximation

In this, we know the probability mass function is

f(x|(n, p)) =

(

n

x

)

pxqn−x, q = 1 − p; x = 0, 1, 2, ..., n.

We will obtain Bayes estimator of p under AlI prior v(p) ∝ 1
p(1−p)

using the approximation

for m=1.

We have u = p, u1 = 1, u2 = 0, ρ ∝ −[log p+ log(1 − p)].
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Logarithmic likelihood function for binomial distribution is given by,

L = Const+ x log p+ (n− x) log(1 − p).

Now calculating

∂2L

∂p2
= − x

p2
− n− x

(1 − p)2

L3 =
∂3L

∂P 3

=
2x

p3
− 2(n− x)

(1 − p)3

and

ρ1 =
2p− 1

p(1 − p)
.

At p = p̂ = x
n
, we have

∂2L

∂p2
= − n

p(1 − p)
,

σ2 =
p(1 − p)

n

L3 = 2n

[

1

p2
− 1

(1 − p)2

]

=
2n(1 − 2p)

p2(1 − p)2
.

Substituting in (4.2)

p∗ =

[

p+
2p− 1

p(1 − p)
.
p(1 − p)

n
+
n(1 − 2p)

p2(1 − p)2
.
p2(1 − p)2

n2
+O

(

1

n2

)]

p=p̂

= p+
2p− 1

n
− 2p− 1

n
+O

(

1

n2

)

= p+O

(

1

n2

)

=
x

n
+O

(

1

n2

)

.
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4.3 Bayesian estimator of Poisson parameter using

Lindley’s approximation

Consider the probability mass function of Poisson distribution is

f(x|λ) = e−λλ
x

x!
.

Now we will obtained the Bayes estimator of λ under Jeffrey’s invariant prior v(λ) = 1
λ

using the approximation for m=1. Logarithmic likelihood function for Poisson distribution

is given by,

L = −nλ+
∑

i=1

nxi log λ− log(x1!x2!...xn!).

Now calculating

∂L

∂λ
= 0 =⇒ −n+

x̄

λ
= 0 =⇒ λ =

x̄

n

∂2L

∂λ2
= − x̄

λ2

L3 =
∂3L

∂λ3
=

2x̄

λ3

ρ = log λ

ρ1 =
∂ρ

∂λ
= −1

λ
.

Taking u = λ, u1 = 1, u2 = 0

σ2 =

[

−∂
2L

∂λ2

−1
]

=
λ2

x̄
=

x̄

n2
.

The Bayes estimator of λ is given by substituting the above in (4.2) we get

λ∗ =
x̄

n
+

x̄

λn2
+

x̄3

λ3n4
+O

(

1

n2

)

=
x̄

n
− 1

n
+

1

n
+O

(

1

n2

)

=
x̄

n
+O

(

1

n2

)

.
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4.4 Bayesian estimation of exponential parameter us-

ing Lindley’s approximation

Consider the exponential probability density function

f(x|θ) =
1

θ
e(−

x
θ ), x, θ > 0.

We derive Bayes estimator of θ with respect to ALI prior v(θ) ∝ 1
θ2 using the approxima-

tion.

We have u = θ, u1 = 1, u2 = 0, ρ ∝ −2 log θ,

ρ1 =
−2

θ

L = −n log θ − nx̄

θ

L2 =
n

θ2
− 2nx̄

θ3

L3 =
2n

θ3
+

6nx̄

θ4
.

At θ = θ̂ = x̄,

L2 =
−n
θ2
, σ2 =

θ2

n

and

L3 =
4n

θ3
.

Substituting in (4.2) we get

θ∗ =

[

θ − 2θ2

nθ
+

2nθ4

n2θ2
+ 0

(

1

n2

)]

θ̂

= θ̂ + 0

(

1

n2

)

= x̄+ 0

(

1

n2

)

.
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4.5 Bayesian estimation of normal parameter using

Lindley’s approximation

Considering the probability density function of normal distribution

f(x|µ, σ) =
1√
2πσ

e
−1
2σ2 (x−µ)2 , −∞ < x, µ <∞, σ > 0.

Then the likelihood function is

l(µ, σ|x̄) =
k

σn
e

−1

2σ2

∑n
i=1(xi−µ)2 .

L = log l = k log
1

σn
e

−1

2σ2

∑n
i=1(xi−µ)2

= log k + log
1

σn
+ log e

−1

2σ2

∑n
i=1(xi−µ)2

= constant− n log σ − −1

2σ2

n
∑

i=1

(xi − µ)2

Here we consider the two parameter case, m = 2, θ = (θ1, θ2) From (4.1) we have

u∗ = [u+
1

2
(u11σ11 + u22σ22) + ρ1u1σ11 + ρ2u2σ22

+
1

2
{σ11σ22(u1L12 + u2L21) + u1σ

2
11L30 + u2σ

2
22L03} +O(

1

n2
)]θ̂

Now calculating

L30 =
∂3L

∂µ3
= 0,

L12 =
∂3L

∂µ∂σ2
=

6
∑

i(xi − µ)

σ4
,

L21 =
∂3L

∂µ2∂σ
=

2n

σ3
,

L03 =
∂3L

∂σ3
=

−2n

σ3
+

12

σ5

∑

i

(xi − µ)2,

∂2L

∂µ2
=

−n
σ2

,
∂2L

∂µ∂σ
=

−2

σ3

∑

i

(xi − µ),

∂2L

∂σ2
=

n

σ2
− 3

σ4

∑

i

(xi − µ)2.
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Since µ and σ are orthogonal to each other θij = 0, i = j, θ1 = µ, θ2 = σ.

At the MLE (µ̂, σ̂) we have

[−Lij] =

[

n
σ2 0
0 2n

σ2

]

then

σ11 =
σ2

n
,

σ22 =
σ2

2n
,

and

L30 = 0,

L03 =
10n

σ3
,

L21 =
2n

σ3
,

L12 = 0.

Substituting in (4.1) we get

µ∗ = x̄+O

(

1

n2

)

σ∗ =

[

σ +
σ2

2n

(−1

σ

)

+
1

2

(

σ4

2n2
· 2n

σ3
+

σ4

4n2
· 10n

σ3

)

+O

(

1

n2

)]

σ̂

= σ̂

(

1 +
5

4n

)

+O

(

1

n2

)

.

Similarly, if we take the parameter u(θ) = µ+ ησ

then u1 = 1, u2 = η, u11 = 0, u22 = 0

Hence

µ∗ = x̄+O

(

1

n2

)

σ∗ = σ − ησ

2n
+
ησ

2n
+

5ησ

4n
+O

(

1

n2

)

= σ̂

(

1 +
5η

4n

)

+O

(

1

n2

)

.
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Conclusions and Scope of Future Works

In this project work, at first the basic requirements for the development of subsequent

chapters are studied. We have learned some techniques for estimating parameters of a

distribution function such as maximum likelihood, method of moments and the Bayesian

approach. In particular the problem has been considered for the case of binomial, Poisson,

normal and exponential distribution. We have also studied some characteristics of the

estimators. Some of the future works to be carried out are listed below.

• Taking various types of prior we can get Bayesian estimator of different types of

distribution functions.

• Using Lindley’s approximation we can get Bayesian estimator of some complicated

integrals whose closed form are not possible.

• Bayes estimator with respect to different loss functions can be obtained.
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