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Abstract

Deep neural networks are widely used for classification.
These deep models often suffer from a lack of interpretabil-
ity – they are particularly difficult to understand because of
their non-linear nature. As a result, neural networks are of-
ten treated as “black box” models, and in the past, have been
trained purely to optimize the accuracy of predictions. In this
work, we create a novel network architecture for deep learn-
ing that naturally explains its own reasoning for each predic-
tion. This architecture contains an autoencoder and a special
prototype layer, where each unit of that layer stores a weight
vector that resembles an encoded training input. The encoder
of the autoencoder allows us to do comparisons within the
latent space, while the decoder allows us to visualize the
learned prototypes. The training objective has four terms: an
accuracy term, a term that encourages every prototype to be
similar to at least one encoded input, a term that encourages
every encoded input to be close to at least one prototype, and
a term that encourages faithful reconstruction by the autoen-
coder. The distances computed in the prototype layer are used
as part of the classification process. Since the prototypes are
learned during training, the learned network naturally comes
with explanations for each prediction, and the explanations
are loyal to what the network actually computes.

1 Introduction
As machine learning algorithms have gained importance for
important societal questions, interpretability (transparency)
has become a key issue for whether we can trust predictions
coming from these models. There have been cases where
incorrect data fed into black box models have gone unno-
ticed, leading to unfairly long prison sentences (e.g., pris-
oner Glen Rodriguez was denied parole due to an incorrect
COMPAS score, Wexler, 2017). In radiology, lack of trans-
parency causes challenges to FDA approval for deep learn-
ing products. Because of these issues, “opening the black
box” of neural networks has become a debated issue in
the media (Citron 2016; Smith 2016; Angwin et al. 2016;
Westervelt 2017). Artificial neural networks are particularly
difficult to understand because their highly nonlinear func-
tions do not naturally lend to an explanation that humans are
able to process.
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In this work, we create an architecture for deep learning
that explains its own reasoning process. The learned models
naturally come with explanations for each prediction, and
the explanations are loyal to what the network actually com-
putes. As we will discuss shortly, creating the architecture
to encode its own explanations is in contrast with creating
explanations for previously trained black box models, and
aligns more closely with work on prototype classification
and case-based reasoning.

In the past, neural networks have often been designed
purely for accuracy, with posthoc interpretability analysis.
In this case, the network architecture was chosen first, and
afterwards one aims to interpret the trained model or the
learned high-level features. To do the interpretability anal-
ysis requires a separate modeling effort. One problem with
generating explanations posthoc is that the explanations
themselves can change based on the model for the expla-
nation. For instance, it may be easy to create multiple con-
flicting yet convincing explanations for how the network
would classify a single object, none of which are the cor-
rect reason for why the object was classified that way. A
related issue is that posthoc methods often create explana-
tions that do not make sense to humans. This means that
extra modeling is needed to ensure that the explanations are
interpretable. This happens, for instance, in the Activation
Maximization (AM) approach, where one aims to find an
input pattern that produces a maximum model response for
a quantity of interest to the user (Erhan et al. 2009). Since
the images from AM are not generally interpretable (they
tend to be gray), regularized optimization is used to find an
interpretable high activation image (Hinton 2012; Lee et al.
2009; van den Oord, Kalchbrenner, and Kavukcuoglu 2016;
Nguyen et al. 2016). When we add regularization, however,
the result is a combination of what the network actually
computes and the extrinsic regularization. Given that the ex-
planations themselves come from a separate modeling pro-
cess with strong priors that are not part of training, we then
wonder how we can trust the explanations from the posthoc
analysis. In fact there is a growing literature discussing the
issues mentioned above for AM (Montavon, Samek, and
Müller 2017). For images, posthoc analysis often involves
visualization of layers of a neural network. For instance, an
alternative to AM was provided by Zeiler and Fergus (2014),
who use deconvolution as a technique to visualize what a
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convolutional neural network (CNN) has learned. Deconvo-
lution is one method for decoding; our method can use any
type of decoder to visualize the prototypes, including de-
convolution. In addition, Zeiler and Fergus (2014) try to vi-
sualize parts of images that most strongly activate a given
feature map, but they do not provide an explanation for how
the network reaches its decision. In contrast, we build a rea-
soning process into our network and do not consider posthoc
analysis in this work.

There are other works that also build interpretability into
deep neural networks without using posthoc analysis. Pin-
heiro and Collobert (2015) design a network for weakly
supervised image segmentation by training a classification
network that extracts important pixels which could poten-
tially belong to an object of some class. Lei, Barzilay, and
Jaakkola (2016) propose a network architecture that extracts
parts of an input as a rationale and uses the rationale for
predictions. Both of these works build interpretability into
neural networks by extracting parts of an input and focusing
on those parts for their respective tasks. Our method differs
in that we use case-based reasoning instead of extractive rea-
soning – our model explains its predictions based on simi-
larity to prototypical cases, rather than highlighting the most
relevant parts of the input; it is possible for their ideas to be
combined with ours. Tan, Sim, and Gales (2015) and Wu
et al. (2016) aim to improve the interpretability of activa-
tion patterns of feature maps in deep neural networks used
for speech recognition. In contrast, our model does not aim
to enforce a particular structure on feature maps – it allows
flexibility in feature learning but introduces a special proto-
type layer for decision interpretation.

Our network is a form of prototype classifier, where ob-
servations are classified based on their proximity to a pro-
totype observation within the dataset. For instance, in our
handwritten digit example, we can determine that an obser-
vation was classified as a “3” because the network thinks it
looks like a particular prototypical “3” within the training
set. If the prediction is uncertain, it would identify proto-
types similar to the observation from different classes, e.g.,
“4” is often hard to distinguish from “9”, so we would ex-
pect to see prototypes of classes 4 and 9 identified when the
network is asked to classify an image of a 9.

Our work is closely aligned with other prototype classi-
fication techniques in machine learning (Bien and Tibshi-
rani 2011; Kim, Rudin, and Shah 2014; Priebe et al. 2003;
Wu and Tabak 2017). Prototype classification is a classical
form of case-based reasoning (Kolodner 1992); however, be-
cause our work uses neural networks, the distance measure
between prototypes and observations is measured in a flexi-
ble latent space. The fact that the latent space is adaptive is
the driving force behind its high quality performance.

The word “prototype” is overloaded and has various
meanings. For us, a prototype is very close or identical to an
observation in the training set, and the set of prototypes is
representative of the whole data set. In other contexts, a pro-
totype is not required to be close to any one of the training
examples, and could be just a convex combination of several
observations. In few-shot and zero-shot learning, prototypes
are points in the feature space used to represent a single

class, and distance to the protoype determines how an ob-
servation is classified. For example, ProtoNets (Snell, Swer-
sky, and Zemel 2017) utilize the mean of several embedded
“support” examples as the prototype for each class in few-
shot learning. Li and Wang (2017) use a generative proba-
bilistic model to generate prototypes for zero shot learning,
which are points in the feature space. In both cases, proto-
types are not optimized to resemble actual observations, and
are not required to be interpretable (meaning that their visu-
alizations will not generally resemble natural images), and
each class can have only one prototype.

Our deep architecture uses an autoencoder (Hinton and
Salakhutdinov 2006) to create a latent low-dimensional
space, and distances to prototypes are computed in that la-
tent space. Using a latent space for distance computation en-
ables us to find a better dissimilarity measure than L2 on
the pixel space. Other works also use latent spaces, e.g.,
Salakhutdinov and Hinton (2007) conduct a soft k-nearest
neighbors classification on the latent space of a restricted
Boltzman machine autoencoder, although not for the aim of
interpretability.

2 Methodology

2.1 Network Architecture

Let D = {(xi, yi)}ni=1 be the training dataset with xi ∈ R
p

and yi ∈ {1, ...,K} for each i ∈ {1, ..., n}. Our model ar-
chitecture consists of two components: an autoencoder (in-
cluding an encoder, f : Rp → R

q , and a decoder, g : Rq →
R

p) and a prototype classification network h : Rq → R
K ,

illustrated in Figure 1. The network uses the autoencoder to
reduce the dimensionality of the input and to learn useful
features for prediction; then it uses the encoded input to pro-
duce a probability distribution over the K classes through
the prototype classification network h. The network h is
made up of three layers: a prototype layer, p : Rq → R

m, a
fully-connected layer w : Rm → R

K , and a softmax layer,
s : R

K → R
K . The network learns m prototype vectors

p1, ...,pm ∈ R
q (each corresponds to a prototype unit in

the architecture) in the latent space. The prototype layer p
computes the squared L2 distance between the encoded in-
put z = f(xi) and each of the prototype vectors:

p(z) =
[‖z− p1‖22, ‖z− p2‖22, ... ‖z− pm‖22

]�
.
(1)

In Figure 1, the prototype unit corresponding to pj executes
the computation ‖z − pj‖22. The fully-connected layer w
computes weighted sums of these distances Wp(z), where
W is a K×m weight matrix. These weighted sums are then
normalized by the softmax layer s to output a probability
distribution over the K classes. The k-th component of the
output of the softmax layer s is defined by

s(v)k =
exp(vk)∑K

k′=1 exp(vk′)
(2)

where vk is the k-th component of the vector v = Wp(z) ∈
R

K .
During prediction, the model outputs the class that it

thinks is the most probable. In essence, our classification al-
gorithm is distance-based on the low-dimensional learned
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Figure 1: Network Architecture

feature space. A special case is when we use one proto-
type for every class (let m = K) and set the weight matrix
of the fully-connected layer to the negative identity matrix,
W = −IK×K (i.e. W is not learned during training). Then
the data will be predicted to be in the same class as the near-
est prototype in the latent space. More realistically, we typi-
cally do not know how many prototypes should be assigned
to each class, and we may want a different number of proto-
types from the number of classes, i.e., m �= K. In this case,
we allow W to be learned by the network, and, as a result,
the distances to all the prototype vectors will contribute to
the probability prediction for each class.

This network architecture has at least three advantages.
First, unlike traditional case-based learning methods, the
new method automatically learns useful features. For im-
age datasets, which have dimensions equal to the number
of pixels, if we perform classification using the original in-
put space or use hand-crafted feature spaces, the methods
tend to perform poorly (e.g., k-nearest neighbors). Second,
because the prototype vectors live in the same space as the
encoded inputs, we can feed these vectors into the decoder
and visualize the learned prototypes throughout the training
process. This property, coupled with the case-based reason-
ing nature of the prototype classification network h, gives
users the ability to interpret how the network reaches its pre-
dictions and visualize the prototype learning process without
posthoc analysis. Third, when we allow the weight matrix
W to be learnable, we are able to tell from the strengths of
the learned weight connections which prototypes are more
representative of which class.

2.2 Cost Function

The network’s cost function reflects the needs for both ac-
curacy and interpretability. In addition to the classification
error, there is a (standard) term that penalizes the reconstruc-
tion error of the autoencoder. There are two new error terms
that encourage the learned prototype vectors to correspond

to meaningful points in the input space; in our case studies,
these points are realistic images. All four terms are described
mathematically below.

We use the standard cross-entropy loss for penalizing the
misclassification. The cross-entropy loss on the training data
D is denoted by E, and is given by

E(h◦f,D) =
1

n

n∑

i=1

K∑

k=1

−1[yi = k] log((h◦f)k(xi)) (3)

where (h ◦ f)k is the k-th component of (h ◦ f). We use the
squared L2 distance between the original and reconstructed
input for penalizing the autoencoder’s reconstruction error.
The reconstruction loss, denoted by R, on the training data
D is given by

R(g ◦ f,D) =
1

n

n∑

i=1

‖(g ◦ f)(xi)− xi‖22. (4)

The two interpretability regularization terms are formulated
as follows:

R1(p1, ...,pm, D) =
1

m

m∑

j=1

min
i∈[1,n]

‖pj − f(xi)‖22, (5)

R2(p1, ...,pm, D) =
1

n

n∑

i=1

min
j∈[1,m]

‖f(xi)− pj‖22. (6)

Here both terms are averages of minimum squared distances.
The minimization of R1 would require each prototype vec-
tor to be as close as possible to at least one of the training
examples in the latent space. As long as we choose the de-
coder network to be a continuous function, we should ex-
pect two very close vectors in the latent space to be decoded
to similar-looking images. Thus, R1 will push the prototype
vectors to have meaningful decodings in the pixel space. The
minimization of R2 would require every encoded training
example to be as close as possible to one of the prototype
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vectors. This means that R2 will cluster the training exam-
ples around prototypes in the latent space. We notice here
that although R1 and R2 involve a minimization function
that is not differentiable everywhere, these terms are differ-
entiable almost everywhere and many modern deep learn-
ing libraries support this type of differentiation. Ideally, R1

would take the minimum distance over the entire training
set for every prototype; therefore, the gradient computation
would grow linearly with the size of the training set. How-
ever, this would be impractical during optimization for a
large dataset. To address this problem, we relax the mini-
mization to be over only the random minibatch used by the
Stochastic Gradient Descent (SGD) algorithm. For the other
three terms, since each of them is a summation over the en-
tire training set, it is natural to apply SGD to randomly se-
lected batches for gradient computation.

Putting everything together, the cost function, denoted by
L, on the training data D with which we train our network
(f, g, h), is given by

L((f, g, h), D) = E(h ◦ f,D) + λR(g ◦ f,D)

+ λ1R1(p1, ...,pm, D)

+ λ2R2(p1, ...,pm, D), (7)

where λ, λ1, and λ2 are real-valued hyperparameters that
adjust the ratios between the terms.

3 Case Study 1: Handwritten Digits

We now begin a detailed walkthrough of applying our model
to the well-known MNIST dataset. The Modified NIST Set
(MNIST) is a benchmark dataset of gray-scale images of
segmented and centered handwritten digits (Lecun et al.
1998). We used 55,000 training examples, 5,000 validation
examples, and 10,000 testing examples, where every image
is of size 28 × 28 pixels. We preprocess the images so that
every pixel value is in [0, 1]. This section is organized as
follows: we first introduce the architecture and the training
details, then compare the performance of our network model
with other noninterpretible network models (including a reg-
ular convolutional neural network), and finally visualize the
learned prototypes, the weight matrix W , and how a specific
image is classfied.

3.1 Architecture Details

Hinton and Salakhutdinov (2006) show that a multilayer
fully connected autoencoder network can achieve good re-
construction on MNIST even when using a very low di-
mensional latent space. We choose a multilayer convolu-
tional autoencoder with a symmetric architecture for the
encoder and decoder to be our model’s autoencoder; these
types of networks tend to reduce spatial feature extraction
redundancy on image data sets and learn useful hierarchical
features for producing state-of-the-art classification results.
Each convolutional layer consists of a convolution opera-
tion followed by a pointwise nonlinearity. We achieve down-
sampling in the encoder through strided convolution, and use
strided deconvolution in the corresponding layer of the de-
coder. After passing the original image through the encoder,
the network flattens the resulted feature maps into a code

vector and feeds it into the prototype layer. The resulting
unflattened feature maps are fed into the decoder to recon-
struct the original image. To visualize a prototype vector in
the pixel space, we first reshape the vector to be in the same
shape as the encoder output and then feed the shaped vector
(now a series of feature maps) into the decoder.

The autoencoder in our network has four convolutional
layers in both the encoder and decoder. All four convolu-
tional layers in the encoder use kernels of size 3 × 3, same
zero padding, and stride of size 2 in the convolution stage.
The filters in the corresponding layers in the encoder and
decoder are not constrained to be transposes of each other.
Each of the outputs of the first three layers has 32 feature
maps, while the last layer has 10. Given an input image of di-
mension 28×28×1, the shape of the encoder layers are thus:
14×14×32; 7×7×32; 4×4×32; 2×2×10, and therefore the
network compresses every 784-dimensional image input to a
40-dimensional code vector (2×2×10). Every layer uses the
sigmoid function σ(x) = 1

1+e−x as the nonlinear transfor-
mation. We specifically use the sigmoid function in the last
encoder layer so that the output of the encoder is restricted
to the unit hypercube (0, 1)40. This allows us to initialize
15 prototype vectors uniformly at random in that hypercube.
We do not use the rectified linear unit (ReLU – Krizhevsky,
Sutskever, and Hinton, 2012) in the last encoder layer be-
cause using it would make it more difficult to initialize the
prototype vectors, as initial states throughout R�0

40 would
need to be explored, and the network would take longer to
stabilize. We also specifically choose the sigmoid function
for the last decoder layer to make the range of pixel values
in the reconstructed output (0, 1), roughly the same as the
preprocessed image’s pixel range.

3.2 Training Details

We set all the hyperparameters λ, λ1, λ2 to 0.05 and the
learning rate to 0.0001. We minimize (7) as a whole: we do
not employ a greedy layer-wise optimization for different
layers of the autoencoder nor do we first train the autoen-
coder and then the prototype classification network.

Our goal in this work is not just to obtain reasonable ac-
curacy, but also interpretability. We use only a few of the
general techniques for improving performance in neural net-
works, and it is possible that using more techniques would
improve accuracy. In particular, we use the data augmenta-
tion technique elastic deformation (Simard, Steinkraus, and
Platt 2003) to improve prediction accuracy and reduce po-
tential overfitting. The set of all elastic deformations is a
superset of affine transformations. For every mini-batch of
size 250 that we randomly sampled from the training set, we
apply a random elastic distortion where a Gaussian filter of
standard deviation equal to 4 and a scaling factor of 20 are
used for the displacement field. Due to the randomness in the
data augmentation process, the network sees a slightly dif-
ferent set of images during every epoch, which significantly
reduces overfitting.

3.3 Accuracy

After training for 1500 epochs, our model achieved a classi-
fication accuracy of 99.53% on the standard MNIST training
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set and 99.22% on the standard MNIST test set.
To examine how the two key elements of our interpretable

network (the autoencoder and prototype layer) affect predic-
tive power, we performed a type of ablation study. In particu-
lar, we trained two classification networks that are similar to
ours, but removed some key pieces in both of the networks.
The first network substitutes the prototype layer with a fully-
connected layer whose output is a 15-dimensional vector, the
same dimension as the output from the prototype layer; the
second network also removes the decoder and changes the
nonlinearity to ReLU. The second network is just a regular
convolutional neural network that has similar architectural
complexity to LeNet 5 (Lecun et al. 1998). After training
both networks using elastic deformation for 1500 epochs,
we obtained test accuracies of 99.24% and 99.23% respec-
tively. These test accuracies, along with the test accuracy of
99.2% reported by Lecun et al. (1998), are comparable to
the test accuracy of 99.22% obtained using our interpretable
network. This result demonstrates that changing from a tra-
ditional convolutional neural network to our interpretable
network architecture does not hinder the predictive ability
of the network (at least not in this case).

In general, it is not always true that accuracy needs to
be sacrificed to obtain interpretability; there could be many
models that are almost equally accurate. The extra terms in
the cost function (and changes in architecture) encourage the
model to be more interpretable among the set of approxi-
mately equally accurate models.

3.4 Visualization

Let us first discuss the quality of the autoencoder, because
good performance of the autoencoder will allow us to in-
terpret the prototypes. After training, our network’s autoen-
coder achieved an average squared L2 reconstruction error
of 4.22 over the undeformed training set, where examples
are shown in Figure 2. This reconstruction result assures us
that the decoder can faithfully map the prototype vectors to
the pixel space.

Figure 2: Some random images from the training set in the
first row and their corresponding reconstructions in the sec-
ond row.

Figure 3: 15 learned MNIST prototypes visualized in pixel
space.

We visualize the learned prototype vectors in Figure 3,
by sending them through the decoder. The decoded proto-
type images are sharp-looking and mostly resemble real-life
handwritten digits, owing to the interpretability terms R1

and R2 in the cost function. Note that there is not a one-to-
one correspondence between classes and prototypes. Since
we multiply the output of the prototype layer by a learnable
weight matrix prior to feeding it into the softmax layer, the
distances from an encoded image to each prototype have dif-
fering effects on the predicted class probabilities.

We now look at the transposed weight matrix connecting
the prototype layer to the softmax layer, shown in Table 1, to
see the influence of the distance to each prototype on every
class. We observe that each decoded prototype is visually
similar to an image of a class for which the corresponding
entry in the weight matrix has a significantly negative value.
We will call the class to which a decoded prototype is visu-
ally similar the visual class of the prototype.

The reason for such a significantly negative value can be
understood as follows. The prototype layer is computing
the dissimilarity between an input image and a prototype
through the squared L2 distance between their representa-
tions in the latent space. Given an image xi and a prototype
pj , if xi does not belong to the visual class of pj , then the
distance between f(xi) and pj will be large, so that when
‖pj − f(xi)‖22 is multiplied by the highly negative weight
connection between the prototype pj and its visual class, the
product will also be highly negative and will therefore sig-
nificantly reduce the activation of the visual class of pj . As
a result, the image xi will likely not be classified into the vi-
sual class of pj . Conversely, if xi belongs to the visual class
of pj , then when the small squared distance ‖pj − f(xi)‖22
is multiplied by the highly negative weight connection be-
tween pj and its visual class, the product will not decrease
the activation of pj’s visual class too much. In the end, the
activations of every class that xi does not belong to will
be significantly reduced because of some non-similar proto-
type, leaving only the activation of xi’s actual class compar-
atively large. Therefore, xi is correctly classified in general.

An interesting prototype learned by the network is the last
prototype in Table 1. It is visually similar to an image of
class 2; however, it has strong negative weight connections
with class 7 and class 8 as well. Therefore, we can think of
this prototype as being shared by these three classes, which
means that an encoded input image that is far away from this
prototype in latent space would be unlikely to be an image
of 7, 8, or 2. This should not be too surprising: if we look
at this decoded prototype image carefully, we can see that if
we hide the tail of the digit, it would look like an image of
7; if we connect the upper-left endpoint with the lower-right
endpoint, it would look like an image of 8.

Let us now look at the learned prototypes in Figure 3.
The three prototypes for class 6 seem to represent different
writing habits in terms of what the loop and angle of “6”
looks like. The first and third 6’s have their loops end at the
bottom while the second 6’s loop ends more on the side.
The 2’s show similar variation. As for the two 3’s, the two
prototypes correspond to different curvatures.

Let us look into the model as it produces a prediction for
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0 1 2 3 4 5 6 7 8 9
-0.07 7.77 1.81 0.66 4.01 2.08 3.11 4.10 -20.45 -2.34
2.84 3.29 1.16 1.80 -1.05 4.36 4.40 -0.71 0.97 -18.10

-25.66 4.32 -0.23 6.16 1.60 0.94 1.82 1.56 3.98 -1.77
-1.22 1.64 3.64 4.04 0.82 0.16 2.44 -22.36 4.04 1.78
2.72 -0.27 -0.49 -12.00 2.25 -3.14 2.49 3.96 5.72 -1.62

-5.52 1.42 2.36 1.48 0.16 0.43 -11.12 2.41 1.43 1.25
4.77 2.02 2.21 -13.64 3.52 -1.32 3.01 0.18 -0.56 -1.49
0.52 -24.16 2.15 2.63 -0.09 2.25 0.71 0.59 3.06 2.00
0.56 -1.28 1.83 -0.53 -0.98 -0.97 -10.56 4.27 1.35 4.04

-0.18 1.68 0.88 2.60 -0.11 -3.29 -11.20 2.76 0.52 0.75
5.98 0.64 4.77 -1.43 3.13 -17.53 1.17 1.08 -2.27 0.78
1.53 -5.63 -8.78 0.10 1.56 3.08 0.43 -0.36 1.69 3.49
1.71 1.49 -13.31 -0.69 -0.38 4.55 1.72 1.59 3.18 2.19
5.06 -0.03 0.96 4.35 -21.75 4.25 1.42 -1.27 1.64 0.78

-1.31 -0.62 -2.69 0.96 2.36 2.83 2.76 -4.82 -4.14 4.95

Table 1: Transposed weight matrix (every entry rounded off to 2 decimal places) between the prototype layer and the softmax
layer. Each row represents a prototype node whose decoded image is shown in the first column. Each column represents a digit
class. The most negative weight is shaded for each prototype. In general, for each prototype, its most negative weight is towards
its visual class except for the prototype in the last row.

a specific image of digit 6, shown on the left of Table 2. The
distances computed by the prototype layer between the en-
coded input image and each of the prototypes are shown be-
low the decoded prototypes in Table 2, and the three smallest
distances correspond to the three prototypes that resemble 6
after decoding. We observe here that these three distances
are quite different, and the encoded input image is signifi-
cantly closer to the third “6” prototype than the other two.
This indicates that our model is indeed capturing the subtle
differences within the same class.

After the prototype layer computes the 15-dimensional
vector of distances shown in Table 2, it is multiplied by the
weight matrix in Table 1, and the output is the unnormalized
probability vector used as the logit for the softmax layer.
The predicted probability of class 6 for this specific image is
99.99%.

0.98 1.47 0.70 1.55 1.49

0.29 1.69 1.02 0.41 0.15

0.88 1.40 1.45 1.28 1.28

Table 2: The (rounded) distances between a test image 6 and
every prototype in the latent space.

4 Case Study 2: Cars

The second dataset we use consists of rendered color im-
ages, each with 64 × 64 × 3 pixels, of 3D car models with
varying azimuth angles at 15◦ intervals, from −75◦ to 75◦

(Fidler, Dickinson, and Urtasun 2012). There are 11 views
of each car and every car’s class label is one of the 11 an-
gles (see Figure 4). The dataset is split into a training set
(169 × 11 = 1859 images) and a test set (14 × 11 = 154
images).

Figure 4: Three cars at 11 angles from car dataset.

We use two convolutional layers in both the encoder and
decoder. The first and the second layer in the encoder uses
respectively 32 and 10 convolutional filters of size 5 × 5,
stride 2, and no zero padding. The architecture of the de-
coder is symmetric to that of the encoder. We use the sig-
moid activation function in the last layer of the encoder and
the decoder, and leaky ReLU in all other autoencoder lay-
ers. We set the number of our prototypes to be eleven, which
is the same as the number of classes. Figure 5 shows the
eleven decoded prototypes from our model. If we compare
Figure 4 and Figure 5 in color, we can observe that the net-
work has determined that the color of a car is not important
in determining the angle, so all of the decoded prototypes
are of the same “average” color. The learned weight matrix
W is shown in Table 4 in the Supplementary Material. We
compared our model to a network without the interpretable
parts, in which we removed the decoder and replaced the
prototype layer with a fully connected layer of the same size.
The accuracies for these two models are shown in Table 3.
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The result again illustrates that we do not sacrifice much ac-
curacy when including the interpretability elements into the
network.

interpretable non-interpretable
train acc 98.2% 99.8%
test acc 93.5% 94.2%

Table 3: Car dataset accuracy.

Figure 5: Decoded prototypes when we include R1 and R2.

We use this case study to illustrate the importance of the
two interpretability terms R1 and R2 in our cost function.
If we remove both R1 and R2, the decoded prototypes will
not look like real images, as shown in Figure 6. If we leave
out only R1, the decoded prototypes will again not look like
real observations, as shown in Figure 7. If we remove only
R2, the network chooses prototypes that do not fully rep-
resent the input space, and some of the prototypes tend to
be similar to each other, as shown in Figure 8. Intuitively,
R1 pushes every prototype to be close to a training exam-
ple in the latent space so that the decoded prototypes can be
realistic, while R2 forces every training example to find a
close prototype in the latent space, thereby encouraging the
prototypes to spread out over the entire latent space and to
be distinct from each other. In other words, R1 helps make
the prototypes meaningful, and R2 keeps the explanations
faithful in forcing the network to use nearby prototypes for
classification.

Figure 6: Decoded prototypes when we remove R1 and R2.

Figure 7: Decoded prototypes when we remove R1.

Figure 8: Decoded prototypes when we remove R2.

5 Case Study 3: Fashion MNIST

Fashion MNIST (Xiao, Rasul, and Vollgraf 2017) is a
dataset of Zalando’s article images, consisting of a training
set of 60,000 examples and a test set of 10,000 examples.
Each example is a 28×28 grayscale image, associated with a
label from 10 classes, each being a type of clothes item. The
dataset shares the same image size and structure of training
and testing splits as MNIST.

We ran the same model from Case Study 1 on this fash-
ion dataset and achieved a testing accuracy of 89.95%. This
result is comparable to those obtained using standard convo-
lutional neural networks with max pooling reported on the
dataset website (87.6-92.5% for networks that use similar ar-
chitecture complexity as ours, Fashion-MNIST, 2017). The
learned prototypes are shown in Figure 9. For each class,
there is at least one prototype representing that class. The
learned prototypes have fewer details (such as stripes, pre-
cence of a collar, texture) than the original images. This
again shows that the model has recognized what information
is important in this classification task – the contour shape of
the input is more useful than its fine-grained details. The
learned weight matrix W is shown in Table 5 in the Supple-
mentary Material.

Figure 9: 15 decoded prototypes for Fashion-MNIST.

6 Discussion and Conclusion

We combine the strength of deep learning and the inter-
pretability of case-based reasoning to make an interpretable
deep neural network. The prototypes can provide useful in-
sight into the inner workings of the network, the relation-
ship between classes, and the important aspects of the latent
space, as demonstrated here. Although our model does not
provide a full solution to problems with accountability and
transparency of black box decisions, it does allow us to par-
tially trace the path of classification for a new observation.

We have noticed in our experiments that the addition of
the two interpretability terms R1 and R2 tend to act as reg-
ularizers and help to make the network robust to overfitting.
The extent to which interpretability reduces overfitting is a
topic that could be explored in future work.
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Supplementary Material and Code: Our supplementary
material and code are available at this URL: https://github.
com/OscarcarLi/PrototypeDL.
Acknowledgments: This work was sponsored in part by
MIT Lincoln Laboratory.

References

Angwin, J.; Larson, J.; Mattu, S.; and Kirchner, L. 2016. Ma-
chine bias. https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing.
Bien, J., and Tibshirani, R. 2011. Prototype selection for inter-
pretable classification. Annals of Applied Statistics 5(4):2403–
2424.
Citron, D. 2016. (Un)fairness of risk scores in criminal sen-
tencing. Forbes, Tech section.
Erhan, D.; Bengio, Y.; Courville, A.; and Vincent, P. 2009.
Visualizing higher-layer features of a deep network. Techni-
cal Report 1341, University of Montreal. Also presented at the
ICML 2009 Workshop on Learning Feature Hierarchies, Mon-
treal, Canada.
Fashion-MNIST. 2017. Github repository website.
https://github.com/zalandoresearch/fashion-mnist. Online; ac-
cessed September 7, 2017.
Fidler, S.; Dickinson, S.; and Urtasun, R. 2012. 3d object de-
tection and viewpoint estimation with a deformable 3d cuboid
model. In Advances in Neural Information Processing Systems
(NIPS) 25. 611–619.
Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. Science
313(5786):504–507.
Hinton, G. E. 2012. A practical guide to training restricted
boltzmann machines. In Neural networks: Tricks of the trade.
Springer. 599–619.
Kim, B.; Rudin, C.; and Shah, J. 2014. The Bayesian case
model: A generative approach for case-based reasoning and
prototype classification. In Advances in Neural Information
Processing Systems (NIPS), 1952–1960.
Kolodner, J. 1992. An introduction to case-based reasoning. AI
Review.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems (NIPS) 25.
1097–1105.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE 86(11):2278–2324.
Lee, H.; Grosse, R.; Ranganath, R.; and Ng, A. Y. 2009. Con-
volutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations. In Proceedings of the 26th
International Conference on Machine Learning (ICML), 609–
616.
Lei, T.; Barzilay, R.; and Jaakkola, T. S. 2016. Rationalizing
neural predictions. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (EMNLP).
Li, Y., and Wang, D. 2017. Zero-shot learning with generative
latent prototype model. CoRR abs/1705.09474.

Montavon, G.; Samek, W.; and Müller, K. 2017. Methods for
interpreting and understanding deep neural networks. CoRR
abs/1706.07979.
Nguyen, A.; Dosovitskiy, A.; Yosinski, J.; Brox, T.; and Clune,
J. 2016. Synthesizing the preferred inputs for neurons in neural
networks via deep generator networks. In Advances in Neural
Information Processing Systems 29 (NIPS), 3387–3395.
Pinheiro, P. O., and Collobert, R. 2015. From image-level to
pixel-level labeling with convolutional networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1713–1721.
Priebe, C. E.; Marchette, D. J.; DeVinney, J. G.; and Socolinsky,
D. A. 2003. Classification using class cover catch digraphs.
Journal of classification 20(1):003–023.
Salakhutdinov, R., and Hinton, G. E. 2007. Learning a nonlin-
ear embedding by preserving class neighbourhood structure. In
Proceedings of the Eleventh International Conference on Arti-
ficial Intelligence and Statistics, (AISTATS), 412–419.
Simard, P. Y.; Steinkraus, D.; and Platt, J. C. 2003. Best prac-
tices for convolutional neural networks applied to visual doc-
ument analysis. In Proceedings of the Seventh International
Conference on Document Analysis and Recognition (ICDAR),
Volume 2.
Smith, M. 2016. In wisconsin, a backlash against using data to
foretell defendants’ futures. New York Times.
Snell, J.; Swersky, K.; and Zemel, R. S. 2017. Prototypical
networks for few-shot learning. CoRR abs/1703.05175.
Tan, S.; Sim, K. C.; and Gales, M. 2015. Improving the in-
terpretability of deep neural networks with stimulated learning.
In Proceedings of 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 617–623.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu, K.
2016. Pixel recurrent neural networks. In Proceedings of the
33nd International Conference on Machine Learning, (ICML),
1747–1756.
Westervelt, E. 2017. Did a bail reform algorithm contribute to
this San Francisco man’s murder? National Public Radio, Law.
Wexler, R. 2017. When a computer program keeps you in jail:
How computers are harming criminal justice. New York Times.
Wu, C., and Tabak, E. G. 2017. Prototypal analysis and proto-
typal regression. CoRR abs/1701.08916.
Wu, C.; Karanasou, P.; Gales, M. J.; and Sim, K. C. 2016.
Stimulated deep neural network for speech recognition. In In-
terspeech, 400–404.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist: a
novel image dataset for benchmarking machine learning algo-
rithms. CoRR abs/1708.07747.
Zeiler, M. D., and Fergus, R. 2014. Visualizing and understand-
ing convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), 818–833.

3537


