Name ______ Date: _____ Section:_____

CONSTRUCTION OF A SQUARE INSCRIBED IN A CIRCLE

Key Idea: Diagonals of a square are ______ of each

other.

Steps:

- 1) Draw a ______.
- 2) ______ the diameter.
- 3) Connect the four points on the circle to make the _____ of the square.

REVIEW PACKET

For each question make sure to write all formulas, substitutions, and show all work. Clearly label your work and clearly identify your answers.

- 1. If \overline{IG} is translated such that I maps to H, which type of quadrilateral will be formed? _____
 - a. Explain your reasoning:

- b. What will be the slope of \overline{HG} ?
- 2. Name the type of quadrilateral that will be formed by reflecting the following triangles into the line:
 - a. _____

- 3. *TVWX* is a rhombus. Find the following:
 - TV
 - m∠VTZ

- m∠XWV
- m∠ZVW
- 4. Write the equation of the line that contains the diagonal \overline{RY} of rhombus GRAY with G(0,9) and A(4,-3):

5. Given $\Box ABCD$, determine the value of y.

6. Given ABCD is a rectangle with $m \not \Delta DAC = 67^{\circ}$ and $m \not \Delta FEB = 34^{\circ}$, find $m \not \Delta AFE$.

7. Rhombus PNWL, NW = 12, and $m \angle WLP = 144^{\circ}$. Find PN, $m \angle LWP$ and $m \angle PNW$. Draw and label a diagram to help justify your answer.

8. A quadrilateral has vertices with coordinates B(-3,1), S(0,3), P(5,2), and A(-1,-2). Classify the quadrilateral using coordinate geometry and explain your reasoning.

What would you calculate to prove BSPA is *not* an isosceles trapezoid? Give two options:

1. _______2. _____

9. In rectangle ABCD with the diagonals intersecting at E, find the length of AE when AC = 8x-3 and BD = 4x+17. Be sure to draw a diagram first!

10. The diagonals of a rhombus measure 8 inches and 16 inches, respectively. What is the perimeter of the rhombus? Write your answer in simplest radical form.

(Draw and label a diagram to justify your answer.)

11. In parallelogram ABCD, the diagonals \overline{AC} and \overline{DB} intersect at E. Draw a picture and determine which statement must be true:

1.
$$\overline{AC} \cong \overline{DB}$$

3.
$$\triangle AED \cong \triangle CEB$$

4.
$$\triangle DCE \cong \triangle BCE$$

12. In the diagram of trapezoid ABCD, $\overline{AB} \parallel \overline{DC}$, $\overline{AD} \cong \overline{BC}$. If $m \not A = (4x + 20)^\circ$ and $m \not A = (3x - 15)^\circ$, find $m \not A = (3x - 15)^\circ$.

13. Find the value(s) of x so that ABCD is an isosceles trapezoid with bases \overline{AD} and \overline{BC} .

14. \overline{XY} is the midsegment of the trapezoid. Find the value of x.

- 15. Quadrilateral ABCD has diagonals \overline{AC} and \overline{DB} . What information is *not* sufficient to prove ABCD is a parallelogram?
 - A. \overline{AC} and \overline{DB} bisect each other
 - B. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{AD}$
 - C. $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{CD}$
 - D. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
- 16. In quadrilateral ABCD, the diagonals bisect its angles. If the diagonals are *not* congruent, quadrilateral ABCD must be a
 - A. Square
- B. Rectangle
- C. Rhombus
- D. Trapezoid
- 17. Quadrilateral MNOP is a trapezoid with $\overline{MN} \parallel \overline{OP}$. If M'N'O'P' is the image of MNOP after a reflection over the x-axis, which two sides of quadrilateral M'N'O'P' are parallel?
 - 1. $\overline{M'N'}$ and $\overline{O'P'}$
 - 2. $\overline{M'N'}$ and $\overline{N'O'}$
 - 3. $\overline{P'M'}$ and $\overline{O'P'}$
 - 4. $\overline{P'M'}$ and $\overline{N'O'}$
- 18. When a quadrilateral is reflected over the line y=x, which geometric relationship is *not* preserved?
 - A. Congruence
- B. Orientation
- C. Parallelism
- D. Perpendicularity
- 19. If the diagonals of a quadrilateral are congruent but do not bisect each other, the quadrilateral may be a(n):
 - A. Rectangle
- B. Isosceles Trapezoid
- C. Rhombus
- D. Square
- 20. In quadrilateral ABCD, each diagonal bisects opposite angles. If the $m \angle DAB = 70^{\circ}$, then ABCD must be a
 - A. Rectangle
 - B. Trapezoid
 - C. Rhombus
 - D. Square

- 21. In rhombus ABCD, diagonals \overline{AC} and \overline{DB} intersect at E. What kind of angle is $\angle DAE$?
 - A. Acute
 - B. Straight
 - C. Right
 - D. Obtuse
- 22. Three vertices of parallelogram DFGH are D(-9,4), F(-1,5) and G(2,0).
 - A. Write the equation of the line that contains the side of the parallelogram through vertex H.

- B. State the coordinates of vertex H.
- 23. State the coordinates of vertices H and P of square HAPY given A(0,5) and Y(-10,-1).

24. Prove quadrilateral ABCD with vertices A(-3,2), B(-1,4), C(8,-5), and D(6,-7) is a rectangle. Make sure to show all of your work including formulas, substitutions, etc. Clearly label your work.

25. Given quadrilateral ABCD and its image EFGH

A. Describe a sequence of rigid motions that maps ABCD onto EFGH. Be specific.

B. List the properties that are preserved under all rigid motions:

1	2.	
3	4	

C. Fill in the blanks:

- ≰A ≅ _____.
- If $\overline{AB} \cong \overline{BC}$, then $\overline{EF} \cong \underline{\hspace{1cm}}$.
- If $\overline{AB} \parallel \overline{DC}$, then $\overline{EF} \parallel$ _____.

Unit 6 Review Geometry 2016-17

26. Given: \overline{DB} bisects \overline{AC} . $\checkmark 1 \cong \checkmark 2$. Prove: ABCD is a parallelogram

Hint: first prove $\triangle ADE \cong \triangle CBE$ *and use CPCTC*

27. Given: ABCD is a parallelogram

 \overline{FG} bisects \overline{DB}

Prove: $\overline{FE} \cong \overline{GE}$

Hint: first prove $\triangle DEF \cong \triangle BEG$ *then use* CPCTC

Review Packet Unit 6 Answer Key

- 1. Parallelogram a. Translations preserve distance and slope so $\overline{IG}\cong \overline{HG}$ ' & $\overline{IG}\parallel \overline{HG}$ '. A quad w/1 pair of opp sides parallel & congruent is a parallelogram. (Could also use parallel and congruent translation vectors) b. the same slope as \overline{IG}
- 2. a. Rhombus (4 congruent sides and perpendicular diagonals).
- b. Square (4 congruent sides \rightarrow parallelogram and rhombus, 1 right angle \rightarrow rectangle)

3. $TV = 7.9$ $m \angle VTZ = 20^{\circ}$ $m \angle XWV = 40^{\circ}$ $m \angle ZVW = 70^{\circ}$	4. $y-3=\frac{1}{3}(x-2)$	$6.$ $m \not = AFE = 57^{\circ}$	8. BSPA is a trapezoid since one set of opposite sides are parallel $(\overline{BS} \parallel \overline{PA})$; 1. $\overline{BP} \cong \overline{SA}$ (congruent diagonals) or 2. $\overline{SP} \cong \overline{BA}$ (congruent legs)		
	5. y=5	7. PN=12 $m \angle LWP = 18^{\circ}$ $m \angle PNW = 144^{\circ}$			
9. AE=18.5 (x=5)	10. Perimeter = $16\sqrt{5}$ inches	12. $m \not= D = 60^{\circ}$ ($x = 25$. x=3	
	11. 3	13. x = 8 or x = -2 (Both check)	15	. D	
16. C	18. B	20. C	22	. A)	to \overline{DF} : $y-0 = \frac{1}{8}(x-2)$ to \overline{FG} : $y-4 = -\frac{5}{3}(x+9)$
17. 1	19. B	21. A		B)	to $FG: y-4 = -\frac{1}{3}(x+9)$ H(-6,-1)

- 23. H and P are located at (-8,7) and (-2,-3) (note, they are interchangeable)
- 24. Answers will vary depending on method chosen to prove parallelogram and then rectangle. Examples:
 - 1st prove parallelogram:
 - \circ Since the slopes of $\overline{AB} \& \overline{CD} = -1$ and the slopes of $\overline{BC} \& \overline{AD} = 1$, then $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$. Since both sets of opposite sides are \parallel , then quadrilateral ABCD is a parallelogram.
 - \circ Since AB= $2\sqrt{2}$ =CD and BC= $9\sqrt{2}$ =AD, then $\overline{AB}\cong\overline{CD}$ and $\overline{BC}\cong\overline{AD}$. Since both sets of opposite sides are congruent, then quadrilateral ABCD is a parallelogram.
 - \circ Since the midpoints of $\overline{BD} \& \overline{AC}$ are both (2.5, -1.5), then the diagonals bisect each other so quad ABCD is a \square .
 - 2nd prove rectangle:
 - \circ Since the slopes of \overline{AB} =1 & \overline{BC} =-1 are opposite reciprocals, then $\overline{AB} \perp \overline{BC}$. Since $\angle B$ is a right \angle , then parallelogram ABCD is a rectangle.
 - \circ Since AC= $\sqrt{170}$ =BD, then $\overline{AC} \cong \overline{BD}$. Since the diagonals are congruent, then parallelogram ABCD is a rectangle.
- 25. A. Examples:

Line reflection over the y-axis followed by a translation <0,-4> (down 4); Translation of <-4,-4> followed by a reflection over the line x = -2

- B. Angle Measure, Distance, Parallelism, Perpendicularity
- C. \$E" \overline{FG}{HG}

15. Prove ABCD is a parallelogram

- 1. ∠1≅∠2
- 2. $\overline{AD} \parallel \overline{CB}$
- 3. \overline{DB} bisects \overline{AC}
- 4. $\overline{EA} \cong \overline{EC}$
- 5. ∡3≅∡4
- 6. $\triangle ADE \cong \triangle CBE$
- 7. $\overline{AD} \cong \overline{CB}$
- 8. ABCD is a parallelogram

- 1. Given
- 2. \cong alt int \measuredangle 's $\rightarrow \parallel$ lines
- 3. Given
- 4. Segment bisector → 2 congruent segments
- 5. Vertical angles are congruent
- 6. $ASA \cong ASA \rightarrow \cong \Delta's (1,5,7)$

7. CPCTC

Note: could also use CPCTC to get diagonals bisect each other using $\overline{DE}\cong \overline{BE}$.

(steps 7&2)

8. Quadrilateral w/1 set of opposite sides $\cong \& \parallel \to \square$

16. Prove $\overline{FE} \cong \overline{GE}$

- 1. ABCD is a parallelogram
- 2. $\overline{DC} \parallel \overline{AB}$
- 3. $\angle 1 \cong \angle 2; \angle 3 \cong \angle 4$
- 4. \overline{FG} bisects \overline{DB}
- 5. $\overline{DE} \cong \overline{BE}$
- 6. $\triangle DEF \cong \triangle BEG$
- 7. $\overline{FE} \cong \overline{GE}$

- 1. Given
- 2. \square \rightarrow opposite sides \parallel
- 3. \parallel lines \rightarrow alt int \angle 's \cong
- 4. Given
- 5. Segment bisector → 2 congruent segments
- 6. $AAS \cong AAS (4, 4, 6)$
- 7. CPCTC

Note: could instead use vertical angles and ASA≅.