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Some Advance Comments on HANDBOOK OF CUBIK MATH

There is no more enjoyable way to learn the basics of group theory
than to study this book carefully with (of course) Rubik’s Cube in
your hands. It is by all odds the best book yet written, or likely to be
written, on the wonders and the dark, unsolved mysteries of the cube.
Think not that the cube is just a toy. As Frey and Singmaster make
clear, it is one of the most amazing teaching aids in the entire history

of mathematics.
—Martin Gardner, author and editor.

This handbook gives a fascinating account of the relationship between
the Rubik’s Cube puzzle and an area of higher mathematics known as
the theory of finite groups. The discussion is careful and lucid and
should be accessible to anyone willing to think carefully about the
cube. It should be particularly useful for high-school students inter-
ested in the cube and also as a supplement for a college course cover-
ing finite groups. There are a broad range of exercises and various
facts about the cube that have not appeared in detail in print before.
—Dr. Joe P. Buhler, Professor of Mathematics,
Reed College, Oregon, and Professor of
Mathematics, Pennsylvania State University.
(He was interviewed on NBC-TV'’s “20/20”
program about the cube.)

Frey and Singmaster give a nicely blended discussion of specific al-
gorithms for the cube together with some underlying theoretical con-
cepts from group theory. Thus, cubists will be able to cure their in-
somnia by reading chapter 3, and then perhaps satisfy their aroused
curiosity about what is really going on by reading further.

There is no doubt that the cube is far and away the most inter-
esting concrete example of a finite group in existence. As such, it
presents a great pedagogical opportunity. While finite group theory
may not become a household word as a result, books like this one
will help demystify a previously rather obscure subject.

—David M. Goldschmidt, Professor of Math-
ematics, University of California, Berkeley,
and group-theory editor of PROCEEDINGS
OF THE AMERICAN MATHEMATICAL
SOCIETY.

This is the sort of book you could give to brighter students to have
them discover the group properties of the cube on their own. The
book is clearly and simply written.
—Leroy Sachs, classroom teacher, Clayton,
Missouri.
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Vi Preface

and what they could do to enhance their mastery of the
cube.

Seldom does one realize at this point that the concepts
which appeared so logical for solving the cube problem
are, in fact, the concepts of identities, inverses, commuta-
tors, and conjugates. Chapter 4 defines these generalized
concepts with many examples and exercises from the cube.
These principles are applied to derive new techniques for
manipulating the cube. Then in Chapter 5 these improve-
ments are applied to obtain better ways to restore the cube.

It is in Chapter 6 that the mathematical concepts become
more sophisticated. It is here that the concept of a group is
introduced. The structure and the size of the cube group
and its subgroups are explored in Chapters 6 and 7. This
leads finally to a discussion of normal subgroups and the
isomorphisms of subgroups and factor groups in Chapter 8.

It is expected that some students of the cube will oniy be
ready to absorb material through Chapter 3. Others will be
able to work through Chapter 5. The more advanced stu-
dents will work all the way through to the end. At all stages
it is necessary to have easy access to a cube. The cube is
the best teacher and experimentation is the best learning
technique.
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CHAPTER 1
INTRODUCTION

The Magic Cube or Rubik’s Cube is an ingenious puzzle
invented by Ernd Rubik, a sculptor, architect, and teacher of
three dimensional design at the Academy of Applied Art in
Budapest.

When new, it looks like a cube, about the size of a fist,
with each face colored with one of six bright colors. Closer
examination shows that the cube is divided in three along
each direction so that it appears to be a 3 x 3 x 3 array of lit-
tle cubes — called cubies. Thus each face of the cube is
really a 3 x 3 pattern of little faces — called facelets — of
the small cubies.

One of the first questions about the cube which we usu-
ally are asked is,“What is the problem?”. We explain that the
problem is to devise a method by which, starting with a ran-
domly scrambled cube, you can restore the cube to the po-
sition where each face has a single solid color. About half
of the people then respond by saying “Oh, so | am sup-
posed to figure out how to take it apart!” We say, “No, the
cube does not come apart. At least it is not supposed to.”

1



2 Introduction

About half of those people then go away to work out how
the cube comes apart, muttering something like, “These fel-
lows are no help. They clearly don’t understand the prob-
lem.” But, for the rest of you who are still here, we can goon
to the usual next question. “What movements can the cube
make?” One could answer that each of the six faces can be
rotated about its central cubie as shown in Figure 1-1. After
turning any one of the faces you can now turn any other
face. This causes the colored facelets to move about.
Sounds simple, doesn't it? If we stop there, we have made
the problem about as difficult as one possibly could. Why?
Because we may have turned off the most fruitful line of in-
quiry leading to solutions of the problem. It is important to
understand a great deal more about how the cube moves
than just that each of the six faces can be rotated.
WARNING: It only takes a few random turns to
thoroughly confuse your cube! Each face soon
looks like a Mondrian painting. Without a solution,
such as that given in Chapter 3, it could take you a
long time to restore your cube.

Masochists who insisted on restoring their cubes without
any help have taken weeks or months. Several of our
friends took nine months to a year! When you understand
the basic strategy taught in this book, you will be able to
restore any scrambled cube without referring again to the
book. The strategy does not require you to memorize any
sequences of moves. You are taught the reason for each
and every face turn.

CUBE MOVEMENTS

Any of the six faces of the cube
can be rotated.

Figure 1-1



CHAPTER 2
A CUBIK ORIENTATION

Before developing a strategy for restoring the cube, it
helps to study the cube a little while. What can we observe
about the cube that may help us with the solution? What
simple terminology and notation will describe the pieces
and movements of the cube? Figure 2-1 gives a summary of
the terminology and notation to be developed in this chap-
ter.

1. CUBIES AND CUBICLES

Looking at the cube as a whole, at first glance, it appears
to be made up of 3 x 3 x 3=27 cubies in three layers, each
layer being a three-by-three square of small cubies. How-
ever, it is only possible to see the outside of the cube, so
that only 26 cubies can be seen. The one in the center is
only imaginary. Also, all that we can see of each of the 26
visible cubies are the colored facelets which combine to
form the six faces of the entire cube. Each face of the cube
is made up of nine such facelets. Thus there are 6 x 9=54
facelets on the cube.



Corner, Edge, and Center

4 A Cubik Orientation
SUMMARY OF TERMINOLOGY AND NOTATION

Terminology Definition or Abbreviation

Cubies The small cube pieces which make up

the whole cube.

Cubicles The spaces occupied by cubies.

Facelets The faces of a cubie.

Types of Cubies: A corner cubie has three facelets.

An edge cubie has two facelets.
A center cubie has one facelet.

Home Location — of a cubie

The cubicle to which a cubie should be
restored.

Home Position — of a cubie

The orientation in the home location to
which a cubie should be restored.

Positional Names
for Cube Faces

Up Down
Right Left
Front Back

Notation for Cubicles
— shown in italics

Lower case initials. For example, uf
denotes the Up-Front edge cubicle.

Notation for Cubies
— shown in italics

Upper case initials. For example, URF
denotes the cubie whose home
position is in the Up-Right-Front corner.

Notation for Face Turns
— shown in BLOCK

The initials, U, F, R, D, B, and L
denote clockwise quarter turns.

CAPITAL LETTERS u-',F~,R",D-',B-",and L-' denote
counter-clockwise quarter turns.
U?, F?, R?, D?, B?, and L? denote half
turns.
Moving the Whole Cube U F B D, £ and L denote clockwise

turns of the whole cube behind the
indicated face.

Figure 2-1



Cubies and Cubicles 5

Look now at the cubies which make up the cube. Notice
that the cube has three types of cubies. Some cubies have
three visible facelets as indicated in Figure 2-2. These are
called corner pieces. There are eight corner pieces corre-
sponding to the eight corners of the cube. Other cubies
have only two visible facelets as indicated in Figure 2-3.
These cubies fill in the space along an edge between two
corner pieces. Therefore, they are called edge pieces.
There are twelve edge pieces, one on each of the twelve
edges of the cube. The third type of cubie has only one visi-
ble facelet. This facelet, as shown in Figure 2-4 is in the
middle of a face. Thus these cubies are called center
pieces. There are six center pieces corresponding to the six
faces of the cube.

By rotating different faces of the cube, the cubies can be
moved about. Each cubie moves to the location vacated by
another cubie. These locations are called cubicles. The lo-
cations occupied by corner cubies are corner cubicles and
the locations occupies by edge cubies are edge cubicles.
Observe that no matter how faces are rotated, the corner
pieces always move from one corner cubicle to another
corner cubicle and the edge pieces always move from one
edge cubicle to another edge cubicle. Rotating a face never
moves a center cubie from one face to another. The center
pieces have a fixed location relative to the other center
pieces. They can only be spun in place. This is a particu-
larly important observation, because it shows the following:

The color of the center piece of any face defines
the only color to which that face of the cube can be
restored.

For each center piece the color of the opposite center piece
never changes. Furthermore, if two opposite center pieces
are placed in the positions of north and south poles respec-
tively, then the sequential order of the other four center
pieces around the equator is always the same.
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THE CORNER CUBIES, THE EDGE CUBIES,
SHADED, HAVE SHADED, HAVE
THREE FACELETS TWO FACELETS
! L (HM]
o 1 il
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Figure 2-2 Figure 2-3

THE CENTER CUBIES, SHADED, HAVE ONE FACELET

Figure 2-4

Since the center cubie of each face determines the only
color to which that face can be restored, we can also define
the one and only cubicle in which each cubie can be
placed to restore the cube. For example, if the two facelets
of an edge cubie are orange and green, then that piece
must be placed in the unique edge cubicle between the or-
ange center piece and the green center piece as shown
shaded in Figure 2-5. Furthermore, the cubie must be
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AN EDGE HOME POSITION

Orange 0
ot /1
I;J‘:III, /
WG
hhhh //
Green »G /
Figure 2-5

placed in that cubicle so that its orange facelet is next to
the orange center piece and the green facelet is next to the
green center piece.

Similarly, if the three facelets of a corner cubie are
orange, green, and white then, to restore that cubie, it must
be placed in the corner cubicle where the orange face, the
green face, and the white face meet — shaded in Figure 2-6.
Furthermore, its orange, green, and white facelets must be
on the orange, green, and white faces respectively.

A CORNER HOME POSITION
Orange /L %£0
.l:{.ol y
W
Ahia .
G >
reen G y
White /

Figure 2-6



8 A Cubik Orientation

For each edge and corner cubie in the cube, the unique
cubicle to which it must be restored is called the home lo-
cation for that cubie. When a cubie is in its home location
and its facelet colors match the colors of the center pieces
on each face, then the cubie is said to be in its home posi-
tion.

It is possible for a cubie to be in the cubicle of its home
location without being in its home position. A corner piece
in this condition is said to be twisted in its home location.
An edge piece in this condition is said to be flipped in its
home location. Figure 2-7 shows a twisted corner cubie and
a flipped edge cubie. Thus, each corner and edge cubie
has a unique home location and in that cubicle it has a
unique placement which puts it in its home position.

TWISTED AND FLIPPED CUBIES

(0] 0
/] /
o
; ﬂ/ f Wi
G )/ G Wfi /

)

Twisted Corner Cubie Flipped Edge Cubie
Figure 2-7

EXERCISES:

2.1-1 How many of the 54 facelets of the cube are
a. facelets of corner cubies?
b. facelets of edge cubies?
c. facelets of center cubies?

2.1-2 Athow many locations can an edge cubie be placed so that
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the colors of both of the two adjacent center cubies are different
from both colors on the facelets of that edge cubie?

2.1-3 In what cubicle can a corner cubie be placed so that none
of the center cubies adjacent to that cubicle has the color of any of
the three facelets of that corner cubie? Describe the cubicle loca-
tion relative to the home position of the cubie.

2. ORIENTATION BASED ON THE CENTER
FACELETS

To discuss the movements of the cube and its cubies, we
need to establish a terminology and notation. The most im-
portant quality of any terminology and notation is that it be
accepted and used in the same way by all the people who
need to communicate about the subject. There is one termi-
nology and notation that has been accepted internationally
by most students of the cube. It was devised by David Sing-
master of Polytechnic of the South Bank, London, England.
That terminology is the one we use in this book.

Many people who work with the cube have developed
their own terminology and notation for cube movements.
Perhaps you already have a notation of your own. Different
people’s notations reflect their diverse ways of approaching
the cube problems. Even if one of these were better than the
one we use in this book, we would not want to change
because the one presented in this book is already the most
widely used.

We want to be able to discuss how cubies move from
cubicle to cubicle in the cube. To do this, we need to de-
scribe the location of each cubicle. Since rotating a face
never changes the location of the center cubies, it is natural
to use these center pieces as reference points to describe
the locations of the cubicles.

Itis tempting to name each face by the color of the center
facelet. However, different manufacturers use different col-
ors and even the same manufacturer does not always keep
the same relative placement for coloring the faces of differ-
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ent cubes. In discussions among people with such different
cubes, using colors to identify cubies, cubicles, and the
movements of the cube may be more confusing than help-
ful.

To avoid the confusions caused by different cube color-
ings, each of the faces is named based on its position rela-
tive to the person holding the cube. Singmaster has chosen
the following six names for the six faces: Front, Back, Right,
Left, Up, and Down. These faces are designated by their ini-
tials as follows:

Front =F
Back =B
Right =R
Left =L
Up =U
Down=D

It is very convenient to be able to abbreviate the names of
the faces by their initials. Singmaster chose these names to
avoid the ambiguities presented by the initials of some of
the logical English words for the faces; Right/Rear and
Back/Bottom.

To designate a face on your own cube as the Up face,
choose any center cubie which you like to be the Up-face
center piece. From then on the pattern of all facelets which
appear at any moment on the same face as that chosen
center-piece facelet will constitute the Up face. The Up
layer is the set of all cubies which have a facelet on the Up
face. The color of the Up-face center facelet is the color to
which the Up face must be restored.

After choosing a center cubie for the Up face, you can
choose any of four other center cubies for the Front-face
center piece. After you have chosen colors for the center
facelets of the Up face and the Front face, then all the other
center facelet colors are fixed by the way the manufacturer
put the colors on the cube. Thus we now have matched
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each of the six faces of the cube with a different one of the
six positional names Up, Front, Right, Down, Back, and Left.

This correspondence between the cube faces and posi-
tions in space defines an orientation of the cube. The orien-
tation of an object is its position relative to an agreed-upon
point of reference. In many cases the point of reference may
be moveable. For example, we can use North or the “front”
of a car or even the direction in which you are looking as
points of reference and describe the orientation of other ob-
jects accordingly. Thus if a car has turned over in an acci-
dent we say that the part of the car which is on the bottom is
the “top” of the car. The same is true after we have defined
an orientation for the cube. We may turn the cube over to
look at the Down face. This may temporarily put the Up face
on the bottom and the Front face in the back. But this does
not change the orientation of the cube. The color which we
assigned to the Up face remains the Up-face color and the
color which we assigned to the Front is still the Front-face
color. However, we can reorient the cube. We say that we
have reoriented the cube whenever we assign a different
color to one of the six positional names. Thus if you turn the
cube around just to look at the back then return it, that does
not reorient the cube. But, we will find times when it is use-
ful to turn it around and keep the color that was the Back-
face color in front and call it the Front-face color. That re-
naming process is called reorienting the cube.

We also use the positional names of the faces to identify
the cubicles, cubies, and facelets. For example, the edge
cubicle between the Up-face center piece and the Front-
face center piece can be called either the Up-Front cubicle
or the Front-Up cubicle. The edge cubie which has one
Down-colored facelet and one Right-colored facelet is the
Down-Right cubie — or also the Right-Down cubie. The
home location of the Left-Back-Up corner cubie is the cor-
ner cubicle where the Up face, the Left face and the Back
face meet — the Up-Left-Back cubicle. This cubie is in its
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home position when it is in its home location with the Up-
colored facelet on the Up face.

EXERCISES: (* indicates harder.)

2.2-1 After choosing an Up-face color, how many different
choices are possible for the Front-face color?
2.2-2 Which of the following statements are true and which are
false?
a. When the cube is restored so that each face is a solid color,
the colors on opposite faces will always be the same.
b. When the positions of the center pieces of two adjacent
faces are named then the positional names of all the center
pieces are fixed.
c. When the positions of any two center pieces are named then
the positional names of all the center pieces are fixed.

2.2-3* How many different orientations of the cube are possible?

3. NOTATION FOR ABBREVIATIONS

We will abbreviate the six positional names by their ini-
tials. To distinguish between the symbols for cubicles and
the symbols for cubies, we will use lower case italics for
the cubicles and upper case italics for the cubies. Thus the
four edge cubicles in the Up layer — shaded in Figure 2-8

EDGE CUBICLES IN THE UP LAYER

Figure 2-8
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— are either denoted uf, ul, ub, and ur, or denoted fu, lu, bu,
and ru. The four cubies whose home locations are the cubi-
cles uf, ul, ub, and ur are denoted either by UF, UL, UB, and
URorby FU, LU, BU, and RU. The order of the initials of the
cubie in the cubicle is used to indicate which facelet is on
which face. For example, saying that the BU cubie is in the
urcubicle means that the Back-colored facelet is on the Up
face and the Up-colored facelet is on the Right face. There
are twelve edge cubicles and twelve edge cubies denoted
as follows:

Cubicles Cubies

uf or fu UFor FU
ul or lu ULor LU
ubor bu UBor BU
uror ru URor RU
rf or fr RFor FR
fl or If FL or LF
Ib or bl LB or BL
br or rb BRor RB
df or fd DF or FD
dl or Id DLor LD
dbor bd DBor BD
dror rd DRor RD

The corner cubicles and cubies are similarly denoted by
their facelets. The corner cubicle shaded in Figure 2-9 is
the urf cubicle. The urf cubicle is the home location of the
URF cubie. The facelets of a corner cubicle or of a corner
cubie are always written in a clockwise order as shown in
Figure 2-10. The clockwise order in this case is determined
by looking along a diagonal line from the outside corner of
the cube to the center of the cube. Thus, the three clock-
wise designations URF, RFU, and FUR all refer to the same
piece whose home location is the urf cubicle. That same
cubicle is also denoted by rfu or fur. The counter-clockwise
designations, UFR, FRU, and RUF and ufr, fru, and ruf are
never used. Again the order of the initials is used to show
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THE urf CUBICLE DESIGNATING CORNER
FACELETS

U / /v /
AR I V/ . aed
THEH (8 {
HHHS f(_/"
WV IR R/

: ) .= y

Facelets are designated in
clockwise order.

Figure 2-9 Figure 2-10

the orientation of a cubie in a cubicle. For example, saying
the BLD cubie is in the urf cubicle means that its Back-col-
ored facelet is on the Up face, its Left-colored facelet is on
the Right face, and its Down-colored facelet is on the Front
face. There are eight corner cubicles and eight corner
cubies denoted as follows:

Cubicles Cubies

urf, rfu, or fur URF, RFU, or FUR
ufl, flu, or luf UFL, FLU, or LUF
ulb, Ibu, or bul ULB, LBU, or BUL
ubr, bru, or rub UBR, BRU, or RUB
dfr, frd, or rdf DFR, FRD, or RDF
alf, Ifd, or fdl DLF, LFD, or FDL
dabl, bid, or Idb DLB, BLD, or LDB
drb, rbd, or bdr DRB, RBD, or BDR

We use the order of the facelets when describing the
movement of pieces resulting from a sequence of face
turns. We may say that the piece in the ufl cubicle moves to
the drb cubicle, and write

ufl — drb.
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By this we mean that the facelets of the corner cubie in the
uflcubicle move so that the facelet from the Up face moves
to the Down face, and the other facelets move with it so that

u—d
f—r
| —Db.

When we write
rb — bu

we mean that the edge cubie in the rb cubicle moves so that
the facelet starting on the Right face moves to the Back
face in the bu cubicle.

Similarly, we show a clockwise twist of a corner cubie in
the urf cubicle by writing

urf — rfu,
or the flip of an edge cubie in the fl cubicle by writing
fl — If.

We illustrate the positions of cubies in a cube with a dia-
gram of the type shown in Figure 2-11 which shows all
cubies in their home positions. Each initial indicates that
the color of the facelet in which it appears is the color of the
center cubie with that initial. The initials around the outside
of the cube indicate the color of the unseen facelet along
the edge adjacent to the initial. No initial is placed in a face-
let when its color is unknown. Thus Figure 2-12 illustrates a
scrambled cube. As the cube is gradually restored, more
and more initials appear.

Once you have established an orientation for your cube,
you can move cubies about from cubicle to cubicle by rotat-
ing any of the six faces of the cube. These six face rotations
are denoted by the initials in block capital letters

UDFB,R,and L.
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ALL CUBIES IN THEIR
HOME POSITIONS

Ll FIlF | F

LI FI F | F|/D
D D D

Figure 2-11

A Cubik Orientation

A SCRAMBLED CUBE

Figure 2-12

A single initial indicates a clockwise quarter turn of the cor-
responding face. Thus Figure 2-13 shows the cube after the
move F has been applied to the cube in its starting state
shown in Figure 2-11. The direction of a clockwise quarter
turn for any face rotation is defined as shown in Figure 2-14
by viewing that face from that side of the cube. A half turn of

APPLYING THEMOVE F TO ARESTORED CUBE

B B
L U U
L/u U R
/L L/|R B
| U R
Dl F| F F R
B
R
DLF|F | F
U D
DLF F F D
R R R

Figure 2-13
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CLOCKWISE FACE TURNS
‘._/
Up Clockwise Right Clockwise
\
Front Clockwise Left Clockwise
Back Clockwise Down Clockwise

Figure 2-14
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any face is two quarter turns of that face. So we use the no-
tation

Uz, Dz, F?, B2, R?, and L?

to denote half turns of the six faces. The symbol U? is pro-
nounced “U squared.” Counter-clockwise quarter turns are
denoted by

u-,D,F',B',R",and L.

The symbol U~ is pronounced “U inverse.”

In recording a sequence of moves, we list the moves from
left to right. Thus FR means apply F first and then apply R.
Figure 2-15 shows the result of applying the sequence FR to
a cube in its starting state as shown in Figure 2-11. Any se-
quence of moves is called a process. Sometimes parenthe-

MOVE FR

uu
u
Dl F| F | R 4"
R/RU
Dl F| F| D R
Dl F| F DR’{
R R B
Figure 2-15

ses are placed around a sequence of moves within a pro-
cess only to emphasize that those moves are related. Such
parentheses can always be ignored without changing the
overall process.

To indicate that a particular process moves cubies from
one cubicle to another cubicle, we list the cubicle move-
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ment followed by the process. For example, we write
uf — ru: FR

to indicate that the cubie in the uf position is moved to the
ru position by the process FR.

All of the notation presented so far in this section has re-
ferred to the fixed orientation we started with. That is, the lo-
cations of the center pieces on each face have remained
fixed. However, sometimes it is useful to reorient the cube
— perhaps to put the Right face in the front and the Back
face on the right or perhaps just to turn the cube over. But,
there are several different ways to turn the cube over. We
need some notation to describe this more precisely. We use
another set of initials to describe the cube reorientations.
We use script letters of the initials. The symbol %/ — pro-
nounced “script U” — will denote a clockwise quarter turn
of the Up face together with the entire cube under it. The
symbol J will denote a clockwise quarter turn of the Front
face together with the entire cube behind it. Similarly, £, .,
£, and 2 will denote clockwise rotations of the entire cube
as viewed from the Right, Left, Back, or Down faces respec-
tively. Again we willuse ¥/~', I, R, L7, £',and D" to
denote counter-clockwise quarter turns and /2, 2, R?, L2,
£2, and ? to indicate half turns. Notice that

R=UT Y.

This and similar equalities for the other reorientation moves
show that the moves % and  would have been enough to
reorient the cube in any way we wanted. The others still are
useful abbreviations.

EXERCISES:
2.3-1 Which edge and corner locations of the cube are not

shown by Figure 2-11?

2.3-2 Find a sequence of moves which accomplishes each of the
following:
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a) Moves the piece in the urfcorner to the rdf position.

b) Moves the piece in the rdf corner to the fur corner.

¢) Moves the piece in the uf edge to the fu edge position —

tnat is, flips the uf edge piece.
2.3-3 For each sequence of moves used to solve the previous ex-
ercise, draw a figure like Figure 2-13 showing the contents of each
location on the Up, Right, and Front faces after applying each se-
quence to a restored cube.

2.34 Starting with a restored cube and using the notation pre-
sented in this chapter,
a) List the Up-layer corner pieces.
b) List the Down-layer edge locations.
c) List all the pieces in the middle layer between the Up and
Down faces whose location can be changed by rotating a face.
d) List all the locations to which the URF piece can be moved
by rotating no more than one face.
e) List all the pieces which can be moved to the uflocation by
rotating only one face.

2.3-5 Write expressions using only ¥ and  for the three orien-
tation moves £, £, and 2.



CHAPTER 3
RESTORING THE CUBE

In this chapter you will learn a method for restoring the
cube which has been selected to be as simple and logical
as possible. It was chosen from the many known methods
because there is no “trick” to be learned and no lengthy se-
quences of moves to be memorized. Instead, the reason for
each move can be understood. You, as student, should un-
derstand what you are trying to do at each step and then
why the moves which you use will do what you wanted. The
restoration method presented here restores one cubie at a
time. To restore the entire cube takes a long time. Learning
to restore the cube takes much longer, even at best.

Basic Principles. This section presents techniques which
form the foundation for understanding much more about
the cube than just how to restore it. Basic principles are
explained by which you can move unrestored cubies
without destroying your previous restoration of the cube. In
later chapters of Handbook of Cubik Math, more concepts
and processes are presented so that you can improve on

21
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your restoration method and develop a further understand-
ing of the mathematics embodied in the cube.

All of the principles and techniques which we need to re-
store the entire cube are exemplified even in the early steps
of any restoration process. If you have experimented with
your cube, you have undoubtedly applied some of these
principles even if you didn’t know them. The following is a
fundamental principle used throughout the entire restora-
tion procedure.

Principle of Inverses. Any sequence of moves can
be reversed and the cubies will be restored to their
starting positions. This is called the inverse of the
process. The inverse of a process Y is denoted by
Y-.

For example, the process Y=BDRD"' can be reversed by
the process Y-'=DR'D'B~" to restore the cube. Notice
that both the order and direction of the moves must be re-
versed. Looking at one particular piece, we see that the
piece in the db cubicle is moved to the fd cubicle by
BDRD-' — see Figure 3-1. So the reverse process
DR-'D'B~' must move the piece in the fd cubicle back to
the db cubicle. Focusing on the individual cubies leads to a
corollary of the first principle.

Principle of Partial Inverses. Any cubies moved by
a process Y will later be restored to their starting
positions by Y-, the inverse of that process, pro-
viding they have not been moved by any other pro-
cess in the meantime.

To see how we use this principle, consider the following
problem. Suppose you have restored three of the Down-
face edge cubies. You now want to restore the remaining
Down-face edge cubie, the DF cubie, to its home position
while leaving the previously-restored pieces in their home
positions. You find the DF cubie is in the fr cubicle — that
is, it is positioned with its Down-colored facelet on the Front
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FOR EXAMPLE, THE PROCESS BDRD~* MOVES db TO fd

2/ S

ANENCAN

N\ * \

Start: The * isin the db cubicle.

\ N
F
N F N
R +—J\|R
\* \}*
ANERNEAN ANEANEAN
AN A RNEEAN
1. Move B 2. Move D
TN .
A | IN
R € R
N N
* *
ING ANRNERN
NN N N \
3. Move R 4. Move D

Figure 3-1
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face and its Front-colored facelet on the Right face. If it
were flipped — that is, if it were in the rf position — it would
be easy. But there is no way by turning only the Front and
Up faces to move the Down-colored facelet of the DF cubie
from the Front face to the Down face. Moving any other
faces will move at least one of the previously restored edge
cubies out its home position. We need to use the Principle
of Partial Inverses.

Following the sequence shown in Figure 3-2, we first turn
the Down face so that none of the previously restored
cubies is on the Right face. Then turning only the Right
face, we place the Down-colored facelet of the DF cubie on
the Down face. Now reverse the initial Down-face turn. We
have just made use of the Principle of Partial Inverses in the
following way. All the pieces which were not moved by the
Right face turn — including the three previously restored
Down-face edge cubies — are returned to their starting po-
sitions. They were moved by the first process D, left in place
by the second process R, and then returned to their start-
ing positions by D™, the inverse of the first process.

Conjugate Processes. Any sequence of three processes, X,
Y, and Z, in which the last process Z is the inverse of the
first process X

Z=x-"

is called a conjugate process. When you write down the
three processes in a conjugate, it has the form

XYX-

where X' indicates the inverse of the process X. You
should recognize this form in many of the processes used
throughout the restoration procedure in this chapter.
Usually when we use a conjugate process, the locations
which are moved by the second process Y form a working
space. The use of a working space is closely linked with the
use of conjugates in this restoration procedure. In most
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RESTORING DF FROM fr

F|D £ F|D E
R
R L_\
R D
L\\D \\ D \ D B\\D \ D
D D_
B R
Starting Position Move: D
F F
|
L \ R £ +— R
D F D R
B\\D \ D \\D I\ND\ D \ D
D D
R B
Move: R Move: D
Figure 3-2

steps of the restoration, conjugates are used extensively.
First, a conjugate moves a selected cubie into a working
space without destroying the earlier restoration. Second,
another conjugate is used to place that cubie into its home
position, leaving all the previously restored cubies undis-
turbed.

When moving the cubie to be restored into the working
space, the first process X of the conjugate serves two func-
tions. It keeps the previously restored cubies out of the
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working space and it moves the selected cubie into the
working space. The second process Y then moves the se-
lected cubie so that the third process X' leaves the se-
lected cubie in the working space while returning all the
previously restored cubies to their home positions.

When restoring the chosen cubie to its home position, the
first process X of the conjugate again serves two functions.
It moves the previously restored cubies out of the working
space. The process X also moves the cubicle to be restored
to a cubicle, call it w, which is in the working space. The
process Y then is used to position the cubie to be restored
in the location w. Finally the process X' not only puts all
the previously restored pieces back in their home locations,
but also moves the piece to be restored from cubicle w to its
home position.

You will probably need many examples before you are
comfortable with this concept of conjugates. They will be
presented as we proceed to explain the restoration proce-
dure. You do not need to understand the concept fully now
in order to proceed. But your understanding may be in-
creased if you review this section again several times as
you complete later sections in this chapter.

Using Building Blocks. Another technique used throughout
this chapter is to build on to earlier solutions. For example,
again suppose you have to restore the DF cubie after the
other three Down-face edge cubies have been restored. But
suppose now the DF cubie is on the Up face. If the Down-
colored facelet is on the Up face, you can rotate the Up face
until the DF cubie is in the uf cubicle and then apply F? to
place DF in its home position without disturbing the other
Down-face edge cubies. But what if the DF cubie is in the fu
cubicle, that is, the Down-colored facelet is on the Front
face and the Front-colored facelet is on the Up face? The
answer is to rotate the Front face to put the DF cubie in the
fr cubicle. You can then apply the sequence we used ear-
lier, shown in Figure 3-2. Thus we can reduce this problem
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to one we have previously solved. We will see many more
examples of this as we proceed.

The Restoration Sequence. The restoration is done in the
following six steps:

Step 1: The Down-face Edge Cubies
Step 2: Three Down-face Corner Cubies
Step 3: Three Middle-layer Edge Cubies
Step 4: The Remaining Five Edge Cubies
Step 5: Placing the Final Corners

Step 6: Untwisting the Final Corners

The darkened cubies in Figure 3-3 indicate the cubies to be
restored in each step.

1. THE DOWN-FACE EDGE CUBIES

The first step is to restore all the edge pieces of a single
face. Any face will do. So, select one and place the center
piece of that color on the Down face. You may want to
select a color you don't like, because by selecting it you will
get most of it finished and done with early. Or you may pre-
fer to do the most visible color first.

You will probably, with some experimentation, be able to
restore the four Down-face edge cubies to their home posi-
tions without further instruction. Remember, for these
cubies to be in their home positions, not only must the
Down-color facelet be on the Down face, but also the other
facelet of each restored cubie must be on the side with the
center piece of matching color. Try restoring these four
pieces for yourself before you read further.

Strategy for Step 1. Restoring the first cubie is particularly
easy since there are no previously restored cubies to worry
about. But as soon as several cubies have been placed in
their home positions, freedom of movement of the cube
faces is already restricted. The last cubie to be placed is
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SEQUENCE FOR RESTORING CUBIES

UM

Step 3

Step 1

Step 2

Step 5 and Step 6

Figure 3-3

Step 4
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usually the most difficult since it must leave the most other
cubies in place. If we can restore any Down-face edge
cubie without disturbing the other three when they have
been restored, then we can restore the last Down-face edge
cubie as well as the earlier Down-face edge cubies.

We will explain how to restore the DF edge cubie to the df
cubicle without disturbing any restored Down-face edges.
For the other Down-face edge cubies, we use a simple ex-
ample of the building block technique discussed at the end
of the last section. We reorient the cube, using %, until the
cubicle to be restored is in the df location. Then we can use
the same processes to restore the DF cubie to the df cubi-
cle. Since U leaves the Down-face edge cubies on the
Down face, the previously restored cubies are not dis-
turbed.

Processes to Restore the DF Cubie. There are twelve
edge cubicles in the cube. The DF cubie could be in any of
them and in each cubicle the DF cubie could be positioned
in either of two orientations. Thus there are 24 positions in
which we might find the DF cubie. Many of these are posi-
tions from which it can be placed in the df cubicle without
moving any previously restored Down-face edge cubies.

Where Previously Restored Cubies Need Not Be Moved. If
the Front-colored facelet of the DF cubie is on the Front
face, then rotating only the Front face will place the DF
cubie in the df cubicle.

df —df

rf —df:F
uf —df:F2
If —df:F

If the Down-colored facelet of DF is on the Up face, then ro-
tating only the Up face will place the Front-colored facelet
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on the Front face. This reduces the problem to the one
solved above.

ur —df : UF?
ub —df : U2F?
ul —df:U'F?

If the Down-colored facelet of the DF cubie is on the Down
face we can again build on the previous solution.

dr —df : R2UF?
db — df : B2U?F?
dl —df: L2U'F?

Two other cases can build on the first solution.

rd — df : RF
Id —df: L'F

The other twelve cases all require that at least one of the
Down-face edges which may have been restored must be
moved in the process of restoring the DF cubie to the df
cubicle.

Using Conjugates to Replace Restored Cubies. We saw in
Figure 3-2 of the previous section how the conjugate pro-
cess DR'D™" is used to restore the DF cubie from the fr
cubicle leaving the other Down-face edge cubies in place. In
a similar manner if the DF cubie is in any middle layer cubi-
cle, then the Down layer can be rotated to move the df cubi-
cle into a position to receive the DF cubie with the Down-
colored facelet on the Down face. At the same time the
other Down-face edges are moved out of the way of the side
rotation needed to place that Down-colored facelet of DF
onto the Down face. After DF is placed in the Down layer,
the Down layer is rotated back to its starting position, thus
both restoring the DF cubie to the df cubicle and returning
the other Down-face edges to their home positions. The fol-
lowing processes all exemplify this.
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fr —df:DR™'D™!
br — df: DRD™
rb — df : D?B-'D?
Ib — df : D2BD?
bl —df:D'L'D
fl —df:D-'LD

Three other cases can build directly on these conjugates.

fu —df: FDR'D™
fd —df:FD'LD
bd — df : BDRD™!

The last three cases can be built on these also if you want.

ru —df : UFDR-'D™
bu — df : U!FDR-'D™
lu —df: U'FDR'D™

However when the DF cubie is in either the ru or the lu posi-
tion, it can be restored more easily using the conjugates

ru —df: R'FR
lu —df:LF'L.

If the DF cubie is in the bu cubicle, then building on one of
these last two gives

bu — df: UR'FR.

This covers the 24 cases for moving the DF cubie to the df
cubicle. We doubt if any of you want to memorize the lists of
processes given here. You should examine them sufficient-
ly to be sure you understand the purpose for each move in
each process. Once you have that understanding you prob-
ably will never have reason to look at this section again.

2. THREEDOWN-FACE CORNER CUBIES

Strategy for Step 2. Having restored the four Down-face
edge cubies, the only face that can be rotated without mov-
ing these restored pieces is the Up face. In this step and in



32 Restoring the Cube

the following step we will use the Up layer as a working
space. We first select a piece to be restored which we call
the selected cubie, and place that cubie into the working
space. We move it from there into its home position. In
selecting which should be the next cubie to be restored we
look for cubies which are already in that working space. In
the process of restoring one of those cubies we will some-
times move another cubie to be restored into the Up-layer
working space.

A Well-Prepared Cubie. To move a Down-face corner cubie
from the working space to its home position it should be
well-prepared. A well-prepared corner cubie is one which
is oriented in the working space so that its Down-colored
faceletis on a side face of the cube — that is, the Down-col-
ored facelet should not be on the Up face. If the Down-col-
ored facelet is on the Up face, then it is more difficult to re-
store. Placing that corner cubie in its home position without
disturbing the previously restored Down-face edge cubies
is harder if the cubie has not been well-prepared in the
working space.

Well-Preparing a Cubie. When we select a Down-face cor-
ner cubie to be restored, it must first be well-prepared. We
must move it to the Up layer with its Down-colored facelet
on a side face. When we find the selected cubie, one of
three things will be true:

1. The cubie is already well-prepared, or

2. The cubie is in the Down layer, or

3. The cubie is on the Up layer with its Down-colored
facelet on the Up face.

If it is already well-prepared then nothing more need be
done before going on to placing it in its home position. The
other two cases are not difficult, but we must be careful not
to destroy the previous restoration of Down-face cubies
while well-preparing the selected cubie.
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Well-Preparing a Selected Cubie from the Down Face.
When we find the cubie we selected to restore on the Down
layer, we first turn the entire cube — that is, reorient the
cube using %/— until the selected cubie is in the dIf cubicle.
We then move that cubie from the dIf cubicle into the Up-
layer working space. One of the two conjugates FU?F~' or
L—'U%L will place the selected cubie in a well-prepared ori-
entation in the Up layer. The first of these conjugates moves
the cubie from the dlf cubicle to the rub position and we write

dif = rub: FUF,

This is the process that should be used if, when the se-
lected cubie is in the dif cubicle, its Down-colored facelet is
on the Front face. By using the F move to put the selected
cubie into the Up layer, the Down-colored facelet is kept on
a side face. Figure 3-4 shows this process with an explana-
tion of the purpose of each move.

If, when the selected cubie is in the d/fcubicle, the Down-
colored facelet is on the Left face then

dif —=bru: L"UL

should be used to keep the Down-colored facelet on a side
face. If the Down-colored facelet started on the Down face
then either process can be used since both will leave the
Down-colored facelet on a side face. Notice how, by using
these conjugates, the previously restored Down-face cubies
are left in their home positions.

Well-Preparing a Selected Cubie from the Up Layer. If we
found the selected cubie on the Up layer with the Down-col-
ored facelet on the Up face then the process is similar. We
can use the same conjugates but first we must orient the
cube so that no previously restored cubies are placed in the
Up layer working space. To do this, use ¥ repeatedly until
the home position of the selected cubie is placed in the dif
cubicle. In this way we know that the dIf cubicle does not
contain a restored cubie. Now rotate the Up face until the
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WELL-PREPARING A DOWN-LAYER CUBIE
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Starting Position

Objective: Move the selected
corner cubie — indicated by O
— to the Up layer with the
Down-color facelet on a side
face of the cube, and return all
previously restored pieces to
their home positions.

A

Move U?

Move 2: Place the selected
cubie out of the Front layer
without moving any previously
restored pieces.

U
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Dl F | F R|/
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Move F

Move 1: Put the selected cubie
into the Up layer with the D-col-
ored facelet on the Front face.

: ©)
R

F

Fle B

D D

Move F-

Move 3: Restore the other
Down-face cubies moved by
Move 1.

Figure 3-4
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selected cubie is in the ufl cubicle, directly above its home
position. Applying either of the two conjugates FU%F- or
L-'U2L will moved the Down-colored facelet of the selected
cubie to a side face. Again by using these conjugates the
previously restored edge and corner cubies are never
placed in the Up layer where the work is done, and they are
always returned to their home positions at the end of the
process.

Placing the Selected Cubie in its Home Position. One of
the same two processes used to well-prepare the selected
corner in the working space can again be used to place it in
its home position. But first the cube must again be oriented
— using % — so that the home position of the cubie to be
restored is put in the dIf cubicle. Then the Up face must be
rotated to place the selected cubie — which should now be
called the DLF cubie — into the bru location. Since the se-
lected cubie has been well-prepared, the Down-colored
facelet will be either on the Back face, or on the Right face.

If the Down-colored facelet is on the Back face, we place
DLF in its home position by using

bru —dlIf: L"UL.

This process is shown in Figure 3-5 with an explanation of
the reason for each move. By starting with L™, the d/f cubi-
cle is moved to the position in the working space in which it
will receive the DLF cubie in the correct orientation when
U2 is applied. The inverse process L then moves DLF to its
home position along with the other previously restored
Down-face edge and corner cubies.

If the Down-colored facelet is on the Right face, we place
DLF in its home position by using the process

rub — dif. FU?F.

This is the same conjugate process that is shown in Figure
3-4. Again the work is done on the Up layer without destroy-
ing the previous restoration of cubies.

It is possible, by reorienting the cube, to restore each of
the four Down-face corner cubies in this manner. However,
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RESTORING A DOWN-LAYER CORNER CUBIE
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Objective: Move the DLF cubie
from the bru position to its
home position in the d/f cubicle
— indicated by O.
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Move 1: Move the dIf cubicle to
the Up layer with the Down-col-
ored facelet being moved to the
Front face.
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Move 3: Place the DLF cubie
into its home position while re-
turning any previously restored
cubies to their home positions.

Figure 3-5
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only three corners need be restored. The fourth will be used
as a working space in later steps and will be called the
working corner. Its contents will often be changed. Orient
the cube so that the drb cubicle is the working corner.

3. THREE MIDDLE-LAYER EDGE CUBIES

Having restored the four edge cubies and three of the
four corner cubies on the Down face, we now tackle the
middle layer between the Up and Down faces. We will
restore the three edge cubies whose home positions are di-
rectly above the three restored Down-face corner cubies.
Again two parts are involved; first, placing the cubie to be
restored into the working space — the Up layer — and sec-
ond, moving that cubie to its home position.

Strategy for Step 3. To avoid moving any previously re-
stored cubies to the working space while moving cubies to
and from middle-layer edge cubicles, we always rotate the
Down layer to place the unrestored working corner under
the middle-layer edge cubicle being moved to the Up layer.
A three-move conjugate similar to that used in the previous
two steps will thern move the selected cubie from the middle
layer to the working space or place the selected cubie in its
home position from the working space.

Moving aMiddle-Layer Cubie to the Working Space. The
middle-layer edge cubies are moved to the working space
in the same way that corner cubies were moved to the work-
ing space in the previous step. If the selected edge cubie is
not already in the Up layer, then it must be in the middle
layer since the Down-face edges have all been restored. If
the selected cubie is in the middle layer then orient the
cube so that the selected cubie is in the f/ location — by re-
peating U as necessary. Then rotate the Down face to put
the working corner in the dIf cubicle. Either of the two con-
jugates FU2F~' or L-'UL can be used to move the selected
cubie into the Up layer. The Down layer should then be ro-
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tated to return the previously restored Down-face cubies to
their home positions and the cube should be rotated to re-
turn the working corner to the drb cubicle.

Placing a Middle-Layer Cubie in its Home Position.
Orient the cube — using %/ — so that the home position of
the selected cubie is in the f/ cubicle, and rotate the Down
layer so that the unrestored working corner is placed in the
dif cubicle. Again we may also need to rotate the Up layer
so that the selected cubie is not moved out of the working
space by the first process of the conjugate. So, to be on the
safe side, rotate the Up layer to put the selected cubie into
the ur cubicle. There are now two possible orientations for
the selected cubie in the ur cubicle, either

1. the Front-colored facelet is on the Up face, or

2. the Left-colored facelet is on the Up face.

Front Color on Up Face. In the first case, we place the FL
cubie from the ur cubicle into its home position f/ by the
process

ur—fl: LUL

which is again the same process shown earlier in Figure
3-5.

Left Color on Up Face. In the second case, we place the FL
cubie from the ru cubicle into its home position f/ by the
process

ru — fl: FUF~

which is only slightly different from the conjugates we have
been using. Still the working corner is the only Down-layer
cubicle whose contents are changed by this process.
After the selected cubie has been placed in its home po-
sition the Down layer should be rotated to return the previ-
ously restored Down-layer cubies to their home positions.
This procedure can be repeated to restore all of the mid-
dle-layer cubies, but it is not necessary to restore the one
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over the working corner since that cubicle will be used as a
working edge in the next step.

4. THE REMAINING FIVE EDGE CUBIES

After restoring the three middle-layer edge cubies not
over the working corner, we are ready to restore the Up-face
edges. The unrestored edge of the middle layer will be used
as a working edge. But, when we are finished with the Up-
face edges we will find that the working edge in the middle
layer has also been properly restored.

Now is also the time for another WARNING. At this point
you have restored enough of the cube so that carelessness
can easily destroy what you have done. It is very frustrating
to realize that several moves back you goofed and now
must start over. To minimize the possibility of that, when-
ever we move any of the restored pieces we will continue to
operate with conjugate processes consisting of three
moves at a time. At the end of each of these three-move se-
quences, you can check and see that the cubies in the
Down and middle layers which started out restored have
been returned to their home positions. Between these se-
quences we will only rotate the Up face. The three-move se-
quences as in previous steps consist of rotating a side to
place the working edge and working corner on the Up face,
then rotating the Up face, then rotating the side back to its
initial position. We have the cube oriented so that the drb
cubicle is the working corner. Thus, the three-move conju-
gates that we will use are R—'UR, R'U?R, R'U~'R, BUB™,
BU2B~', and BU-'B™".

Strategy for Step 4. In this step we restore the final
four Up-face edge cubies. The processes we use for restor-
ing these four cubies will cause the fifth edge to be placed
in its home position automatically. Although the Up-face
edge cubies may be restored in any order convenient to
you, for ease of presentation we assume that they are to
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be restored in the order UL, UF, UB, and UR. The first three
are fairly easy. The fourth may require special attention.

Restoring the First Three Up-face Edge Cubies. Again,
the restoration of these pieces is in two parts; the first, to
move the cubie we select to be restored into the working
space — the rb cubicle — and the second, to move the se-
lected cubie from the rb cubicle to its home position.

Moving an Up-Face Edge Cubie into the Working Edge. To
restore the first three Up-face edge cubies, find the cubie to
be restored. If it is not already in the working edge cubicle,
fchen it can be moved to the rb cubicle by one of the follow-
ing processes.

ul —rb :(BUB")U"

uf —rb : (BU2B™")U?

ub—rb :U"(BUB™)

ur —rb :(BU'B")U
without disturbing any previously restored cubies. Paren-
theses are used only to show the conjugates. Figure 3-6
shows an example of restoring one of the first three Up-face
edge cubies with an explanation of the reason for each
move. Moves 1 through 3 of that figure show how the conju-
gate is used to move the selected cubie into the working
edge.

Placing the First Three Up-Face Edges in their Home Posi-
tions. After the selected cubie has been moved into the
working edge rb, it can be moved from the rb cubicle to its
home position by the appropriate choice from the following
list:

rb — uf : U¥(BUB™)

rb — fu :U"'(R'UR)

rb —ul :UBU'B™)

rb — lu : U¥R'U?R)

rb —ub:(BU'B")U

rb — bu:U(R'U'R)
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RESTORING ONE OF THE FIRST THREE UP-LAYER EDGE
CUBIES

L/uUu /U F
O u
O R
R
L|F]|F F R
Llel[Fr |f|B
D D D
Working corner
Working edge
L/uv/ U F
u
Q P
O R
R|/|p| B
L{F| F| F R
R/L
L| F F F D
D D D
Move B

Move 1: Move the working cor-
ner and working edge to the Up
layer so that the UF piece can
be put into the working edge
cubicle.

Starting Position

Objective: Place the UF piece in
the target location indicated by
the O while returning all previ-
ously restored pieces to their
home positions.

1]
U
U O
B
L
— 1 R
R|/|p| B
L{F| FI|EF R
L FIR/L
D
D D D
Move U

Move 2: Place the UF piece into
position to be moved to the
working edge location.

(Continued)
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RESTORING ONE OF THE FIRST THREE UP-LAYER EDGE
CUBIES (cont.)

u /0
U O U
L RF
R
L|F|F |F
Ll frle | F RS
D D D
Move B-
U
U F
D
L I RR
r|D
Ll F| F L R
F
U F|F F
D D
Move R

Move 4: Place the UF piece into
the O location — that is, one
place counter clockwise on the
Up face from the UL piece —
with the U-colored facelet on
the Up face.

Move 3: Move the piece to be
restored, UF, into the working
edge location, br. Now, if it were
not already there, it would be
necessary to move the target lo-
cation, O, into position to re-
ceive the UF piece with the U-
colored facelet on the Up face.

u/ U
D
l_®_- R
D
LIF | F RR
F
L} F | F F
Move U

Move 5: Move UF out of the
Right layer and into its home
position so that the Down face
can be restored.

(Continued)
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RESTORING ONE OF THE FIRST THREE UP-LAYER EDGE
CUBIES (cont.)

L/U V)
© /f Move 6: Put the previously re-
— / stored Down-layer and middle-
® Rl layer pieces back into their
R / home positions while moving
LlFl FI|F R/ the next piece to be restored
A / into the working edge loca-
tlFl F I F D tion — and again a new piece
into the working corner.
D D D
Move R
Figure 3-6

Moves 4 through 6 of Figure 3-6 show how the three-move
conjugate is used to place a selected piece in its home po-
sition.

Restoring the Fourth Up-Face Edge Cubie. Restoring the
last Up-face edge cubie, in this case the UR cubie, may re-
quire a little special attention. There are three possibilities.

The Lucky Case. The fourth Up-face edge and the cubie in
the working edge may already be in their home positions. In
this case you can just go on to the next step.

Two Flipped Edges. A second possibility is that the fourth
Up-face edge cubie and the cubie in the working edge may
both be in their home location but flipped from their home
position. In this case we restore this last Up-face edge
cubie UR in the same way that we restored the first three.
We move the UR cubie from the ru cubicle into the working
edge using the process

ru—br: (BU'B")U.
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Then we place the UR cubie into its home position using
the process

br —ur: (RUR)U
which will also return the BR cubie to its home position in
the working edge as well as restoring the Up-face edge

cubie UB which was temporarily moved out of place when
the UR cubie was moved to the working edge.

The Unlucky Case, A Single Exchange. The third possibility
is that the last Up-face edge cubie UR is in the working
edge — which is over the working corner — and the cubie
that belongs in the working edge is in the home position ur
of that last Up-face edge cubie. This case is a little different.
You have been unlucky. The properties of the cube are
such that when you are restoring the last face, the last re-
stored center cubie must be placed in one of two positions.
These two positions are 180° rotations of each other. By
chance you have chosen to try to restore the cube with the
center cubie turned 90° from one of them. When that oc-
curs, all the Up-face edge cubies which have already been
placed in their home position must be moved a quarter turn
around on the Up face, that is to say that all of their home
positions must be moved one place around relative to the
Up-face center cubie. This will effectively turn the Up-face
center cubie a quarter turn. To do this, we use the one of
the following two processes which moves the Up-colored
facelet of the UR cubie to the Up face:

rb «— ur: BUB-'UBUB~'U?
or

br ——ur:U'R'U'RU"'R-'U'RU""
Notice that the same three-move conjugates are still used in
these processes. The new home positions of the Up-face
edge cubies are moved around on the Up-face center cubie
one position from where they started. Each rotation of the
Up-face within the process moves the new home position of
another Up-face edge cubie in place to receive that cubie
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with the next side face rotation. Figure 3-7 shows an exam-
ple of one of these processes with an explanation of the
reason for each move. After the second three-move se-
quence is completed, all of the edges should be properly
oriented in their new home positions including the cubie in
the working edge.

RESTORING THE FINAL UP-LAYER EDGE CUBIE

B
U
L/uUu/ U B
7] R
V)
F R R
R Starting Position
LIl F | F R Objective: To put all the edge
pieces in their home positions,
Ll F F R D . returning all previously restored
pieces to their home positions.
D D
Working Corner
Working edge
R
B
B/U/ U U
U / F Move 1: The target home posi-
U tion of each Up-face edge piece
L | R R will be moved one place clock-
3 R wise. This move prepares the
Ll FIl E F R new target home position for
the UR piece to receive that
Ll FIF F R D piece from the working edge lo-
cation.
D D D
Move U-*

(Continued)
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RESTORING THE FINAL UP-LAYER EDGE CUBIE (cont.)

L|F F F
D D
Move R

Move 2: Put the UR piece into
its new home position and move
the UF piece out of the Up layer.

R
L|{r|F | F|R
D
D D D
MoveR

Move 4: Put the UF piece into its
new home position and move
the UL piece out of the Up layer
and into the working edge lo-
cation.

B V) U
7] L
D
B R 5
F R
L| F F U R
L| F F F
D D
Move U

Move 3: Move the UR piece out
of the Right layver and put the
new target home position for
the UF piece in place to receive
that piece.

F
U

R/U /U U

B B

Ll Y

_R_.> R

R

LI F|F F R
R

Ll F|F F D
D D D
Move U~

Move 5: Move the UF piece out
of the Right layer and put the
new target home position for
the UL piece in place to receive
that piece.

(Continued)
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RESTORING THE FINAL UP-LAYER EDGE CUBIE (cont.)

F
U
R/U/ U/U
B L
Rl D
R R
B|/Irl D
LI F|F [|u] AR
F
L{|F|F F
D D
Move R

Move 6: Put the UL piece into its
new home position and move
the UB piece out of the Up
layer.

L
U
E/VU/ U /U
U B
RiB
R+ R
R
L|F| F|IF
TR VL
D D D
Move R

Move 8: Move the UB piece into
its new home position relative
to the other Up-face edges and
put the BR piece into its home
position as well.

L
U
F /U U /B
U R
rl.D
R
—_—t BR
rl D
L} F F V] R
L| F F F
F
D D
Move U

Move 7: Move the UL piece out
of the Right layer.and put the
new target home position for
the UB piece in place to receive
that piece.

B
U
L/u/u /u

1] R

RB

F | R
R

LIF| F | F R
R

L F | F D
D D D
Move U

Move 9: Place all the Up-face
edges into their home positions.

Figure 3-7
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5. PLACING THE FINAL CORNERS

All the edge cubies should now have each facelet color
matching the color of its adjacent center piece. Thus, each
side on the cube should have a cross pattern as shown in
Figure 3-8. The corner facelet colors may or may not match
the color of the cross, depending on which face you are
looking at.

THE EDGE CUBIES MAKE A CROSS ON EVERY FACE

Figure 3-8

The next step is to place the corner pieces in their home
locations. In doing this it is not necessary to worry about
the orientation of these corners as we will correct the twists
of those corners in a later and final step. However, you must
be very careful not to disrupt the edge pieces which now
have been put in place. Of course the rotation of any face
changes the location of both corner and edge pieces. But it
is possible to combine a sequence of conjugate processes
so that each previously restored cubie which is moved is
later put back where it came from. At the end of the total
process only corner pieces will have been moved.
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Strategy for Step 5. We will move one corner cubie, the
selected corner, on the Up face to another corner cubicle,
called the target corner, on the Up face without disturbing
the edge pieces. This total process of Step 5 is done again
in two parts. First the selected corner cubie is exchanged
with the cubie in the working corner drb. Then in the sec-
ond part the selected corner cubie is moved from the work-
ing corner into the target corner.

This procedure makes use again of the Principle of Par-
tial Inverses. The process used to place the selected corner
into the working corner moves several other cubies in the
middle and Down layers. Then the inverse of that process is
used in moving the selected corner cubie from the working
corner to the target corner. This second part thus restores
those middle- and Down-layer cubies to their original home
positions. The only difference between the second part and
the inverse of the first part is a rotation of the Up layer.

You may be tempted at some time to select a piece that is
already in the working corner and place it directly into the
target corner, hoping to avoid the first part of this step —
moving it into the working corner. However, if you do try
this you cannot stop at this point. You must still apply the
Principle of Partial Inverses to restore the middle layer and
Down layer of the cube. To do this you must exchange an-
other Up layer corner with the working corner. This second
part of the process provides the inverse for the middle and
Down layers.

A Process for Relocating an Up-Layer Corner Cubie.
Orient the cube — using %/ — so that the working corner is
in the drb cubicle. Then rotate the Up layer so that the se-
lected corner cubie is in the ufl cubicle. We can use the
process

ufl —rbd: F'D?F

to interchange the selected corner and the working corner.
Again rotating the Up layer we can return the previously re-
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stored Up layer cubies to their home position. The only
cubies to be moved other than the selected corner and
working corner are cubies in the middle and Down layers.
We now rotate the Up layer so that the target corner is
placed in the ufl cubicle. Again we use the process

ufl —rbd: F'D?F

this time to interchange the target corner cubie and the se-
lected corner cubie which is in the working corner cubicle.
The Up layer is again rotated to restore the Up-face edge
cubies. The final result is that the only cubies which are
moved are the three corner cubies, the selected corner to
the target corner, the target corner to the working corner,
and the working corner to the selected corner. Figure 3-9
presents an example of this procedure with an explanation
of the purpose of each move.

RELOCATING AN UP-LAYER CORNER CUBIE

Selected Corner B

Target Corner /707 7
U u/uU
U U U * R
* R B
* @ ® F ) R
*
\ R SERIER R Yy
F 4 x R *
L| F F D
D D D

Starting Position
Objective: Place the_selected
corner, indicated by O, into thes

Working Corner

The piece in ufl moves to loca-
tion urf. The piece in urf moves
to location rbd. The piece in rbd
moves to ufl.

target corner location, indi-
cated by +, while returning all
previously restored pieces to
their home positions.

(Continued)
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RELOCATING AN UP-LAYER CORNER CUBIE (cont.)

D|/|r| B
* ] *
F|F RIA
D|/|x
UIF| F|F |2
*
O|l®| F F P
D
® L L
Move F-

Move 1: Place the selected
piece URF into the Down layer.
(A rotation of the Left face
could equally well have been
used here.)

B
L/u/u /u
* R R R B
*| | F|F DRR®
ulr| F|F|PVEE
L /®
»* * B B D
* D D
Move D?

Move 2: Place the selected cor-
ner, URF, temporarily into the
working corner location. The

_ piece from the working corner

takes the place of the selected
corner on the Front layer.

Move 3: Restore the Up layer
with the piece from the working
corner in place of the selected
corner. (If the left face had been
rotated in Move 1 then it also
would have to be used here to
restore the Up layer. The orien-
tation of the piece from the
working corner would have
been different.)

(Continued)
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RELOCATING AN UP-LAYER CORNER CUBIE (cont.)

* L
lyu}u/u
*/U B

B
* *LL- RR

Dl B | F F L

DIB|F | Fl1/D
L D D

Move U

Move 4: Move the target corner
piece, *, into the place of the
selected corner. (Any Up-face
corner could have been chosen
as the target corner.)

* L
* U
F/u/u/u
R /R BB
D
Fl|F AR
pl/|+|*
UJR | F | F R
D*
D
O|®LF]|F
® L L
Move D?

* L
*/o 7 U
F/u/uU /u

B

D B
F|F RR

DI/ U

F L

F
* * B B D
* D

D

Move F-!

Move 5: Reversing Move 3, put
the piece, *, from the target
corner, into the Down layer.
(Again if the Left face was used
in Move 3, it must be used here.)

Move 6: Reversing Move 2, the
target corner piece, *, and
the selected corner piece,
URF, are exchanged on the
Down layer. The Down layer is
partially restored.

(Continued)
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RELOCATING AN UP-LAYER CORNER CUBIE (cont.)

* L
*/570 77
F/u/ U
U U
®|®| R
L| F F F
L| F F F
D D D
Move F

Move 7: Put the selected corner
piece, URF, into the location va-
cated by the target corner
piece, *. This reverses Move 1,
thus completing the restoration
of the Down layer and the mid-
dle layer. (Again, the Left face
must be used if it was used in
Move 1.)

R *
L|F|F F
D
D D D
Move U-!

Move 8: Move the selected
corner piece, URF, to the tar-
get corner location, in the pro-
cess, returning the Up-face
edge pieces to their home posi-
tions. That the URF piece is ori-
ented correctly in its home posi-
tion is fortuitous. Whatever
facelet of URF was on the Up
face in the selected corner
will still be on the Up face when
it has been moved to the target
corner location.

Figure 3-9

To see that this is another example of the Principle of Par-
tial Inverses, observe that the inverse of the process F'D?*F
— that is the reverse sequence of moves in the reverse re-
verse direction — is again the process F~'D?F. Therefore, as
we saw with earlier conjugate processes, any cubies which
are not moved to the Up layer by F~'D?F when using a pro-
cess in the first part will be returned to their starting posi-
tions by F-'D?F when you use that process for the second

time.
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An Alternate Process. You may have noticed that this conju-
gate F'D?F is similar to the conjugates used in Step 2 to
place corner cubies in their home position in the Down
layer. The difference is that the process is being used to
bring corner cubies into the Up layer instead of the Down
layer without disturbing the other Up-layer cubies. It is as if
the cube had been turned upside-down. The process D?
plays the same role as the process U? did in Step 2. Just as
in Step 2, there is another conjugate which can be used
here in Step 5. The process

ufl ——bdr: LDL™

can be used in place of F'D?F to interchange the selected
corner cubie and the cubie in the working corner. But if
LD2L"" is used in the first part of Step 5, then LD2L~" must
also be used in the second part to bring the selected corner
cubie back into the target corner cubicle. Since the inverse
of LD2L"" is LD?L™, again the Principle of Partial inverses
guarantees that the previously restored middle-layer and
Down-layer cubies will be returned to their home positions.
Why should you choose one of these processes over the
other? The difference is in the orientation of the working
corner cubie when it moves to the selected corner cubicle
and of the target corner cubie when it moves to the working
corner cubicle. By choosing between the two conjugate
processes F'D?F and LD?L~' the number of corners that
need to be untwisted in the next step can be reduced.

The Next Corner. Continue to move corners of the Up layer
into their correct locations until all the corners have been
properly located, although not necessarily with proper ori-
entation. If you are careful, at most three applications of this
corner process should be required before all corner cubies
will be in their home locations. However, anywhere from
zero to five of them may need to be twisted. The three cor-
ner cubies which were properly placed and oriented in Step
2 on the Down face should still be in their home positions.
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6. UNTWISTING THE FINAL CORNERS

All edge cubies should now be in their home positions
and all corner cubies should be in their home locations.
The final step will reorient — that is, untwist — any corner
cubies which are not already in their home positions. The
directions — clockwise or counter-clockwise — for corner
twists are defined by viewing the cube from the outside
along a diagonal through the corner to the center of the
cube. For example, if the URF cubie is in the rfu cubicle, as
shown in the starting position of Figure 3-11 with the Up-
colored facelet on the Right face, then it is twisted clock-
wise from its home position. It needs to be twisted counter-
clockwise in order to restore it to its home position. The
properties of the cube are such that when one corner is
twisted one way another corner also must be twisted to
compensate. One corner twisted in the opposite direction
will compensate. Also, two other corners twisted in the
same direction can compensate since two twists in the
same direction are the same as one twist in the other. The
result must be that if all the corner twists were applied to a
single corner, that corner would end up looking as if it had
not been twisted at all. This is a property of the cube.

Strategy for Step 6. We will show how to twist one corner
of the Up face and then twist another corner of the Up face
in, the opposite direction. The first twist again messes up
cubies in the Down and middle layers. But, the second twist
— in the opposite direction — reverses the process and
restores those middle-layer and Down-layer cubies to their
positions before the two twists were made. The only Up-
layer cubie moved by a twist is the corner being twisted.
Therefore, turning the Up face before reversing the twist
only changes the corner cubie to be untwisted.

It is important to remember that the second twist must be
the reverse of the first in order to restore the middle and
Down layers of the cube even though the second piece
might need to be twisted in the same direction as the first.
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Thus, the Up-face corner cubies must be untwisted in pairs.
One corner must be twisted clockwise and the other must
be twisted counter-clockwise.

Processes to Twist and Untwist Corner Cubies. Orient
the cube — using  or R if necessary — so that two cor-
ners to be twisted are in the Up layer. Decide which one is
to be twisted clockwise and which is to be twisted counter-
clockwise. Rotate the cube — using % — so that the corner
to be twisted clockwise is in the uflcubicle. We use the pro-
cess

ufl — flu : (LD?L"")(F~'D%F)

to twist the corner clockwise. Now rotate the Up layer so
that the corner to be twisted counter-clockwise is in the uf/
cubicle. We use the process

ufl — luf: (F'D?F)(LD?L™)

to twist the cubie in the ufl cubicle counter-clockwise. The
counter-clockwise twisting process is the inverse of the
clockwise twisting process. Rotating only the Up layer be-
tween twists left the middle- and Down-layer cubies alone.
Thus, the Principle of Partial Inverses guarantees that the
middle- and Down-layer cubies that were moved by the first
twist are returned to their home positions by the second
twist in the opposite direction. An example illustrating the
untwisting of two corners is given in Figure 3-11 with an ex-
planation of the purpose of each move.

Let us emphasize again that even when you find that your
cube has three corners that need to be twisted in the same
direction, you must start by twisting two of them in opposite
directions. You must apply the Principle of Partial Inverses
to avoid messing up the middle and Down layers and ruin-
ing all the work that you have done to this point. In later
chapters of the Handbook of Cubik Math techniques are
taught for twisting three corners in the same direction, but
for now you should be content to twist and untwist pairs.
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UNTWISTING TWO UP-LAYER CORNER CUBIES

B B B
U

L /U /U

L /v/u /u /R

f?F‘ U R 5
WM F Uy R

ul s .

L|F|F |F |R 8
R

Li{r|F [F B/ D
D

D D
Working corner

Starting Position

Objective: Twist one Up-face
corner piece clockwise and
twist another Up-face corner
piece counter-clockwise, leav-
ing all other pieces of the cube
in starting positions at the end.
The arrows indicate the re-
quired corner twists.

D B B
L (VA
L/B/U u /R
B uUu/F R
ul/r|B
L{u| F|R R
R F
Llu| F | F L
RIBJlB p," F©
D D F
Move D?

Move 2: Put the piece to be
twisted, UFL, into the working
corner, temporarily out of the
way.

u
U

G FRDD
©

W
c
M
)

D D
Move L

Move 1: Move the first corner to
be twisted, UFL, indicated by O,
to the Down layer by rotating
one of the side faces. Choose
the side face which contains
the Up-colored facelet of the
piece to be twisted.

RID,|] F|R uy/IR|®
3 RR ®
R|D F | F L
R|D| B|D LF©
F D F
Move L™

Move 3: Restore the Up face to
its starting position except for
the location of the piece to be
twisted.

(Continued)
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UNTWISTING TWO UP-LAYER CORNER CUBIES (cont.)

B B B
U
L/vu/u /u
B L /IR
F|/]glB
F R F D R =
D Iu
UlF|F |B L
F
B|D|D|D F
R R
Move F-

Move 4: Using the other side
layer which contains the start-
ing location of the piece to be
twisted, move that location
back to the Down layer in prep-
aration for retrieving the piece
in a different orientation.

U R
ul/1.l8
O|®| F| R |R
D
R
ple|F|Fr "B
L /R
BB |D | /D
L D F
Move F

B B B
L/UT/7U0 /0
L/uv/u/u
R/L /|R 5

F
R

FIR| F|D R
D D
Ul F| F |B LB
R

Q ®LF |8 L
® b D

Move D?

Move 5: Again exchange the
piece from the working cor-
ner and the piece to be
twisted. This puts the UFL cor-
ner piece next to the UF edge
with the correct orientation.

Move 6: Put the UFL piece into
its home position untwisted.
The pieces in the Up layer are
now back to their starting posi-
tions except that the first corner
has been twisted. We must now
restore the Down layer and the
middle layer by untwisting an-
other Up face corner with the
reverse of the twisting pro-
cesses.

(Continued)
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UNTWISTING TWO UP-LAYER CORNER CUBIES (cont.)

L L L
F/U/U U
F/v/uU/u
p/u/u/|B

B rlB
®|O| R|R R
R D
plr|F|F [ AP
L R
D|B|B | D D
L D F

Move U

L L L
|:/97U 70 _/
F /u/u
BYR /L

U|lR]| F|D
U|R| F|{B
®|lO| F |8
® D D

Move F-

Move 8: (Reverse Move 6) Put
the second corner to be twisted,
URF, into the Down layer. If this
twist is to restore the corner to
its home position then the Up-
colored facelet of the corner
will be on the face that is ro-
tated by this move.

Move 7: Put the second corner to
be untwisted, URF, now indicated
by O, in the home location of
the first corner that was twisted.
Rotate the Up face here so as
not to change the Down layer
and the middle layer. Otherwise
they would not be restored by
reversing the twisting process.

. L L L
F/U /U JU
F/v/u /u /B
B /R L/|B
F|/|r|B
ulr| F|D a o
ulr | F |8 |PVE
slp | o | b b ®
< F
R R R
Move D?

Move 9: (Reverse Move 5) Put
the second piece to be twisted
into the “working corner” tem-
porarily out of the way.

(Continued)
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UNTWISTING TWO UP-LAYER CORNER CUBIES (cont.)

B|/|r| B

R|D|R |R R
R

R|DIJ|F |F L

Fn‘DBDL®
F
F D F
Move F

D L L

B /IRl B
FIu|RrR |R | AR
R | IO
FIull F |F | AL
rlsY 8 |D LV ®
F
D D F
Move L

Move 11: (Reverse Move 3)
Move the target location of the
corner being twisted, contain-
ing the piece from the working
corner, to the Down layer using
the other side so as to change
the orientation of the corner to
be twisted when it is returned.

Move 10: (Reverse Move 4) Re-
store the Up-face pieces to the
same positions they had when
starting this twist, except that
the piece from the working cor-
ner has replaced the corner to
be twisted.

D L L
L/B/ U/U
B/ U /U
Uu_/U/B
B B
Flu|l R |R =15
R B
Flul e |r RE
D
Bolrlr A
® D D
Move D?

Move 12: (Reverse Move 2)
Place the piece from the work-
ing corner back in its home
position and the corner to be
twisted, URF, next to the UF
edge with the correct orienta-
tion.

(Continued)
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UNTWISTING TWO UP-LAYER CORNER CUBIES (cont.)

L L L B B B
F/U U V] L/U U U
F/uU U u/B L/u U U/ IR
U U u/|B U U R B
B B R
R R
® Rk R R R L]l F F_IF R
R R B R R B
L| F F F R L] F F F R
R R
LIF|F |F D Ll Fl FL/D
D D D D D D
Move L Move U-*

Move 13: (Reverse Move 1) Re-
store the Down layer and mid-
dle layer pieces to their home
positions. Place the Up-face
pieces in their starting posi-

tions relative to each other ex- Move 14: (Reverse Move 7)
cept for the twists of the two Place the Up-face pieces into
corners. their home positions.

Figure 3-11

To untwist the cubie in the working corner, the rbd cubi-
cle, reorient the cube to place that corner on a new Up face
together with some other corner that needs to be twisted.

When the next to last corner has been twisted to its home
position, then the last piece will automatically be correctly
oriented in its home position. When that is done, it is time to
celebrate your conquest. You can now restore any scram-
bled cube!

7. CUBIK GAMES

In place of exercises for this chapter, we suggest you try
out some of the following Cubik Games.
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I: Solve It — One or more players.

Have a non-player apply the same sequence of either 4, 5,
or 6 moves to each player’s cube. Each player tries to dis-
cover the unknown sequence of that length to restore the
cube. The first to discover it wins. Note: If only 3 moves are
used it is too easy. If 7 or more moves are used it may take
several hours of concentrated effort to find a winner.

II: Scrambled Cubing — Two or more players.

Have a non-player put each player’s cube into the same
scrambled starting state. One way to do this is to write down
a sequence of face rotations unknown to the players. Then
taking each player’s cube in the restored state, apply the
written sequence of face rotations to each of the cubes.
Each player is then to restore his own cube in as few moves
as possible. Each rotation of a face — clockwise, counter-
clockwise, or halfway around — counts as a single move.
The player who restores his cube in the fewest moves wins.

Ill: Contest Cubing — Two players exactly.

Each player scrambles the other player's cube and
returns it. Each player is then to restore his cube in as few
moves as possible. Again, each rotation of a face — clock-
wise, counterclockwise or halfway around — counts as a
single move. The player who restores his cube in the fewest
moves wins.

Variations. The following variations can be used with either
Scrambled Cubing or Contest Cubing to include speed of
restoration.

A. Time the restoration process and if the total restoration
time is over ten minutes, then add a penalty of one move for
each ten seconds over ten minutes.

B. Let the player who restores his cube in the fastest time
be the winner.

C. Reduce the score of the first, second, and third fastest
finishers by 20 moves, 10 moves, and 5 moves respectively.
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IV: Edging — Two to twelve players.

Scramble a cube. Each player chooses an edge of the
cube. The object of the game for each player is to be the
first one to have the three pieces on his chosen edge of the
cube restored — even if done accidentally by another play-
er. Each player sequentially is allowed three moves of the
cube. The first.move may not rotate the same face as the
last move of the preceding player. Different skill levels can
be accommodated by allowing the players, a different num-
ber of moves at each turn.

V: Face-to-Face — Two players.

Scramble a cube. Player | is to restore the Right face of
the cube. Player Il is to restore the Left face. Each player in
turn is allowed up to eight moves of the cube except that
the first move of each player must rotate a different face
from the last face rotated by the opponent. The first player
to have all the pieces on his face in their home positions
wins the game.

Variations. These variations can be adapted to either Game
IV or Game V.

A. Scramble the cube turning only the Front and Right
faces. Player | is to restore the Right face and Player Il is to
restore the Front face. Again each player in turn is allowed
eight moves except that only rotations of the Front and
Right faces are allowed.

B. A time limit may be placed on each player’s turn. When
the time has expired the remainder of that player’s turn is
skipped.

C. The number of moves allowed for each player’s turn
may be varied.

D. Let Player | have one move, then let each player in turn
have two moves, then let each player in turn have three
moves. Continue to let each player in turn have one move
more than on his previous turn until one player wins.



CHAPTER 4

THE WHAT, WHY, AND HOW OF
CUBE MOVEMENTS

Now that you can restore the cube, do you think you
would win a $100 prize by restoring it in less than five min-
utes? When a local department store offered that prize to
promote sales of the cube, very few people could do it even
though they knew a restoration method. On the other hand,
many school students have average times of less than two
minutes and there are several with average times around 45
seconds per cube to restore a large number of randomly
scrambled cubes! But pure speed does not usually indicate
an understanding of the mathematics of the cube but rather
dexterity, practice, and a smooth-sanded well-greased
cube.

A more interesting challenge for students of cubik math
is to minimize the number of moves required to restore
the cube from any particular configuration. How many
moves does one need to restore a randomly scrambled
cube? What configurations of the cube are hardest to re-

64



Processes and Permutations 65

store? Nobody knows the best answers to these questions.
Throughout this chapter, we will develop new processes re-
quiring fewer moves which will improve your cube restora-
tion ability. The concepts which are used to develop these
processes are concepts such as permutations, identities,
inverses, commutators, and conjugates which occur
throughout mathematics and science. After you understand
how these relate to moving pieces about on the cube, you
may be able to apply these same concepts in other fields,
particularly mathematics, physics, computer science, and
engineering.

1. PROCESSES AND PERMUTATIONS

Any process — that is, sequence of face rotations — re-
sults in a rearrangement of the 54 =9 x 6 facelets of the
cubies in the cube. Actually only 48 facelets need to be con-
sidered since we have already observed that no center
piece ever changes its location. Such a rearrangement of
facelets is called a permutation. Any rearrangement of a fin-
ite set of objects is called a permutation of those objects.

To describe a permutation of the cubies of the cube, we
construct a list showing where the piece in each cubicle is
moved to and indicating the new position of each facelet of
each cubie. For example, if the piece in the Up-Front-Left
corner is moved to the Right-Back-Down corner location
with the Up face going to the Right-face position we would
write

ufl — rbd.

The permutation caused by a single clockwise quarter
turn of the Up face would result in moving the pieces from
the locations listed in the left column below to new posi-
tions listed in the right column as indicated by the arrows.

uf —ul
ufl —ulb
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ul —ub
ulb — ubr
ub —ur
ubr — urf
ur —uf
urf — ufl

Twist the Up face of your restored cube to check this out.

If we apply U to a restored cube, then the UF cubie is
moved to the position u/where the UL cubie was, etc. How-
ever, if we apply U to a scrambled cube, the effect is to
move whatever piece is in the uf cubicle to the ul cubicle,
etc. We shall refer to the uf cubicle — or any other cubicle
— as if it were an object and say, for example, that U moves
ufto ul.

If a particular cubicle is left unmoved by a permutation
then it is conventional to leave that location out of the list.
For example,

dfl — dfl

is not included in the list above. However, if a piece in a lo-
cation is flipped or twisted by a permutation, then it must be
included in the list. Thus, the permutation of the process UR
— that is, a clockwise quarter turn of the Up face followed
by a clockwise quarter turn of the Right tace — is described
by the following list:

ur —uf
urf — ufl
uf —ul
ufl —ulb
ul —ub
ulb — bar
ub —br
ubr — bru
rb —rd
drb — frd
rd —rf
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frd — urf
f —ru

Again, check this out on your cube. The eighth entry indi-
cates that the cubie in the ubr cubicle stays in the same lo-
cation, but is twisted by 120° clockwise — viewed from out-
side the cube along the diagonal through the corner and
the center of the cube. We observe that the permutation of
the process UR can be obtained from the permutation of U
followed by the permutation of R as shown by the following
diagram. This is called the product of U and R.

Apply U Apply R

ur —uf

urf — ufl

uf —ul

ufl —ulb

ul —ub

ulb — ubr — bdr

ub —ur —br

ubr — urf — bru
rb —rd
drb — frd
rd —rf
frd — urf
rf —ru

These lists can describe any permutation, not just permu-
tations of the cube. Permutations may also be written in a
more condensed manner, which turns out to be very inform-
ative. To obtain this condensed form, we consider a cubie
in some cubicle x and the sequence of cubicles through
which it passes as the same permutation is repeated. If in
the permutation, x is moved to y, and y is moved to z, and z
is moved back to x, then we write

(x,y, 2)
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where the closing of the parenthesis indicates that the
cubie in the last cubicle is moved back to the first cubicle.
This is called a cycle or, more specifically, a 3-cycle, corre-
sponding to the permutation indicated by this diagram.

X
7\

Z—y

We could equally well have started with y or z, so we see
that the cycles (x, y, z), (y, z, x), and (z, x, y) describe the
same permutation.

For example, the permutation of the process U?R? is de-
scribed by the following list:

uf —ub
ufl —dfr
ul —adr
ulb —drb
ub —uf
ubr — ufl
ur —ul
urf —ulb
f —rb
dfr — ubr
dr —ur
darb — urf
b —rf

If we let x be the cubicle ufl, then we see that x moves to
y=dfr, y moves to z= ubr, and z moves to x= ufl. These
moves form the 3-cycle (ufl, dfr, ubr).

At this point you may wonder if, whenever we write a se-
quence of cubicle moves determined by a permutation, it al-
ways forms a cycle, that is, it always eventually returns to
the first cubicle. The following argument shows that the an-
swer is yes.
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Since there are only a finite number of cubicles, the se-
quence must eventually repeat some cubicle. Since a per-
mutation carries just one cubie to each cubicle and every
cubicle in the sequence, except the first, already has a
cubie carried to it, then the only cubicle which can be re-
peated is the first cubicle in the sequence. For example, we
cannot have

x—»y—oz—-»y

because this has both x and z carried to y. The last cubicle
in the sequence must cycle back to its first cubicle. Thus,
the sequence must be cyclic — that is x must come back to
its starting position so that the sequence will start over
again. The sequence of cubicles through which x passes
when the permutation is repeated is called the cycle deter-
mined by x. For example, consider the process UR whose
permutation in list form is given above. The cycle deter-
mined by the edge cubicle uris

(ur, uf, ul, ub, br, dr, fr).

The cycle representation of a permutation is obtained as
follows. We start by choosing any cubicle x and find the cy-
cle it determines. We then take any cubicle not included in
the previous cycle and find the cycle it determines. This cy-
cle cannot involve any cubicles in the previous cycle, or
else some two cubies would be carried to the same cubicle.
Therefore we say these cycles are disjoint. Continuing until
no cubicles are left, we have decomposed our permutation
into disjoint cycles. The order in which we write disjoint cy-
cles does not matter. For example, the permutation of an Up
face quarter turn U is described by the two cycles

(ufl, ulb, ubr, urf)
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showing the rearrangement of the corner pieces illustrated
in Figure 4-1, and

(uf, ul, ub, ur)

showing the rearrangement of the edge pieces also illus-
trated in Figure 4-1. It does not matter which cycle we write
first.

For the process U?R? whose permutation is listed above
we saw that the cycle determined by the cubicle ufl was

(ufl, dfr, ubr).

Continuing, we see that the ulb cubicle determines the cy-
cle

(ulb, drb, urf)

and no other corner cubicles are moved by U?R2, Decom-
posing a permutation into all of its disjoint cycles gives the
cycle representation of that permutation. Thus, the permu-
tation of the process U?R? has the following cycle represen-
tation:

(ufl, dfr, ubr)
(ulb, drb, urf)
(ul, dr, ur)
(uf, ub)

(rf, rb).

We use a shortened notation for twists and flips in the cy-
cle representation of permutations. For example, in the pro-
cess UR, where we have

ubr — bru,

we could treat each orientation of that corner piece sepa-
rately and write (ubr, bru, rub). That is cumbersome and in-
stead, we write

(ubr),
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AN UP-FACE QUARTER TURN

4 X
A ulb ub ubr
}
ul —/ \* ur
- /—
\w
N ufl uf urf  #
X y
\_/
Figure 4-1

to indicate that the last piece returns to the place of the first
piece rotated 120° clockwise — that is, the Up face to the
Back, the Back face to the Right, and the Right face to the
Up, see Figure 4-2. The rest of the permutation of the UR
process is described in cycle representation by

(ur, uf, ul, ub, br, dr, fr)
and
(urf, ufl, ulb, bdr, dfr)_

where the minus indicates that dfr goes to the urfplace ro-
tated counter-clockwise by 120° — that is, to the fur place.
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THE PROCESS UR APPLIED TO ARESTORED CUBE

u/u/FJ/|R
r|/s]Y
FIR]| R|D R
u
Rl/|B
LlF| F|D
RL
LlF| F|D B
> Y/
D D B
Figure 4-2

Of course, cycles of edges and of corners are disjoint since
one type can’t move to the place of the other type. A plus
sign at the end of a cycle of edges indicates that the cubie
in the last edge position moves to the first edge cubicle but
in the flipped orientation. For example,

(uf, rf),
indicates that rf goes to fu.

We will usually use the cycle representation to describe a
permutation although occasionally we will find it useful to
use the list form as well.

EXERCISES:

4.1-1 Find a sequence of moves which moves uf/to rbd. Describe
the rest of the permutation produced by that sequence of moves.

4.1-2 Write the permutation of the process UR- in both the list
form and in the cycle representation.

4.1-3 Write, in the cycle representation, the permutation of each
of the following processes:

a) URU'R™

b) LD2L-'U2LD2L"U?
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c) LR-'FL-'RU?

d) (UR'U'R)?’=UR-'U'RUR-'U-'R
4.1-4 Find a process which produces each of the following per-
mutations:

a) (fur, luf, bul, rub) (ur, uf, ul, ub)

b) (ulb, flu, drb)

c) (ufl), (drb)_

2. EQUIVALENT PROCESSES

Every process defines a unique permutation which re-
sults from applying that process, but the converse is not
true. It is not true that each permutation comes from a uni-
que process. Many different processes can result in the
same permutation. We define two processes to be equiva-
lent if and only if they result in the same permutation. Thus,
the processes U™ and U? are equivalent. Also, FB and BF
are equivalent processes. These are considered trivial
equivalences. A computer search was conducted to find
the shortest pair of non-trivially equivalent processes. The
smallest pair of non-trivially equivalent processes required
at least eight moves for the two processes combined. One
example that was found was that the processes F2B2L?R?
and R2L2B?F? are equivalent. They each produced the per-
mutation

(ufl, ubr) (uf, df)
(urf, ulb) (ul, dl)
(dlIf, drb) (ub, db)
(drf, dbl) (ur, dr).

This happens to be quite a pretty pattern on the cube.
Notice that FBLR and RLBF are not equivalent processes
since FBLR produces the permutation

(urf), (ulb), (drb), (dlf),
(ufl, rub), (dfr, Idb),
(uf, ru, rb, ub, lu, If)
(df, Id, Ib, db, rd, rf)
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while RLBF produces the permutation

(ufl), (ubr), (dfr), (dbl),
(urf, bul), (dIf, bdr),
(uf, rf, ru, ub, Ib, lu)
(df, If, Id, db, rb, rd).

Prove this to yourself by trying it on your cube.

EXERCISES:

4.2-1 Show that the following pairs of processes are equivalent:
a) F2B?L? and R?L?B?F?R?
b) (F?R?)>=F2R?F?R? and (R?F?)* = R?*F?R?F2R2F2R?F?
c) F'D?FU2F~'D?FU? and U’RDR-'U?RD-'R™"
d) FR'F'Rand U-'RUR-'F-'UFU-'
4.2-2 Show that FR is not equivalent to RF.
4.2-3 In mathematics, an equivalence relation should have three
properties:
i) Any element, X, must be equivalent to itself — Reflexive.
ii) IfXisequivalentto Y then Y must be equivalent to X — Sym-
metric.
iii) If X is equivalentto Y, and Y is equivalent to Z then X must
be equivalent to Z — Transitive.
Does the definition of equivalent processes given in this section
satisfy these three criteria?

3. IDENTITIES AND INVERSES

One permutation that is of particular interest is the one
which leaves every piece alone in its home position. This is
called the identity permutation and a process which pro-
duces the identity permutation is called an identity process.
There are many processes which result in the identity per-
mutation, as we demonstrate every time we restore the
cube. A simple method of generating an identity process is
to turn a face one way and then turn it back again, or to ro-
tate it all the way around, 360°. A simple extension of this is
to apply a sequence of turns and then reverse each turn in
the opposite order. For example FR, followed by R-'F' is a
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trivial identity process. Notice that FRF-'R~" is not an iden-
tity process.

For any process, we define its inverse to be the reverse of
each turn in the process sequence applied in the opposite
order. It is important that the reverse sequence be applied
in the reverse order. An amusing illustration of the impor-
tance of the order for an inverse process is to consider two
processes P and Q, where

P = putting on your socks
and
Q=putting on your shoes

Clearly the inverse of PQ must be Q-'P-, not P-'Q-, since
taking off your socks before your shoes is decidedly unrea-
sonable. Thus QP! is the inverse of the process PQ. Any
process followed by its inverse produces the identity per-
mutation. The permutation produced by the inverse of a
process is defined as the inverse permutation of the pro-
cess.

There are many other processes which are equivalent to
the inverse of a process. That is to say, the inverse of a pro-
cess is not the only way to produce the inverse permutation.
For example, in Step 5 of the restoration method of the last
chapter, one process described for relocating corners was

LD2L-"UzLDALU?
which produces the permutation
(ufl, ubr, bdr).
The inverse permutation is
(ufl, bdr, ubr).
This can be produced either by
UzLD2L-UzLDAL
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which is the inverse of the original process or by the pro-
cess

B-'D'BU*B-'DBUA

Notice that the inverse of an inverse permutation is the
original permutation. Therefore, two processes are equiva-
lent if and only if their inverse processes are equivalent. In
the example just given, this shows that LD?L—'U2LD?L-'U? is
equivalent to U2BD-'B-'U?BDB".

In what follows it will sometimes be convenient to refer to
an entire process by a single symbol such as

X=LD2L-"U2LDz2L"U?
and
Y=U2B-'D-'BUB-'DB.

We use X=Y to denote that X is equivalent to Y. The nota-
tion X' refers to the inverse of the entire process X. The
symbol I will be used for the identity process and the iden-
tity permutation. Thus we will write

XX =I=X""'X.

The concepts of identities and inverses occur frequently
throughout mathematics and will reoccur several times
through this book. In the next section we will examine how
they are generated by the repetition of a single process.

EXERCISES:

4.3-1 For each process in Column A find the process in Column
B which produces its inverse permutation.

Column A Column B
a) UDLRU2D2LRUDF2B? i) U-'F'UBU-'FUB-
b) (F2R?)2=F2R?F?R? ii) U?R-'L-"URLU*R-'L™
c) URU-'L-'UR-'U-'L  iii) F?B2U2F2B2R2L2(F?2U?)°R2L?(B2U?)?
d) URL iv) UDLRU?D?LRUDF2B?
e) D2 v) F'B-'L-'R-'U-'D-!
f) UDLRFB vi) (F?R?)*=F2R?F?R?F2R?F?R?
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4.3-2 Of the following statements, which are true and which are
false?
a) For each process there is one and only one process which
produces the inverse permutation of the process.
b) The permutation produced by a process followed by its in-
verse process is the identity permutation.
c) The permutation of a process is always the same as the per-
mutation of the inverse of that process.
d) Foreach permutation there is one and only one inverse per-
mutation.
e) Theinverse of URisU'R-.
f) The inverse of the identity is the identity.
g) Forprocesses X, Y, and Z,if YX is equivalent to ZX then Y is
equivalent to Z.

4.3-3 a) Whatis the inverse permutation of (A, B)? of (A, B, C)?
of (A, B,C, D)?
b) What is the inverse of a cycle? <
¢) What is the inverse of (A, B) (C, D, E)?
d) Can you state arule for finding the cycle representation of a
permutation given the cycle representation of its inverse?

4. CYCLIC ORDER OF A PERMUTATION

The example of two equivalent processes given in Sec-
tion 2 of this chapter demonstrates an interesting phenomo-
non. We observed that

FZBZLZRZ
and

R2L282F2
are equivalent. But, notice that R2L2B?F? is also the inverse
of F2B2L2R2. Since F?B2L2R? is equivalent to its own inverse,
(F?B2L2R?)(F?B2L2R?) = (F?B?L2R?)2=1. But when we look at
the permutation produced by F?2B2L2R?, namely
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(ufl, ubr)
(urf, ulb)
(dif, drb)
(dfr, dbl)
(uf, df)
(ul, di)
(ub, db)
(ur, dr),

we can see why that process is equivalent to its inverse.
The permutation is made up of nothing but exchanges of
pairs of pieces. So, repeating the process — thus repeating
the permutation — just exchanges the pieces back again.
No twists or flips occur, so exchanging the pieces back
again produces the identity.

But, what would happen if, instead of pair exchanges,
three pieces exchanged places as in

X=L""D2LU2L"D?LU?
which produces the permutation
(ulb, urf, frd)?
Then X2 produces the permutation
(frd, urf, ulb)
which is the permutation of X~'. Therefore we have

X=XX2=XX"=.

In general, any single cycle of a permutation produces the
identity when repeated as many times as there are places in
that cycle. The number of places in a cycle is called the
length of the cycle.

What happens when the permutation has cycles of differ-
ent lengths? For example, the process Y = F?R? produces
the permutation
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(ufl, ubr, dfr)
(dlIf, drb, urf)
(uf, df)

(ur, dr)

(fl, br, fr).

The cycles with two elements produce the identity on the
cubicles in those cycles whenever Y is repeated twice and
the cycles with three elements produce the identity on the
cubicles in their cycles whenever Y is repeated three times.
Therefore, repeating Y six times produces the identity for all
cubicles, that is

Ye=I.

Incidentally, Y2 is a useful process itself for moving edges
without moving corners as we will discuss in the next sec-
tion.

When cycles include flips or twists you must be careful to
include the flips or twists in the length of the cycle. For ex-
ample,

Z=FR™
produces the permutations

(ufl, rdf, dif)_
(urf, rbd, rub),
(uf, rd, rb, ru, rf, df, If).

The twists on the corner cycles multiply the length of those
cycles by three. Since Z® does not result in an identity on
the corner pieces but only returns them to their home loca-
tions twisted, the lengths of the cycles are not 3, 3, and 7,
butrather are 9,9, and 7. If Z is repeated 21 times, all pieces
will be in their home locations, but the six corners will be
twisted. We find that the smallest number of repetitions of Z
which gives the identity is 63.

By now you should see that every process if repeated
enough times will result in the identity. The smallest number
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of times that a process must be repeated to produce an
identity on the entire cube is called the order of the process.
For example, we have shown that the order of the process
F2B2L2R? is two. The processes

X =L-1D?LU?L~D?LU?
Y=FR
Z=FR""

we have shown to have order 3, order 6, and order 63 re-
spectively. Since the order of a process is determined by
the permutation produced by that process, then equivalent
processes have the same order. That same number is also
called the order of the permutation of that process. Thus the
order of a permutation is the least common multiple — de-
noted LCM — of the orders of its cycles.

EXERCISES: (* indicates harder.)

4.4-1 What is the order of each of the following?

a U

b) FR

c) FR™

d) FRF'R-

e) LDxL™

f) UALB'D?BL™
44-2 Find a process of order three which moves only edge
pieces.

4.4-3"* What is the largest order that any process on the cube
can have? Give an example of such a process.

5. FINDING USEFUL PROCESSES

Itis interesting to see what happens when a process is re-
peated enough times to produce the identity for some cy-
cles of its permutation but not for all the cycles. Again, for
example, consider
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Z=FR™
whose permutation is

(ufl, rdf, dif)_
(urf, rbd, rub),
(uf, rd, rb, ru, rf, df, If).

If we repeat Z seven times then
Z2’=FR'FR'FR'FR'FR'FR-'FR™
has a permutation

(ufl, dfr, fdl)_
(urf, drb, ubr),

which is similar to the process Z on the corners — not

equivalent since the corner orientations are different — but

leaves the edges fixed. Thus we have built a process for

moving corners while leaving edges fixed. Unfortunately

that moves too many corners to be useful very frequently.
A more useful example is provided by the process

Y =F?R?
which produces the permutation

(ufl, ubr, dfr)
(dlf, drb, urf)
(fl, br, fr)
(uf, df)

(ur, dr).

Then the permutation produced by Y2 is

(ufl, dfr, ubr)
(dif, urf, drb)
(fl, fr, br)

and the permutation produced by Y? is

(uf, df)
(ur, dr).
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The latter of these is particularly useful in moving edge
pieces without disturbing corners. Although this is not re-
quired in the restoration method described in Chapter 3, it
is a useful process for solving many problems quickly. Also,
in Step 3 of the restoration method, pieces which are in the
middle slice but in the wrong location can sometimes be
moved directly to their home position by JY*£ without
moving the piece to the Up face. Further, there are some
times when many corners happen to be in place when it is
useful in the restoration method.
Another example of a useful process is

P=URU'R™
whose permutation is

(ulb, ubr),
(urf, frd)_
(ub, ur, fr).

We will see more and more of this process as we proceed.
For now it will be sufficient to notice that

P:=(URU'R™)?
produces the permutation
(ulb, bru)
(urf, dfr)

which can often be useful in Step 5 of the restoration proce-
dure.

EXERCISES:

451 Find a process which produces a permutation consisting of
a single cycle of seven edge pieces and leaves all corners in their
home position.

45-2 What is the smallest power of each of the following pro-
cesses which will produce a permutation which leaves all edges in
their home positions?
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a) FR™

b) FU'DR:UD™

c) LFL™

d) UFRF'R-'U-

e) FR'F'RF'U'F
f) R-'FRF-'U

g) ReU?F?

6. COMMUTATIVITY AND COMMUTATORS

The process P= URU-'R™' discussed in the previous
section shows several interesting points. First, we have al-
ready observed that U'R™ is not equivalent to the inverse
of UR. The inverse of UR is R~'U-'. The sequence of apply-
ing the processes makes a difference. To clarify this differ-
ence for yourself, you should use your cube to derive and
compare the permutations produced by the two processes
UR and RU.

For the numerical operations of addition and multiplica-
tion, the order of the numbers does not make a difference.
Thus 3+5 equals 5+3 and 35 equals 5-3. Operations where
the order of the operands does not matter are called com-
mutative. Operations where the order does matter are
called non-commutative. Subtraction and division are non-
commutative. For example 3 —5 does not equal 5—3. The
combining of processes on the cube is non-commutative.
For instance, the above example shows that UR does not
equal RU. The order in which the processes are applied
makes a big difference.

Although URU-'R™" is not the identity, it is a lot less com-
plex than UR alone. The permutation of UR is

(ubr),
(urf, ufl, ulb, bdr, dfr)_
(uf, ul, ub, br, dr, fr, ur).
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The permutation of U-'R" is

(urf)_
(ubr, ulb, ufl, frd, drb),
(uf, fr, dr, br, ur, ub, ul).

Many of the pieces that are moved by UR are returned to
where they started by U-'R-". If a piece is moved by U to a
place that is not moved by R, then it will be moved back by
U~ to where it started. And, if that place where it started is
not moved by R™' — or equivalently, is not moved by R —
then the process URU-'R" ends up leaving the piece where
it started. Similarly, pieces that are moved by R to and from
places which are not moved by U are left where they started
by URU-'R-'. Only where there is overlap between the pro-
cesses are pieces affected. Thus the permutation produced
by URU-'R™ only affects pieces which move to or from lo-
cations common to both the Up and Right faces. Thus the
permutation is

(ulb, ubr),
(urf, frd)_
(ub, ur, fr)

where ubr, urf, and ur are the three locations common to
both faces.

Many useful processes are formed in a similar way, ex-
ploiting the fact that XYX™'Y~" is not the identity. Any pro-
cess having the form XYX-'Y~' is called a commutator.
Commutators appear useful so often in mathematics wher-
ever non-commutative operations occur that a shorthand
notation has been accepted for writing a commutator of any
two elements. Namely the commutator of two elements, X
and Y is written

[X,Y]=XYX'Y.

Thus the commutator URU-'R" is written [U,R] while the
commutator UR™'U-'R is written [U,R~']. Uses for these two
commutators on the cube in particular occur so frequently
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and are so powerful that they have been given nicknames,
the Z commutator and the Y commutator respectively.
These names come from the pattern of the locations moved
by each as shown in Figures 4-3 and 4-4. The names, Z
commutator and Y commutator are used regardless of
which two adjacent faces are used in the commutator. Thus
[R,FI=RFR-'F-' is a Z commutator and [R,F~']=RF-'R'F
is a Y commutator even though on the latter the cube must
be turned over to see the Y pattern.

THE Z COMMUTATOR
T
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Figure 4-4
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The Z and Y commutators are so powerful that you could
use either of them, applying each to different pairs of faces
and restore any scrambled cube without using any other
processes. That would be a long and cumbersome method
but it can be done. In the next section we will see how they
can be particularly useful in moving corners without affect-
ing edge locations.

The principle of commutators was used in Chapter 3 with
U and R replaced by more complex processes. Examples of
such processes of the form [ X,Y] =XYX~'Y~" occur in Step 5
and Step 6 of the restoration method. To move uf/to urf let

X=LDL""
and
Y=U.
Then the commutator
XYX-'Y-' =LD?L'ULD?L-'U~
produces the permutation
(ufl, urf, bdr).

The only location of the cube which is affected by both X
and Y is the corner location ufl. Therefore, only the pieces
moved to or from ufl by either X or Y are moved by the com-
mutator XYX™'Y™,

To untwist corner pieces in Step 6, let

X=L""D*LBD?*B"!
and
Y=U.
Then the commutator
XYX-'Y-'=L"'D2LBD?B-'UBD?B-'L-'D?LU""
produces the permutation
(ulb)_ (ufl),
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which is a counter-clockwise twist of ulb and a clockwise
twist of ufl. In this example the only location of the cube
which is affected by both X and Y is the corner location ul/b,
and X does not move it to another location, but only twists it
in place. Then by applying U followed by X~', we not only
restore the Down and middle layers but untwist, in place,
the piece moved from uf/ into ulb by U. Finally U™ moves
the piece that started in ufl back to /uf and the piece that
started in u/b back to /bu.

Sometimes the orientation and notation which we have
chosen, can obscure a process from being seen as a com-
mutator. For example, the process

W=U2LR-'F2L"'R
is not seen as a commutator in our orientation and notation.
But if we do not require that the center pieces of each face
stay fixed, then we can use the moves which reorient the
entire cube. This enables us to see the process as a com-
mutator. We can write

W=U2LR-'RU?R'RL™

=[U? LR'R]
which is clearly a commutator. In either form the process W
produces the permutation

(ub, df, uf)

which is useful for moving edges without disturbing cor-
ners.

Sometimes a commutator XYX™'Y~" is equal to the identity
I. However we have

XYX'Y-' =]
if and only if
XY=YX.

In this case we say X and Y commute. One condition that is
sufficient to assure that XY =YX is that the cycles of X and
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of Y are disjoint. There are other cases where X and Y also
commute. For instance they may have one or more cycles
which are identical and their other cycles may be disjoint. A
cycle of X may move pieces through the same locations as
acycle of Y and give every piece in the cycle a similar twist
or flip. Thus we can come up with many examples of pro-
cesses X and Y which do commute — equivalently for
which XYX'Y-' =1 — but in the vast majority of cases the
processes do not commute.

EXERCISES: (* indicates harder.)

46-1** Find a process Q other than the identity which commutes
with every other process on the cube, that is

Qax=XQ
for every process X on the cube.

46-2 LetS, denote the set of locations which are affected by the
process X and let S, denote the set of locations which are affected
by the process Y.

a) If S, and S, have no locations in common, what is the per-
mutation of XYX-1Y-'?

b) If S, and S, have two locations in common, what is the larg-
est number of locations which can be in S, where Z=XYX~'Y-'?

c) IfS,and S, have two locations in common, what are all the
numbers that could be the number of locations in S,?
4.6-3 Whatis the permutation produced by [F,R-'][R,U-'][U,F-']?

46-4 Show that
a) [FRI7"=[R/]
b) [FR7I*=R™[FRIR
¢c) [F'R']=R-'F'[FRIFR
4.6-5 What is the permutation produced by [(R2U2F?)3, U?]?

4.6-6 What is the inverse of [X,Y]?
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7. CONJUGATES: BUILDING NEW PROCESSES
FROM OLD

Whereas a commutator is useful in deriving new pro-
cesses, a conjugate is useful in modifying known pro-
cesses to apply to different pieces. A conjugate is a process
of the form

XYX-.,

This is called the conjugate of Y by X. Many of the pro-
cesses used in the restoration method were shown in
Chapter 3 to be examples of conjugates.
Consider the process
RUR™

which produces the permutation

(uf, ul, ub, fr)

(ufl, ulb, fur, frd).

Notice that the cycle structure of this permutation is the

same as the cycie structure of the process U alone, namely

a four-cycle of edges without a flip and a four cycle or cor-

ners without a twist. This is a characteristic of conjugates.
For another example let Y be the commutator

Y=L""D?LUL"'D?LU-" =[L~"D?L,U]
whose permutation is
(ulb, ufl, frd)
and let
X=R".
Then the conjugate
XYX"'=R-'L'D2LUL'D?LU"'R
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produces the permutation
(ulb, ufl, urf).

Again the cycle structure of the permutation of the conju-
gate XYX™ is the same as the cycle structure of the permu-
tation of the process Y. These conjugates of the basic cor-
ner 3-cycles are particularly useful in Step 5 to minimize the
twists needed in Step 6.

In general to use a conjugate of the form XYX-, the pro-
cess X places pieces in the positions to be moved by the
permutation of Y. Then Y moves the pieces. Then X' re-
turns the now permuted pieces to their new places. The ef-
fect is to produce a permutation with the same cycle struc-
ture as Y but acting on different locations.

Let us examine this more carefully. Suppose Y carries the
object at location ato b— that is, Y(a) =b — and suppose X
carried the object at location ¢ to a and the object at loca-
tion d to b. Consider the action of XYX™' on ¢=X""(a) as
shown in the following diagram:

X—1

XY
X(a)=c—a—b—d=X"(b).
So we have
XYX~'(c)=d
or expressed another way we have
XYX'(X™'(a)) =X""(Y(a)).

Thus we see that the permutation produced by XYX' has
the same behavior on the location X~'(a) as the behavior
produced by Y on the location a for all locations a on the
cube. In particular, the cycle representation has the same
form — this is called the cycle structure. The cycle structure
consists of the number of cycles and the length of those cy-
cles. For example, U consists of two 4-cycles. So any conju-
gate of U also consists of two 4-cycles.
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You probably have already developed new applications
of this principle of conjugates for yourself in untwisting cor-
ners in Step 6 of the restoration method. In particular, it is
useful when the two corners to be untwisted are not on the
same face. For example, to twist ulb clockwise to /bu and
twist dfr counter-clockwise to rdf, we choose

X=R
and choose Y to be the commutator
Y =BD2B-'L~'D2LU2L'D?LBD*B-'U2=[BD*B~'L~'D?L,U?].
Then XYX™' produces the permutation
(ulb), (dfr)_.

Another conjugate will exchange the places of any three
edge pieces without disturbing any other pieces of the
cube. To do this we choose

W=U2LR"'F2L"'R

which we saw in the preceeding section produces the per-
mutation

(ub, df, uf).
If, for example, we need a process to produce the permuta-
tion

(ub, ur, uf),
then all we need is to find a process, X, which leaves ub and

ufin place and moves urto df. What X does to the rest of the
cube doesn’t matter. So we choose

X=R2D""
which has the permutation

(ur, df, dl, db, dr)
(fr, br)
(urf, dfr, ubr, dif, dbl, drb).
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Then the conjugate
XWX~
produces the permutation
(ub, ur, uf).

Another example which can be useful in Step 5 of the res-
toration method is obtained by choosing

Y=(URU-'R™")?
which was seen earlier to produce the permutation

(ulb, bru)
(urf, dfr).
Then the conjugate
FYF-
produces the permutation
(ulb, bru)
(ufl, fur),

using fewer moves than the methods of Step 5 and produc-
ing different twists to the corners.

EXERCISES:

4.7-1 Find conjugate processes A, and B, for each of the permu-
tations below. Then find a list of processes C, such that each pro-
cess B, from Column B is shown to be the conjugate of A by the
process C, — that is, choose C; such that B;=CAC;"'

Column A Column B
1) (ufl, urf, bdr) 1) (dfr,dIf)_ (urf, ufi),
2) (ulb, ubr), (ufl, urf)_ (ul, fd, uf)

(ub, ur, fu) 2) (ubr, urf)(If, bl)
3) (ufl, urf)(uf, ur) 3) (ufl, dlif, fur)

4.7-2 Show that (XYX™)3=XY3X".
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4.7-3 The process Y= (F?R?)* produces the permutation
(uf, df) (ur, dr).

Find X such that the conjugate of Y by X produces the following
permutations:

a) (uf, df)(rf, rb)

b) (fu, fd)(fr, fl)

c) (fu, fr)(fb, fl)

d) (uf, rb)(ub, rb)

Find X such that the conjugate of Y =F?RL-'U?R-'L — with per-
mutation (fu, fd, bu) — by X produces the following permutations:

e) (fu, ru, bu)

f) (fu, ur, rf)

g) (fu, rb, dl)

Find X such that the conjugate of Y =[U,R]® — with permutation
(ulb, bru) (urf, dfr) — by X produces the following permutations:

h) (ulb, bru) (ufl, fur)
i) (ulb, urf) (ufl, bru)
i) (ulb, urf) (dIf, drb)

4.7-4 Find a process which produces the permutation
(If, bl, rb, fr)
(dif, dbl, drb, dfr).



CHAPTER §

IMPROVED RESTORATION
PROCESSES

We have already seen some examples of how commuta-
tors and conjugates are used in the restoration method of
Chapter 3. However, a more thorough look will give many
more examples showing how we can use permutation cy-
cles, repetitions of permutations, commutators, and conju-
gates to improve the method further.

1. THE DOWN-FACE EDGES

We can see that each Down-face edge piece can be re-
stored in at most four moves — see Section 1 of Chapter 3
— and therefore at most 16 moves are needed to complete
this step. The simplicity of restoring the first piece will re-
duce this by a few moves, but if it is to be substantially re-
duced, one must consider more than one piece at a time.
This requires using permutation cycles to place several
pieces in their home positions simultaneously.

94
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Since the effects of the permutations on corners is irrele-
vant at this step, there are more potentially useful pro-
cesses than those which can be listed here. It has been
shown that this step can be done in 12 moves but it has not
yet been determined what is the minimum number of moves
which will be sufficient to complete Step 1 from any starting
position.

A few simple conjugates and commutators are listed here
which may be useful in some cases and give you more
ideas. You should develop for yourself such a larger list as
you find useful.

F2B2U2B2F2  — (df, db)(ul, ur)(dIf, drb)(dfr, dbl)

DRD'R — (df, dr, br)(dlf, dfr),(drb, bru)_

F'RFR™ — (df, rf, rd)(dIf, bdr), (dfr, rfu)_

RBF-'R-'B-'F — (df, rd, rf)(db, ru, rb)(dIf, dbl, drb)_
(dfr, fur, ubr),

2. THREE DOWN-FACE CORNERS

We noticed in Chapter 3 that to move a corner piece into
its home position on the Down face, it was easier if the
piece was on the Up layer with its Down-face color on one
of the sides, not on the Up face. In this case there are six
different three-move conjugates which might be applied,
only two of which were used in Chapter 3. For example, to
move the DLF cubie from a Up-face corner to its home loca-
tion of dif, you can use any one of the following:

FU2F-'  —(rub, dif)(ulb, luf)(If, ub)(ul, ur)
L'U2L  —(bru, dif)(urf, flu)(If, ru)(uf, ub)
FUF—'  —(flu, dIf, bul, rub)(If, ul, ub, ur)
L-'U-'L — (luf, dif, rfu, bru)(If, fu, ru, bu)
FU'F~ —(bul, dif, flu, rub)(If, ur, ub, ul)
L'UL  —(rfu, dIf, luf, bru)(If, bu, ru, fu).
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Rotating the Up face in order to use a different one of these
can sometimes make restoring the next corner more simple.
For example,

U2FUF-' — (bru, dif, bul, fur), (ufl)_ (If, ul)(uf, ur, ub)

moves bru to difjust as does L—'UL. But the two processes
have very different effects on the other Up-face corners
which may be used to simplify the next corner move. If the
piece which started in the dIf location also needs to be
moved to the Up face, preparatory to being moved to a
Down-face home location, then you want to avoid ending
up with the Down-colored facelet on the top. Choosing
U2FUF~ moves the Left facelet of the dif location to the Up
face whereas choosing L~ U2L moves the Front facelet of
the dif location to the Up face. Thus the sequence of restor-
ing the corner pieces and the choice of processes can be
used to minimize the number of moves required for Step 2
even when each of the three corners is restored separately.

A more sophisticated approach is to restore several cor-
ners simultaneously. For example to move

ulb — dif

and
ufl — dbl

use FB'U?F~'B. This incidentally is a simple way of restor-
ing either of these corners when the desired Down-colored
facelet is on the Up face and the other corner has not al-
ready been restored. Variations similar to this for moving
two pieces at once from the Up layer are given by pro-
cesses which first move several Down-face edges to the
middle layer — none to the Up face — second, rotate the Up
face, and finally restore the Down-face edges. These pro-
cesses are all conjugates of the Up-face rotation. Thus the
permutation of corners for any of these processes is either
a 4-cycle — for conjugates of U or U™ — or is two 2-cycles
— for conjugates of U2 Therefore, no more than two Up-
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face corner cubies can be moved to two Down-face corner
cubicles in a single process of this type — since only four
corners are involved in the permutation of the process.
However, more than two corners can be restored simultane-
ously using such a conjugate by also moving a Down-face
corner to another Down-face corner. For example, the pro-
cess RL'D?2BUB'D?R~'L produces the permutation

(rdf, dlf, fur, dbi)(If, ur, rf, fu).

Can you find a process which produces a 4-cycle of the
Down-face corners without moving the Down-face edges?

3. MIDDLE-LAYER EDGES

Middle-layer edges can also benefit from processes that
can restore several edges at once. Of particular value are
processes which move edges within the middle layer. An
excellent example was given — in a different orientation —
in the earlier discussion of commutators, namely,

F:UD-'L2U'D
which produces the permutation
(If, rf, Ib).
The process (U2R?)* which produces the permutation

(uf, ub)
(rf, rb)

may also be useful, as well as the other orientations of this
process and their conjugates, such as F(U?R?)*F-'. Some
other potentially useful processes are given in Appendix A,
but the simplicity of the middle layer restoration makes it
difficult to substantially reduce the number of moves re-
quired in general.

Some forethought during Step 3 may be useful in reduc-
ing the requirements for Step 4. In particular when edge
pieces are removed from the middle layer, it may be possi-
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ble to place them in their ultimate home positions in the Up
face, or at least with their Up-colored facelet on the Up face.

4. FINAL UP-FACE EDGES

To reduce the number of moves required in this step you
again should look to processes which will restore several
cubies simultaneously to their home positions. A potentially
useful collection of processes is obtained from conjugates
of the Z and Y commutators of two faces discussed in Sec-
tion 6 of Chapter 4. These commutators all permute three
edge pieces cyclically and exchange two pairs of corners.
Notice that the basic moves used in Step 4 can be seen to
include these processes by letting U and U~ precede the
conjugates of U~" and U respectively. However, conjugates
of these commutators are not included. For example, con-
sider the process

FRUR-'U-F~!

which is the conjugate of RUR-'U~" by the rotation F and
produces the permutation

(uf, ru, bu)
(urf, ufl),
(ubr, ulb)_.

To see how many moves that process or others of that type
might save you, take a restored cube and apply the inverse
of the process above, namely,

FURU-'R-F-.

Now, count the number of moves it takes you to put the
edges back in place using the techniques you have been
using for Step 4. Sure, it messes up the corners. But, if you
had been restoring a scrambled cube, for all you know,
either process might have fixed them.

If the completion of Step 4 requires a cyclic rotation of
three edges, these conjugates of Z and Y commutators can
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frequently be used. However, a cyclic rotation of four edges
without affecting other edges is difficult. As we saw in Sec-
tion 4 of Chapter 3, that permutation always necessitates at
some point making a quarter turn of one center piece rela-
tive to the home locations of the edges on that face. We will
discuss why this is so in Chapter 7. But, for now it is suffi-
cient to observe that when choosing the home location for
the first Up-face edge to be restored in Step 4, you should
avoid creating the need for a cyclic rotation of all four of the
remaining unrestored edges. A cyclic rotation of three
edges or the exchange of two pairs of edges will be much
simpler — that is, require fewer moves.

5. RESTORING CORNERS UNTWISTED

It is in Step 5 that the greatest savings can be made. In
particular, by choosing the processes carefully in Step 5,
you can usually eliminate the need for any of the untwisting
of Step 6 — that is, eliminate Step 6 altogether. First, notice
that the processes described in Step 5 for moving corners,
namely

F-'D?FUF-'D?FU-
and
LD2L-'ULDL' U~

where i=1,2,or —1, move the selected corner cubie to the
target corner with the same facelet showing on the Up face.
Therefore choosing the selected corner to be a piece which
already has the Up-colored facelet showing on the Up face
will eliminate the need to reorient that piece after placing it
in its target corner. If none of the Up-face corners to be
moved have the Up-face color showing on the Up face, then
perhaps one of them has a side facelet color matching the
color of that side center piece. In that case, reorienting the
cube to put that side on top will allow you to use the same
processes for moving the selected corner to the target cor-
ner.
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Either of the two processes above will move the selected
corner to the target corner maintaining the Up-facelet color.
But, by your choice between the two processes, you will de-
termine the orientation of the working corner when it moves
to the selected corner, and the orientation of the target cor-
ner when it moves to the working corner. In particular, the
process

F-'D*FUF'D?*FU"
produces the permutation
(ufl, urf, rbd)
and the process
LD2L-'ULD*L'U
produces the permutation
(ufl, urf, bdr).

Thus if the home location of the target corner is the working
corner or the home location of the working corner is the se-
lected corner, then carefully choosing which process to use
can often restore one of those with the proper orientation as
well.

Two applications of these processes can usually be used
to restore with the proper orientation at least two corners of
the five involved in Step 5 while leaving the other three re-
quiring a 3-cycle corner permutation. It is easier to restore
those last three corners if they need a 3-cycle permutation
than it is to twist them within their home locations. There-
fore, the first two processes should be chosen, not only to
restore two corners, but also to move corners which are al-
ready in their home locations but not in their home posi-
tions. Try to avoid leaving corners twisted in their home lo-
cations. You can do this while restoring two corners unless
Step 5 started with all five corners in their home location but
all incorrectly oriented.
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Can you figure out how many different ways the five cor-
ners being restored in Step 5 can all be in their home loca-
tions but twisted with the other three Down-face corners all
being in their home positions? This is not easy but you may
enjoy guessing. To prove your answer you would need the
material of Chapter 7.

6. CONJUGATES HELP ORIENT THE FINAL
CORNERS

To generate a 3-cycle permutation which will move the
last three corners all to their home positions and not just to
their home locations, we can often use a simple conjugate
of the commutator process we’ve been using. For example,
to produce the permutation

(ufl, fur, rub)
use the process
RF-'D?FU?F'D?FU?R"".
Or, for a less obvious example, to produce the permutation
(ufl, urf, ulb)
use the process
L2F’LBL'F2LB-'L
which is seen to be such a conjugate when written
L-'(L'FALBL'F2LB")L.

The process inside the parenthesis is one of the same pro-
cesses we have been using with the entire cube reoriented
by L Y to place the bld corner in the ufl position.

Earlier in this chapter while discussing Step 2 we listed
six processes for moving a corner from the Down layer to
the Up layer. So far we have been using the commutators of
only two of these six processes, namely [U', LD?L™"] and
[U}, F'D?F)] where i=1, 2, —1. The other four can also be
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used to advantage in some cases. For instance to obtain the
permutation

(ulb, ufl, bid)
use the process
UF'DFU'F'D'F
or to obtain the permutation
(ulb, rub, ufl)

reorient the entire cube using £.Lso that the ulb corneris in
the Ibu position and use the same process.

The Z and Y commutators can also be very useful for re-
storing those corners. Many people familiar with these com-
mutators use them exclusively for Steps 5 and 6. Let us con-
sider several examples.

In the last chapter we saw one example of such a pro-
cess. The cube of the Z commutator

(URU'R")*=[U,R]?
produces the permutation

(ulb, bru)
(urf, dfr).

Simple conjugates of this process can be very useful in ex-
changing pairs of corners. For example, the process

F(URU'R™")*F' =F[U,R]*F
produces the permutation

(ulb, bru)
(urf, flu)

in 14 moves. Another more sophisticated application of the
Z commutator is the process

(UBU'B™")F(UBU'B~")F(UBU'B™)
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which produces the permutation

(urf, ufl)_
(ubr, drb)
(ulb),.

We will see more examples using these Z and Y commuta-
tors in the next section.

Another process for interchanging two pairs of corners is
a variation of the process used to produce 3-cycles of the
corners. Consider the process

FL-'D?LF-'UFL-'D:LF-'U~"
which produces the permutation ‘

(ulb, fur)
(ufl, rub).

This is the commutator
[FL'D2LF,U]

the first part of which is the conjugate of D? by FL™'. Many
useful corner pair exchanges can be obtained from pro-
cesses of this type.

7. UNTWISTING CORNERS

Although Step 6 can often be eliminated by careful per-
formance of Step 5, it is still useful to be able to do twists ef-
ficiently. We observed in the last chapter how a conjugate
can be used to extend the process for twisting and untwist-
ing two corners on a single face, so that we can untwist two
corners which have no face in common. Namely, if a pro-
cess, X, has the permutation

(ulb),
(urf)_

then the process
RXR™
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has the permutation

(ulb),
(frd)._.

To produce three corner twists in the same direction, the
Z or Y commutators are particularly useful because their
only edge permutation is a 3-cycle. To make use of this, we
observe that

(IRDP;=1I.
The next important observation is that [R,D]? affects only
the ubr location on the Up face, giving it a clockwise twist.
If we rotate the Up face between three applications of
[R,D]?, we can twist three Up-face corners clockwise while

producing an identity on the rest of the cube. For example,
the process

([R,DJ?VU)*U =(RDR'D~")?U(RDR'D~")2U(RDR-'D"")2U?
produces the permutation
(ubr), (urf), (ufi),.

The 3-cycle permutations also can be used to twist three
corners in the same direction. For example, the process

BD?B-'UBD?*B~'U'R~'B*RF’R~'B?*RF?=
[BD?B™, U] [R™'B?R, F?]
produces the permutation
(ulb)_ (ufl)_ (frd)_.

Before ending this chapter, we want to take care to point
out that not all of the most efficient processes have been
constructed by building with simple conjugates and com-
mutators. For example, an English mathematician named
Morwen Thistlethwaite uses the process

LBL-1B-'U?F-1L2FL'F'L*FL'Ue
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to produce the permutation
(ulb)_ (ubr)_ (urf).

and Morwen Thistlethwaite’s computer has generated the
process

B-'U2B2UB-'U-'B'U’FRBR™'F~!
to produce the permutation
(ub), (ur),.

These are the shortest known processes for these permuta-
tions. Still more processes are listed in Appendix A.



CHAPTER 6

THE CUBE GROUP
AND SUBGROUPS

We have seen that each process on the cube generates a
permutation of the pieces of the cube. Further, we have
seen that if one process on the cube is followed by another
process, then the two combined form a new process which
generates another permutation of the cube. Although this
may seem trivial to you, to experienced mathematicians it is
significant. Being able to combine two objects to form an-
other object of the same set is the first requirement for a
group.

The concept of a group appears in different branches of
mathematics and has many applications in science and art.
In particular, group theory is the mathematical foundation
of the study of symmetry which is important in geometry, art,
physics, chemistry, and biology. Group theory includes the
study of permutations which are basic in coding theory,
cryptography, English bell-ringing, magicians’ card-shuf-
fling tricks, etc. The rigid motions of space form a group
and the study of such groups is basic in theoretical physics.

106
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Group theory also turns out to be a way to study the solv-
ability of polynomial equations and the structure of geomet-
ric and topological objects. Consequently, group theory
has become one of the basic subjects of mathematics. We
shall see that the processes and permutations on the cube
form groups. These groups are useful concrete examples of
this important theory, especially since the structure of these
groups provides a concrete embodiment of many concepts
in group theory that students find difficult to grasp without
physical examples. The cube can literally be grasped!

1. THEPERMUTATIONS OF THE CUBE FORM A
GROUP

What is a group? To start with, a group consists of two
things, a set of objects — denoted by S — and an operation
— denoted by * — which combines two of these objects to-
gether to form another object in S. Formally we should al-
ways refer to a group (S,*), but usually the operation is clear
in context. In those cases, we will refer simply to the group
S.

For examples of a group, the set of objects S could be
numbers and the operation for combining them could be
addition or multiplication. In the case of the cube, the set of
objects is the permutations on the cube and the operation
for combining them is “followed by”. Thus, if X and Y are
permutations on the cube, then X and Y are combined to
form a single permutation

X followed by Y
which is written simply
XY.

In order for a set of objects S and an operation * to form a
group, they must meet four criteria.

1. Closure Law: Whenever two objects X and Y are in the
set S then the result of combining X and Y by the operation
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» must be another object in the set S — that is X+Y is in S.
When X and Y are permutations on the cube then “X fol-
lowed by Y” is another permutation on the cube. Thus this
criterion is met.

2. Associative Law: Whenever three objects X, Y, and Z
are combined in a fixed order then (X+Y)*Z produces the
same result as X+(Y+*2).

Technically, the parentheses are needed since the opera-
tion only combines two objects, but the Associative Law
says that in a group, parentheses really don’t matter. If they
do matter, then the operation cannot be used to form a
group. Notice that combining processes or permutations on
the cube by using the operation “followed by” meets this
criterion — but you must be careful not to change the order
of the processes.

3. Identity Law: There is a unique object in the set S
which is called the identity of the group and is denoted by I.
It has the property that for every X in S

X=XI=X.

So, combining the identity with any object X in the set pro-
duces the object X again. The permutation which does not
move any pieces is, as we have seen, the identity for the set
of permutations on the cube. The process of not turning any
face, that is of doing nothing is the identity for the set of
processes on the cube.

4. Inverse Law: For each object X in the set S there is a
unique object in S called the inverse of X, which is denoted
by X~ and has the property that

X* X1 =X~ +X =L.

That is, either combining X with X~ or X~ with X produces
the identity object. We saw in Chapter 4 that each process
on the cube has an inverse process and its permutation is
the inverse of the permutation of the original process.

A set of objects and an operation for combining pairs of
objects in the set form a group if the above four criteria are
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met. Thus the processes and the permutations on the cube
form groups. We actually have two groups. In the group of
processes, we consider F, FF=F?, FFF=F?, F%, F5, ... as
distinct processes — which they are — and so, using turns
of all six faces, we have an infinite group which group the-
orists call the free group on six generators. However, we
are really interested in the permutations produced by the
processes. Then we have F*=1, F*=F, etc. and we have a
finite group of permutations which we call the Cube Group.

EXERCISES:

6.1-1 Which of the four criteria for a group are satisfied by the set
S of positive real numbers, combined by each of the following op-
erations:

addition — that is, X*Y is X+Y?

multiplication — that is, X*Y is X-Y?

division — that is, X*Y is X+ Y?

subtraction — that is, X*Y is X—=Y?

maximum — that is, X*Y is the larger of X and Y?

average — that is, X*Y is (X+Y)/2?

last — that is, X*Y is Y?

6.1-2 Which of the four criteria for a group are satisfied by the set
of four permutations produced by rotating a single face of the
cube?

6.1-3 Which of the following sets of permutations of the cube
form a group when combined by the operation “followed by"?
a) The set of all permutations which only move cubicles which
have a facelet on the Up face.
b) The set of all permutations which leave fixed all cubicles
which have a facelet on the Up face.
c) The set of all permutations which move some cubicle which
has a facelet on the Up face.
d) The set of permutations obtained by using only F and R
turns.

2. GENERATORS OF A GROUP
Let (S,*) be a group. Then, given any subset T of S, we can

@~0poop
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form a new subset (T) consisting of all elements of S which
are produced by a finite combination of elements in T and
of their inverses. For example, if X, Y, Z are in T then
X+*Y-1+Z='+Y is in (T). The set (T) with the operation * is
called the group generated by T. That (T) is a group is the
subject of Exercise 6.2-1. If T consists of a single element X
then

(XY=F -+ X2, X0, X, X2, - ),

If T is a finite set {X,Y,--}we also write (T)=(X, Y, ).
The case in which the group S is finite, is of particular in-
terest to students of the cube. Finite groups, of which the
permutations on the cube are an example, have some
unique properties. Recall from Chapter 4 that if X was the
permutation of a process on the cube then, for some posi-
tive integer n, we would have the permutation X"= I, where
I is the identity permutation. That value of n is called the
order of X. The same argument extends to an element X
from any finite group S. The set {X, X2, X3,:++, X", :--}can
only have a finite number of elements since it is a subset of
the finite group, S. Choose n to be the smallest number
such that X"*'=X* with0 < k < n—thatis, X"*! is the first
element in the sequence which equals an earlier element.
Then, k must equal 1, because if k > 1 we would have

X =X"+1 X1 =XKke X1 =Xk

and for k > 1 X*-* would be in the set {X, X?,:-- X",---}. So
X" would be an element in our sequence which equals an
earlier one. This is contrary to our assumption that X"*' was
the first such element. Hence the assumption of k > 1 is
false, that is k must be 1. Notice that the identity and the in-
verse of each element is in (X) since

Xn =Xn+1 * x—1 =X * X—1 =I
and
Xt =X+ X-1=] « X~ =X,
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From this we see that
(X)={X, X2, -+, X"}

is the group generated by X. Any finite group that can be
generated by a single element is called a cyclic group. If n
is the number defined above, we say that (X) is a cyclic
group of order n. Note that X™=I if and only if n divides m
evenly. If X is an element of a finite group S then (X) is a
cyclic group, and the element X~ generates the same
cyclic group. However, it is not necessarily true for every k
that Xk will generate the same cyclic group that X does —
see Exercise 6.2-3.

One cyclic group that we encounter immediately on the
cube is the set of rotations of a single face. The processes
U,U?,U*=U"", and U*=I, form (U), the cyclic group gener-
ated by U. An even smaller cyclic group is (U?). It consists
only of U? which is its own inverse and U*=1

Another interesting cyclic group which is only slightly
more complex is the group, (U?R?). Notice that

(U2R2)e =1

is the smallest power of U2R? which produces the identity.
Therefore there are six elements in (U?R?), namely U?R?,
(Usz)z’ (Usz)a, (UZRZ)A’ (U2R2)5 ___(qu2)—1 , and (Usz)s =1

The number of elements in a group S is called the order
of the group and is denoted |S|. The order of the group
generated by any element is called the order of that ele-
ment. Notice that this is consistent with the earlier definition
given in Chapter 4 of the order of the permutation of a pro-
cess on the cube. Determining the order of the entire cube
group is an interesting and non-trivial problem. It is the sub-
ject of a later section in Chapter 7. Even to determine the
order of a small group is not always easy — see Exercise
6.3-1.

EXERCISES: (* indicates harder.)
6.2-1 Show that if T is a non-empty subset of a group S then the
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set (T), of all finite combinations of elements of T and of their in-
verses, is itself a group.

6.2-2 What conditions must be met by the order of a cyclic group
if it contains an element of order 2?

6.2-3 In a cyclic group of order 12,

how many elements have order 1?
how many elements have order 2?
how many elements have order 3?
how many elements have order 4?
how many elements have order 5?
how many elements have order 6?
g. how many elements have order 12?

6.2-4 a. Find a process of order 12 in the cube group.
b. In the cyclic group generated by this process find

i) aprocess or order 3

ii) a process of order 4

iii) a process of order 6

6.2-5 Show that every cyclic group, G, is commutative — that is,
ifx,yarein Gthen x *y=y » x.

6.2-6* Under what conditions does the cyclic group (X*) have
order n for every integer k<n where n is the order of the cyclic
group (X)?

~0ooOTp

3. THE TWO-SQUARES GROUP

Our understanding of the entire cube group will be sub-
stantially increased by looking at some smaller subgroups
generated by a few simple processes. The simplest sub-
groups are the cyclic subgroups discussed in the previous
section. Of the non-cyclic subgroups, the group generated
by the 180° rotations of two adjacent faces is one of the
most simple and interesting. Thus, (U?, R?)is a Two-squares
group generated by U? and R2. Can you determine its struc-
ture? It happens to have the same structure as the group of
rotations and reflections of a regular hexagon.
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EXERCISES:

6.3-1 How many permutations are in the Two-squares group,
(U, R?)?

6.3-2 What is the largest order of any permutation in (U2, R?)?
How many permutations in (U?, R?) are there for each order up to
and including the largest order?

6.3-3 Show that (U?, R?) is not a cyclic group.

6.34 Find two processes, X and Y, in (U?, R?) which are not the
identity and whose permutations are disjoint — that is, such that
no piece is moved by both permutations. Show that the group
(X,Y) is a cyclic group.

4. THE SLICE GROUP

The Slice group is generated by movements of the middle
layers, each lying between any two opposite faces. This
group and its name were described to the authors by John
Conway of Cambridge, England. In our standard notation,
this is denoted by (RL™", FB-', UD™"), however in working
with this group it is convenient to introduce some new and
more compact notations. We will use the notation

Rs=RL""
Fo =FB~'
U,=UD""
Lo =LR~' =R,
By =BF-' =F,"
D, =DU"'=U,"".

This is not only more abbreviated but will highlight the use
of slice moves in other processes while maintaining the
usual centers-fixed coordinates.

It is also enlightening while studying the Slice group to
use another coordinate system, the “fixed-corner” coordi-
nate system. This system uses a fixed reference based on a
particular corner piece, say the URF piece. If the ordinary
move F is applied as in Figure 6-1 this orientation system
views this move as if the Back layer and the middle layer be-
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tween Front and Back were turned the other way as in Fig-
ure 6-2 leaving the URF cubie fixed. Thus to get this orien-
tation system from our “centers-fixed” system, every time a
move F, U, or R occurs, it is replaced by FF', U/, or R
respectively. The moves L, D, and B do not affect the urf
corner location. Thus they are the same in both the URF
corner-fixed orientation and the centers-fixed orientation.
In the corner-fixed orientation system, we use the notation

S, =RL-"@"
S, =FB-'F
S,=UD" i
S, =R-'LR
S, =F'BJ
S, =U"'DY.

Thus, S, gives a quarter turn of the middle slice between the
Right and Left faces counter-clockwise as viewed through
the right face. Similarly, S, is a quarter turn of the slice be-
tween the Up and Down faces counter-clockwise as viewed
from above and S is a quarter turn of the slice between the
Front and Back faces counter-clockwise as viewed through
the front. With this notation, the Slice group is

(5w Sk, Sy)-
MOVE F, CENTERS-FIXED MOVE F, URF CORNER-FIXED

B B B B B B

L/uv/ U /U U/R/R /R
L/u/ v /u/R U/R/R /R /|D
L/ L/ LJ/|R B u/u/u /1P e
ul/Ir R/ D
Dl F| F | F R g LIF|F |F ol As
D

D|F| F |F u RR L|F| F |F R D
L

olr| F | |YB Lle|Fr | |P

R R D D D

Figure 6-1 Figure 6-2
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Using this notation you will observe that the corner pieces
are never moved. Thus the corner pieces can become the
fixed reference by which the orientation of the cube can be
described. This fixed reference will greatly assist you in un-
derstanding the structure of the Slice group.

This group is not too complex and contains some elegant
patterns. A person, by sticking only to slice moves, can play
with the cube and learn a lot about its movements without
getting too lost, even without knowing how to restore the
cube.

If you study the permutations which you can achieve in
the Slice group, you will see that each face will always show
a pattern of facelet colors of the type indicated in Figure
6-3, where a, b, ¢, and d designate four facelet colors which
may or may not be different. Furthermore, the face opposite
to this will have each color replaced by its opposite. If we
use the notation X’ to denote the color of the face opposite
the X colored face on a restored cube, then in the slice
group the face opposite the pattern of Figure 6-3 will have
a’,b% ¢/, and d”in place of a, b, ¢, and d respectively.

SLICE GROUP FACELET PATTERNS

a c a

b | d b

a c a
Figure 6-3

EXERCISES:

6.4-1 Show how moves in the Slice group can be used to obtain
patterns on all six faces with a=b’=c’=d which is called X or the
checkerboard pattern.



116 The Cube Group and Subgroups

6.4-2 Show how to obtain the pattern with a=b=c #d on all six
faces — this pattern is referred to as spot or sometimes box or
even measles.
6.4-3 Show how to obtain the spot pattern witha=b=c=d’on
four faces with the solid pattern with a=b=c=d on the other two
faces.
6.4-4 Show how to obtain the + pattern with a=b’=c’=d"on
four faces and the checkerboard with a=b’=c’=d on the other
two faces.
6.4-5 The Slice-squared group is a subgroup of the slice group
generated by the squares of the slice moves — that is, (S3, S3, S2).
It has a particularly simple structure.

a. Find the permutations of the commutators of the Slice-

squared group.

b. How many elements are in the Slice-squared group?

¢. How many elements are in {S%, S2)?

5. THE TWO-GENERATOR GROUP

This is an easy group to describe, but it turns out to have
a very tricky structure. It is the group generated by the rota-
tions of two adjacent faces, for example, (U, R). Even after
you have discovered how to restore a scrambled cube
using turns of all six faces, it is not easy to find a process
which is in (U, R) to restore a cube which has been scram-
bled by only moving the U and R faces. A little experiment-
ing will quickly show you that the edge pieces cannot be
flipped in (U, R). Other processes which we have already
discussed, both conjugates and commutators, are helpful
in moving edges and corners to their home locations. Twist-
ing corners with only rotations of the U and R faces may re-
quire you to develop a new process.

EXERCISES: (* indicates harder.)

6.5-1 Find a process in (U, R) which twists two corners and
leaves all other pieces unchanged in their home position.
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6.5-2* Describe a method, using only processes in (U, R), for re-
storing a cube which has been scrambled by only rotating the U
and R faces.

6. OTHER SUBGROUPS OF THE CUBE

Consider any subset H of the cube group. We say H is
closed if for all X and Y in H we have XY in H — that is, H
satisfies the Closure Law given in Section 1 of this chapter.
If H is closed, it is not hard to show that all the other group
criteria hold for H — see the solution to Exercise 6.6-1. Such
a set H is called a subgroup of the cube group.

There are many subgroups other than those which we
have been discussing in the last three sections. Some of
them have been studied in detail by various researchers
studying the cube. Here are a few of them.

The Anti-Slice Group. The Anti-slice group, (RL,FB,UD), is
generated by rotating opposite faces in the same direction
— that is, either both clockwise or both counter-clockwise.
This rotates them as shown in Figure 6-4 in the manner op-
posite to that of the Slice group moves. In studying the Anti-
slice group, it is again convenient to introduce some spe-
cial notation. We denote the anti-slice moves by
R,=RL =L,
F,=FB =B,
U,=UD =D,
or to work in the fixed corner coordinates we use
A;=RLR' =A_
A.=FBF' =A,
A,=UDU" =A,.
Figure 6-5 shows how a restored cube is moved by A;. Like
the Slice group, the Anti-slice group also contains several
“pretty patterns”. Notice also that a slice-squared and an
anti-slice-squared are the same. So, the Slice-squared
group is a subgroup of the Anti-slice group as well as the
Slice group.
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THE ANTI-SLICE THE ANTI-SLICE
MOVE — RL MOVE — RLR"
D B U F D B
L/B. /U 4F L/5/B /U
L/B u/FfF /R L/op/8B /U /IR
B¥ U /F /]|R Dp/B /U /IR
R |/r|Y L/ T[®
LUl F|D R L|B| U |F RlAg
R|/IR| Y R|R
L{u|F|D R Lf{B|U |F
D
L{ulr |0 [® {B L|B|U |F )
F D B U F D
Figure 6-4 Figure 6-5

Multi-Generator Groups. Extending the Two-Generator
group to three generators we get either

(U,R, F)
or
(U,R, D)

which have quite different structures. For instance, edge
pieces can be flipped in (U, R, F) but not in (U, R, D). The
subgroups generated by the squares of the three genera-
tors

(Uz’ Rz’ FZ)
and
(U2, R?, D?)

are also different and interesting.
There are also two different Four-generator groups,

(U,R, F, D)
and
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(U,R, D, L).

The first never moves the FL edge piece. The second can
never flip the edges. Thus neither is equal to the whole
group of the cube.

The Five-generator group (U, R, F, D, L) on the other
hand, turns out to be equal to the whole group of the cube.
To show this, you must find a process using only rotations
of the U, R, F, D, and L faces to form a process which is
equivalent to a quarter turn of the B face. We leave this as
Exercise 6.6-4.

Some other groups of interest are
(U"’, Rz’ Fz, Dz)
(Uz, Rz, Dz, Lz)
(Uz, Rz, D2’ Lz’ Fz’ Bz)
(U, R*)
and
(U, D, Re, L2, F?, B?).

The Magic Domino. The last of the subgroups listed above
(U, D, R?, L2, F?, B?) is particularly interesting because of its
similarity to the group of the Magic Domino. The Magic
Domino is a 3 x 3 x 2 version of the cube whose movements
are like a cube with the middle layer removed — see Figure
6-6. In the group (U, D, R?, L2, F2, B?), the edge pieces in the
middle layer between the Up face and the Down face never
leave that layer. Thus, any algorithm, using only processes
in this group for restoring a cube which was scrambled by
processes in this group, is an algorithm for restoring a
scrambled Magic Domino. If you want to make your cube
appear similar to a Magic Domino you can remove or cover
the colors on the R, L, F and B faces of the cube and cover
the Up face and Down face of the cube with the patterns
shown in Figure 6-6.

Another Type Of Subgroup. We have seen one standard
method of obtaining a subgroup by considering the sub-
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MAGIC DOMINO

a) Right-side-up b) Upside-down
Figure 6-6

group generated by a set of elements in a group. Another
standard method to obtain a subgroup is to consider the
set, H, of elements in a group which preserve some prop-
erty. If X and Y both preserve some property, so does XY,
thus H is a subgroup. For example, the set of processes
which leave the DBR corner in the dbr location is a sub-
group. The set of processes which leave all the edges cor-
rect is a subgroup. The set of processes which affects only
pieces in the Up face is a subgroup, called the U group.
Also, the set of processes, which move Up-face pieces only
to Up-face locations and arbitrarily permute the other
pieces, is a subgroup.

EXERCISES: (* indicates harder)

6.6-1 Given a finite group, (G, *), show that if H is a non-empty
subset of G in which the Closure Law is satisfied then H is a sub-
group of G.

6.6-2 Find a process in the Anti-slice group which produces
a. The “diagonal” pattern shown in Figure 6-7a on four faces
and two solid faces.
b. The “Z" pattern shown in Figure 6-7b on two faces, the mir-
ror-image of the “Z" pattern, that is with the edge colors inter-
changed on two faces, and two solid faces.
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c. The “2L" pattern shown in Figure 6-7¢ on six faces.

d. The‘+" pattern shown in Figure 6-7d on four faces and two
solid faces.

e. The “diagonal” pattern shown in Figure 6-7a on four faces
and the “+" pattern shown in Figure 6-7d on two faces.

ANTI-SLICE GROUP FACELET PATTERN

a a b a a b
a b a b a b
b a a b a a
a) Diagonal Pattern b) Z Pattern

a b b a b a
a c b b b b
a a b a b a

c) 2-L Pattern d) + Pattern

Figure 6-7

6.6-3 Find arestoration algorithm for (U, R, F) — that is, an algo-
rithm using only processes in (U, R, F) for restoring a cube scram-
bled by an unknown process in (U, R, F).
6.6-4* Find a processin (U,R,F,D, L) which produces the permu-
tation

(ub, Ib, db, rb)

(ulb, Idb, drb, rub),
which is equivalent to the process B.
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6.6-5 There are many “‘pretty patterns” that are not in either the
Slice group or the Anti-slice group. For example, find a process
which produces the “+" pattern on all six faces.

6.6-6 Find some more “pretty patterns”.

6.6-7 Which of the following are subgroups of the cube group?
a) The set of permutations which move only the U corners.
b) The set of permutations which move some U corners.

c) The set of permutations which move DBR to brd.

d) The set of permutations which leave DBR in its home loca-
tion.

e) The set of permutations which leave all corners in their
home positions and all edges in their home location. (This could
be called the flipping group!)

7. THESUPERGROUP AND OTHER LARGER
GROUPS

One of the first observations made in Chapter 2 about the
movements of the cube was that the center pieces of each
of the faces have a fixed location relative to one another.
Each quarter turn of a face only rotates the center piece of
that face in its fixed location. Since that center piece is a
solid color, the rotated piece appears indistinguishable
from the non-rotated piece. But, what if each center piece
were marked so that rotations of the piece were apparent?
For example, suppose pictures were printed on each face.
Could all the edge and corner pieces be restored to their
home positions without restoring the center pieces to their
starting orientation? The answer is YES! For example we
saw in the solution to Exercise 4.4-1 that

(UR)'* =1
and
(UR")s*=I.

In the first case, the center of both the Up face and the Right
face is rotated a quarter turn clockwise. In the second case,
the center of the Up face is rotated a quarter turn counter-
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clockwise and the center of the Right face is rotated a quar-
ter turn clockwise. However, it is not possible for a process
to produce an identity on all the edge and corner pieces
while producing a single quarter turn of only one center
piece. One center piece can be rotated halfway around
without disturbing any other pieces. However, if the edge
and corner pieces are left in their starting positions, then
the sum of the number of center piece quarter turns must be
an even number. The reason for this will be shown in Chap-
ter 7.

By redefining the equivalence of two processes to mean
that they not only produce the same permutation on the
edge and corner pieces but also produce the same rota-
tions on the centers, we get a much larger set of non-equiv-
alent processes.

These similarly form a group with the same combining
operation of “followed by”. This is called the Supergroup of
the cube. The set of all processes which leave the center
pieces unrotated forms a subgroup of the Supergroup. This
subgroup of the Supergroup permutations has the same
structure as the Cube Group — that is, the group of per-
mutations on the cube with the original definition of
equality.

The Supergroup is in turn a subgroup of the group of all
permutations that could be produced by taking the cube
apart and putting it back together with the edge and corner
pieces permuted and center pieces rotated. A still larger
group can be obtained by identifying all 54 facelets unique-
ly — for example, by numbering them. Then remove them
and rearrange them, noting on each piece not only its new
location but also its orientation. | am sure you can think of
still larger groups, but | will not even pose that as an exer-
cise.
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EXERCISES:

6.7-1 Find a simple process — fewer than 20 moves — which
leaves all the edge and corner pieces in place and
a. only rotates the Up-face center piece halfway around.
b. only rotates the Up-face center piece a quarter turn clock-
wise and the Right-face center piece a quarter turn counter-
clockwise.
c. only rotates both the Up-face center piece and the Right-
face center piece a quarter turn clockwise.

6.7-2 How many processes which are not equivalent in the Su-
pergroup will produce the same permutation of edge and corner
pieces — that is, would be equivalent in the Cube Group?



CHAPTER 7

PERMUTATION STRUCTURES
AND THE ORDER OF GROUPS

In the last several chapters, you have probably noticed
that we have deferred discussion of several points to Chap-
ter 7. As we were writing those chapters, we kept thinking
of questions we wanted to discuss or to pose to you, but
which required a concept to be developed here. The con-
cept required is the notion of even and odd permutations.
Though this is a basic notion and one which seems simple,
the concepts which follow from it are certainly less obvious
than the notions we have previously introduced. Conse-
quently, we have deferred it to this chapter.

1. PERMUTATIONS ARE ODD OR EVEN

To determine whether a permutation is odd or even, it is
decomposed into a succession of pair exchanges — also
called swaps, transpositions, interchanges, or, in the no-
menclature of Chapter 4, 2-cycles. For example, if a permu-
tation P consisted of the 5-cycle

(ur, fl, fr, fu, fd)
125
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then P could be written as four successive pair exchanges,
P, followed by P, followed by P, followed by P, where

P, P, Py P,
ur —fl —fl —f —ifl
fl - —ur —fr —=f —fr
frr—fr —ur —fu —fu
fu —fu —fu —ur —1fd
fd —fd —fd —fd —ur.

First, the pieces in ur and fl are exchanged. Then the new
piece in ur — originally in f/ — is exchanged with the piece
in fr. Next the new piece in ur — originally in fr — is ex-
changed with the piece in fu. Finally, the new piece in ur —
originally in fu — is exchanged with the piece in fd. Thus,
the permutation P is decomposed into pair exchanges,

P =P,P,P,P,=(ur, fl)(ur, fr)(ur, fu)(ur, fd).

Notice that this decomposition is not unique. There are
many different ways that P could be decomposed into suc-
cessive pair exchanges. But, for this particular permutation
P, no matter how you decompose P into pair exchanges, the
number of pair exchanges needed will always be an even
number. More generally, if a permutation consisting of a
single cycle is decomposed into successive pair ex-
changes then the number of pair exchanges needed will al-
ways be odd when the length of the cycle is even and will
always be even when the length of the cycle is odd. A rig-
orous proof of this is too elaborate for this book. It can be
found in numerous texts or from your teacher. Finally, if a
permutation consists of several disjoint cycles, then the
number of pair exchanges needed in its decomposition will
be odd if the number of even-length cycles is odd. We say
that a permutation is odd if it decomposes into an odd num-
ber of pair exchanges. We say that a permutation is even if
it decomposes into an even number of pair exchanges.
Whether a permutation is odd or even is called the parity of
the permutation. If P can be written as a product of m 2-cy-
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cles and Q can be written as a product of n 2-cycles, then
PQ can be written as a product of m+n 2-cycles. Thus
parity for the product of permutations behaves like the addi-
tion of odd and even integers.

It all seems trivial enough, doesn’t it. Why all the fuss? Pa-
tience! Do the exercises and then we will see what follows.

EXERCISES:

7.1-1 Show two decompositions of the permutation (ub, uf, df)
into two successive pair exchanges and one decomposition into
four pair exchanges.
7.1-2 a. Show thatif P, and P, are both odd permutations then
the permutation P =P,P, is an even permutation.
b. Whatis the parity of P if P, and P, are even?
c. Whatis the parity of P if P, is odd and P, is even?
7.1-3 Find a process which exchanges only a single pair of cor-
ner pieces and a single pair of edge pieces.
7.1-4 Let G be any group of permutations. Show that if G con-
tains any odd permutation then exactly half the elements of G are
odd.

2. PARITY OF PERMUTATIONS ON THE CUBE

To start with, consider the permutation of a single quarter
turn of one face. For example, turning the Up-face gives the
permutation

(uf, ul, ub, ur)
(ufl, ulb, ubr, urf).

Since this permutation is made up of two disjoint 4-cycles, it
is an even permutation. Similarly, a quarter turn of any face
produces an even permutation. Hence any process which
can be decomposed into a succession of quarter turns of
faces will produce an even permutation. But this includes
all processes on the cube. That is, all processes on the
cube produce even permutations. This now proves what we
. had guessed all along, namely,
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No process on the cube can'exchange a single
pair of pieces while leaving all other pieces in
place.

A single pair exchange is an odd permutation, so it cannot
be produced by any sequence of face turns.

Next we see that a quarter turn of a face produces an odd
permutation of edges and an odd permutation of corners.
Hence any process which decomposes into an odd number
of single-face quarter turns produces an odd permutation of
edges and an odd permutation of corners. Conversely any
permutation which requires an odd permutation of edges
will require an odd number of face quarter turns.

In particular, notice that the identity is an even permuta-
tion of edges. Hence any identity on the edge pieces re-
quires an even number of single face quarter turns. Simi-
larly, an identity on corners also requires an even number of
quarter turns. This proves the assertion made in Section 7 of
Chapter 6 that in the Supergroup of the cube it is not possible
to produce a single quarter turn of a center piece while leaving
all edges, corners, and other center pieces in place.

In the restoration process of Chapters 3 and 5, the orien-
tation of five of the six center pieces is fixed as soon as the
four edges of the starting face are restored at the end of
Step 1. It is not until Step 4 that the orientation of the center
piece of the sixth face is decided. The first thing that is
done in Step 4 is to decide where, on the Up face — the sixth
face — to place the first edge piece to be restored on that
face. “Where” in this case means “on which side of the Up-
face center piece”. This of course determines the orienta-
tion of that center piece and thus on which side of the cen-
ter piece each of the other Up-face edges must be placed.
Up to this time, not knowing any better, we have chosen this
orientation arbitrarily. As a result, half the time when we
tried to restore the final Up-face edge piece, we found that
we had to move all the previously restored edges one place
clockwise or counter-clockwise around on the Up face. You
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may now see why this was necessary, namely to produce an
even number of single-face quarter turns.

Furthermore, we can now see how to do better. Before
starting Step 4 we can predict which two orientations of the
Up face can be used for an identity and which two cannot.
To do this, consider the five edge pieces, shown by +, in
Figure 7-1, which are to be restored in Step 4. Write down
the permutation which is required to restore them to their
home positions. If this is an odd permutation, then it re-
quires an odd number of quarter turns of the Up face.
Hence, you should start by making that quarter turn of the
Up face before determining the home position for the first
edge piece to be restored. If the permutation of those five
edges is even, then the center piece of the Up face is in an
acceptable orientation for placing the first Up face edge in
its home position.

FIVE EDGE PIECES TO BE RESTORED IN STEP 4

* U *
* /]
/|r{ B
R/
Lir|F ] /jB
%
D
L|F| F b
D D
Figure 7-1

EXERCISES: (* indicates harder.)

7.2-1 Two permutations have the same cycle structure ifone is a
conjugate of the other. After Step 4 of the restoration process has
been completed, how many different permutation cycle structures
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may be needed to describe the possible locations of the corners
disregarding twists?

7.2-2 Determine the parity of the permutation of edge pieces pro-
duced by any commutator.

7.2-3* Consider the subgroup of the Slice group for which every
face has either a “spot” pattern or a solid color, that is, we have
a=b=c in the notation of Figure 6-3. The center color, d, may or
may not be different. Prove that this subgroup has 12 elements.
7.2-4* Show that every permutation of the cube which is an even
permutation of both edges and corners can be produced by a se-
quence of conjugates of [F,R]=FRF-'R-".

3. THEPARITY OF FLIPS AND TWISTS

We are now ready to consider the assertions made ear-
lier that edge flips come only in pairs and that corner twists
come only in pairs or triples — pairs of twists in opposite di-
rections or triples of twists in the same direction. First, we
will give you the intuitive argument. Then we will formalize
the argument to make it rigorous.

Consider any quarter turn of a single face, say the Up
face. This process U produces the permutation

urf — ufl
ufl —ulb
ulb — ubr
ubr — urf
uf —ul
ul —ub
ub —ur
ur —uf.

As each of the four Up-face corners are moved by this quar-
ter turn, the orientation of each one is changed. The sum of
these orientation changes is attributable to the move U. We
can sum these four orientation changes on a single corner
by following one corner as we apply U four times. But U*
produces no orientation change on that one corner, so we
conclude that the sum of the orientation changes is zero.
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The same argument shows that the sum of edge orientation
changes is zero. Since all processes consist of a sequence
of face quarter turns, the orientation changes for any pro-
cess must add up to zero. It turns out that this argument is
fundamentally sound. But, a mathematician would consider
it imprecise and would not be sure of its validity until it
could be presented rigorously. An example of this impreci-
sion is that no definition is given of the quantity being sum-
med up. What is meant by “the orientation change” of a sin-
gle corner, say urf, when it is moved by U, producing urf —
ufl? The following discussion will use a more specific argu-
ment in a more rigorous fashion. The technique used here
was first seen by us in draft versions of the forthcoming
book Winning Ways by J.H. Conway, E.R. Berlekamp, and
R.K. Guy where this basic analysis of the Cube Group is at-
tributed to Anne Scott.

Placing the restored cube in a fixed orientation — that is,
designating an Up-face color and a Right-face color — we
assign to each edge and corner cubicle on the cube a chief
face. For all cubicles on the Up layer, the Up face will be
the chief face, and for all cubicles on the Down layer, the
Down face will be the chief face. For the edge cubicles in
the middle layer — between the top and bottom — the chief
face will be the Right face for those cubicles on the right
and the Left face for those on the left. This is shown in Fig-
ure 7-2. We also assign a chief facelet to each edge and
corner cubie in the cube. The chief facelet of each cubie is
the facelet which, when the piece is in its home position,
matches the chief face of that cubicle.

As pieces are moved around on the cube, their chief face-
lets never change. We must examine the relation of these
chief facelets of cubies to the chief faces of the cubicles
they occupy. When the chief facelet of a piece is in the posi-
tion of the chief face of the cubicle it occupies, it will be called
sane. Otherwise, it will be called flipped if it is an edge
piece or called twisted if it is a corner piece. A corner piece
can be twisted from its sane position in either of two ways,
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XINDICATES THE CHIEF FACE FOR EACH CUBICLE

X U X B
X/ X/ X /] X
X
R / X X X L /
X
X| X |X
a) Up-Front View b) Back-Down View

Figure 7-2

clockwise or counter-clockwise. We will show that if we
count the number of flips and add up the twists with clock-
wise counting +1 and counter-clockwise counting — 1,
then the number of flips must be even and the sum of the
twists must be a multiple of three.

Notice that in a restored cube, every piece is sane.
Hence, the number of flips and the sum of twists are both
zero. Again we look at what happens with a quarter turn of a
single face. If the Up face or the Down face is turned, no
facelet enters or leaves that Up or Down face. The flips or
twists of pieces on that layer — as well as for the rest of the
cube — remain unchanged. Rotating the Front or Back
faces — as in Figure 7-3 — by a quarter turn leaves every
flipped edge piece flipped and every sane edge piece sane,
because the chief face of each edge cubicle is placed in the
chief face of another edge cubicle. Of the four corner
pieces on the Front face, two — the pieces in uf/ and frd —
get twisted clockwise and two — the pieces in urfand fd/—
get twisted counter-clockwise. Similarly on the Back face,
two corners are twisted clockwise and two counter-clock-
wise. Rotating the Right or Left faces — as in Figure 7-4 —
has the same effect on four corners, namely two get twisted
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MOVE F MOVE R
X
® /U /R ®/ USX
X/ ®/X ®/®/x/|0
O X
R O\ 1w
F ® Flo |46
© 0
The X indicates the chief face of The X indicates the chief face of
each cubicle. The O indicates each cubicle. The O indicates
the chief facelet of each cubie. the chief facelet of each cubie.
Figure 7-3 Figure 7-4

clockwise and two get twisted counter-clockwise. In these
cases, all four edge pieces are changed. The flipped be-
come sane and the sane become flipped.

From this we can conclude that the number of flips which
we count must be a multiple of four, right? WRONG!!! For
that to be true, you would need to be able to tell the differ-
ence between flipping an edge twice and flipping it four
times. But, we can tell the difference between an edge flip-
ped an odd number of times and an edge flipped an even
number of times. Since the number of flips can only be in-
creased four at a time — with each Right or Left face quar-
ter turn, and decreased two at a time — every time the same
edge is flipped twice, we see that the number of flips which
we can count will always be even.

As for corners, every quarter turn adds as many clock-
wise — +1 — twists as it does counter-clockwise — —1 —
twists. The first temptation is to say that the count of the
number of twists must always be zero. But, three twists in
the same direction on the same corner cannot be distin-
guished from no twist. Similarly, two twists in one direction
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looks like one twist in the opposite direction. Thus, al-
though each quarter turn has a zero effect on the sum of
twists, three twists are added or subtracted every time a
corner is twisted more than once in the same direction.
However, the sum of the number of twists must remain a
multiple of three.

Solomon W. Golomb has observed an analogy between
the subatomic particles called quarks and corners of the
cube. Quarks are believed to have charges of +'/s and
never to appear except in combinations where the total
charge is integral. Analogously, the corners of the cube can
be twisted =+'/s (of 360°) but we can never obtain patterns
except where the total twists are integral.

EXERCISES:

7.3-1 What is the smallest number of moves which leaves exactly
ten edge pieces “‘sane” — disregarding corners? A single move
can be either a quarter turn or a half turn of a face.

7.3-2 What is the smallest number of moves needed to leave ex-
actly six “sane” corners — disregarding edges?

7.3-3 Show that no corners can be twisted or edges flipped in the
Squares group (U?, R?, F?, D?, L?, B?).

7.3-4 Show that no edges can be flipped in the Two-Generator
group.

7.3-5 Find a process which produces a totally insane cube which
has every piece in its home location — that is, every corner is
twisted and every edge is flipped.

4. THE ORDER OF THE CUBE GROUP

How many different permutations of the cube are there,
including different flips and twists of pieces as different per-
mutations, but not distinguishing between different orienta-
tions of the cube as a whole? It might be reasonable to
leave this as an ‘“exercise for the reader”. Perhaps you
would like to work it out for yourself before going further. In
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the following paragraphs, we will go through it to bring out
several points.

First, how many permutations of those eight corner loca-
tions are possible if we ignore twists? We know — see Exer-
cise 7.4-1 — that the total number of possible permutations
of a set of n objects in n locations is n! — n factorial. We
have found a process — see Exercise 7.1-3 — which will ex-
change a single pair of corner locations, ignoring edges,
without disturbing any other corners. Using either conju-
gates of this process or using it with different orientations
of the cube, we can exchange any pair of corner locations
without disturbing the others. Since every permutation can
be decomposed into successive pair exchanges, every per-
mutation of corner locations is possible on the cube. There-
fore we have

8!=40,320

possible permutations of corners on the cube.
The same argument shows that there are

12!=479,001,600

possible permutations of edge locations on the cube. How-
ever, we have seen that not all permutations of corner loca-
tions can go with all permutations of edge locations. The
permutation of corners and edges together must be even,
so that even corner permutations must occur with even
edge permutations and odd with odd. Can every even cor-
ner permutation occur with each even edge permutation?
Yes! To see this apply the method above to obtain any even
corner permutation. This will produce an even edge permu-
tation which we then need to transform to any desired even
edge permutation. This transformation must be an even
edge permutation which leaves corners fixed. Any even
edge permutation, leaving corners fixed, can be obtained
by using either 3-cycles or pairs of 2-cycles of edges which
leave corners fixed. These are obtainable as conjugates of
either
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W =LR-'F:L-'RU?

or
V=(FRe)".

Can every odd corner permutation occur with each odd
edge permutation? Yes! We can repeat the above argument
and find that we again need to obtain the even edge permu-
tations which leave corners fixed. Alternatively, we simply
apply any face turn to transform an odd-odd case into an
even-even case, and use the previous argument. Since half
the permutations are odd and half are even, we see that the
total number of permutations of the cube not counting
twists or flips is

812! 0,656,672,256,000.

We now consider twists and flips. Any corner can be
twisted in three orientations, except for the last one whose
orientation is fixed by the other seven. Similarly any of the
edges can be flipped in two ways except for the last whose
orientation is determined by the first 11. Thus each permu-
tation of the cubies can have

8
—2—: 2,187
corner orientations and
2
2—': 2,048

edge orientations. Thus the total number of cube permuta- .
tions counting twists and flips is

B . 2 43,252,003,274,489,856,000

2 3 2
x 4.3 x10"

This is the order of the entire Cube Group.
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EXERCISES:

7.4-1 Show that the number of possible permutations of n objects
in n locations is n!=n-(n—1) .-+ 3-2-1. Hint: Notice that n!=
(n—1)!n. (The pronunciation for n! is “n factorial”).

7.4-2 How many permutations of the Cube Group are there which
leave all the edge pieces in their home position?

5. THE ORDER OF THE TWO-GENERATOR GROUP

A similar approach is used to determine the order of the
Two-generator group. We first consider edges. We saw in
Exercise 7.3-4 that no edges can be flipped in the Two-gen-
erator group. It is not hard to find a process which ex-
changes two edges without disturbing the other edges — it
must disturb corners, of course. For example, in (U, R) we
see that

URUR'URU?R™
produces the permutation

(ur, uf)
(urf, ubr, Ibu, luf).

Using conjugates we can exchange any pair of edges with-
out disturbing the others. Thus we can generate any of the

7!1=5040

permutations of the seven edge pieces in (U, R). But, when
it comes to generating permutations of the corners, it is a
different story. When you try to show that all permutations
of the corners of (U, R) can be produced by processes in
(U, R), you find it can’t be done. You find that you can fill
any three corner locations with any three corner pieces.
But, once you do, then the pieces in the other three corner
locations are fixed. We find that the number of possible per-
mutations of the corners of (U, R) is only

6:54=5!=120.
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This surprising result is shown in the solution to Exercise
7.5-1. Half of these permutations are odd and half are even.
The odd corner permutations go with odd edge permuta-
tions and the even go with the even. As before we have a 3-
cycle of edges which does not disturb corners. So every
odd edge permutation can be produced with each odd cor-
ner permutation, and similarly all even edge permutations
go with each even corner permutation.

Although edges cannot be flipped, the corners can be
twisted — see Exercise 6.5-1 — in pairs. Thus five corners
can be twisted arbitrarily and the orientation of the sixth is
then fixed. Thus the total number of permutations in the
Two-generator group is

7!-5! 3¢

5 '3 =73,483,200.

This may not be close to the order of the Cube Group, but it
still is a large number.

EXERCISES: (* indicates harder.)

7.5-1** Show that the number of permutations of corner loca-
tions that can be produced in (U, R) — disregarding twists — is
120. (This is a very difficult exercise.)

7.5-2* Show that in (U, R) the following statements are equiva-
lent:
& Disregarding twists, there are not more than 120 possible
permutations of corner locations.
b. It is not possible to have a single 3-cycle of corner pieces
leaving the other corners undisturbed — disregarding edge lo-
cations and corner twists.
c. It is not possible to have a single 2-cycle of corner pieces
leaving the other corners undisturbed — disregarding edge lo-
cations and corner twists.

7.5-3" Find the order of the group (U, R?). You may assume 7.5-1
above.
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6. THE ORDERS OF OTHER GROUPS

In Section 6.6 we discussed the Magic Domino,a3x3x2
version of the cube whose sides can only be rotated by half-
turns whereas the top and bottom layer can be rotated by
quarter turns. We observed that the group G,=(U, D, R?, L?,
F?, B?) behaved just like the Magic Domino if we ignored
the edge pieces in the middle slice between the Up and
Down faces. Another group that contains all the permuta-
tions of the Magic Domino but does not give all the permu-
tations of edges in the middle slice is G,=(U, D, R?). In this
group the effects of L2, F?, and B2 on the U and D faces are
produced by

L? =~ U2D?R2U?D?

F?2 ~U-'DR?UD™

B2 ~UD'R?U-'D.
Of course, G, is a subgroup of G,. We will see in the next
chapter — Exercise 8.3-8 — that it is a special type of sub-
group, but for now we are concerned with the order of the
groups. We will see in Exercise 7.6-1 that the order of G, is

(81212 =21%-3%-5%.72 = 19,508,428,800
and the order of G, is

(81)2=214-3%.52.72 =1,625,702,400.
The difference reflects the fact that there are 12 even per-
mutations of edges in the middle slice.

So do you think the order of the group of permuta-
tions on the Magic Domino is the same as the order of G,?
Yes? Wrong again! One of the permutations counted in G,
is produced by the process UD-'. But with no middle layer
in the Magic Domino to provide a point of reference, this is
simply a reorientation of the entire domino and hence
doesn’t count. Four different permutations in G, always turn
out to be reorientations of the domino. Thus the order of the
group of permutations on the Magic Domino is (8!)/4=
2'2.34.5%.72 = 406,425,600.
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The order of the Supergroup of the cube is easier to de-
termine. For each permutation of edges and corners, we
can turn each of the six center pieces into any of four orien-
tations — rotations — except for the last one whose possi-
ble orientations — rotations — are limited to two possibili-
ties when the orientations of the first five are fixed — see
Section 7 of Chapter 6. Thus the Supergroup has 2'' times
as many permutations as does the Cube Group. The order
of the Supergroup is then

8! 12! 38 212

211.T N 238.314.53.72.11
=88,580,102,706,155,225,088,000
= 8.9 x 10%

The order of the groups obtained by taking the cube apart
and putting it back together is still larger — see Exercise
7.6-2.

EXERCISES: (* indicates harder.)

7.6-1 Show that the order of
a. G,=(U,D,R? L3 F?B?)is(8!)12.
b. G,=(U,D,R?)is(8!)
7.6-2 Find the order of the group obtained by taking a cube apart
— without removing the facelet colors — and reassembling it:
a. without regard to rotations of center pieces;
b. including consideration of center-piece rotations.

7.6-3" Find the order of each of the following groups.
(U2, R?)

(U,R, D)

(U?, R, D?)

(U,R,F)

(Uz’ Rz, Fz)

(Uz’ Rz’ Fz’ Bz)

(U3, Re, F2, B2, L?)

(U, R, F2, B2, L2, D?)

(U, R, L2, F?, B?)

S N YL
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764 The center, C, of a group G is defined to be the set of all
elements of G which commute with every element in G. That is, X
is in C if and only if
X*g=g *X

for every g in G.

a. Show that C is a subgroup of G.

b. Find the order of the center of the Cube Group — Hint: see

Exercise 4.6-1.



CHAPTER 8

ADVANCED RESTORATION
METHODS

Students of the cube have devised many methods for re-
storing the cube. Using the theory of groups and sub-
groups, we can analyze and compare these methods.

1. NESTED SUBGROUPS

We begin by analyzing the worst case number of moves
required by a given method to restore any scrambled cube
where a move consists of any rotation of a single face. Any
quarter or half turn, clockwise or counter-clockwise is a
single move. In some contexts, it is preferable to count half
turns as two moves, but in this analysis we will not do that.

Analyzing the method of Chapters 3 and 5, we find that
the state of the cube at the end of each of the six steps in
the method can be described by a subgroup of the cube.
For example, at the end of Step 1, the permutation of the
cube is in the subgroup G, of all the permutations of the
cube which leave the Down-face edge locations fixed. At

142
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the end of Step 2 the permutation of the cube is in the sub-
group G, of permutations which leave all Down-face loca-
tions fixed except the drb corner which was selected as the
working corner.

After Step 3 the cube permutation is in the subgroup G,
of all those permutations which only move pieces on the Up
face and in the working corner and working edge locations,
drb and rb. We see that G, is a subgroup of G,, and G, is a
subgroup of G,.

Continuing in this manner, after you have completed Step
4 by placing all the edge pieces in their home positions, the
permutations that can exist on the five yet-to-be-restored
corners form the group G, of all permutations of the cube
which move only those five corners. Again, G, is a subgroup
of G,.

After all the corners are placed in their home locations in
Step 5 and only the untwisting processes remain to be done
to restore the cube, the possible permutations are the
group G, of all permutations which only twist, in place, the
four Up-face corners and the working corner. Finally, after
untwisting the corners we have reduced the permutation of
the cube to the identity permutation, I. Thus we have G,=
(I). The given six-step restoration method is characterized
by six nested subgroups

GDG,0G,0G,D2G,0G, DG,

For any set S of locations in the cube, there is a corre-
sponding subgroup G(S) in the Cube Group G consisting of
all permutations which leave all the locations of S fixed.
This follows easily from the discussions in Section 6 of
Chapter 6. For any restoration method which gradually re-
stores more and more of the cube, we can define a se-
quence of sets of pieces of the cube,

s,CS,Cc§,C---CS,_,C8S,

where S, is the empty set, S, is the set of all pieces of the
cube, and S, is the set of pieces which have been restored
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after Step i of the restoration method. Then the subgroups
G(S) D G(S,,,)

form a nested sequence which characterize that restoration
method. Thus any restoration method which gradually fixes
more and more of the cube can be characterized by a
nested sequence of subgroups. But the converse is also
true. That is, any nested sequence of subgroups can be
used to define a method for restoring the cube. Consider a
nested sequence of subgroups

G=H,DH,DH,D-+DH,, DH,=L

Any method that enables you to reduce every permutation
in H,_, to a permutation in H,, fori=1,2,...,n, becomes a
method for restoring the cube. Furthermore, nothing says
thatthe subgroups H, need to be of the form G(S) described
above. In fact, the subgroup G; in the sequence above is not
of that form.

An English mathematician, Morwen Thistlethwaite, has
developed a method for solving the cube based on a se-
quence of subgroups, none of which are of the form G(S).
Using his method, it is hard for a spectator to see that the
cube is close to being restored until the final several twists
when suddenly everything falls into its home position. The
sequence of subgroups which he uses starting with the en-
tire cube group G are

F,B,U,D)=G
F,B,U?,D?)
,F2,B2,12,D?)
L2, RZ’ FZ’ BZ, UZ’ DZ)

- o

w

IIITIT
i

=

~~

Thistlethwaite has shown that it is possible to reduce any
permutation of the cube to a permutation in H, in no more
than seven moves. Permutations in H, can be reduced to
permutations in H, in no more than thirteen moves. Then fif-
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teen moves will be sufficient to reduce any permutation in
H, to a permutation in H,. Finally he has shown that seven-
teen moves are all that are ever needed to reduce any per-
mutation in H, to the identity permutation in H,. Thus any
scrambled cube can be restored using Thistlethwaite’s
method in at most 52 moves.

In order to come up with this method and to find the maxi-
mum number of moves which might be required to perform
each step, Thistlethwaite needed some group theory con-
cepts which we will explain in the next section. Then, using
these concepts he was able to make practical use of a com-
puter to help find many of the processes which were
needed at each step to reduce any permutation in H, to
some permutation in H,_,. He has not yet given up trying to
improve on the number of moves needed for each step. Ta-
ble 8.1-1 summarizes his results as of this writing, and what
improvements he conjectures may come in the future.

Thistlethwaite’s Method

Maximum number | Step1 | Step2 | Step 3 | Step 4 | Total
of moves required | H,—H, | H, —H, | H, —H; | H; —H,

[Proven 7 13 15 17 52
Expected to be 7 12 14 17 50
proven
Best Possible:
this method 7 10 13 1° %
Table 8.1-1
EXERCISES:

8.1-1 Find a set of processes which generate the group of all per-
mutations which leave all the Down-face locations fixed.
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8.1-2 Find a set of processes which generate the group of permu-
tations which leave all the Up-face locations and all the Down-face
locations fixed.

8.1-3 Show that (U, D, L? R?, F?,B?) is a subgroup of the group of
all permutation which leave all pieces “sane’” — as defined in Sec-
tion 3 of Chapter 7.

8.1-4 Show that by using a portion of his method for restoring the
Cube Group, Thistlethwaite has proved that the Magic Domino
can be restored in no more than 32 moves.

8.1-5 Find a set of generators for each of the following groups:
a) G,, the set of all permutations which leave the Down face
edges fixed.

b) G,,the set of all permutations which leave the locations {dr,
dfr, df, dif, dl, dbl, db} fixed.

c) G,, the set of all permutations which leave all Down-layer
and middle layer — between Up and Down — locations fixed ex-
cept for the drb corner and the rb edge.

d) G,, the set of all permutations of the locations {drb, ubr, urf,
ufl, ulb} only.

e) G, the set of all permutations which leave all edges fixed,
leave the location of all corners unchanged, and only twist cor-
ners in the locations {drb, ubr, urf, ufl, ulb}.

8.1-6 Is it TRUE or FALSE that the group of all permutations of

the cube which are even permutations of both edges and corners

is equal to the group of permutations generated by the squares of
all processes on the cube?

2. COSETS OF SUBGROUPS

To analyze the number of moves required to reduce a
permutation in one group G to a subgroup H of G we make
use of the concept of cosets of the subgroup. If (G, *) is a
group and H is a subgroup of G, then a coset of H is defined
as follows. For any element x in G, the set Hx of all elements
of the form h*x with h in H is called a right coset of H in G.
We write for each x in G

Hx = {y:y=h+x for some h in H}.
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The first thing to observe is that the collection of cosets Hx
partitions the group G into disjoint — that is, non-overlap-
ping — sets. To say that another way, if Hx and Hy have any
element in common, then they are identical — see Exercise
8.2-1. Notice that for any y in G, we have

y=I+y

and therefore y is in Hy. As a corollary of this and the above
mentioned exercise, we see that if y is in Hx then Hx =Hy.
This also means that if y is in Hx then

X=h+y
for some h in H and thus
x*y~'=h
and
y*x'=h"
are in H.

So what does all this mean about the cube? What it
means is this. If H, and H,,, are two consecutive subgroups
in a nested sequence, with

HD H,,

we can determine how many moves are required to reduce
a permutation in H, to a permutation in H,,, by examining
the cosets of H,,, in H.. If X is any permutation in the group
H, and Y is the “shortest” permutation in the coset H, X,
then applying Y™ to X produces a result which will be in

i+1°

Thus if we are trying to get from a group G to its subgroup
H in the shortest number of moves, then we can use the
shortest permutations in each of the cosets HX con-
tained in G. Of course, finding the “shortest” permutation in
HX may be easier said than done. In many cases it may
need the assistance of a computer search.
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For a given subgroup H of G, it is natural to ask how many
cosets Hx are there? For a finite group G that is easy io an-
swer if we know the order of H and G. First notice that the
number of elements in each coset, Hx, is the same as the
order of H, because h,*x=h,*x if and only if h,=h, — see
Exercise 8.2-2. Since the cosets are disjoint then the num-
ber of cosets of H in G is equal to the order of G divided by
the order of H — that is, |G |/|H |. This number is called the
index of H in G. For example, the subgroup G, of the previ-
ous section, consisting of all permutations which did not
move any edge locations of the Down face, has order

Thus the index of G, in the entire Cube Group G is

,12' 8! 3¢° 212 8! 8! 3 28
—11 5- 3’ 27—190,080.

. For each of the 190,080 cosets G X of G, in G, there is a
“shortest” element Y in G,X such that the number of moves
needed to produce Y is less than or equal to the number of
moves required to produce any other permutation in that
coset. The maximum over all the cosets of the length of
these shortest elements is then the maximum number of
moves required to reduce any permutation in G to a permu-
tation in G,.

The same analysis can be used to determlne the number
of moves required at each step to reduce any permutation
in G, to a permutation in G,,,. The number of cosets to be
examined at each step is the index of G, , in G;, namely

G 171G |-

This analysis is greatly aided by use of computers.
However, use of a computer does not assist in choosing

the sequence of nested subgroups. Furthermore, it is often

possible to choose the particular solution used at one step
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to simplify the reduction problem at the next step. An excel-
lent example of that is given by Step 5 and Step 6 of the res-
toration methods of Chapters 3 and 5. There, the proper
choice in positioning the corners can eliminate the need for
untwisting. Of course, you could say “just eliminate G, from
the sequence of nested subgroups”. Two observations
come to mind. First, the computer would not do that. Sec-
ond, how should we account for the fact that if we choose a
solution to Step 4 which leaves the corner permutation in a
5-cycle then Step 5 may be made more simple? | don't have
the answer. However, the detailed analysis has not been
done either, and it may turn out that how we solve Step 4
may not simplify Step 5.

It is just such a computer search as we have described,
supplemented by some intelligent human analysis, that pro-
duced the results in Table 8.1-1 for Thistlethwaite’s se-
quence of nested subgroups. Finding the shortest permuta-
tion in each coset does not mean looking at every permuta-
tion. It means that all the cosets which contain short permu-
tations are identified by gradually considering longer and
longer permutations, until all cosets have been associated
with a permutation or the number of unassigned cosets is
small enough to make individual analysis practical.

EXERCISES:

8.2-1 Show that the right cosets of a subgroup H of G partition G
into disjoint sets.

8.2-2 Show that if G is a finite group and H is a subgroup of G
then the order of H divides the order of G evenly. This is known as
Lagrange's Theorem, named for the French mathematician who
first proved it.

8.2-3 Let G, through G be the sequence of subgroups defined in
Section 1 of Chapter 8 for restoring the cube.

a. FindtheindexofG,inG,.

b. Findthe index of G,in G,.

c. FindtheindexofG,inG;.
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d. Findtheindexof G,in G,.
e. Findtheindexof G4in G;.
f. Findtheindex of G,in G.
g. Findtheindexof Gyin G,.
8.2-4 LetH,through H,be defined as in Section 1 of Chapter 8 for
Thistlethwaite's method for restoring the cube. Find the index of
H,,,inH fori=0,1,2,3.
8.2-5 a) What is the index of (F?, R?) in (F, R)?
b) What is the index of (F?R?) in (F?, R?)?
c) What is the index of the subgroup of even permutations of
the cube in the entire Cube Group?
d) What is the index of the subgroup of all permutations which
leave all corner positions fixed in the entire Cube Group?
e) Whatis the index of the subgroup of all permutations which
leave all pieces “sane”” — as defined in Section 3 of Chapter 7
— in the subgroup of all permutations which leave all the cor-
ners “sane”?

3. NORMAL SUBGROUPS AND ISOMORPHISMS

In the previous section we discussed right cosets of a
subgroup Hin a group G. We can similarly define a left cos-
et of H for any x in G as

xH = {y:y=xh for some h in H}.

The left cosets similarly partition the group G into disjoint
subsets. However in general, the left cosets of H need not
be the same as the right cosets. For example, if H equals the
four element cyclic group consisting of the four rotations of
the Up face, that is,

H=(U)={I, U, U3, U%}
then we have

FH= {F, FU, FU?, FU*}
and

HF = {F, UF, U?F, U°F }.
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We can see that
FH ,+— HF.

There are some subgroups however for which the left cos-
ets and the right cosets are the same. That is, we have

xH =Hx

for all x in G. When this is true, the subgroup H is called a
normal subgroup of G. Sometimes such subgroups are
called invariant or self-conjugate — as suggested by Exer-
cise 8.3-1. Normal subgroups are of particular interest when
we are trying to understand the structure of the group. Can
you think of any examples in the entire Cube Group G of a
normal subgroup? There are several.

The easiest example is derived from observing that any
subgroup of index two must be normal, since the two cos-
ets, either right or left, must be the subgroup itself and the
complement of the subgroup in the group. The subgroup of
all permutations which” are even permutations of both cor-
ners and edges is a subgroup of index two in the Cube
Group G. We will use A to denote this subgroup.

Two other examples of normal subgroups are, first, the
subgroup of all permutations which leave all corner posi-
tions fixed and, second, the subgroup of all permutations
which leave all edge positions fixed. The first, which we will
denote by A,, is the same as all even permutations which
move only edges. The second, which we will denote by A, is
the same as all even permutations which move only cor-
ners. Notice that A, and A, are both normal subgroups of A
as well as of G.

The cosets of a normal subgroup have a most interesting
property. There is a natural way to define an operation for
combining any two cosets, namely

(xH)*(yH) = (x*y)H.

Furthermore, when the cosets of a normal subgroup are
combined in this way, they form a group — see Exercise



152 Advanced Restoration Methods

8.3-2. We use G/H to denote this group and it is called the
factor group of the normal subgroup H in G. It is also some-
times called the quotient group of G by H.

What is the structure of the factor group of Ain G? It has
only two elements and all groups with only two elements
have a similar structure. It must be the cyclic group gener-
ated by the element which is not the identity. In this case
the identity is the coset consisting of the group A itself. The
other element is the coset consisting of those permutations
which are odd permutations of both corners and edges. It is
easy to see that combining any two of these permutations
gives a permutation in A.

We now turn to the structure of the factor groups of A and
A, respectively. A little reflection will show you that the fac-
tor group of A, in G has the structure of the group of all per-
mutations of the corners of the cube, where two permuta-
tions are considered the same or equal if they only differ on
edge pieces. Similarly the factor group of A_ in G has the
structure of the group of permutations on the edges of the
cube, where the corners are ignored. ,

We have previously indicated that different groups may
have the same structure. Now we will give you the formal
definition of what we mean when we say one group has the
same structure as another. We call two such groups iso-
morphic. Two groups (G, *) and (G’, %) are said to be iso-
morphic if there exists a one-to-one mapping f of G onto G’,
that is

x — f(x)
such that

f(x+y) =f(x) » f(y)

for every x and y in G. Such a mapping is sometimes called
a product-preserving mapping. The one-to-one and onto
properties of f assure that the sets G and G” have the same
size. The product-preserving property assures that the op-
erations * and » have the same structure.
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The simplest examples on the cube of two groups that are
isomorphic are groups that are different only because of
orientation. This gives us another and more rigorous view
of the concept of orientation. The group generated by rotat-
ing the Up face is not the same exactly as the group gener-
ated by rotating the Front face. Rotating the Up face per-
mutes the Up face pieces while rotating the Front face ro-
tates the Front face pieces. But that they both have the
same structure becomes obvious when we reorient the
cube to place the whole Front face on top in place of the Up
face. We can then rotate the now-Up face just as we could
before the reorientation. If we then move the now-Up face
back to the front we have produced a Front-face rotation.
This procedure suggests the mapping which defines an iso-
morphism between (U) and (F). Define the mapping f for
each X in (U) to be

f(X) =RXR"
which is in (F). Then we have
f(XY)=RXYR ' =RXRRYR ={(X)KY),

so fis a product-preserving mapping. Since X is itself a per-
mutation of the cube pieces, it is included along with X and
Y in the group of all permutations of all cube pieces. In this
group we see that

RXR'=RYR"
if and only if
X=Y.
Also foreach Zin (F) we have X=R-'ZR in (U) with
f(X)=2.

Thus f is seen to be a one-to-one and onto mapping. Hence
f is an isomorphism between (U) and (F).

A similar argument can show that any other two groups
which only differ by their orientation are isomorphic. How-
ever, the concept of isomorphism applies to much more
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than different orientations. For example, notice that all two-
element groups are isomorphic. In particular, notice that
the factor group G/A is isomorphic to any two-element
cyclic group.

Notice next that A, and A, are both normal subgroups of
A. We observe — see Exercise 8.3-3 — that the factor group
A/A, is isomorphic to A, and similarly the factor group A/A,
is isomorphic to A,. Furthermore any element in A can be
written uniquely as the combination of an element in A, and
an elementin A..

Can we find any normal subgroups of A, and A_.? The an-
swer is YES! The set A, of all permutations in A, which leave
the locations of all edge pieces fixed but may flip any even
number of them is a normal subgroup of A.. The set A, of all
permutations in A, which leave all the corner locations fix-
ed except for twisting some of them is a normal subgroup of
A.. The factor group A /A, is isomorphic to a subgroup A, of
A, consisting of all even permutations of edges which leave
all the edges “sane” — see Section 3 of Chapter 7. The fac-
tor group A /A, is isomorphic to a subgroup A of A_ con-
sisting of all even permutations of corners which leave all
corners “sane”. Notice that A_, and A_, are not normal sub-
groups of A, and A, respectively. However A_ and A_, are
isomorphic to well known groups. These two isomorphisms
enable us to complete our analysis of the factorization of G
into normal subgroups by showmg that there are no more
such subgroups.

It is not hard to see that the group of all permutations of
one set of n objects is isomorphic to the group of permuta-
tions of any other set of n objects — if you disregard the ori-
entations of the objects in their locations. This group of all
permutations of n objects is called the n-element symmetric
group, denoted by S, and as we saw in Exercise 7.4-1 this
group has order n!. The subgroup of all even permutations
of S, is a normal subgroup of index two. It is called the n-
element alternating group and is denoted by A,. The group



Normal Subgroups and Isomorphisms 155

A,. is isomorphic to A, and the group A, is isomorphic to
A,
Itis a famous result of group theory that the groups A , of
even permutations of n objects, have no non-trivial normal
subgroups for n >5. Of course, the identity I and the whole
group are trivial normal subgroups of any group. In about
1821, the 19 year old Niels Henrik Abel showed that there is
no method for solving polynomial equations of the fifth or
higher degrees by means of a finite sequence of algebraic
processes — that is, addition, subtraction, multiplication,
division, and extraction of roots. In 1831, the 20 year old Evo-
riste Galois clarified Abel’s ideas and shows that Abel’s re-
sult is a consequence of A, having no non-trivial normal
subgroups for n > 5.

A group with no non-trivial normal subgroups is called
simple. 1t turns out that simple groups are the basic building
blocks of group theory just as the primes are the building
blocks of number theory. The determination of the finite
simple groups has been a major goal of mathematics for the
last twenty years and was recently completed in 1980.

EXERCISES: (* indicates harder.)

8.3-1 Show that H is a normal subgroup of G if and only if xHx™' =
H for every x in G.

8.3-2 Show that if H is a normal subgroup of G using the opera-
tion «, then the set of left cosets of H form a group G/H, using the
combining operation
(xH)+(yH)= {z:z=(x*h,)*(y+h,) for some h, and h,in H }.

Hint: this is actually a fairly easy exercise except for one detail.
One must check that xH+yH = (x+y)H really defines an operation
on cosets. That is, is it true that (x+y)H is a left coset of H? This is
where you need the fact that H is normal.

8.3-3 Show that A, is a normal subgroup of G — Note: A similar
argument shows that A is also a normal subgroup of G.

8.34 Show that the factor group A/A, is isomorphic to A..

8.3-5 Other than the identity and the entire group, find a normal
subgroup of
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a) (F?, R?)

b) (FR)

¢) The Slice Group.
8.3-6 Agroup G’is said to be ahomomorphic image of a group G
if there is a mapping f — usually not 1-1 —

x — f(x)
from G onto G’ such that
f(x)+f(y) = f(x+y)

for all x and y in G. Show that G/A_ is a homomorphic image of the
entire cube group, G — Note: For any normal subgroup H of group
G, the factor group G/H is a homomorphic image of the group G.

8.3-7 Find a mapping by which the group of permutations of the
Magic Domino is a homomorphic image of
H,=(U,D,L? R? F?,B?).
8.3-8 Which of the following statements are true and which are
false?
a) The set S of processes in H,, which in Exercise 8.3-7 map
into the identity permutation of the Magic Domino, form a nor-
mal subgroup of H,.
b) The even permutations S, of the edges in the middle layer
between the Up and Down faces is a normal subgroup of H,.
c) ThesetS, is anormal subgroup of G.
d) ThesetS,isasubgroup of Sandtheindex of S, in Siis four.

8.3-9 a) Is (R) anormal subgroup of (1, K)?
b) Isthe Cube Group G a normal subgroup of (7, K,U,D, R, L,
F,B)?
c) Is (U) a normal subgroup of ( 7/, U)? What is the index of
(U)in (U, U)?
8.3-10 Which of the following statements are true and which are
false?
a) The groups, A, and A,, are commutative groups.
b)* The group of permutations of the Magic Domino is a
homomorphic image of the entire Cube Group.
c) The Cube Group is a normal subgroup of the Supergroup of
the cube.
d) The Cube Group is a normal subgroup of the group of all
permutations produced by taking the cube apart and putting it
back together with the pieces rearranged.



CHAPTER 9
EPILOGUE

At this point one might say, “Isn’t it natural to restore the
cube using some sequence of the groups A, A,, A, A, A,,
A, or A". As we have seen in Chapter 8, most methods
follow this approach with minor variations. At the very least
people tend to work on corners and edges separately. In
analyzing how many moves are required to restore the
cube, very little is considered regarding what might be
done while restoring A, to simplify the restoration of A_ or
visa-versa. Rather each step is considered independently of
the others and evaluated assuming a worst case input and
an arbitrary output.

The best known restoration method to date is that of This-
tlethwaite given in Section 1 of Chapter 8. No one knows
how many moves would be needed for “God’s Algorithm”
assuming he always used the fewest moves required to re-
store the cube. It has been proven that some patterns must
exist that require at least seventeen moves to restore but no
one knows what those patterns may be. Experienced group
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theorists have conjectured that the smallest number of
moves which would be sufficient to restore any scrambled
pattern — that is, the number of moves required for “God’s
Algorithm” — is probably in the low twenties. We make a
further conjecture. We conjecture that as long as one con-
siders corner permutations and edge permutations sepa-
rately, it will not be possible to analyze a method to show
that fewer than forty moves are required.

To do better, to get closer to “God’s Algorithm”, we must
recognize for any permutation the coset into which it falls
for several subgroups at once. And then — as Douglas Hof-
stadter might point out, “much in the manner of a Bach
canon or an Escher print” — we must find an inverse per-
mutation which weaves together the inverses for the sever-
al cosets to simultaneously reach the identity of each factor
group, and thus obtain the identity for the entire Cube
Group.



APPENDIX A

A SMALL CATALOGUE OF
PROCESSES

Many processes which produce particularly simple or interest-
ing permutations have been discovered, rediscovered, and redis-
covered again by many “cubemeisters” over the last several years.
Some of these are catalogued below. Processes from certain sub-
groups of interest are listed together.

We have tried to attribute these to their first discoverer as best
we know it, and apologize to anyone whom we have slighted in
this endeavor. In any event, most of these processes have been
discovered by many people. Processes which have come from
several sources are attributed to “well-known”. We abbreviate the
most common sources as follows:

BCS — Benson, Conway, and Seal
BCG — Berlekamp, Conway, and Guy
AHF — Alexander H. Frey, Jr.

3DJ — 3-D Jackson

GK — Gerzson Kéri

KO — Dame Kathleen Ollerenshaw
DBS — David Singmaster

MBT — Morwen Thistlethwaite
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MBTC — Morwen Thistlethwaite’s computer
WK — Well-known.

Following each source we indicate the number of moves in the
process. Thus an attribution such as (WK — 10) indicates that the
process is well known and takes ten moves.

We first give the permutation and then the sequence of moves.
Processes for the inverses of given permutations are not given.
Also permutations which are obtained from given processes by re-
orienting the cube are not usually given.

The primary subgroups which we have used for this catalogue
are two subgroups which have been extensively studied, the sub-
group of permutations which move only pieces on a single face —
we have chosen the Up face — and the subgroup (U, R) of permu-
tations produced by only rotating two adjacent faces. These have
been further subdivided into the subgroups, P, of permutations
which move only corners, and the subgroup, P¢, of permutations
which move only edges. Other processes of interest are cata-
logued under “Other Processes”.

Up-Face Corner Permutations.

(i) One 3-Cycle. There are nine possible cases. All others can be
obtained from inverses and/or reorienting the cube.

(ulb, ufl, ubr)—B?L*BRBWBR-'B (MBT—9)
—LF-'LB2L-'FLB?L? (GK—9)
(ulb, ufl, bru) — LU?LDL-'U?LD-'L? (AHF —9)
(ulb, ufl, rub) —R-'FRB-'R-'F2'RB (3DJ —8)
—BLFL-'B-'LF-'L" (KO —28)
(ulb, flu, ubr) —LFR-'F-'L-'"FRF~ (3DJ,GK—28)
—BLFL'B-'LF-'L (KO,MBT —8)
(ulb, flu, bru) —R*F?R-'B?RF?R~'B*R™" (KO,MBT —9)
(ulb, flu, rub) —URU-'L-'UR-'U-'L (DBS,WK —8)
—BU-'F'UB-'U-'FU (DBS —38)
(ulb, luf, ubr) —B?D-'BU?B-'DBU?B (GK—9)
(ulb, luf, bru) —FL™'B2L-'F2LB?L-'F2LF (DBS —11)
—BD-'B*D-'F?DB?D-'F?D*B~* (KO—11)
(ulb, luf, rub) —BRDR-'U?RD-'R-'U?B™" (AHF —10)

(ii) Two 2-Cycles. The easiest known processes for producing
many of these come from using two of the 3-cycles given above.
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Those are the cases for which no process is listed. It is surprising
to find that so many are produced by inverses and reorientation of
others. All of the 54 possible cases can be produced by inverses
and/or reorientation of the 18 listed below.
(ulb, urf)(ufl, ubr) —RLU?R-'L-'F'B-'U?FBU?
(N.J. Hammond, BCS — 11)
—R2F?B?L2DR*F?B?L?U (R. Walker —10)
(ulb, fur)(ufl, bru) —L-'FD?F~'LUL-'FD?F-'LU"" (AHF —12)
(ulb, rfu)(ufl,ubr) —L'U-'LU-'L-"ULU-'L'ULU-'L'UZL
(AHF —15)
(ulb, urf), (ubr, flu)_ —B-'U-'BU-'BUB?UB?U?B-'U? (MBT—12)
(ulb, fur), (ubr, flu)_ —R-'U-'RU-'R-'U?RBU*B-'U-'BU-'B~'U?

(AHF — 15)
(ulb, rfu), (ubr, luf)_ —F~'L-'FR-'F-'LFR-'D-'RU’R-'DRU?R"!

(AHF — 16)
(ulb, ubr)(urf, ufl) —(RU-'LD2L-'"UR-'U?)? (AHF — 16)
(ulb, bru)(urf, flu) —B(LUL-'U~)*B~ (DBS — 14)
(ulb, rub)(urf, luf) —(RU-'F'D?FUR-'U?)? (AHF — 16)

(ulb, ubr)(urf, flu) —
(ulb, ubr)(urf, luf) —FU2BD?B-'U?F-'UFU-'BD?B-'"UF-'U-!
(AHF — 16)
(ulb, bru)(urf, luf) —
(ulb, ubr), (urf, luf)_ —R-'F'RL?B'R-'BL?*FB-'RB = (MBT —12)
(ulb, bru), (urf, ufi)_ —
(ulb, rub), (urf, flu)_ —
(ulb, ubr), (urf, ufl)_ —
(ulb, ubr)  (urf, flu)_ —
(ulb, bru), (urf, flu)_ —

(iii) Twists. Reorientations and inverses reduce the number of
possible cases here to five.

(ulb), (ubr)_ —L(U2LB-'D?BL-")2L
(E. Rubik & WK — 13)
(ulb), (urf)_ —(U?BR-'D*RB-")? (E. Rubik & WK — 12)
(ulb), (ubr), (urf), — U2LF-'L?FLF-'L2FU?BLB-'L~"
(MBT —14)
(ulb), (ubr), (urf)_(ufl)_ —L-'FD?LF2D~'FU?F-'DF2L~'D?F~'LU?
(MBT — 16)

(ulb), (ubr)_(urf), (ufl)_ —L(FU-'RUR-'UF~'U~")’L~'(BCS — 18)
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Up-Face Edge Permutations

(i) One 3-Cycle. Reorientations and inverses reduce these to four
cases.

(ub, uf, ur)—R2U-'FB-'R?F'BU'R? (MBT & WK—9)
(ub, uf, ru) —RD?L?BL?D?R?FR (R. Walker —9)
(ub, fu, ur) —L-'B-'R-'URBLFU-'F~ (MBT —10)

—L'"RUR-'U-'LR-'FRF~" (O. Pretzel —10)
(ub, fu, ru) —B-'U-'BLFRUR'F-'L~" (MBT —10)

(ii) Two 2-Cycles. Reorientations and inverses reduce these to
nine cases. In many cases, nice solutions are not known.
(ub, uf)(ur, ul) —RLU?R-'L-'F'B-'U*FB (WK—10)
(ub, ufi(ur,lu) —
(ub, fu)(ur, lu) —
(ub, uf), (ur, lu), —F'U-'L'"U?LFURU?R"! (3DJ —10)
(ub, ur)(uf,ul) —F?B?D-'L2F?B?R*F*B*DF*B?
(R. Walker & 3DJ — 12)
—F[U,R]F'B[L,U]B (DBS—12)
(ub, ru)(uf,ul) —RBUB-'U-'R?F-'U-'FUR
(D.E. Taylor & 3DJ — 11)
(ub, ru)(uf,lu) —FBR(U?B?)*R-'F'B™" (DBS—12)
(ub, ur), (uf,ul), —
(ub, ur), (uf, lu), —

(iii) Flips. There are only three different cases.

(ub), (ur), —B-'U?B2UB-'U-'B-'U2FRBR-'F-!
(MBTC —13)
(ub), (uf), —U-'"FR-'UF-'RL-'UB-'RU-'BR-'L

(F.Barnes & BCS —14)
(ub), (ur) (uf),(ul), —R?B?R?U?RL'BLR'U?R?B?R*U
(MBT —14)

Other Short Up-Face Processes:
(ulb, ubr)(ub, ur)— F-'UBU-'FUB-'UBU?B-'  (3DJ & MBT — 11)
(ulb, rub)(ub, ul)— R—'URU?R'L-"URU-"LU? (J. Trapp — 11)
(ulb, rfu)(ub, ul)— FRUR-'"F2LFL2ULU"" (GK—11)
(ulb, urf)_(ubr), (ub), (ur, uf), — URBUU-'B-'R™"

(F. Barnes & BCS — 7)
(ulb, ubr), (urf, luf)_(ub, ur, fu)— FURU-'R™'F~! (DBS —6)
(ulb, ubr), (urf, luf)_(ub, lu, fu)— BLUL"'U~'B™" (DBS —6)
(ulb, urf) _(ubr, flu)_(ub, uf, ur)— FUF-'UFU2F- (J.Trapp—7)
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(ulb, flu, ubr)(ur), (uf), — R-'U2R:UR-"U-'R-"U2FRF-"

(MBTC — 13)
(ulb), (ubr)_(ub), (ur), — B°RFBR-'B~'RF-'R?B2URU-'R""
(MBT — 14)

(ulb), (ubr), (urf), (ub, ur, uf)— U2LUL-'ULU?L-" (BCS & KO — 8)
(ulb), (ubr), (urf), (ub, ur, ul)— U2B-'U?BUB-'UB (K. Fried —8)
(ulb), (ubr), (urf),(ub),(ur), — B-'U-'B2L-"'B-"L2U-"L-"U?
(D. Benson — 9)
(ulb), (ubr), (urf)_(ufl)_(ub, ur)(uf, ul) —
FURU-'R-'F-'BLUL-'U-'B"" (MBT—12)
(ulb), (ubr), (urf)_(ufl)_(ub, fu, ur)— F(URU-'R-")?F-' (DBS — 10)
(ulb), (ubr), (urf)_(ufl)_(ub, fu, lu)— B(LUL-'U")?B-* (DBS — 10)
(ulb), (ubr)_(urf), (ufl)_ — (FUF-'UFU2F~)? (J. Trapp — 11)

Corner Processes in (U, R).

(i) Single 3-Cycle. A single 3-cycle of corners is not possible —
see Exercises 7.5-1 & 2.

(ii) Two 2-Cycles.

(ulb, bru)(urf, dfr) —(URU-'R-")? (DBS —12)

(ulb, drb)(ubr, rfu) —(UR-'U-'R)? (DBS —12)

(ulb, fur), (ubr, luf)_ —U?RU?R?U-'R?U-'R-'UR'UR (MBT—12)

(ulb, fur), (ubr, flu)_ —R-'U~'RU-'R'U?RURU?R-'U'RU'R'U
(AHF — 16)

(iii) Twists.

(ulb), (ufl)_ — RUR-'URU?R-'U?R'"U-'RU-'R-'U?RU?* (AHF — 16)

Edge Processes in (U, R).

(i) One 3-Cycle.

(uf, uf, ul)— RUR'URU?R'U-'R-'U'RU-'R-'U’RU  (AHF — 16)

(ii) Two 2-Cycles.

(ub, uf)(rb, rf) — (U?R?)* (DBS — 6)

(iii) Flips. No flips of edges are possible — see Exercise 7.3-4.

Other Short Processes in (U, R).

(ulb, ubr), (urf, frd)_(ub, ur, fr)— URU-'R™" (DBS —4)
(ulb), (ubr), (urf)_(frd)_(ub, fr, ur) — (URU-'R")? (DBS —8)
(ulb)_(ubr), (urf)_(ufl),(rf, lu, fu)(rb, ru, bu)— U~'R?U?R-'U?R?

(? —6)
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Other Short Corner Processes.

(urf, ulb)(dIf, drb) — (R2U2F2)s (A.J. Adamyck & WK — 18)
(ufl, rub, frd)— LD-'B2DFD-'B2DF-'L"" (AHF —10)
(ufl, ubr, dfr)— D-'F-'R-'D?RFU?F-'R-'D?RFU2D (AHF — 14)
(ulb), (ubr)_(urf)_(ufl)_(dbl)_(drb), (dfr), (dIf), — (LR2F2B-")*

(MBT — 16)
Other Short Edge Processes.
(ub, db)(uf, df) —F?R2L.2B2Rz2L.2 (DBS & WK — 6)
(uf, df), (ur, dr), —FUF2U'R-'F-'U-'R?UR (MBTC —10)
(ub, df)(uf, db) —RL-"U2D?R-'LF?B? (DBS —18)
(ub, uf, df) —F?RL-'U?R-'L (T.Varga & K. Fried — 6)
(uf, ru, fr) —RU'R-'F'L'B-'U'BLFRU?R'" (GK—13)
(ul,rb, fd) —U2DFDBR-'B-'D'F-'U'RU-'D-' (GK—13)
(ur),(dr),(ul),(dl), —F?B?LF?UD-'R?BR?L?F-'L2U-'DB?R""

(MBT — 16)

Many other processes are given in the exercises. In particular, Su-
pergroup processes are in the solution to Exercise 6.7-1 and Pretty
Patterns are in the solutions to exercises at the end of Section 4
and Section 6 of Chapter 6.



APPENDIX B
SOLUTIONS TO EXERCISES

CHAPTER 2

Section 1.

211 a)24 b)24 c)6

2.1-2 Five

2.1-3 The corner can only be placed diagonally opposite to its
home position — for example, the UFL piece can only be placed in
the drb location.

Section 2.

2.2-1 Four

2.2-2 a) True b) True c) False

2.2-3 Twenty-four

Section 3.

2.3-1 Edges; /b, Id, bd.
Corners; ldb.

232 a)F b) FDR c) FRU
2.3-3 See Figure C-1.
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B B B B B L
L U0 L /U707 F A
L/uvw/ v _/u /R L v/ u/F /|y
L L/ L/|R L/L /D U
uV |Rl B R
D|F|F |F R D| F| F | R |F]R
ULR) B e VR U
D|F|F |F R D| F| F |R RMG
D F
DIFI|F FUD Bl L|]L |R B
R R R D D U
a) Move F b) Move FDR
D L L
F /L u/u
F/L/u/uUu/Is
F /F /F B
IL//RU
R|U ul|u R
IR/RU
D|F F| D
BB
1V
D |F F| D
R R B
¢) Move FRU
Figure C-1

2.3-4 a) UFL, ULB, UBR, URF

b) df, dl, db, dr

c) FL, LB, BR, RF

d) ufl, ulb, ubr, urf, frd, fdl, drb

e) UL, UB, UR, UF, RF, DF, LF
235 L=FUTF

B=F

D=y~
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CHAPTER 4
Section 1.

4.1-1 The process F'D?F produces the permutation (ufl, rbd) (fdl,
bid) (fl, bd) (rd, Id).

4.1-2 List Notations:

urf — ufl

ufl — ulb

ulb — fur

ubr — frd

bdr — ubr

dfr — bdr

ur —uf

uf —ul

ul —ub

ub —fr

br —ur

dar —br

fr —dr
Cyclic Notation:
(urf, ufl, ulb)_(ubr, frd, drb),
(ur, uf, ul, ub, fr, dr, br)

4.1-3 a) (ulb, ubr), (urf, frd)_(ub, ur, fr)
b) (ufi, ubr, bdr)
c) (uf, df, ub)
d) (ulb)_(ubr) (urf), (rbd)_(ub, br, ur)

414 a) U
b) RF?R-'B*RF?R'B?

c) L'D2LF'UFL'DLF-'UF

Section 2.

4.2-1 a) The permutation of both F?B2L? and R2L?B2F?R? is (urf,
ulb, drb, dif) (ufl, dfr, dbl, ubr) (uf, df) (ul, dl) (ub, db) (fl, fr,
bl, br).

b) The permutation of both (F2R?)? and (R2F?)* is (ufl, dfr,
ubr) (urf, drb, dlif) (fl, fr, br).

c) The permutation of both (F-'D2FU?)? and
U?RDR-'U?RD'R~" is (ufl, ubr, rbd).

d) The permutation of both FR-'F-'R and
U-'RUR-'F-'UFU-" is (ufl, bru)_ (urf, rdf), (uf, rf, ru).
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4.2-2 The permutation of FR is (urf), (ufl, rub, rbd, rdf, dif)_ (uf,
ru, rb, ra, rf, df, If) and the permutation of RF is (dfr), (ufl, rfu, rub,
rbd, dIf)_ (uf, rf, ru, rb, rd, df, If).
4.2-3 Yes. Equal permutations must be identical.

i ) Any process X has only one permutation.

ii ) Equality of permutations is symmetric.

iii) Equality of permutations is transitive.

Section 3.
4.3-1 a)iv; b) vi; ¢) i; d) ii; e) iii; f) v.
4.3-2 a)False; b) True; c) False; d) True; e) False; f) True; g) True.
43-3 a)(B,A),(C,B,A),(D,C,B,A).
b) It is the cycle in reverse order.
c) (B, A) (E, D, C)
d) Write each cycle of the inverse in its reverse order.

Section 4.
44-1 a) 4;b) 105; c) 63; d) 6; e) 2; f) 6.
44-2 ULR'FL'R
4.4-3 The largest order that any process on the cube can have is
1260. It is obtained by a twisted 3-cycle of corners, a 5-cycle of cor-
ners with the opposite twist, a flipped 2-cycle of edges, and an-
other 2-cycle of edges and a 7-cycle of edges, one of which must
also be flipped. The shortest example of such a process is
RF2B-'UB~" which produces the permutation

(dfr, fdl, luf)_ (urf, bid, drb, ubr, bul),

(fu, fd, lu, br,dr, fl, fr), (Ib, ur), (ub, db).
This process was presented by J.B. Butler.

Section 5.
451 (FR™)°
45-2 a)7;b)3;c)2;d)3;e) 12; 1) 8; g) 3.

Section 6.

46-1 Only one permutation will do this. That is the permutation
which flips all twelve edge pieces and otherwise leaves all pieces
fixed. The shortest known process for doing this, attributed to M.B.
Thistlethwaite, is
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F2B2LF?D'UR?BL?R?*F-'L*DU-'B2LFBUDRLFBUD

which takes 26 moves.
46-2 a)l;b)6;¢c)0,2,3,4,5,and 6.
4.6-3 (Uf|)+(Uff)+(rdf)+(Uf)+(ff)+
4.6-4 The permutation for both processes is

a) (ufl,urf)_(rbd, rdf), (uf, rd, rf)

b) (ufl, rub), (urf, frd)_ (uf, ru, rf)

c) (urf,bru), (fdl, frd)_(ur, fd, fr)
4.6-5 (urf, ulb) (dif, drb)
466 [X, Y] =YXY'X'=[Y,X]

Section 7.

4.7-1 The processes
B, =CzA2C2-‘
B,=C,A,C,™
B,=C,A,C,”

where
C,=DR?
C,=UF?
C,=U*FB'U*F

For example
A, =LD2L'ULD?L-'U!
A,=F[URIF'=FURU'R-'F"
A,=BU-'F'UB-'U*FU-'F'U*F

and
B, =U?F-'URU-'R-'FU?=U?F~'[U,R]FU?
B,=U?F?B-'U?FBU-'F-'UB-'U*FU-'FBF?U?
B, =D?R2LD?L-'ULD*L-'R?*D?

472 (XYX1P =(XYX-)(XYX)(XYX)

=XY(XX)Y(X-TX)YX

=XY3X-"
4.7-3 a)X=R;b) X=U-'DF; c) X=UDFU-'; d) X =U*FUR; &) X =
R*D~'; f) X=U-"F?R-'F; g) X=RLD'B~'; h) X=F; i) X=RFD"'; j)
X =RF-.
4.7-4 FRBF-'LFD-'F-'L-'FB-'R-'F-!
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CHAPTER 6

Section 1.

6.1-1 a) Closure Law and Associative Law..
b) All of them.
c) Closure Law.
d) None of them.
e) Closure Law and Associative Law.
f) Closure Law.
g) Closure Law and Associative Law.

6.1-2 All of them.

6.1-3 a) These permutations form a group. This is the set of all
permutations of Up-layer pieces.
b) These form the group of all permutations of pieces of
the Down layer and pieces of the middle layer between the
Up and Down faces.
c) These do not form a group. They do not satisfy either the
Closure Law or the Identity Law.
d) These form a group.

Section 2.

6.2-1 If x and y are combinations of n and m elements respec-
tively from T and their inverses, then x+y can be expressed as a
combination of n+m elements from T and their inverses. Thus the
Closure Law is satisfied. Since the Associative Law is satisfied for
all elements of S, then it is satisfied for all elements of the subset
(T) of S. Let s be any element of T. Then we have s*s~'=1in (T).
Thus the Identity Law is satisfied. Finally if x is a finite combina-
tion of elements in T or their inverses,

X=88,...S,
where s, is either in Tor its inverse isin T, then

Xx'=s t...s,7's,™"

is a finite combination of elements in T or their inverses — that is,
s, is either in T or its inverse is in T — Thus the Inverse Law is
satisfied.

6.2-2 One element of a cyclic group can have order 2 if and only
if the order, n, of the cyclic group is even.

6.2-3 a)1;b)1;c)2;d)2;e)0;f)2; g)4.
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6.2-4 a) FRF'R?
b) i) (FRF'R?)% ii) (FRF'R?)? iii) (FRF'R?).
6.2-5 Ifxandy are in the cyclic group G =(z) then for some inte-
gers n and m we have
x=2z"
=z"

Then we see that y

X+ry=2z"+2"=2

—=ZMtN—=zM«2" =y*X.

6.2-6 The cyclic group (X*) is identical to (X) for all integers, k,
if and only if the order of X is a prime number.

n+m

Section 3.
6.3-1 Twelve
6.3-2 Six. Order 1-1; Order 2-7; Order 3-2; Order 6-2.
6.3-3 If (U? R?) were cyclic, it would have to contain an element
of order twelve. But in the previous exercise it was determined that
no element had order greater than six.
6.34 Let X=(U?R?)? and let Y= (U?R?)%. The permutation pro-
duced by X is
(ufl, ubr, dfr)(ulb, urf, drb)(ul, ur, dr)

and the permutation produced by Y is

(uf, ub)(fr, br).
These permutations are disjoint. Furthermore

UR2=YX"

isin (X, Y). Therefore (U?R?) is contained in (X, Y). Also X and Y
are in (U?R?) so (X, Y) is contained in (U?R?). Thus we have

(X, Yy=(UR?)
which is a cyclic group.

Section 4.

6.4-1 R2L*F2B?U?D?

6.4-2 RL'UD'BF'RL™

6.4-3 R2L*UD'F?2B2UD""

6.4-4 F:B:U-'DF?B2UD™

6.4-5 a. The Slice-squared group is commutative. Thus every

commutator reduces to I, the identity.
b. Eight.
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c. Four.

Section 5.

6.5-1 RUR-'URU?R-'U?R-'U-'RU-'R-'U?RU?

6.5-2 Disregarding corners, edge pieces can be put in place by
using conjugates of [U, R]. There is no need to flip any edges as
their orientation never gets flipped in (U, R). Corners can now be
put in their home locations by using conjugates of [U, R]*. After
the corners are put in place they can be correctly oriented to their
home positions by using conjugates of the twist process of the
proceeding exercise. ’

Section 6.

6.6-1 Since the Associative Law is satisfied for all of G, it is satis-
fied for the subset H of G. Let X be any element of H. Since H satis-
fied the Closure Law then X* is in H for all positive integers, k.
Since G is finite, the order, n, of X must be finite. Therefore, we
have
X"=1

is in H. Also we have

Xn—l =x—1
in H. Therefore both the Identity Law and the Inverse Law are satis-
fied in H. Thus H is a group under the operation, *.

6.6-2 a) (FBRL)®
b) (BFRL)*U?D?
c) FBUDR-'L™'FB
d) (FBRL)}RLFB)?
e) (FBRL)*(FBUD)?

6.6-3 Step 1; Restore the edge pieces FL, RB, FD, RD to their
home positions. There are many ways to do this. For example, let
us restore the pieces in the order they are listed above. To restore
the XY piece, first place the XY piece in the ub location. Then
move the xy location to the rf location — in the rf or fr position.
Move the XY piece to either the rfor the fr position with either the
move F-'U2F or the move RUR-' respectively. Then return the XY
piece to its home position, xy. Step 2: Restore the remaining edge
pieces using the method described in Step 4 of cube restoration in
Chapters 3 and 5. Step 3: Place corners into their home locations
using [F, R]}, [F,R~')3, [U, R]}, [U,R')3, [U, FJ}, and [U, F']°. Step
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4: Correct the orientation of corners using conjugates of the pro-
cess given in Exercise 6.5-1.
6.64 F'D?U%F-'L2D?L?R2U?R?FD2R2F?R2F2R2L2F?L2F2U?D?*R?D?F-!
UzDzF—l L2R2
6.6-5 R~'L*F?B2U?*F?B?R2L2D?*R™"
6.6-6 There are many pretty patterns. An extensive study of these
patterns has been done by Richard Walker. Here are only a few of
them.
a) 4-Bars — (R?F2L?)?
b) Crossbars — R2F2L2R?F?R?
c) Double-cube —
BL-'D2LDF-'D?FD-'B-'F-'RU?R-'U-'BU?B-'UF
d) 2-X — (F?R?)? (B2L?)®
e) 4-U—RLD?R-'L-'FBD?*F-'B~'
f) 4-T— FRBF-'LFDF-'L'FB-'R-'F-
6.6-7 a) This is a subgroup.
b) This is not a subgroup.
c) This is not a subgroup.
d) This is a subgroup.
e) This is a subgroup.
Section 7.
6.7-1 a) URLU?R-'L-'"URLU?R-'L™
b) RL-'FB-'UD-'R-'U-'DF-'BR-'LU
c) L2U?R-'L'"URLUL2B-'FD'URDU-'BF-!

6.7-2 Two thousand and forty-eight.

CHAPTER 7

Section 1.
7.1-1  (uf, df) (ub, uf);
(ub, uf) (ub, df);
(ub, uf) (uf, df) (ub, uf) (uf, df).

7.1-2 a) If P, and P, are odd permutations, then P, can be written
as 2n+1 pair exchanges and P, can be written as 2m+1
pair exchanges. Then P,P, can be written as 2n+1 pair ex-
changes followed by 2m+1 pair exchanges for a total of
2(n+m+1) pair exchanges. Since 2(n+m+1) is even then
P,P,is an even permutation.
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b) Even

¢) Odd
7.1-3 F'UBU-'FUB-'UBU?B!
7.1-4 Let G be a group of permutations and let X be an odd per-
mutation in G. Let A be the subset of even permutations in G. Then
foreach Yin A, XY is an odd permutation in G. Thus the number of
odd permutations is equal to or greater than the number of even
permutations. Similarly, if B is the subset of odd permutations in G,
then for each Z in B, XZ is an even permutation in G. Thus the
number of odd permutations cannot be greater than the number of
even permutations. They must be equal. Thus, exactly half the per-
mutations in G must be odd.

Section 2.

7.2-1 Since all edges have been restored, the permutation of
edge pieces is even. Therefore the permutation of corner pieces is
also even. Five corners remain to be restored. The even permuta-
tions of five elements are of the form either of a 5-cycle or of a 3-
cycle or of two 2-cycles or the identity. Thus there are four possi-
ble cycle structures.

7.2-2 Any commutator produces an even permutation of edge
pieces.

7.2-3 Inthe Slice group, the corner pieces can be used as a refer-
ence for the orientation of the other pieces of the cube. Thus, with
the corner positions fixed, each quarter turn of a slice produces an
odd permutation of edge pieces and a single exchange of an op-
posing center piece pair. Since opposite center pieces always
must remain opposite, they, as a pair, can be considered as a sin-
gle piece with two possible orientations in any location. Both
“spot” and “solid” patterns produce the identity permutations on
edge pieces. To produce this identity then requires an even num-
ber of slice quarter turns, which in turn implies an even permuta-
tion of center piece pairs. There are exactly three even permuta-
tions of the three center-piece pairs.

For each permutation of the center-piece pairs, we must deter-
mine how many orientations are possible. A center-piece pair has
two orientations attained by flipping the piece end-for-end. The
permutation of such a flip is a single pair exchange of the two cen-
ter piece facelets. But again a quarter turn of a single slice proé-
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duces an odd permutation of center-piece facelets. Thus a Slice
group process producing an identity on the edge pieces must also
produce an even permutation of center piece facelets. Thus, for a
fixed permutation of center-piece pairs, the number of flips of cen-
ter pieces must be even. This produces four possible orientations
for the set of three center piece pairs. Thus the total number of per-
mutations of center pieces produced by processes in the Slice
group which leave both corner pieces and edge pieces fixed is
twelve.

7.2-4 Any two disjoint pair exchanges can be expressed as two
3-cycles as follows:
(a, b)(c, d)=(a, ¢, b)(c, b, d).

Any two overlapping pair exchanges combine to form a single 3-
cycle. Thus any even permutation of edges can be written as a se-
quence of 3-cycles. Any 3-cycle of edges can be produced by a
conjugate, X[F, R]1X-', where the process, X, moves the three edge
locations to be cycled into the locations {uf, rf, rd}. Thus, by disre-
garding corners, any even permutation of edges can be produced
by conjugates of [F, R].

To put corners in place without disturbing edges we use

(X[F, R]X-")*=X[F,R]*X""
which produces two disjoint corner pair exchanges. Any 3-cycle
of corners can be produced by
X[F,RIFUIF, RPPU-' X' =(X[F, RI*X~")(XU[F, R]*'U-'X"")

where X is a process which moves the three corners to be cycled
into the locations {urf, flu, bru}. Thus any even permutations of
corners can be produced by conjugates of [F, R] without disturb-
ing edges.

Proper corner twists can be achieved by choosing the conju-
gate for the previous corner permutations carefully. However, they
can also be produced by conjugates of

[F,RI2L[F, R]-2L-" =[F, RJ*(L[F, RIL™").

Section 3.
7.3-1 Three
7.3-2 Four

7.3-3 Each generator of the Squares group leaves every piece
sane. Thus every finite combination of squares will leave every
piece sane.
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7.3-4 Consider the Two-generator group, (U, R). Each of the gen-
erators leaves all edge pieces sane. Thus no finite combination of
moves of the generators can cause any edge piece to be flipped.
7.3-5 8-twist: (LR?*F?B-')*

4-flip: F?B*LF?UD'R?BR?L?F-'L2U'DB?R""

8-flip: (RLFBUD)?

Section 4.

7.4-1 For n=1, the only possible permutation of a single object
in a single location is the identity. The number of permutations
therefore is 1!1=1.

Assume that the number of permutations of (n—1) objects in
(n—=1) locations is (n=1)!=(n—=1)(n=-2) -+ 3-2:1. To find the
number of permutations — that is, rearrangements — of n objects
in n locations choose one location to be the first location. Observe
that there are n possible objects that could be placed in the first lo-
cation. For each choice for the first location, there are (n—1) ob-
jects to be arranged in the remaining (n —1) locations. By our as-
sumption, there are (n — 1)! possible permutations of these (n — 1)
objects in these (n — 1) locations, for each choice of an object for
the first location. Combining the number of permutations for all n
possible choices for the first location we get n:(n — 1)!=n! possi-
ble permutations of n objects in n locations.

By mathematical induction, the assertion is shown to be true for
all values of n.

7.4-2 44,089,920=8!3¢/6

This counts all even permutations of corner locations times the

number of corner twists to produce “sanity” modulo 3.

Section 5.

7.5-1 The brute-force way to solve this exercise is to list all permu-
tations of corner locations formed by rotating the Up and Right
faces. When further turns of the Up and Right faces only produce
permutations which have been produced by processes with fewer
moves then all permutations have been generated and you can
count them. If you do this you will find that the number is 120. To
prove this directly is tricky. Here is one way.

Let us number the corners as follows: ufl=1, ulb=2, ubr=3,
urf=4, dfr=5, and drb=6. Then the permutations of the process
U, in cyclic notation is )
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(1,2,3,4)
and the permutation of the process R in cyclic notation is

(6,5, 4, 3).
Consider all possible pairs of the corners, ij, without regard for
order. We have

15=65/2
such pairs with i different from j. We consider ij and ji to be the
same pair so we will always write it with i<j. We group these pairs
into five sets of three pairs each, as follows:

A= {12, 35, 46
B= {16, 23, 45)
C= {15, 26, 34}
D= {14, 25, 36)
E= (13, 24, 56}

As we did with the pairs, we again consider these as unordered
sets, not as ordered triples.
Now observe that the process U moves the set A onto the set
B. That is
12 —23
35 —45
46 — 16
Further examination shows that the process U actually permutes
the sets A, B, C, and D so that we have the permutation
(A, B, C, D).
The process R causes the permutation
(8,C,D,E).
Thus we can see that every process in (U, R) produces a permuta-
tion of the sets A, B, C, D, and E. Furthermore, for every X and Y in
(U, R), the permutation produced by XY is the same as the permu-
tation produced by X followed by the permutation produced by Y.
We now must show that if X and Y are two processes in (U, R)
which produce the same permutation of A, B, C, D, and E then they
must be equivalent processes in (U, R). If X and Y are any two pro-
cesses in (U, R) then for some process Z we have
XZ=Y.
If X and Y produce the same permutation of A, B, C, D, and E then 2
must produce the identity permutation on A, B, C, D, and E. We now
show that if Z produces the identity on A, B, C, D, and E then it
must produce the identity on the corner locations in (U, R). To do
that, we suppose the i'" corner moved to the j*" location. For one of
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the sets A, B, C, D, or E, we have ij as one of the pairs — disregard-
ing order. Therefore it must move to itself and we see that the j*
corner must move to the i location. But in a second of the sets, A,
B, C, D, and E, we have ik and jm while in a third we have jk and in
with n#m. But in the second set we must have the k™ corner ex-
changing with the m™ corner, while in the third set the k™ corner
must exchange with the n™ corner. This contradiction shows that
our assumption that some i* corner moved to the j" location must
be false. Thus Z must produce the identity on the corner locations
in (U,R). Thus X and Y both produce the same permutation on the
corners of (U, R).

This shows that the number of permutations of corner locations
produced by processes in (U, R) is not greater than the number of
permutations of A, B, C, D, and E. We saw in Exercise 7.4-1 that the
number of permutations of five objects in five locations is 5! =120.
Thus there are no more than 120 permutations of corner locations.

To show that there are at least 120 such permutations, we first
see that we can place any of the six corners in the ulb location. Any
of the remaining five can be placed in the ufl/ corner, if it is not al-
ready there, by a process of the form U-'RU. Then any of the re-
maining four can be placed in the urf corner by rotating the Right
face. This produces at least 120 =6-5-4 different permutations.

Thus we see that the total number of permutations of corner lo-
cations produced by processes in (U, R) is 120.

7.5-2 We first show that b) and c) are equivalent.

We showed in the previous exercise that any three corner loca-
tions can be moved by a process in (U, R) to the ulb, ufl, and urflo-
cations. Hence if any single 3-cycle of corner locations were pro-
duced by a process in (U, R) then a conjugate of that process
would produce a 3-cycle of the locations, ulb, ufl, and urf. Then a
quarter turn of the Up face would restore two of those corners to
their home locations and produce a 2-cycle of the other two Up-
face corner locations. Thus we have shown that ¢) implies b).

Similarly if any 2-cycle of corner locations were produced by a
process in (U, R) then one conjugate of that process would pro-
duce a 2-cycle of the locations, ulb and ufl, and another conjugate
would produce a 2-cycle of the locations, ufl and urf. Letting one
of these conjugates follow the other would then produce a 3-cycle
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of the locations, ulb, ufl, and urf. Thus we have shown that b) im-
plies ¢).

We now show that a) implies b) — again by showing that NOT b)
implies NOT a). We have observed that any three corner locations
can be moved by a process in (U, R) to the locations ulb, ufl, and
urf. Thus there are at least 120 permutations. The same argument
with the cube reoriented so as to exchange the Up face and the
Right face and then returned, shows that any three corner loca-
tions can be moved to the locations rdf, rbd, and rub. Thus if there
is a process in (U, R) which produces a single 3-cycle of corner
locations, then a conjugate of that process will produce a 3-cycle
of the locations, rdf, rbd, and rub, leaving the other locations in
place. Thus for each of the 120 ways that corners can be placed in
the ulb, ufl, and urflocations there would be at least three ways to
place corners in the rdf, rbd, and rub locations. Thus there would
be at least 360 permutations of corner locations. Hence we see
that a) implies b).

To show that b) implies a) we will show that NOT a) implies
either NOT b) or NOT c). We have seen that there are 120 ways to
move the six corner locations of (U, R) to the locations, ulb, ufl,
and urf. If there are more than 120 permutations of corner loca-
tions in (U, R) then there are two processes, X and Y, in (U, R)
which move the same corner locations to ulb, ufl,and urfbut move
different corner locations to rdf, rbd, and rub. Then the process
XY-' will leave the three corners which were moved by X to ulb, ufl,
and urfin their home locations. However the other three corners —
which X moved to rdf, rbd, and rub — are not left in their home lo-
cations by XY-'. But any permutation other than the identity of
three objects in three locations is either a single 3-cycle or a sin-
gle 2-cycle. Thus we have either NOT b) or NOT c). This completes
the proof.

7.5-3 14,400

Section 6.

7.6-1 a) Any even permutation of corners can be produced by
using conjugates of
(UR2U-"'L?)2.
Any odd permutation of corners can be reached from any
other odd permutation in the same way. Thus any permuta-
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7.6-2

7.6-3

Solutions to Exercises

tion of corners is possible. There are 8! such permutations
of the eight corners.

Any permutation of the eight edge pieces on the Up and
Down faces can be produced without affecting the corners
by conjugates of the process

(U?R?)°.
For each of the corner permutations, there are 8! such per-
mutations of the Up and Down-face edges.

Any even permutation of the middle-layer edge pieces
can be produced without effecting the Up and Down-face
pieces by the processes R2UD-'F2U-'D and R2U-'DB2UD".
There are 24 permutations of the four middle-layer edges,
half of which are even and half of which are odd. If the per-
mutations of the Up and Down-face locations is odd or even
then the permutations of the middle-layer edges must also
be odd or even respectively. Since, in the middle-layer
edge permutations every odd permutation can be reached
from any other odd permutation by an even permutation,
then for each permutation of the Up and Down-face pieces
there are 12 permutations of the middle-layer edges.

Thus the total number of permutations in (U, D, R?, L?, F?,
B?) is (8112
b) The process U-'DR?UD™" in (U, D, R?) has the same
affect on the Up and Down faces as the process F? had in
(U, D, R?, L2, F?, B?). In a similar way we can produce the
same effect as L? and B? on the Up and Down faces. Thus
we have the same permutations of the Up and Down-face
pieces in (U, D,R?) as in (U, D, R?, L?, F?, B2). However the
only possible permutations of the middle layer edges are
the identity and (fr, br). Since an odd permutation of Up and
Down-face pieces must go with an odd permutation of the
middle layer and an even with an even, there is only one ,
middle-layer permutation for each Up and Down-face per-
mutation. Thus the order of (U, D, R?) is (8!)%

a) 2%0.315.5%.72-11 = 519,024,039,293 878,272,000
b) 2#-315:5%72:11 = 2,125,922,462,947,725,402,112,000
a) |U?, Rf|=12=223

b) |U, R, D| = 159,993,501,696,000 = 2!4-31%-5%.7

¢) |uz, R, D?|=96=253
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d) |U, R, F|=170,659,735,142,400 = 2'¢-3'2.52.72
e) |Uz, Re, F2|=2,592 = 25-34

f) |Uz Re, F2, B2|=165,888 =2'"-34

g) Uz, R, F2, B?, 12| =663,552 =234

h) |U?, R, F?, B2, L2, D?| =663,552 = 21-3¢

i) U, R, L2, F2, B?|=6,502,809,600 = 2'6-3+52.72

764 a) lf x andy are in C then for every g in G we have
(x+y)*g=x+(y*g)=(g+y)*x=g*(y*x)=g*(x+y).
Hence (x+y) is in C and the Closure Law is satisfied. The
Associative Law is satisfied for all subsets of G. The iden-
tity is in C since the identity element commutes with every
element of G by the Identity Law for G. To show that the in-
verse of each element in C is also in C, consider any ele-

ment x in C. We have

X"'*g=(g7'*x)"' =(x+g~")"' =g-x~
and therefore x~' is in C. Hence C is a subgroup of G.
b) There are only two elements in C, the identity and the
permutation which flips every edge piece of the cube in
place and leaves all the corners fixed (See Exercise 4.6-1).

CHAPTER 8

Section 1.

8.1-1 (U,R*UD'F?U~'D, RDR-'[U,L]RD-'R,FR-'F-'RF-'U-'F)
8.1-2 (R*UD-'F?U-'D,F?UD-'L?U'D,
R-'FD-'RF-'DU-'RB-'DR-'BUD')

8.1-3 Each of the generators leaves all the pieces sane.

8.14 The Magic Domino can perform exactly the processes U, D,
R?, L2, F?, and B2 The permutation of the Up and Down faces pro-
duced by any process on the cube is identical to the permutation
produced by that process on the Magic Domino. Thistlethwaite
has shown that any permutation in (U, D, R?, L?, F?, B2) can be re-
stored in no more than 32 moves — see Table 8.1-1. This number
might be able to be lowered by ignoring the middle layer but
would certainly not be increased.

8.1-5 a) G,=(U,R'UR,BUB-',LUL"",FUF-',RUR"")
b) Gg= (U. R-'UR, BUB-', DLUL'D"', D?*FUF-'D?,
D-'RUR-'D)
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¢) G;=(U,R'UR,BUB™")

d) G,=([LDL™, U], [F-'D?F,U]) fori=0,1,2,3.

) Gy=([LD?L-'F~'D?F, U'], R[LD?L-'F-'D?F, U?]R"")
8.16 True
Section 2.

8.2-1 First, every element, x, in G is in at least one right coset, in
particular, in the coset Hx.
Let zbe in both Hx and Hy. Then for some h, and h,in H we have
h,x=z=h,y.
Now for every h,x in Hx, we have
h,x=h;h,"h,x=h;h,"'h,y
and thus hyx is in Hy. Similarly for every h,y in Hy, we have
h,y =h;h,'hy =hsh,™'h,x
and h,y is in Hx. Thus we see that if Hx and Hy are not disjoint then
they are identical.

8.2-2 If H is afinite subgroup of the group G, then, for each right
coset, Hx, of H, the number of elements in Hx is the same as the
number of elements in H. To see this we need only pair-up the ele-
ments
h — hx

and observe that h,x =h,x if and only if h, =h,. Thus every coset of
H has the same number of elements. We saw in the previous exer-
cise that all the cosets were disjoint. Therefore, if G is finite, the
number of elements in G is equal to the number of elements in H
times the number of cosets of H in G. Thus the order of H divides
the order of G.

8.2-3 a) 9,072=876-3°
b) 2,688 =8-7-62°
Cc) 960=5432¢
d) 60=543
e) 81=3*
f) 9,270,405,365,760 =2'°-3°5-7*11
g) 466,560 =2°-3¢-5?

8.2-4 Theindex of H,inH,is 2,048 =2'".
Theindex of H, in H, is 1,082,565 =3*5-11.
The index of H,in H, is 29,400 =2*-3-5*-72,
The index of H,in H, is 663,552 =2"2-3%,
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8.2-5 a) 6,123,600=243"-5*7
b) 2
c) 2
d) 88,179,840 =27-3°57
e) 2,048=2

Section 3.

8.3-1 IfHis anormal subgroup of G and x is an elementin G then
xH=Hx. Thus for every h, in H there is an h, in H such that

x*h, =h,*x.
Therefore we have
x+*h,*x"'=h,,
and xHx™' C H. For every h, in H there is also an h, in H such that
X~'*h,=hy*x™"
or equivalently
h1 =X'h3'x-'

Thus we also have H C xHx™'. The two results together show that
if His a normal subgroup of G then H =xHx"".

Suppose we have xHx™' =H for every x in G. Then for every h, in
H there are h, and h; in H such that

x+*h,*x"'=h,
and
h, =x*hy*x~!
Equivalently we have
x+h,=h,*x
and
h,*x=x+h,.
This shows that
xH C Hy
and
Hx C xH.

Thus we have xH=Hx and H is a normal subgroup of G.

8.3-2 To show that the Closure Law is satisfied for the operation
which combines left cosets, xH and yH, of H we must show that
xH*yH = {z:z=(x+h,)+(y+h,) for some h, and h, in H } is a left coset
of H. Since Hy =yH we have h, in H such that

h,*y=y+h,
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and
(X*h,)"(Y'hz)=X"(h1 'Y)"hz =X"(Y"h3)'h2=(X'Y)"(h3"h2)
Thus ifzisin xH*yH then zis in (x*y)H. Also if z is in (x+y)H then
z=(x+*y)h=(x1)*(y*h)
and we see that z is in xH+*yH. Thus
XH*yH = (x*y)H.

From this equality all the other group criteria follow trivially. Asso-
ciativity follows directly from associativity in the group G. The
Identity Law is satisfied by the identity coset,

IH=H,
since

xH*H=(x*1)H=xH=(1*x)H=H+xH.
The equality
xH +x~'"H=(xx"")H=H =(x""*x)H=x""H+*xH

shows that the Inverse Law is satisfied. Hence the set of left cos-
ets, G/H, is a group.

8.3-3 Let Xbe any element of G and E, be any element of A,. Then
X can be decomposed into two disjoint permutations X, and X,
where X, is the permutation caused by X on the corners and X, is
the permutation caused by X on the edges. No claim is made that
any process exists on the cube which will produce either X or X..
In fact, if they are odd permutations, no such process will exist.
Thus, we have .
XX, =X.
Now consider
XE, X' =(X X)E,(X'X;') =X (X E X)X,

Since X, and X;' are either both odd or both even and E, is even ~
then X.E,X;' is even and in A,. Since X, and X_E,X;' are disjoint
permutations, then we have

Xo(XEXZ") =(XE XX,
and thus we see that

Xo(XE XS)XS =X E X!
isin A,. Thus, using Exercise 8.3-1, we have shown that A, is a nor-
mal subgroup of G.
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8.3-4 Let C be any element of A.. We will show that the mapping
C—CA,
is an isomorphism between A_and A/A,.
To show that this mapping is one-to-one, suppose we have
C,A.=CA,.
Then we have (C,C;")A,=A, and thus C,C;' is in A,. But C, and
C;' both leave all edge pieces fixed and the only element in A,
which leaves all edge pieces fixed is the identity. Thus we have
C.C' =l
and
C,=C.,.
Therefore the mapping is one-to-one. To show that A, is mapped
onto A/A,, consider any element XA,. Since X is in A it produces
both an even permutation of corners and an even permutation of
edges. Let X, be the permutation of edges produced by X but leav-
ing all the corners fixed. This exists since the permutations of
edges and corners are disjoint. Also, since X, is even, X, isin A,,
and X;' is also in A,. Thus we have XX;' in XA,, and XA, =
(XX:')A,. But XX;' is an identity on all the edge pieces and hence
is in A.. Thus the XX;' is mapped onto (XX;')A,= XA,. Therefore
the mapping is onto all of A/A,. We showed in the previous exer-
cise that A, was a normal subgroup and, in Exercise 8.3-2 that for
any normal subgroup such as A, we have
(CgAe)(Cer) = (C1cz)Ae'
Hence the mapping from A_ onto A/A, is an isomorphism.

835 a) (FR?)
b) ((FR)*)
¢) (R*L2UD-'F?B2UD-',RL~'FB-'UD-'RL"")

8.3-6 Forany Xin G, define the mapping, f, from G onto G/A,,
f(X) =XA..

Forany Xand Yin G, since A, is a normal subgroup of G — see Ex-
ercise 8.3-2 — we have

f(X)-f(Y) =XA, YA, =XYA, =f(XY).
Thus fis ahomomorphic mapping of G onto G/A..
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8.3-7 Each permutation X in H, can be decomposed into two dis-
joint permutations X, and X,,, where X is the permutation of the
Up and Down-face pieces and X, is the permutation of the pieces
in the middle layer between the Up and Down faces. Define a 1-1
mapping, f, between the Up and Down-face locations of the cube
and the locations on the Magic Domino such that each location on
the cube corresponds to the same location on the domino — for
example, f(ulb)=ulb on the domino. Then the mapping

X — ' Xof
is a homomorphism of H, onto the Magic Domino.

8.3-8 a) True; b) True; c) False; d) True.
8.3-9 a) No; b) Yes; c) Yes, Index 4.

8.3-10 a) True; b) False; c) True; d) True.
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db,and dr,4,13

UF,UL,UB, UR, FL, LB, BR,
RF, DF, DL, DB, and DR, 4,
13

ufl, ulb, ubr, urf, dif, dbl, drb,
and dfr, 4,14

UFL, ULB, UBR, URF, DLF,
DBL, DRB, and DFR, 4,14

[X,Y],84

{Z:Z has property P}, 146, 150

Special groups
A, 151

A, 151

A,, 151

A, 154

A, 154

A, 154

A, 154

A, 154
G(S),143

G/H, 152

S,, 154

(T), 110
(U,R), 116

X, Y,---), 110
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Alphabetic
Entries

A
Abbreviations, summary of, 4
Abel, Niels Henrik, 155
Adamyck, A.J., 164
Algorithm:

God'’s Algorithm, 157
seeProcess
see Restoration method
Alternating group, 154
Anti-slice, 117
Anti-slice group,117,120-121,
172
facelet patterns of, 121
Assigning cube face names,
10
Associative Law, 108

B
Backface, 10
Barnes, Frank, 162
Benson, David, 159, 163
Berlekamp, Elwyn R.,131,159
Box, see Pretty patterns, spot
Building Block Principle, 26
Butler, J.B., 168

C
Center cubie, 4,5
locations of,5
rotating only a, 122,124,173
Center of agroup, 141, 181
of the Cube Group 88, 141,
181
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Centers-fixed coordinates,
9-12,113-114
Checkerboard, see Pretty
patterns, X
Chief face, 131
Chief facelet, 131
Choosing cube face names,
10
Clockwise:
order of corner facelets, 13
orientation atacorner, 13
twist of a corner cubie, 55,
67,71,133, 161
Closure Law, 107
Colorof aface,5
Commutative, iv, 83
Commutator, v, 84-88,95
equal to the identity, 87
obscured by notation, 87
Y and Z, 85,98, 102-104
Commute, 87
Conjugate, v, 24,89-93
cycle structure of a, 89, 90,
96
use in cube restoration,
24-26,95
Conway, John H., iii, 113,131,
159
Coordinates:
centers-fixed, 9-12,113-114
corner-fixed, 113-114
Corner:
cubicle, 5
cubie, 4,5
— fixed coordinates,
113-114
notation for cubicles, 14
notation for cubies, 14
twistof a,8,55,67,71, 133,
161

Index

Cosets:
group of, 152
left, 150
right, 146
Counter-clockwise, see
Clockwise
Cube:
face names of, 10
number of orientations of,
12
orientation of,9
Cube Group, 109
normal subgroups of,
151-155
order of, 134-136
Cubicles, 3, 4,5, 11
Cubies, 1,3,4, 11
single exchange of, 41-47,
127-128
visible, 3
well-prepared, 32
Cubik games, 61
variations, 62-63
Cycle, 68
determined by x, 69
disjoint cycles, 69
lengthofa, 78
representation for flips, 71
representation for
permutations, 69
representation for twists, 70
structure, 89, 90, 129
Cyclic group, 111

D
Designating cube face names,
10
Diagonal, see Pretty patterns,
diagonal
Disjoint cycles, 69



Index

Down face, 10

E
Edge:
cubicle,5
cubie, 4-5
notation for cubicles, 13
notation for cubies, 13
Equivalence relation, v, 74
Equivalent processes, 73-74
non-trivially, 73
shortest pair of, 73
Even permutations, 126

F
Face names of the cube, 4,10
Facelets, 1,3,4,8, 11
chief, 131
Factor group, vi, 152
Five-generator group, 119,
121,173
Fixed-corner coordinates, 113
Flip of an edge cubie, 8
cycle representation of a,
72,79
Flipped sanity, 131
Four-generator groups, 118
Free group, 109
Freid, Katalin, 163
Frey, Alexander H. Jr., 159
Front face, 10

G

Galois, Evoriste, 155
Generators, 110,112,170
God’s Algorithm, 157
Golomb, Solomon W., 134
Greek cross, see Pretty

patterns, +
Group:

alternating, 154
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center of a, 141, 181

cyclic, 111

definition of a, 107-108

factor, 152

generated by aset, 110

normal subgroup of a, 151

of the Magic Domino, 119,
139, 146, 156, 186

orderofa, 111

preserving some property,
120

quotient, 152

simple, 155

subgroups ofa, 112,120

symmetric, 137, 154

theory, vi, 106, 142

Group of cube permutations:

Anti-slice, 117,120-121,172

Cube Group, 109, 134-137

Five-generator, 119, 121,
173

Four-generators, 118

Four-squares, 119, 140, 181

Slice, 113-116, 156,171,185

Slice-squared, 116, 171

Squares, 119, 134, 140, 144,
175,181

Supergroup, 122-124, 140,
173

Three-generators, 118, 121,
140,172-173, 180, 181

Three-squares, 118, 140,
180, 181

Two-generator, 112,
116-117,134,137-138,
163,176-179

Two-squares, 112-113, 140,
156,180

Up-face, 109, 160-163

Guy, Richard K., 131,159
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H

Hammond, Nicholas J., 161
Hofstader, Douglas R., 158
Home location, 4,8
Home position, 4,7,8
Homomorphism, 156
Homomorphic mapping, 156,

185

|
Identity, 74
element, 76, 108
group, 143,144
Law, 108
permutation, 74
process,v, 74
shortest non-trivial, 73,77
symbol for the, 76
Index, of asubgroupina
group, 148
Insane cube, 134
Interchanges, see Pair
exchanges
Invariant subgroup, see
Normal subgroup
Inverse, v, 22,74-77
definition of an, 22,75, 108
Law, 108
notation for, 18,22,76, 108
ofacycle,77
of aninverse, 76
permutation, 75
Principle of,22
Principle of Partial, 22
process, 22,75
Isomorphism, vi, 152
isomorphic mapping, 152,
155,185

J
Jackson, 3-D (Bill), 159

Index

K
Keri, Gerzson, 159

L

Lagrange’'s Theorem, 149
Layer, 3,10
Least common multiple, 80

LCM, 80
Left face, 10
Length:

of acycle,78

of a process, 160
Location, see Cubicle
Logical Games Inc., iii
Lucky case, 43

M
Magic Cube, iii, iv, 1
Magic Domino, 119-120, 139,
146,156, 186
group of the, 119, 139, 156,
186
number of moves to restore,
146
order of the group of the,
139
Maximum:
number of moves needed to
restore a cube, 145,
157-158
order of a process, 80
Measles, see Pretty patterns,
spot
Minimum number of moves to
restore a cube, 64,142,
157-158
Miscellaneous subgroups of
the Cube Group, 118-119
order of, 140, 180-181
Movement of cubies, 2,5
notation for, 14-15,18-19



Index

exchange of asingle pair,
41-47,127-128

N
n factorial — n!, 135,137
n-cycle, 68
Nested subgroups, 143
for restoring the cube, 144
Non-commutative, iv, 83
Normal subgroup, vi, 151
Notation, v, 9
for abbreviations, 4,12
for anti-slice moves, 117
for cube diagrams, 15
for cubicles and cubies, 4,
12-14
for face rotations, 4,15-18
forinverse processes, 22
for movement of cubies,
14-15,18-19
for moving the whole cube,
4,19
for slice moves, 113-114
summary of, 4
use of italics, 4,12
use of parenthesesin a
process, 18

o
Odd permutation, 126

Ollerenshaw, Dame Kathleen,

159
One-to-one mapping, 152
Order of a:
Cube Group, 134-136
element, 111
factor group, 148
group, 111
permutation, 80,110
process,v, 80
Orientation, definition of, 11

191

Orientation of the cube, 9-12

based on center cubies, 9,
19

changing of, 11,19

isomorphism of an, 153

number of cube
orientations, 12

terminology of the, 10

also see Coordinates

P
Pair exchanges, 78,125
Parity of flips and twists, 130
Parity of a permutation, 126
Permutation, iv, 65-93, 125-130

cycle representation of, 69

cycle structure of, 89, 90,

129

decomposition of, 126

definition of, 65

even, 126

identity, 74

inverse, 75

list notation for, 65-67

odd, 126

of a process, 65

order of, 80

parity of, 126

shortest in a coset, 147
Piece, see Cubie
Plus, see Pretty patterns, +
Pretty patterns, 115-116,

120-122,171-173

crossbars, 173

diagonal, 121

double cube, 173

4-bar,173

4+,121,172

4-spot, 116,171

4-T,173
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4-U,173
4-Z,120,172
+,121
6+,122,173
6-spot, 116,171
6-2L,121,172
6-X, 115,171
spot, 116
12-flip, 88, 168-169
2-L,121
2-X,173
X,115
Z,121
Zig-zag, 120,172
Pretzel, Oliver, 162
Principle of Building Blocks,
26
Principle of Inverses, 22
Principle of Partial Inverses,
22,49,53,54,56
Process, 18,65
cube movements caused by,
19
commutator, 84
conjugate, 24,89
equivalent, 73
maximum order of, 80
order of, 80
shortest two non-trivially
equivalent,73
which commutes with every
other, 88
Product-preserving mapping,
152

Q
Quarks, 134
Quotient group, see Factor

group

Index

R
Reflexive relation, 74
Reorientation moves, 19
Reorienting the cube, 11
Restoration method, minimum
number of moves for, 142,
145,157-158
Restoration sequence, steps
of,27
Reverse process, see Inverse
process
Right face, 10
Rubik, Ernd, iii, iv, 1, 161
Rubik’s cube, see Magic cube

S
Sane, 131
Scott, Anne, 131
Script initials, 19
Seal, David, 159
Selected corner, 49
Selected cubie, 25,32
Self-conjugate subgroup, see
Normal subgroup
Simple group, 155
Singmaster, David B., 9-10,
159
Slice,113-114
Slice group, 113-115
facelet patterns of, 115
spot subgroup of, 130,
174-175
Slice-squared group, 116
Subgroup, 112,117,120
cosets of, 146, 150
generated by aset, 110
index of, 148
nested sequence of,
143-145
normal, vi, 151



Index

of afinite group, 120
property preserving, 120,
122
Summary of terminology and
notation, 4
Supergroup, 122-124
order of, 140
processes in, 124,128,173
Swaps, see Pair exchanges
Symmetric group, 154
order of, 154,176
Symmetric relation, 74
Szalai, Bela J., iii

T
Target corner, 49
Taylor, Donald E., 162
Terminology, summary of, 4
Thistlethwaite, Morwen B.,
104,144,159
computer of, 105, 160
method for restoring the
cube, 144-145,150
Three-generator groups, 118
order of, 140, 180, 181
restoration of (U, R, F), 121,
172
Transitive relation, 74
Transpositions, see Pair
exchanges
Trapp, John, 162
Tricky six puzzle, 138,176-179
Twist:
cycle representation of, 70,
79
of acorner cubie, 8, 55,67,
71,133,161

193

twisted sanity, 131
also see Clockwise
Two-generator group, 112,
116-117,134,137-138,
163,176-179
edge flips in, 134,176
order of,137-138,176-179
processesin, 116,163,172
restoration of, 117,172
subgroups of, 112,138,179
also see Two-squares
group
Two-squares group, 112-113,
140,156, 180

U
Unlucky case, 44-47
Up face, 10
Use of italics, 12

v
Varga, Tamas, iii, 164

w
Walker, Richard, 161,162,173
Well-prepared corner cubie,
32
Winning Ways, 131
WK — well known, 160
Working corner, 37
Working edge, 39
Working space, 24, 32

Y
Y commutator, 85, 98, 102-104

y 4
Z commutator, 85, 98, 102-104,
130,175



Also read what Scientific American calls “the definitive treatise’’
on Rubik’s Magic Cube:

NOT S ON RUBIK’'S MAGIC CUBE

by David Singmaster

Notes On Rubik’s Magic Cube was written over the period from 1978
to 1981 when the remarkable properties of the cube were first being
appreciated and our understanding codified. As a result, the book gives
the reader the excitement of participating in the development of a new
field. Notes started as a booklet of 30 pages, to which addenda were
added successively. Addendum Number Five is almost as long as the
original work itself. The book is chock-full of amusing anecdotes,
happy phrases, and colorful personalities and is a repository of lore
about the cube.

Notes also presents the Singmaster notation system, the basic con-

cepts of Permutations and group theory, a treatment of simpler sub-

roups of the cube, some open-ended problems, a 200-move solution
or restoring the cube, and a catalog of useful processes.

The cube originally was invented by Ernd Rubik to help students of
industrial engineering develop their three-dimensional abilities. Frey
and Singmaster’s Handbook Of Cubik Math helps readers develop their
mathematical abilities, using the cube. David Singmaster’s Notes On
Rubik’s Magic Cube is a backup reference tool on the cube, with a
wealth of additional material for readers whose sophistication may
vary over a wide range.

Hardcover edition ISBN 0-89490-057-9
Paperback edition ISBN 0-89490-043-9

Write for prices.

Available from
ENSLOW PUBLISHERS
Bloy Street and Ramsey Avenue
Box 777
Hillside, New Jersey 07205
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