Solutions to Practice Problems

Exercise 4.12

Prove that the sequence $\{\cos(n\pi)\}_{n=1}^{\infty}$ is divergent.

Solution.

Note that $\{\cos{(n\pi)}\}_{n=1}^{\infty} = \{(-1)^n\}_{n=1}^{\infty}$ and by Exercise 4.4, this sequence is divergent ■

Exercise 4.13

Let $\{a_n\}_{n=1}^{\infty}$ be the sequence defined by $a_n = n$ for all $n \in \mathbb{N}$. Explain why the sequence $\{a_n\}_{n=1}^{\infty}$ does not converge to any limit.

Solution.

The sequence is unbounded

Exercise 4.14

(a) Show that for all $n \in \mathbb{N}$ we have

$$\frac{n!}{n^n} \le \frac{1}{n}.$$

(b) Show that the sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = \frac{n!}{n^n}$ is convergent and find its limit.

Solution.

(a) We know that $\frac{n-i}{n} \leq 1$ for all $0 \leq i \leq n-1$. Thus, $\frac{n!}{n^n} = \frac{n(n-1)(n-2)\cdots 2\cdot 1}{n\cdot n\cdots n} = \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \cdots \frac{2}{n} \cdot \frac{1}{n} \leq \frac{1}{n}$. (b) By the Squeeze rule we find that $\lim_{n\to\infty} \frac{n!}{n^n} = 0$

Exercise 4.15

Using only the definition of convergence show that

$$\lim_{n \to \infty} \frac{\sqrt[3]{n} - 5001}{\sqrt[3]{n} - 1001} = 1.$$

Solution.

Let $\epsilon > 0$. We want to find a positive integer N such that if $n \geq N$ then

$$\left| \frac{\sqrt[3]{n} - 5001}{\sqrt[3]{n} - 1001} - 1 \right| < \epsilon$$

or

$$\left| \frac{-4001}{\sqrt[3]{n} - 1001} \right| < \epsilon.$$

Let $n > 1001^3$. Then $\sqrt[3]{n} - 1001 > 0$ so that the previous inequality becomes

$$\frac{4001}{\sqrt[3]{n} - 1001} < \epsilon.$$

Solving this for n we find

$$n > \left(\frac{4001}{\epsilon} + 1001\right)^3.$$

Let N be a positive integer greater than $\left(\frac{4001}{\epsilon} + 1001\right)^3$. Then for $n \ge N$ we have

$$\left| \frac{\sqrt[3]{n} - 5001}{\sqrt[3]{n} - 1001} - 1 \right| < \epsilon \blacksquare$$

Exercise 4.16

Consider the sequence defined recursively by $a_1 = 1$ and $a_{n+1} = \sqrt{2 + a_n}$ for all $n \in \mathbb{N}$. Show that $\{a_n\}_{n=1}^{\infty}$ is bounded. Hint: Exercise 1.14.

Solution.

The proof is by induction on n. For n=1 we have $a_1=1\leq 2$. Suppose that $a_n\leq 2$. Then $a_{n+1}=\sqrt{2+a_n}\leq \sqrt{2+2}=2$

Exercise 4.17

Calculate $\lim_{n\to\infty} \frac{(n^2+1)\cos n}{n^3}$ by using the squeeze rule.

Solution.

We have

$$-\frac{n^2+1}{n^3} \le \frac{(n^2+1)\cos n}{n^3} \le \frac{n^2+1}{n^3}.$$

By the Squeeze rule we conclude that the limit is $0 \blacksquare$

Exercise 4.18

Calculate $\lim_{n\to\infty} \frac{2(-1)^{n+3}}{\sqrt{n}}$ by using the squeeze rule.

Solution.

We have

$$-\frac{2}{\sqrt{n}} \le \frac{2(-1)^{n+3}}{\sqrt{n}} \le \frac{2}{\sqrt{n}}.$$

By the Squeeze rule the limit is $0 \blacksquare$

Exercise 4.19

Suppose that $\lim_{n\to\infty} a_n = L$ with L > 0. Show that there is a positive integer N such that $2a_N > L$.

Solution.

Let $\epsilon = \frac{L}{2}$. Then there is a positive integer N such that if $n \geq N$ we have $|a_n - L| < \frac{L}{2}$. Thus, $|a_N - L| < \frac{L}{2}$ or $-\frac{L}{2} < a_N - L < \frac{L}{2}$. Hence, $a_N > \frac{L}{2}$ or $2a_N > L$

Exercise 4.20

Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. Clearly, $a < a + \frac{1}{n}$.

- (a) Show that there is $a_n \in \mathbb{Q}$ such that $a < a_n < a + \frac{1}{n}$.
- (b) Show that the sequence $\{a_n\}_{n=1}^{\infty}$ converges to a.

We have proved that if a is a real number then there is a sequence of rational numbers converging to a. We say that the set \mathbb{Q} is **dense** in \mathbb{R} .

Solution.

- (a) This follows from Exercise 3.6(c).
- (b) Applying the Squeeze rule, we obtain $\lim_{n\to\infty} a_n = a$

Exercise 4.21

Consider the sequence $\{a_n\}_{n=1}^{\infty}$ where $a_n = \alpha$ for all $n \in \mathbb{N}$. Use the definition of convergence to show that $\lim_{n\to\infty} a_n = \alpha$.

Solution.

Let $\epsilon > 0$ be given. Let N be any positive integer. Then for $n \geq N$ we have $|a_n - \alpha| = |\alpha - \alpha| = 0 < \epsilon$

Exercise 4.22

Suppose that $\lim_{n\to\infty} a_n = L$. For each $n \in \mathbb{N}$ let $b_n = \frac{a_n + a_{n+1}}{2}$. Show that $\lim_{n\to\infty} b_n = L$.

Solution.

Let $\epsilon > 0$ be given. There is a positive integer N such that $|a_n - L| < \epsilon$ for all $n \ge N$. Since $n + 1 \ge N + 1 \ge N$ we have $|a_{n+1} - L| < \epsilon$. Hence, for all $n \ge N$ we have

$$|b_n - L| = \left| \frac{a_n - L}{2} + \frac{a_{n+1} - L}{2} \right| \le \left| \frac{a_n - L}{2} \right| + \left| \frac{a_{n+1} - L}{2} \right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

This shows that $\lim_{n\to\infty} b_n = L$

Exercise 4.23

- (a) Show that if $\lim_{n\to\infty} a_n = L$ then $\lim_{n\to\infty} |a_n| = |L|$.
- (b) Give an example of a sequence where $\{a_n\}_{n=1}^{\infty}$ is divergent but $\{|a_n|\}_{n=1}^{\infty}$ is convergent.

Solution.

(a) Let $\epsilon > 0$ be given. Then there is a positive integer N such that $|a_n - L| < \epsilon$ for all $n \geq N$. Thus,

$$||a_n| - |L|| \le |a_n - L| < \epsilon$$

for all $n \geq N$. This shows that $\lim_{n\to\infty} |a_n| = |L|$.

(b) The sequence $\{(-1)^n\}_{n=1}^{\infty}$ is divergent but $\{|a_n|\}_{n=1}^{\infty}=\{1,1,1,\cdots\}$ is convergent with limit 1

Exercise 4.24

Show that if $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.

Solution.

This follows from $-|a_n| \le a_n \le |a_n|$ and the squeeze rule

Exercise 4.25

Let $a = \sup A$. Show that there is a sequence $\{a_n\}_{n=1}^{\infty} \subset A$ such that $\lim_{n\to\infty} a_n = a$. Hint: Exercise 3.12.

Solution.

By Exercise 3.12, for each $n \in \mathbb{N}$ we can find $a_n \in A$ such that $0 \le a - a_n < \frac{1}{n}$. Now the result follows by applying the squeeze rule

Exercise 4.26

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $|a_m - a_n| \leq \frac{1}{|m-n|}$ for all $m \neq n$. Show that $a_1 = a_2 = a_3 = \cdots$.

Solution.

Fix $m \in \mathbb{N}$. Let $\epsilon > 0$ be given. Since $\lim_{n \to \infty} \frac{1}{m-n} = 0$, we can find a positive integer N such that $\frac{1}{|m-n|} < \epsilon$ for all $n \geq N$. Thus, for $n \geq N$ we have $|a_n - a_m| < \epsilon$. This shows that $\lim_{n \to \infty} a_n = a_m$. Since the limit of a sequence is unique and the sequence converges to each of its term, we must have that all the terms are equal \blacksquare