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Abstract

In the analysis of genomic data, t-statistics are widely used to detect differential

signals between different groups of samples. In many studies, each group has only a

small number of replicate samples, making the variance estimation unstable. Small

sample variances due to chance can create large t-statistics for genes or genomic loci

that are not differential. In order to mitigate this problem, shrinkage estimators

are now widely used for variance estimation. One example is moderated t-statistics.

For statistical inference, null distributions need to be constructed for test-statistics.

Permutation is a natural option to construct null distributions when they cannot be

derived using a parametric model due to violations of parametric assumptions. When

variance shrinkage estimators are involved, naive permutation can be misleading.

This is because for a differential gene or locus, permuting measurements between

two groups will inflate the variance estimate which in turn will influence the variance

shrinkage estimator. This thesis investigates this issue and proposes a solution to this

problem by permuting residuals. This approach is applied and evaluated in genomic

applications that involve comparisons of one or multiple data types between two
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biological conditions.
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Chapter 1

Overview

This dissertation presents a method to adjust permutation tests in differential

analysis of genomic data. It is organized as follows: Chapter 1 will provide the

overview and related literature review. Chapter 2 presents the basic idea and the

method through simulation. Chapter 3 discusses the application of this method in

the context of comparing one data type between two biological conditions. Chapter

4 discusses the application of this method to comparing multiple data types jointly.

Chapter 5 is the conclusion chapter that summarizes our analysis.

1.1 Introduction

With the rapid development of next-generation sequencing (NGS) technology,

multiple epigenomic assays, including chromatin immunoprecipitation followed by

1



CHAPTER 1. OVERVIEW

sequencing (ChIP-seq),1 sequencing of DNase I hypersensitive sites (DNase-seq),2

and Formaldehyde-Assisted Isolation of Regulatory Elements coupled with sequencing

(FAIRE-seq),3 are available to biologist. Differential analysis of epigenomic signals

is an important analysis. It can provide insights on how gene activities vary across

different cell types and biological condition. Because different epigenomic signals are

correlated with each other, comparing multiple types of epigenomic assays jointly has

also become a crucial question in differential analysis.4567 Different analysis often

involves two component: (1) rank the prioritize genomic loci for downstream analysis

and studies; (2) determine which differences are statistically significant rather than

being random noises.

1.2 Ranking and Variance Shrinkage

One challenge in characterizing and ranking differential genomic loci is that a

typical dataset often involve a large number of loci but only a small number of

replicate samples in each condition. This can create complications in constructing

test-statistics for ranking. For example, t-statistics are commonly used to prioritize

differential genes or genomic loci. For simplicity, we call both genes and genomic loci

as genomic loci in following chapters. To construct a t-statistic, the estimation of

variance is required. However, with the small number of replicate samples available

and the large number of genomic loci involved, the estimation of variance could be un-
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CHAPTER 1. OVERVIEW

stable. Small sample variances due to chance can result in extremely large t-statistics

and hence producing many false positives.

One solution to this problem is to borrow information from all genomic loci to

stabilize the variance estimates for individual genomic loci. One commonly used

approach is based on Bayesian or empirical Bayes methods. In an empirical Bayes

approach, the sample variances are shrunk toward a shared variance estimate, which

results in more stable variance estimates. In 2002, Lnnstedt and Speed used an em-

pirical Bayes method to analyze replicated two-color microarray data.8 They combine

the data of all genomic loci to estimate the parameters of a prior distribution. Then

for each specific genomic lous, they combine these prior parameter estimates with

local means and standard deviations to form a posterior statistic, which is used to

decide if a gene is differential or not.

Later, Smyth proposed the Limma model,9 which can deal with microarray exper-

iments with arbitrary numbers of treatments and RNA samples. They also proposed

a moderated t-statistic, which improve the conventional t-statistic by using vari-

ance shrinkage estimators. They show that after incorporating variance shrinking,

the moderated t-statistic improves the gene ranking compared to the conventional

t-statistics. Variance shrinkage estimator has also been used in other data types and

applications.10

3



CHAPTER 1. OVERVIEW

1.3 Inference and Permutation

For inference, one needs to construct null distribution of the test statistics. Smyth9

derived the null distribution for the moderated t-statistics under a hierarchical model

with normality assumptions. When the model assumptions do not hold true, such

a null distribution can be misleading. In that situation, a non-parametric procedure

such as permutation can be used to construct the null distribution.

Permutation test is a commonly used non-parametric test, and has been widely

used in differential analysis111213141516.17 For example, Significance Analysis of Mi-

croarrays (SAM)11 is one of the earliest application of permutation tests in differential

analysis. SAM assigns a score to each gene on the basis of change in gene expression

relative to the standard deviation of repeated measurements. The p-value for each

gene is calculated from permutations of repeated experiments. They assumed that

for a given level of expression, the random fluctuations were locus-specific. Therefore,

they designed a ”relative difference” dg in gene expression, which is the ratio of change

in gene expression to the standard deviation for that gene. Then they compare dg

across all genes. For genes with dg that exceeds a certain threshold, SAM uses a

permutations of the repeated measurements to estimate the percentage of genes iden-

tified by chance, which is false discovery rate (FDR). SAM was used to analyze the

transcriptional response of lymphoblastoid cells to ionizing radiation. Permutation

test has also been applied in many other settings such as Gene Set Enrichment Anal-

ysis (GSEA),12 QTL detection,15 allelic association analysis,16 and modeling ChIP
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CHAPTER 1. OVERVIEW

sequencing.17

However, when a variance shrinkage estimator is used, permutation-based differ-

ential analysis can create problems. The number of false positives can increase due

to the inflated estimation of variance for non-differential genomic loci. After each

permutation, the sample variances for differential genomic loci increase enormously.

Their average, which incorporates these inflated sample variances would also be in-

flated. To construct posterior variance estimate for individual genomic locus, sample

variances are shrunk toward the average variance. Therefore, the posterior variance

estimates would also be inflated. For differential genomic loci, this inflation would not

cause a big problem. However, for non-differential genomic loci, this inflation causes

a smaller null t-statistic. Therefore, non-differential loci may be incorrectly identified

as differential due to a more centered and light-tailed permutation null distribution.

1.4 Analysis of Multiple Data Types

Different epigenomic signals are correlated with each other. For example, different

transcription factors may work together to regulate genes. Therefore, comparing

multiple data types jointly has also become an important question in differential

analysis. Previously, multiple methods have been developed for jointly analyzing

multiple data types.

HHMM4 is one method to analyze epigenomic data from ChIP-seq and ChIP-chip

5



CHAPTER 1. OVERVIEW

experiments jointly by a hierarchical hidden Markov model. Here, a hidden Markov

model was employed to infer the hidden states of genomic regions. The hidden states

correspond to whether the signal intensity in a genomic region is different between two

conditions or not. To analyze ChIP-seq and ChIP-chip data jointly, this hierarchical

model consists of two levels of hidden Markov models. First, two individual-level

hidden Markov models are constructed on ChIP-seq and ChIP-chip data separately.

Then a master-level HMM is constructed to infer the true hidden state variable. The

result of HHMM is compared with the result using ChIP-seq or ChIP-chip data alone.

Analyzing two types of data jointly outperforms employing only one type of data.

Model-based Meta-analysis of ChIP data (MM-ChIP)5 is another approach to

combine multiple ChIP-seq and ChIP-chip datasets. MM-ChIP mainly focuses on

dealing with variation across ChIP data samples due to different platform designs

and laboratories. MM-ChIP proposed a two step process. The advantage of MM-

ChIP is its employment of Stouffer’s method. This method treats sources differently

according to their quality. This is an improvement comparing to HHMM approach,

which treats data from ChIP-seq and ChIP-chip datasets equally.

ChromaSig6 is an unsupervised method to explore co-working mechanism of his-

tone modifications by discovering histone modification patterns. Before ChromaSig

was proposed, supervised classification method were also proposed to identify histone

modification marks at known functional sites. However, since in some cases prior

knowledge of relationship between functional sites in genome are not available, an

6



CHAPTER 1. OVERVIEW

unsupervised learning method is necessary.

Spatial clustering is a qualitative approach of combining multiple genomic and

epigenomic datasets. This is an unsupervised method based on learning an HMM

model and inferring the most likely genomic layout. K-spatial clustering partitions

the underlying genomic regions into disjoint and contiguous intervals, and each inter-

val is tagged with cluster k. Then the goal of K-spatial clustering is to seek a way of

tagging the intervals, so that the maximal score is achieved. K-spatial clustering has

advantages over conventional clustering method. First, the result of K-spatial cluster-

ing can provide insights on relationship of functional genomic elements. For example,

transcription start sites (TSS) are usually followed by the transcribed regions. This

relationship would correspond to the coupling of two clusters. Second, spatial cluster-

ing takes in account the correlation of adjacent loci. The adjacent loci are likely to be

assigned to the same cluster which corresponds to our common knowledge. However,

one potential problem for this algorithm is that it requires considerable computing re-

sources. As we can expect, if the number of tracks increases, this requirement would

also increase exponentially. This is common combinatorial problem if we compare

multiple data types qualitatively.

The above methods do not focus on analyzing differential signals. The first sys-

tematic approach for analyzing differential signals in multiple epigenomic data types

jointly is differential principal component analysis (dPCA).7 dPCA is proposed to deal

with this combinatorial problem caused by qualitatively comparing multiple ChIP-seq

7
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datasets. dPCA is an unsupervised learning method to discover covariation patterns

of different chromatin marks. Besides ChIP-seq, dPCA can also handle DNase-seq,

FAIRE-seq and other types of epigenomic data.

dPCA compares multiple epigenomic datasets quantitatively. There are other

important features of dPCA. First, instead of applying PCA on observed data directly,

it estimates the covariance matrix of true differences of multiple datasets under two

conditions, and applies PCA on the estimated true differences. This helps to improve

the efficiency of dimension deduction. Comparing to PCA, dPCA requires a smaller

number of principal components (PCs) to explain the same amount of variance in the

datasets.

Second, dPCA also integrates genomic loci ranking and statistical tests. Perform-

ing dPCA on estimated true difference matrix outputs principal components that

show covariation patterns of these datasets. Each differential principal component

(dPC) can be explained as a functional module of chromatin marks. If one chromatin

mark corresponds to a large number in dPC, then it shows that this mark plays an

important role in driving differences between two biological conditions. The major

patterns discovered by dPCA are the differential patterns shared by many loci. Mean-

while, for each genomic locus, it also outputs principal component scores to indicate

if a locus is differential with respect to that principal component. The principal com-

ponent score for each candidate genomic locus can be used to rank these genomic

loci, this is a prominent improvement comparing to qualitative differential analysis

8
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method. This score is calculated by performing a t-test on each genomic locus. In-

ference based on t-test relies on the normality assumption of the noise. In reality,

the noise may not be normal. Therefore, permutation test may be more appropriate.

However, due to variance shrinkage, permutation again can create problems.

1.5 Our Approach

As described above, when we incorporate shrinkage estimator in a permuatation-

based statistical test, the inflated sample variances in permutation may cause a overly

centered null distribution. To solve this problem, this thesis investigates a revised

permutation procedure. Suppose we want to compare samples from two different

biological conditions, we calculate the mean expression level under each condition, and

remove the mean difference between conditions. After this adjustment, the sample

variances for differential genomic loci will be on the same scale with the sample

variances for non-differential loci. This will avoid the overly centered permutation null

distribution, and thus providing a more conservative decision in terms of differential

signal detection.

9



Chapter 2

Basic Method and Illustration

through Simulation

2.1 Method

We assume two biological conditions A and B. For each condition, we have k =

1, ..., K samples. We use YAkg and YBkg to denote signal intensity level of genomic

locus g in the kth replicate under condition A and B respectively. We assume that the

intensities are appropriately normalized and transformed (e.g. log2 transformation).

The first step of our analysis involves calculating moderated t-statistics based on the

data.

Tg =
ȲAg − ȲBg

S̃g

√
1

KA
+ 1

KB

(2.1)

10



CHAPTER 2. METHOD AND SIMULATION EXAMPLE

where

S̃2
g =

d0S
2
0 + dgS

2
g

d0 + dg
(2.2)

Sg =

√
(KA − 1)S2

A + (KB − 1)S2
B

KA +KB − 2
(2.3)

Here, ȲAg and ȲBg are the sample means of the expression for genomic locus g,

under condition A and condition B. S2
A and S2

B are the sample variances. S2
g is the

pooled sample variance. S̃2
g is the posterior variance estimators, which is a weighted

average of a prior estimator S2
0 and the pooled sample variance S2

g . S2
0 and d0 are

prior estimation of variance and prior degree of freedom, which is estimated through

a Newton iteration as described in Limma.14 dg = KA + KB − 2 is the degree of

freedom of S2
g .

To construct the null distribution for Tg, we use permutations. Before permuting

the data, we first force the data under two biological conditions to have the same

mean by subtracting the mean from samples in each condition. The adjustment is as

following:

ỸAkg = YAkg − ȲAg

ỸBkg = YBkg − ȲBg

(2.4)

Where YAkg and YBkg are the signal intensity level of the kth replicate, gth genomic

locus, under biological condition A and B.

Without this adjustment procedure, differential genomic loci will have large sam-

ple variances after permutation. For example, consider a locus with three measure-

11



CHAPTER 2. METHOD AND SIMULATION EXAMPLE

ments in each condition: A = (0.1, 0.2, 0.3) and B = (10.1, 10.2, 10.3). The sample

variances before permutation are S2
A = 0.01 and S2

B = 0.01. After permutation,

suppose the data becomes A = (0.1, 10.2, 0.3) and B = (10.1, 0.2, 10.3). The sample

variances after permutation become S2
A = 33.34 and S2

B = 33.34. When constructing

the shrinkage estimator, S2
0 is estimated by looking at the average behaving of S2

g

from all genes, therefore it would be inflated by these large sample variances of differ-

ential loci. As a result, for non-differential genomic loci, the posterior estimation of

variances would be inflated because the calculation of posterior estimation involves

pulling sample variance S2
g toward S2

0 . By subtracting the mean from samples in each

group, differences are removed. As a result, permutation will not inflate the sample

variances of differential loci.

After this adjustment, we permute the adjusted data by randomly rearranging the

condition labels of samples. For each permutation, we follow the same procedure to

calculate a null moderated t-statistic t0. Then by performing the permutations for a

large number of times, these t0s form a permutation null distribution for moderated

t-statistic tg. Next, we use this permutation null distribution to calculate p-values

and false discovery rates (FDR)18 for each genomic locus.

12



CHAPTER 2. METHOD AND SIMULATION EXAMPLE

2.2 Illustration through Simulations

In simulation data, we assume there are two biological conditions A and B. Under

each condition, there are three replicates, KA = KB = 3. We assume there are

N = 15000 genomic loci. Among all genomic loci, p of them are differential. We

conduct simulation under different settings of p. Below we use p = 0.3 to illustrate

the results, and results for other values of p are summarized at the end of this chapter.

The data is simulated in the following way:

Condition A: YAkg = βAg + ϵAkg

Condition B: YBkg = βBg + ϵBkg

(2.5)

We assume βBg = 0 for all genomic loci. For non-differential genomic loci, we set

βAg = 0. For differential genomic loci, we assume βAg ∼ N(0, σ2
β). For the noise ϵ

we assume a hierarchical model, where ϵkg ∼ N(0, σ2
g),

1
σ2
g
∼ 1

d0S2
0
χ2
d0
. We assume

d0 = 4, S2
0 = 2, σ2

β = 10. This assumption follows the procedure from G.K.Smyths

paper.9 The empirical Bayes approach in Limma allows us to borrow information

across all genomic loci to estimate the variance. Under the hierarchical model above,

the posterior estimator of variance is calculated by formula (2.2) and the moderated

t-statistic is calculated by formula (2.1). These statistics are calculated based on the

simulated data.

Next, we permute the data by randomly assigning the label of biological condition

13



CHAPTER 2. METHOD AND SIMULATION EXAMPLE

A or B to each sample. There are 20 possible distinct permutations. For each

permutation, we follow the same procedure to calculate a null moderated t-statistic,

t0. After a number of permutations, these t-statistics form the naive permutation null

distribution. Since the number of distinct permutations is small, we pooled t-statistics

from all genomic loci to form the permutation null distributions before adjustment.

According to our previous analysis, we expect that this null distribution should more

centered around zero than it should be.

Then, we apply the adjustment procedure: centering the original data under two

conditions by subtracting the mean as we described in formula (2.4). After this

adjustment, we conduct the permutation again. This will generate another permuta-

tion null distribution, which is the null distribution based on our approach. We also

generate a null distribution based on the parametric model, which is a moderated

t-distribution with degree of freedom df = d0 + dg
14 under the hierarchical model

above and the normality assumption of the noise term.

We compare the two permutation null distributions (before adjustment and after

adjustment) and the moderated t-distribution. The comparison of three null distri-

butions is presented in Figure 2.1. Permutation null distribution before adjustment

(green curve) is the most centered one, while the permutation null after adjustment

(red curve) is the least centered among three null distributions. This suggests that

the inference based on the permutation after adjustment is the most conservative one,

and the permutation before adjustment is the most optimistic one.

14



CHAPTER 2. METHOD AND SIMULATION EXAMPLE

We calculated p-values of genomic loci based on the moderated t-statistics tgs

we have for each genomic locus with respect to two permutation null distributions

and the parametric null distribution. The empirical CDF of p-values is presented in

Figure 2.2. The red curve after adjustment has less p-values concentrated at 0, while

the p-values based on the permutation null before adjustment are most concentrated

near 0.

Next, we calculated true false discovery rates (FDR)18 and estimated FDRs based

on three null distributions. The true false discovery rates are calculated by counting

the number of true non-differential genomic loci (with βAg = 0 in our simulated data)

that have p-values below a certain threshold (false discoveries) divided by the total

number of the genomic loci that have p-values below that threshold (all discoveries).

The estimated false discovery rates are calculated by qvalue function in R package

developed by Storey JD.19 Given a list of p-values, it outputs corresponding estimated

FDRs. Then we plot the estimated FDRs against the true FDRs, for three approaches

respectively. The results are presented in Figure 2.3

One can see from this plot that the green curve of naive permutation is below the

diagonal, indicating that the estimated FDR is smaller than the true FDR. This shows

that before adjustment, our decisions for differential genomic loci are too optimistic.

For revised permutation, the red curve is above the reference black diagonal. The

estimated FDRs are larger than the true FDRs. Our adjustment would correct this

optimism and make a more conservative decision for those non-differential genomic
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loci. In this example, the estimated FDR based on the parametric null distribution

matched the true FDRs relatively well. This is consistent with our expectation, since

the normality assumption for error term holds true in this simulation.

Figure 2.4 shows results for p = 0.05, 0.1, 0.3, 0.5. Similar conclusions are reached.

We also noticed that when p is small, parametric and naive permutations both work

well. Comparing to naive permutation, our approach becomes more crucial when

larger p is involved.

Next, we modified our simulation so that ϵg no longer follow a normal distribution.

We assume ϵg follows a t-distribution with degree of freedom 2. As a result, the null

distribution td0+dg based on the parametric model assumptions in the Limma is no

longer an appropriate null distribution. Figure 2.5 compares the null distribution de-

rived using moderated t-distribution td0+dg , and permutation null distributions before

and after adjustment. Now null distributions of naive permutation and parametric

model are more close to each other, while the revised permutation approach has the

least centered null. Figure 2.6 is the empirical CDF of p-values. The revised permu-

tation has less p-values concentrated near 0. One can see from Figure 2.7 that td0+dg

no longer works: it was too optimistic. Permutation before adjustment also was too

optimistic. However, permutation after our adjustment corrected the overly centered

null distribution. We also investigate our method under different parameter settings,

the results are presented in Figure 2.8. Similar conclusions are reached.

We conclude that if the error term does not follow a normal distribution, the null
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Figure 2.1: Comparison of Permutation Null Distributions before and after adjust-
ment, and the Parametric Null Distribution, Simulation Data, ϵg ∼ N(0, σ2

g)

distributions based on the parametric model and the permutation before adjustment

are overly centered, hence would result in optimistic decisions for non-differential ge-

nomic loci. In this situation, our adjustment approach helps to correct the overly

centered null distribution, and hence providing a more conservative decision for dif-

ferential genomic loci.
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Figure 2.2: Empirical CDF of p-values, Simulation Data, ϵg ∼ N(0, σ2
g)
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Figure 2.3: Estimated FDR v.s. True FDR, Simulation Data, ϵg ∼ N(0, σ2
g)
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Figure 2.4: Results under Different Parameter Settings, Simulation Data, ϵg ∼
N(0, σ2

g)
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Figure 2.5: Comparison of Permutation Null Distributions before and after adjust-
ment, and the Parametric Null Distribution, Simulation Data, ϵg ∼ t2
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Figure 2.6: Empirical CDF of p-values, Simulation Data, ϵg ∼ t2
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Figure 2.7: Estimated FDR v.s. True FDR, Simulation Data, ϵg ∼ t2
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Figure 2.8: Results under Different Parameter Settings, Simulation Data, ϵg ∼ t2
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Chapter 3

Application including One Data

Type

3.1 Brief Introduction

In last chapter, we discussed our method in simulation data. In this and next

chapters, we investigate the behavior of our method in real data. The goal of analysis

in this chapter is to detect differential signals by comparing one data type between two

biological conditions. We use gene expression microarray data as test examples. We

first conduct a realistic simulation on microarray data. Next, we apply our method

directly to two real microarray datasets.
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3.2 Realistic Simulation

The data used here come from a chronic lymphocytic leukemia (CLL) gene ex-

pression microarray dataset.20 It has 24 samples in total with 12625 genomic loci

from 24 CLL patients. The samples are categorized into two biological conditions

according to the states of the disease of the patients: stable condition and progressive

condition. This dataset has been preprocessed and normalized, and was provided as

part of CLL package in R.

For simulation, we selected 6 samples randomly from stable states and divided

them into two biological conditions. These two groups of samples should not have

meaningful biological difference. We then added artificial differential signals in the

following way. We randomly picked up p genomic loci as differential genomic loci,

and we added artificial differences that follow a normal distribution N(0, σ2) to these

genomic loci in one condition. Different choices of p = (0.1, 0.3, 0.5) and σ2 = (1, 3, 5)

are tested. The results from different combinations of parameters are similar. Here

we present the results under p = 0.3 and σ2 = 3 as an example, and results for other

parameter settings are provided at the end of this chapter.

After the simulation, we have 6 samples under two biological conditions. We know

which genomic loci are differential. Next, we used the Limma package21 to analyze

the simulated data and to calculate the moderated t-statistics. These moderated

t-statistics are calculated by incorporating the shrinkage estimators of variance.

Next, we permuted the data by randomly assigning three samples as biological
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condition A and the other three samples as biological condition B. There are 20

possible distinct permutations under our design, which is the same as the simulation

study in Chapter 2. For each permutation, we applied the Limma package21 again

to get the moderated null t-statistic t0. Since the number of distinct permutations

is small, we pooled moderated null t-statistics from all genomic loci to form the

permutation null distributions before adjustment.

Next, we applied our adjustment procedure. We force the data from two biological

conditions to have the same mean for each genomic locus through mean centering.

Then we permuted the data again and calculated moderated null t-statistics for each

permutation. These t-statistics form the permutation null distribution after adjust-

ment. Now, for each genomic locus, we have two permutation null distributions:

before and after adjustment. We also generate the parametric null distribution for

moderated t-statistics which is a t-distribution with augmented degrees of freedom

df = d0 + dg based on the hierarchical model of Limma.

Figure 3.1 compares the permutation null distributions before and after adjust-

ment and the null distribution based on the parametric model. After adjustment, the

permutation null distribution is less concentrated around zero than before adjustment.

This is consistent with our expectation.

From Limma, we can get estimated S2
0 for each permutation. We also compared

the S2
0 estimates before and after adjustment. According to our analysis above, we

expect that before adjustment, because of the inflated sample variances of differential
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sites, S2
0 would be inflated. After adjustment, S2

0 should be smaller. As we can see

from Figure 3.2 the result is consistent with our expectation. The solid red curve is

the distribution of S2
0 after adjustment, which is smaller than the distribution of S2

0

before adjustment.

Next, we calculated p-values for each genomic locus based on the moderated t-

statistics with respect to the permutation null distributions before and after adjust-

ment and the null distribution of parametric model. We compared these p-values.

The empirical CDF of the p-values is shown in Figure 3.3. We can see from this figure

that before adjustment, there are more genomic loci with smaller p-values. Therefore

it is more likely to misclassify non-differential genomic loci as differential genomic loci

before adjustment.

In simulation study, we know if one gene is differential or not. Therefore, we

can calculate true false discovery rates (FDR). The estimated false discovery rates

are calculated by qvalue function, as the same with last chapter. Then we plot the

estimated FDRs against the true FDRs. The results are presented in Figure 3.4.

We can see from this plot that estimated FDRs are smaller than the true FDRs for

the permutation before adjustment and the parametric model. Therefore, differential

sites based on these two null distributions may result in a large proportion of false

discoveries. After adjustment, estimated FDRs are large than true FDRs, which

will report less differential loci and make a more conservative decision for detecting

differential signals.
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We also conduct realistic simulation under different parameter settings, the results

are presented in Figure 3.5 with σ2 = 1 and p = (0.1, 0.3, 0.5), Figure 3.6 with σ2 = 3

and p = (0.1, 0.3, 0.5), and Figure 3.7 with σ2 = 5 and p = (0.1, 0.3, 0.5). Our results

are similar under different parameter settings. We also noticed that our adjustment

approach is more necessary when a larger proportion of differential loci p or a larger

difference magnitudes between two biological conditions is involved.

3.3 Microarray Data Result

In this section, we applied our method on two microarray datasets. The first

microarray dataset is the same CLL dataset20 as in last section. Here, we picked

three samples from progressive state and three samples from stable state. Now we

have three replicates in each biological condition.

Next, we follow the same procedure as above to calculate the moderated t-statistics

for each genomic locus by applying limma.21 Then naive permutation and revised

permutation are conducted.

Figure 3.8 compares the null distribution based on parametric model and permu-

tation null distributions before and after adjustment. After adjustment, the permu-

tation null distribution is less concentrated near 0.

Similar to last section, we also plot the empirical CDF of S2
0 in Figure 3.9, and

the empirical CDF of p-values are in Figure 3.10. We can see from the plot that,
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after our adjustment procedure, the S2
0 are smaller, and the p-values are larger.

We then compared the number of differential sites at different FDR thresholds

in Figure 3.11. We can see from the plot that less genomic loci are classified as

differential after our adjustment. This is also consistent with what we expected.

At FDR = 0.05, naive permutation reports 4523 differential genomic loci among

all 12625 genomic loci. The parametric model reports 676 differential genomic loci.

After adjustment, permutation reports 196 differential genomic loci. At FDR = 0.1,

naive permutation reports 7922 differential genomic loci among all 12625 genomic

loci. The parametric model reports 7088 differential genomic loci. After adjustment,

permutation reports 5356 differential genomic loci. We can see that there is a large

decrease in the number of differential sites between the permutation after adjustment

and the other two null distributions. Therefore, our adjustment approach can have a

substantial influence on the results of differential gene detection.

We also applied our method on another microarray dataset: a BRAFV600E A375

melanoma dataset.22 This dataset was downloaded from GEO website, the data

was normalized using GEOquery package23 and affydata package24 in R. In this

dataset, the melanoma cells are treated with either vehicle or vemurafenib. Vemu-

rafenib is a BRAF inhibitor, which suppresses the proliferation of BRAF mutant

human melanoma cells. We have 6 samples in total, two treatments: vehicle and

vemurafenib are considered to be two biological conditions. Three of the samples are

treated with vehicle, and the other three are treated with vemurafenib. There are
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32321 genomic loci in total. We applied the same procedure as we did in CLL dataset.

The results are shown in Figure 3.12, Figure 3.13, Figure 3.14, and Figure 3.15. These

figures showed the similar results with CLL dataset. After our adjustment procedure,

the permutation null distribution is less centered, S2
0s from permutations are smaller,

thus p-values after adjustment are more uniformly distributed and less centered at

0. At the same FDR threshold, permutation after adjustment reports less differential

loci comparing to the other two approaches. At FDR = 0.05, naive permutation

reports 15854 differential genomic loci, parametric model reports 13812 differential

loci, and the permutation after adjustment reports 11283 differential genomic loci.

At FDR = 0.1, naive permutation reports 19313 differential genomic loci, parametric

model reports 17556 differential loci, and the permutation after adjustment reports

14461 differential genomic loci. Therefore, under the same FDR threshold, less ge-

nomic loci are classified as differential after adjustment.

In summary, we can see that there is a decrease in number of differential loci

between the revised permutation and the other two approaches. Under revised per-

mutation, the null distribution is less centered, the p-values are less concentrated near

0, and the estimated FDRs are larger than the true FDRs. Moreover, according to our

realistic simulation result, the parametric null distribution for moderated t-statistic

is closer to the permutation null distribution before adjustment, suggesting that we

can not rule out the possibility that the normality assumption of the error term does

not hold true in real data. In this situation, our adjustment approach is necessary to
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Figure 3.1: Comparison of Permutation Null Distributions before and after Adjust-
ment, and Parametric Null Distribution, Realistic Simulation of CLL data

provide a conservative decision for differential genomic loci.
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Figure 3.2: Comparison of S2
0 before and after Adjustment, Realistic Simulation of

CLL data
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Figure 3.3: Empirical CDF of p-values, Realistic Simulation of CLL data
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Figure 3.4: Estimated FDR v.s. True FDR, Realistic Simulation of CLL data
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Figure 3.5: Realistic Simulation of CLL Data, p=(0.1,0.3,0.5), σ2 = 1
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Figure 3.6: Realistic Simulation of CLL Data, p=(0.1,0.3,0.5), σ2 = 3
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Figure 3.7: Realistic Simulation of CLL Data, p=(0.1,0.3,0.5), σ2 = 5
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Figure 3.8: Comparison of Permutation Null Distributions before and after Adjust-
ment and Parametric Null Distribution, CLL data
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Figure 3.9: Comparison of S2
0 before and after Adjustment, CLL data
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Figure 3.10: Empirical CDF of p-values, CLL data
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Figure 3.11: Comparison of Number of Differential Sites, CLL data
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Figure 3.12: Comparison of Permutation Null Distributions before and after Ad-
justment and Parametric Null Distribution, Melanoma data
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Figure 3.13: Comparison of S2
0 , Melanoma data
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Figure 3.14: Empirical CDF of p-values, Melanoma data
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Figure 3.15: Comparison of Number of Differential Sites, Melanoma data
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Chapter 4

Applications Including Multiple

Data Types

4.1 Brief Introduction

In this chapter, we consider multiple types of epigenomic data jointly. We apply

permutation to differential principal component analysis (dPCA).7 In the analysis

of one data type, the number of unique permutations is limited by the number of

replicates available. For example, if there are 3 replicates in each biological condition,

the number of distinct permutations is limited to 20. Therefore, when we construct

permutation null distributions, we chose to pool moderated null t-statistics t0s of

all genomic loci together to form a shared permutation null distribution, instead

of allowing each genomic locus to have its own permutation null distribution. When
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multiple data types are analyzed jointly as in dPCA, each data type can be permuted.

This allows one to create a large number of distinct permutations when all data types

are analyzed together. Therefore, one can construct locus-specific permutation null

distributions.

4.2 dPCA

We first briefly review dPCA using the data from the MYC example in dPCA

paper.7 This dataset consists of 18 different epigenomic data types, including ChIP-

seq data, DNase-seq and FAIRE-seq data. dPCA is a method to analyze multiple

data types jointly to identify differential protein-DNA interactions (PDI) between

two biological conditions. dPCA outputs principal components as major covariation

patterns of differential chromatin marks. Moreover, for each genomic locus, it outputs

principal component score β to prioritize the differential genomic loci with respect to

that principal component.

In our example, dPCA is used to discover differential patterns at MYC motif sites.

We use i = 1, 2 to denote two cell types: K562 and Huvec. There areM = 18 different

data types in total, including ChIP-seq data sets (e.g. H3k4me1, H3k4me2), DNase-

seq data sets, and FAIRE-seq data sets. We have N = 68 samples and G = 66364

genomic loci in total. For each data type, we have K = 1 ∼ 3 replicates in each

cell type. The genomic loci were obtained by mapping MYC motif to human genome
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using the CisGenome software.25 After normalization and log2 transformation, the

protein-DNA intensity for biological condition (cell type) i, data type m, replicate k,

on genomic locus g is summarized into one number xgimk. xgimk can be decomposed

to the true binding levels µgim and noises ϵgimk. In the original dPCA, ϵgimk is

assumed to follow a normal distribution N(0, σ2). We calculate the mean of PDI

intensity over replicates: x̄gim =
∑

k xgimk/Kim, here Kim is the number of replicates

of biological condition i and data type m. Then we calculate the difference of the

intensity under two biological conditions: dgm = x̄g1m − x̄g2m. This is our observed

difference matrix D, the dimension of this matrix is G×M . Each row of D indicates

a genomic locus, and each column indicates a data type. dPCA decomposes the

observed difference matrix D into two matrices: the unobserved truth ∆, which is the

true difference between two biological conditions for each data type on each genomic

locus; and the random sampling noise E. Based on the normality assumption, the

elements in E, egm ∼ N(0, σ2( 1
K1m

+ 1
K2m

)). The original dPCA method assumes

equal variance for all genomic loci, that is σ2
g = σ2. It is estimated by σ̂2 = s2 =∑

g

∑
i

∑
m

∑
k

(xgimk−x̄gim)2

η
, where η = G ×

∑
i

∑
m(Kim − 1). dPCA characterize

∆ by principal components (PCs). There are M PCs: v1, v2, ..., vM , and each PC

represents a differential pattern, and PCs are orthogonal to each other. The true

difference between two biological conditions for one genomic locus δg is the gth row

of true differential matrix ∆, and it can be represented as a linear combination of

these differential patterns. That is: δg = V βg =
∑

j βgjvj. Here the coefficient βgj
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is the principal component score, indicating if locus g is differential with respect to

differential pattern j. βgj will be used to rank genomic loci based on each dPC.

In the original dPCA, whether βgj is different from zero or not is tested using a t-

distribution (or a normal distribution when the degree of freedom is large). However,

in real data, noise may not be normal, therefore, we investigate the use of permutation

in this context. We perform permutation tests on βgjs to see if locus g is differential

for pattern j or not. We have H0 : βgj = 0 and H1 : βgj ̸= 0. We construct a

t-statistic Tgj = vTj dg/
√

σ̂2vTj Ωvj where dg is the gth row of difference matrix D

and Ω = diag((1/K11 + 1/K21), ..., (1/K1M + 1/K2M)) is a diagonal matrix. Under

normality assumption of noise, the null distribution of t-statistics is a t-distribution,

with degree of freedom df =
∑

i

∑
m(Kim − 1). For simplicity, we use PC to indicate

differential principal component (dPC) in following text.

4.3 dPCA Simulation Result

dPCA is a generative model, we can use principal components as basis to generate

simulation data. First, we use PCs from original dPCA to do simulation on dPCA

data. In this simulation, PCs are derived from real data. Principal component scores

and random noise are simulated. The data simulation process is as following. We

first pick PCs that have a signal-to-noise ratio SNRj = V ar(vTj dg)/V ar(vTj eg) > 5 as

recommended by dPCA.25 In this case, top three PCs passed this threshold. For each
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PC vj, we set a proportion of differential genomic loci pj, with respect to this PC.

Then we randomly assign 0 or 1 that follows a Bernoulli distribution with parameter

pj to genomic loci to indicate if a genomic locus is differential or not with respect

to vj. Then for non-differential loci, we set coefficient βgj = 0. For differential loci,

we generate βgj by assuming that they follow a normal distribution N(0, σ2
j ). Then

the true differential matrix ∆ = V βg =
∑

j βgjvj. We set biological condition i = 2

(Huvec cell type) as the base line. We now assume that the random noise follows a

normal distribution ϵgimk ∼ N(0, σ2
0). Therefore xg2mk = 0 +N(0, σ2

0). For biological

condition i = 1, we have xg1mk = δgm +N(0, σ2
0).

In this simulation process, there are three parts of the parameters. First, pjs are

the proportion of differential genomic loci for each PC. Second, σ2
j s are differential

magnitude for each PC. Third, σ2
0 is the noise level. Several combinations of param-

eters are used to see if our adjustment approach is stable under different parameter

settings. The combinations of parameters are listed in Table ??. The results from

different parameter settings are similar. We presented the results from the second

parameter setting here. p1 = 0.2, p2 = 0.12, and p3 = 0.04. σ1 = 5, σ2 = 3, σ3 = 1,

and σ2
0 = 0.1. Results from other parameter settings are presented at the end of the

chapter.

After conducting dPCA on simulated data, we do permutations. We switch the

label of biological conditions i = 1, 2 for each data type randomly to create a permuted

data matrix. For example, if we originally have samples x1m1, x1m2, x2m1, x2m2, x2m3.
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That is, for data type m, we have two replicates for biological condition 1, and three

replicates for condition 2, then one possible permutation is x̃1m1 = x1m1, x̃1m2 =

x2m1, x̃2m1 = x2m2, x̃2m2 = x1m2, x̃2m3 = x2m3. We have M = 18 data types in

total, and the permutations of different data types are independent with each other.

Therefore, we are able to create a large number of distinct permutations by combining

permutations of different data types together. Data from two biological conditions

are mixed together after permutations. Therefore, when we follow the same approach

to calculate the t-statistic of βgj for each permutation, those t-statistics will form an

permutation null distribution for tgj. We use t0gj to indicate them. We conduct B =

2000 permutations in total, yielding a locus-specific null distribution for each locus.

P-values and false discovery rates (FDR) are calculated based on the permutation

null distributions.

dPCA assumes equal variances for all genomic loci σ2
g = σ2. In this case, even

though we do not use variance shrinkage estimator, σ̂2 is estimated by pooling infor-

mation from all genomic loci. If we perform naive permutation, the sample variance

for permuted data would be inflated by the increased sample variances of differential

genomic loci after permutation. If we want to relax the equal variance assumption

and assume locus-specific variance, variance shrinkage estimator should be used to

achieve a more stable variance estimation due to the small number of replicates.

When the variance shrinkage estimator is used, we would expect that the permuta-

tion null distributions generated by naive permutations are more centered than the
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true null distribution. Consequently, some of the non-differential genomic loci would

be misclassified as differential due to the small p-values based on the permutation

null distributions.

In our proposed approach, we first force the data under two conditions to have the

same mean for each data type before permutation, by subtracting the means. After

this adjustment, for each genomic locus and each data type, we then permute data

between two conditions.

To illustrate the effects of adjustment, we pick several genomic loci from the exam-

ple data to compare the permutation null distributions of t-statistic before and after

adjustment in Figure 4.1. Two curves are the permutation null distributions before

and after adjustment for principal component score of this locus with respect to the

first PC. These genomic loci are non-differential. The red solid curve is permutation

null distribution after adjustment. After adjustment, the permutation null distribu-

tions are less centered than the naive permutation (green curve). This is consistent

with our expectation

We also pick 10 true differential genomic loci on Figure 4.2. For differential loci,

the behavior of two null distributions are different. We can see that for differential

genomic loci, the permutation null distributions after adjustment (red curve) are

actually more centered than before adjustment (green curve). This is reasonable

because after adjustment the difference dgm in permuted data also decreases. This

may cause a more centered null distribution. This is also good because for differential
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genomic loci, a more centered null distribution would result in smaller p-values.

Next, we compared the distributions of p-values of all genomic loci for top three

PCs. The empirical CDF are presented in Figure 4.3. We also calculated the p-values

based on the t-distributions as the assumption in original dPCA. From this plot, we

can see that after adjustment, the distribution of p-values is more uniform than it

is before adjustment. For each PC, when p-value is near 0, the value of empirical

CDF after adjustment is closer to the true proportion of differential genomic loci for

this PC in our parameter setting, which is p1 = 0.2, p2 = 0.12, and p3 = 0.04. The

parametric p-values (blue curve) is also distributed in a uniform way.

We presented the true FDRs and estimated FDRs for top three PCs in Figure 4.4.

The red curve is based on the permutation after adjustment, the green curve is based

on the permutation before adjustment, and the blue curve is based on the parametric

t-distribution. The black line in the plot is the diagonal line as a reference. Among

three approaches, FDR curve based on naive permutation is below the diagonal line.

Therefore, this estimation is too optimistic. The other two approaches are both

conservative, while the parametric approach works better. This is also consistent

with our expectation, because the normality assumption of error term holds true in

this simulation.

Next we simulate the data assuming that the error term follows a t-distribution

with degree of freedom df = 2. Now the normality assumption of error term does

not hold true. We conduct permutations in the same way. The results are present in
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Figure 4.5 and Figure 4.6. One can see that when the normality assumption does not

hold true, the estimated FDRs based on parametric t-distribution are smaller than

the true FDRs. Therefore, t distribution is no longer an appropriate null distribution

to prevent us from too optimistic decision for differential loci, as the same with the

permutation null distribution before adjustment. In this situation, permutation after

adjustment is the only approach among those three to provide a conservative decision

for differential loci.

We investigate our approach under different parameter settings. The parameter

settings are listed in Table ??. Under each parameter setting, we assume two different

distributions of error term: a normal distribution or a t-distribution with degree of

freedom df = 2. The results are presented in Figure 4.7 to Figure 4.14. Each figure

corresponds to one parameter setting. The six plots in the first row of each figure are

the results under normality assumption of error term. The six plots in the second

row are the results under t-distribution with df = 2 assumption of error term. Under

different parameter settings, the results are similar and draw the same conclusions.

4.4 dPCA Realistic Simulation Result

One drawback of the naive simulation in last section is that we do not maintain

the true noise structure in dPCA data. We simply assume that the error term follows

a normal distribution or a t-distribution. In this section, we conduct a realistic
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simulation to investigate the behavior of our method under the true noise structure

in dPCA data. We only simulate the principal component score for each genomic

locus.

The data simulation process is as following. First, we calculate a residual data

matrix R by removing the mean of each data type under each cell type. rgimk =

xgimk − x̄gim. Then this residual matrix R contains the true noise structure in dPCA

data. Then we simulate principal component score βgj as the same with naive sim-

ulation in last section. The true difference matrix ∆ = V βg =
∑

j βgjvj. We set

biological condition i = 2 (Huvec cell type) as the base line. The simulation data

for biological condition i = 2 is simply the residual data matrix. xg2mk = rg2mk. For

biological condition i = 1, we add the residual matrix to the true difference matrix.

That is xg1mk = rg1mk + δgm.

In this simulation process, there are two parts of the parameters. First, pjs are

the proportion of differential genomic loci for each PC. Second, σ2
j s are differential

magnitude for each PC. Since the result from last section under different parameter

settings are similar, we picked the second parameter settings in this section. p1 = 0.2,

p2 = 0.12, and p3 = 0.04. σ1 = 5, σ2 = 3, and σ3 = 1.

Next, we conduct permutations as the same with last section. Permutation null

distributions for each genomic locus are formed. Then, we conduct the adjustment

by forcing each data type under two biological conditions to have the same mean.

Then, we conduct permutations again to generate permutation null distributions af-
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ter adjustment. We pick 10 non-differential genomic loci from the example data to

compare the permutation null distributions before and after adjustment in Figure

4.15. We also pick 10 differential genomic loci, and the result is present in Figure

4.16. From these two plots we can draw the same conclusion. For non-differential

genomic loci, the permutation null distribution after adjustment is less centered than

it before adjustment. Therefore, these non-differential genomic loci are less likely to

be misclassified as differential ones than before. On the other hand, for differential

genomic loci, the permutation null distribution after adjustment is more centered,

which would result in smaller p-values.

Next, we compared the distributions of p-values of all genomic loci for top three

PCs. The empirical CDF are presented in Figure 4.17. After adjustment, p-values

are distributed in a more uniform way than it before adjustment. The p-values from

parametric t-distribution is also distributed in a uniform way. For each PC, when

p-value is near 0, the value of empirical CDF after adjustment is closer to the true

proportion of differential genomic loci for this PC in our parameter setting. We then

compared the estimated FDRs and the true FDRs for top three PCs. The result

is present in Figure 4.18. We can see from this plot that for the permutation null

distribution before adjustment and the parametric t-distribution, the estimated FDRs

are smaller than the true FDRs. Therefore, based on these two distributions, we will

make too optimistic decisions for differential loci. After adjustment, estimated FDRs

are large than the true FDRs, which will provide conservative decisions for differential
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loci. Our adjustment is effective and the result is consistent with our expectation.

4.5 dPCA Real Data Result

In this section, we conduct permutations on the real data. We switch the label of

biological conditions for each data type randomly to create a permuted data matrix.

Then a null t-statistic is calculated for each permutation. These null t-statistics form

permutation null distributions for each genomic locus. Then we apply the proposed

adjustment approach by forcing the data under two conditions to have the same mean.

Then we conduct permutations on the adjusted data again, which form a permutation

null distributions after adjustment.

To illustrate the effects of adjustment, we picked 10 genomic loci to compare the

permutation null distributions of t-statistics before and after adjustment in Figure

4.19. These 10 genomic loci have small t-statistics, implying that they are likely to

be non-differential with respect to the first principal component. We can draw the

same conclusion as before. After adjustment, the permutation null distributions are

less centered.

Next, we calculated empirical p-values with respect to permutation null distribu-

tions before and after adjustment and the parametric null distribution. We plot the

empirical CDF in Figure 4.20. After adjustment, the p-values are distributed in a

more uniform way than it before adjustment. Though we do not know the hidden
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truth of differential sites, we can see that the behavior of the permutation null dis-

tributions and the p-values in real data are similar to our simulation results before.

Therefore, it is reasonable to conclude that, without the adjustment, the permuta-

tion null distribution is overly centered. Our adjustment is necessary, if we prefer a

conservative decision for differential genomic loci.

Next, we calculated estimated FDRs based on the p-values. Given the same FDR

threshold FDR = 0.05, naive permutation reports 29159 differential loci among all

66364 genomic loci for the first PC. Parametric model reports 17780 differential ge-

nomic loci. Permutation after adjustment reports 13934 differential loci. For the

second PC, at FDR = 0.05, naive permutation reports 9179 differential loci. Para-

metric model reports 12508 differential loci. Permutation after adjustment reports

6886 differential loci. For the third PC, naive permutation reports 12104 differential

loci. Parametric model reports 12043 differential loci. Permutation after adjustment

reports 4641 differential loci. There is a significant decrease of the number of differ-

ential genomic loci based on permutation after adjustment, comparing to the other

two approaches. Our adjustment therefore has substantial influence on how many

loci will be reported as differential.
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Figure 4.1: Comparison of Permutation Null Distributions before and after Adjust-
ment, Simulation of dPCA Data, Non-differential Sites

Figure 4.2: Comparison of Permutation Null Distributions before and after Adjust-
ment, Simulation of dPCA Data, Simulation of dPCA data, Differential Sites
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Figure 4.3: Empirical CDF of p-values for Top Three PCs, Simulation of dPCA
Data, ϵgimk ∼ N(0, σ2

0)

Figure 4.4: Estimated FDRs v.s. True FDRs for Top Three PCs, Simulation of
dPCA Data, ϵgimk ∼ N(0, σ2

0)
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Figure 4.5: Empirical CDF of p-values for Top Three PCs, Simulation of dPCA
Data, ϵgimk ∼ t2

Figure 4.6: Estimated FDRs v.s. True FDRs for Top Three PCs, Simulation of
dPCA Data, ϵgimk ∼ t2

62



CHAPTER 4. MULTIPLE TYPES OF EPIGENOMIC DATA APPLICATION

Figure 4.7: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 1

Figure 4.8: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 3

Figure 4.9: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 4
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Figure 4.10: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 5

Figure 4.11: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 6

Figure 4.12: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 7

64



CHAPTER 4. MULTIPLE TYPES OF EPIGENOMIC DATA APPLICATION

Figure 4.13: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 8

Figure 4.14: Comparison of p-values and FDRs for Top Three PCs, Simulation of
dPCA Data, Parameter Setting 9

Figure 4.15: Comparison of Permutation Null Distributions before and after Ad-
justment, Realistic Simulation of dPCA Data, Non-differential Sites
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Figure 4.16: Comparison of Permutation Null Distributions before and after Ad-
justment, Realistic Simulation of dPCA Data, Differential Sites

Figure 4.17: Empirical CDF of p-values for Top Three PCs, Realistic Simulation of
dPCA Data
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Figure 4.18: Estimated FDRs v.s. True FDRs for Top Three PCs, Realistic Simu-
lation of dPCA Data

Figure 4.19: Comparison of Permutation Null Distributions before and after Ad-
justment, dPCA Data
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Figure 4.20: Empirical CDF of p-values for Top Three PCs, dPCA Data
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Table 4.1: Parameter Settings for Simulation of dPCA data

Parameter Setting dp1 p2 p3 σ1 σ2 σ3 σ0

1 0.1 0.06 0.02 5 3 1 0.1
2 0.2 0.12 0.04 5 3 1 0.1
3 0.4 0.24 0.08 5 3 1 0.1
4 0.1 0.06 0.02 5 3 1 1
5 0.2 0.12 0.04 5 3 1 1
6 0.4 0.24 0.08 5 3 1 1
7 0.1 0.06 0.02 0.5 0.3 0.1 0.1
8 0.2 0.12 0.04 0.5 0.3 0.1 0.1
9 0.4 0.24 0.08 0.5 0.3 0.1 0.1
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Conclusion

In differential analysis of epigenomic data, our main interest is to detect differential

signals between different biological conditions. To prioritize differential genomic loci,

t-statistics are widely used. To calculate t-statistics, one needs to estimate variances.

With small number of replicates in biology study, shrinkage estimator is commonly

incorporated to stabilize the estimation of variance. Then moderated t-statistics are

produced based on the shrinkage estimator. For statistical inference, null distributions

need to be constructed for test statistics. When the assumption of normality of error

term does not hold true, non-parametric tests, such as permutation test, are used

instead. However, for differential genomic loci, permuting measurements between two

groups will inflate the variance estimate, and thus form a misleading, overly centered

null distribution. We proposed an adjustment approach by permuting residuals. We

applied and evaluated this approach to simulation data, single type of microarray
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data, and multiple types of epigenomic data.

In simulation studies, we assumed two different structures of noise: normal or t-

distribution. Under the normality assumption, the parametric null distribution works

well. However, when the normality assumption does not hold true, the parametric null

distribution is no longer appropriate. In this case, permutation after adjustment is the

only approach that provided a conservative decision about estimated FDRs. Naive

permutation without adjustment was too optimistic under both noise structures.

In realistic simulation studies, the true noise structure in real data was maintained.

The parametric null distribution was still overly centered. Based on parametric model,

the estimated FDRs were smaller than the truth. This suggests that under true noise

structure, the normality assumption of error term may be violated. Constructing

null distribution in non-parametric way may be more appropriate than parametric

model in real data. If we choose to conduct permutation, our adjustment procedure

is necessary to prevent us from misleading, overly optimistic null distribution.

In real data, we observed a significant decrease in the number of differential ge-

nomic loci at the same FDR threshold when revised permutation is applied, compar-

ing to the naive permutation or the parametric model. Combined with the previous

realistic simulation results, we are confident that the permutation after adjustment

provides a more conservative decision comparing to the other two approaches and

decreases the number of false discoveries.

In simulation and realistic simulation studies, we investigated our method under
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different parameter settings. We noticed that our adjustment procedure becomes

more crucial when a large proportion of differential genomic loci are involved. In real

data analysis, Melanoma dataset involves a large number of differential genomic loci.

Our adjustment procedure therefore has a more profound impact comparing to the

naive permutation. Therefore, our adjustment procedure is more suitable to apply to

the datasets that involve a large number of differential loci.

Other similar non-parametric models such as bootstrapping can also be used to

construct the null distribution. If other approaches are chosen, then we should apply

a similar adjustment procedure to ensure that the estimation of variance of differential

loci after permutation should be on the same scale with the estimation of variance of

non-differential loci.

In summary, our adjustment procedure is valuable when incorporating shrinkage

estimator of variance in permutation-based statistical test. In naive permutation,

due to the inflation caused by shrinkage estimator of variance, the null distribution

will be overly centered. Small p-values for non-differential loci based on this null

distribution will result in large number of false positives. In our approach, we mitigate

this inflation by removing the mean before permutation. This will help us to avoid

the overly centered null distribution. Therefore, we will make a more conservative

decision in terms of detecting differential signals between two biological conditions.
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