Name ______ Date: _____ Section:_____ ## CONSTRUCTION OF A SQUARE INSCRIBED IN A CIRCLE Key Idea: Diagonals of a square are ______ of each other. **Steps:** - 1) Draw a ______. - 2) ______ the diameter. - 3) Connect the four points on the circle to make the _____ of the square. #### REVIEW PACKET For each question make sure to write all formulas, substitutions, and show all work. Clearly label your work and clearly identify your answers. - 1. If \overline{IG} is translated such that I maps to H, which type of quadrilateral will be formed? _____ - a. Explain your reasoning: - b. What will be the slope of \overline{HG} ? - 2. Name the type of quadrilateral that will be formed by reflecting the following triangles into the line: - a. _____ - 3. *TVWX* is a rhombus. Find the following: - TV - m∠VTZ - m∠XWV - m∠ZVW - 4. Write the equation of the line that contains the diagonal \overline{RY} of rhombus GRAY with G(0,9) and A(4,-3): 5. Given $\Box ABCD$, determine the value of y. 6. Given ABCD is a rectangle with $m \not \Delta DAC = 67^{\circ}$ and $m \not \Delta FEB = 34^{\circ}$, find $m \not \Delta AFE$. 7. Rhombus PNWL, NW = 12, and $m \angle WLP = 144^{\circ}$. Find PN, $m \angle LWP$ and $m \angle PNW$. Draw and label a diagram to help justify your answer. 8. A quadrilateral has vertices with coordinates B(-3,1), S(0,3), P(5,2), and A(-1,-2). Classify the quadrilateral using coordinate geometry and explain your reasoning. What would you calculate to prove BSPA is *not* an isosceles trapezoid? Give two options: 1. _______2. _____ 9. In rectangle ABCD with the diagonals intersecting at E, find the length of AE when AC = 8x-3 and BD = 4x+17. Be sure to draw a diagram first! 10. The diagonals of a rhombus measure 8 inches and 16 inches, respectively. What is the perimeter of the rhombus? Write your answer in simplest radical form. (Draw and label a diagram to justify your answer.) 11. In parallelogram ABCD, the diagonals \overline{AC} and \overline{DB} intersect at E. Draw a picture and determine which statement must be true: 1. $$\overline{AC} \cong \overline{DB}$$ 3. $$\triangle AED \cong \triangle CEB$$ 4. $$\triangle DCE \cong \triangle BCE$$ 12. In the diagram of trapezoid ABCD, $\overline{AB} \parallel \overline{DC}$, $\overline{AD} \cong \overline{BC}$. If $m \not A = (4x + 20)^\circ$ and $m \not A = (3x - 15)^\circ$, find $m \not A = (3x - 15)^\circ$. 13. Find the value(s) of x so that ABCD is an isosceles trapezoid with bases \overline{AD} and \overline{BC} . 14. \overline{XY} is the midsegment of the trapezoid. Find the value of x. - 15. Quadrilateral ABCD has diagonals \overline{AC} and \overline{DB} . What information is *not* sufficient to prove ABCD is a parallelogram? - A. \overline{AC} and \overline{DB} bisect each other - B. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$ - C. $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$ - D. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$ - 16. In quadrilateral ABCD, the diagonals bisect its angles. If the diagonals are *not* congruent, quadrilateral ABCD must be a - A. Square - B. Rectangle - C. Rhombus - D. Trapezoid - 17. Quadrilateral MNOP is a trapezoid with $\overline{MN} \parallel \overline{OP}$. If M'N'O'P' is the image of MNOP after a reflection over the x-axis, which two sides of quadrilateral M'N'O'P' are parallel? - 1. $\overline{M'N'}$ and $\overline{O'P'}$ - 2. $\overline{M'N'}$ and $\overline{N'O'}$ - 3. $\overline{P'M'}$ and $\overline{O'P'}$ - 4. $\overline{P'M'}$ and $\overline{N'O'}$ - 18. When a quadrilateral is reflected over the line y=x, which geometric relationship is *not* preserved? - A. Congruence - B. Orientation - C. Parallelism - D. Perpendicularity - 19. If the diagonals of a quadrilateral are congruent but do not bisect each other, the quadrilateral may be a(n): - A. Rectangle - B. Isosceles Trapezoid - C. Rhombus - D. Square - 20. In quadrilateral ABCD, each diagonal bisects opposite angles. If the $m \angle DAB = 70^{\circ}$, then ABCD must be a - A. Rectangle - B. Trapezoid - C. Rhombus - D. Square - 21. In rhombus ABCD, diagonals \overline{AC} and \overline{DB} intersect at E. What kind of angle is $\angle DAE$? - A. Acute - B. Straight - C. Right - D. Obtuse - 22. Three vertices of parallelogram DFGH are D(-9,4), F(-1,5) and G(2,0). - A. Write the equation of the line that contains the side of the parallelogram through vertex H. - B. State the coordinates of vertex H. - 23. State the coordinates of vertices H and P of square HAPY given A(0,5) and Y(-10,-1). 24. Prove quadrilateral ABCD with vertices A(-3,2), B(-1,4), C(8,-5), and D(6,-7) is a rectangle. Make sure to show all of your work including formulas, substitutions, etc. Clearly label your work. 25. Given quadrilateral ABCD and its image EFGH A. Describe a sequence of rigid motions that maps ABCD onto EFGH. Be specific. B. List the properties that are preserved under all rigid motions: | 1 | 2. | | |---|----|--| | 3 | 4 | | C. Fill in the blanks: - ≰A ≅ _____. - If $\overline{AB} \cong \overline{BC}$, then $\overline{EF} \cong \underline{\hspace{1cm}}$. - If $\overline{AB} \parallel \overline{DC}$, then $\overline{EF} \parallel$ _____. # Unit 6 Review Geometry 2016-17 26. Given: \overline{DB} bisects \overline{AC} . $\checkmark 1 \cong \checkmark 2$. Prove: ABCD is a parallelogram *Hint: first prove* $\triangle ADE \cong \triangle CBE$ *and use CPCTC* 27. Given: ABCD is a parallelogram \overline{FG} bisects \overline{DB} Prove: $\overline{FE} \cong \overline{GE}$ *Hint: first prove* $\triangle DEF \cong \triangle BEG$ *then use* CPCTC #### **Review Packet Unit 6 Answer Key** - 1. Parallelogram a. Translations preserve distance and slope so $\overline{IG}\cong \overline{HG}$ ' & $\overline{IG}\parallel \overline{HG}$ '. A quad w/1 pair of opp sides parallel & congruent is a parallelogram. (Could also use parallel and congruent translation vectors) b. the same slope as \overline{IG} - 2. a. Rhombus (4 congruent sides and perpendicular diagonals). - b. Square (4 congruent sides \rightarrow parallelogram and rhombus, 1 right angle \rightarrow rectangle) | 3. $TV = 7.9$ $m \angle VTZ = 20^{\circ}$ $m \angle XWV = 40^{\circ}$ $m \angle ZVW = 70^{\circ}$ | 4. $y-3=\frac{1}{3}(x-2)$ | $6.$ $m \not = AFE = 57^{\circ}$ | 8. BSPA is a trapezoid since one set of opposite sides are parallel $(\overline{BS} \parallel \overline{PA})$; 1. $\overline{BP} \cong \overline{SA}$ (congruent diagonals) or 2. $\overline{SP} \cong \overline{BA}$ (congruent legs) | | | |---|-------------------------------------|---|---|-------|--| | | 5. y=5 | 7. PN=12
$m \angle LWP = 18^{\circ}$
$m \angle PNW = 144^{\circ}$ | | | | | 9. AE=18.5 (x=5) | 10. Perimeter = $16\sqrt{5}$ inches | 12. $m \not= D = 60^{\circ}$
($x = 25$ | | . x=3 | | | | 11. 3 | 13. x = 8 or x = -2
(Both check) | 15 | . D | | | 16. C | 18. B | 20. C | 22 | . A) | to \overline{DF} : $y-0 = \frac{1}{8}(x-2)$
 to \overline{FG} : $y-4 = -\frac{5}{3}(x+9)$ | | 17. 1 | 19. B | 21. A | | B) | to $FG: y-4 = -\frac{1}{3}(x+9)$
H(-6,-1) | - 23. H and P are located at (-8,7) and (-2,-3) (note, they are interchangeable) - 24. Answers will vary depending on method chosen to prove parallelogram and then rectangle. Examples: - 1st prove parallelogram: - \circ Since the slopes of $\overline{AB} \& \overline{CD} = -1$ and the slopes of $\overline{BC} \& \overline{AD} = 1$, then $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$. Since both sets of opposite sides are \parallel , then quadrilateral ABCD is a parallelogram. - \circ Since AB= $2\sqrt{2}$ =CD and BC= $9\sqrt{2}$ =AD, then $\overline{AB}\cong\overline{CD}$ and $\overline{BC}\cong\overline{AD}$. Since both sets of opposite sides are congruent, then quadrilateral ABCD is a parallelogram. - \circ Since the midpoints of $\overline{BD} \& \overline{AC}$ are both (2.5, -1.5), then the diagonals bisect each other so quad ABCD is a \square . - 2nd prove rectangle: - \circ Since the slopes of \overline{AB} =1 & \overline{BC} =-1 are opposite reciprocals, then $\overline{AB} \perp \overline{BC}$. Since $\angle B$ is a right \angle , then parallelogram ABCD is a rectangle. - \circ Since AC= $\sqrt{170}$ =BD, then $\overline{AC} \cong \overline{BD}$. Since the diagonals are congruent, then parallelogram ABCD is a rectangle. - 25. A. Examples: Line reflection over the y-axis followed by a translation <0,-4> (down 4); Translation of <-4,-4> followed by a reflection over the line x = -2 - B. Angle Measure, Distance, Parallelism, Perpendicularity - C. \$E" \overline{FG}{HG} #### 15. Prove ABCD is a parallelogram - 1. ∠1≅∠2 - 2. $\overline{AD} \parallel \overline{CB}$ - 3. \overline{DB} bisects \overline{AC} - 4. $\overline{EA} \cong \overline{EC}$ - 5. ∡3≅∡4 - 6. $\triangle ADE \cong \triangle CBE$ - 7. $\overline{AD} \cong \overline{CB}$ - 8. ABCD is a parallelogram - 1. Given - 2. \cong alt int \measuredangle 's $\rightarrow \parallel$ lines - 3. Given - 4. Segment bisector → 2 congruent segments - 5. Vertical angles are congruent - 6. $ASA \cong ASA \rightarrow \cong \Delta's (1,5,7)$ 7. CPCTC Note: could also use CPCTC to get diagonals bisect each other using $\overline{DE}\cong \overline{BE}$. (steps 7&2) 8. Quadrilateral w/1 set of opposite sides $\cong \& \parallel \to \square$ ### 16. Prove $\overline{FE} \cong \overline{GE}$ - 1. ABCD is a parallelogram - 2. $\overline{DC} \parallel \overline{AB}$ - 3. $\angle 1 \cong \angle 2; \angle 3 \cong \angle 4$ - 4. \overline{FG} bisects \overline{DB} - 5. $\overline{DE} \cong \overline{BE}$ - 6. $\triangle DEF \cong \triangle BEG$ - 7. $\overline{FE} \cong \overline{GE}$ - 1. Given - 2. \square \rightarrow opposite sides \parallel - 3. \parallel lines \rightarrow alt int \angle 's \cong - 4. Given - 5. Segment bisector → 2 congruent segments - 6. $AAS \cong AAS (4, 4, 6)$ - 7. CPCTC Note: could instead use vertical angles and ASA≅.