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Chapter 4 Kinematics in Two Dimensions

IN THIS CHAPTER, you will learn how to solve
problems about motion in a plane.
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Chapter 4 Preview

How do objects accelerate in two dimensions?

An object accelerates when it changes
velocity. In two dimensions, velocity can
change by changing magnitude (speed) or by
changing direction. These are represented
by acceleration components tangent to and
perpendicular to an object’s trajectory.

Y Change speed .

. o éhange direction
(¢ LOOKING BACK Section 1.5 Finding -

acceleration vectors on a motion diagram
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Chapter 4 Preview

What is projectile motion?

Projectile motion is two-dimensional y Parabola
free-fall motion under the influence of Yo /

only gravity. Projectile motion follows a

parabolic trajectory. It has uniform motion o\
in the horizontal direction and a, = —g in §

the vertical direction.
¢« LOOKING BACK Section 2.5 Free fall

Slide 4-4
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Chapter 4 Preview

What is relative motion?

Coordinate systems that move relative > )
to each other are called reference frames. C VAB
: e => : pre—>
If object C has velocity v, relative to a \
reference frame A, and if A moves with @ X
velocity V,p relative to another reference

frame B, then the velocity of C in reference ®
frame B is Vg = Vea + Vag.
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Chapter 4 Preview

What is circular motion?

An object moving in a circle (or rotating)
has an angular displacement instead of a
linear displacement. Circular motion is |
described by angular velocity w (analogous v
to velocity v,) and angular acceleration «
(analogous to acceleration a,). We'll study

both uniform and accelerated circular motion.

w
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Chapter 4 Preview

What is centripetal acceleration?

An object in circular motion is always
changing direction. The acceleration of
changing direction—called centripetal
acceleration—points to the center of the
circle. All circular motion has a centripetal
acceleration. An object also has a tangential
acceleration if it is changing speed.

© 2017 Pearson Education, Inc.
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Chapter 4 Preview

Where is two-dimensional motion used?

Linear motion allowed us to introduce the concepts of motion,
but most real motion takes place in two or even three dimensions.
Balls move along curved trajectories, cars turn corners, planets
orbit the sun, and electrons spiral in the earth’s magnetic field.
Where is two-dimensional motion used? Everywhere!
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Chapter 4 Reading Questions
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Reading Question 4.1

A ball is thrown upward at a 45° angle. In the
absence of air resistance, the ball follows a

Tangential curve.
Sine curve.
Parabolic curve.
Linear curve.

00 ®»
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Reading Question 4.1

A ball is thrown upward at a 45° angle. In the
absence of air resistance, the ball follows a

Tangential curve.
Sine curve.

A
B.

o/ C. Parabolic curve.
D. Linear curve.
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Reading Question 4.2

A hunter points his rifle directly at a coconut that he
wishes to shoot off a tree. It so happens that the
coconut falls from the tree at the exact instant the
hunter pulls the trigger. Consequently,

ne bullet passes above the coconut.
ne bullet hits the coconut.

ne bullet passes beneath the coconut.
nis wasn'’t discussed in Chapter 4.

00 ®»
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Reading Question 4.2

A hunter points his rifle directly at a coconut that he
wishes to shoot off a tree. It so happens that the
coconut falls from the tree at the exact instant the
hunter pulls the trigger. Consequently,

A. The bul

¢ B. The bu
C. The bul
D T
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et passes above the coconut.
let hits the coconut.
et passes beneath the coconut.

nis wasn’t discussed in Chapter 4.
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Reading Question 4.3

When discussing relative motion, the notation

Vag Means

A. The absolute velocity.

B. The AB-component of the velocity.
C. The velocity of A relative to B.

D. The velocity of B relative to A.

E. The velocity of the object labeled AB.

© 2017 Pearson Education, Inc.
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Reading Question 4.3

When discussing relative motion, the notation

-
Vpg Means

A. The absolute velocity.

B. The AB-component of the velocity.
¢/ C. The velocity of A relative to B.
D
E

ne velocity of B relative to A.
ne velocity of the object labeled AB.

© 2017 Pearson Education, Inc.

Slide 4-15



Reading Question 4.4

The gquantity with the symbol w Is called

ne circular weight.

ne circular velocity.

ne angular velocity.

ne centripetal acceleration.
ne angular acceleration.

moow»
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Reading Question 4.4

The gquantity with the symbol w Is called

A. The circular weight.
B. The circular velocity.
¢/ C. The angular velocity.
D. The centripetal acceleration.
E. The angular acceleration.
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Reading Question 4.5

The quantity with the symbol « Is called

ne circular weight.

ne circular velocity.

ne angular velocity.

‘he centripetal acceleration.
ne angular acceleration.

moowp
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Reading Question 4.5

The quantity with the symbol « Is called

A. The circular weight.

B. The circular velocity.

C. The angular velocity.

D. The centripetal acceleration.
¢ E. The angular acceleration.
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Reading Question 4.6

For uniform circular motion, the acceleration

Points toward the center of the circle.
Points away from the circle.

s tangent to the circle.

S zero.

Cow>»
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Reading Question 4.6

For uniform circular motion, the acceleration

' A. Points toward the center of the circle.
Points away from the circle.

s tangent to the circle.

S zero.

OOw
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Chapter 4 Content, Examples, and
QuickCheck Questions
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Motion In Two Dimensions

y Trajectory

= The figure to the right ]
shows a particle
moving along a curved
path—its trajectory—in |

S

the Xy-plane. ' Position vector

= We can locate the )
particle in terms of its £t
oosition VeCtOr ;‘) The x- and ~\-‘—(.:omponents of 7 are simply x and y.

= Like many of the graphs we’ll use in this chapter,
this is a graph of y versus x.

= |tis an actual picture of the trajectory, not an
abstract representation of the motion.

© 2017 Pearson Education, Inc.
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Motion In Two Dimensions

= This figure shows a Y
particle moving from ._
position 7, attime t,to | === e
nosition 7, at a later time
t,.

= The average velocity
points in the direction A7
of the displacement and
IS

The displacement is A¥ = Ax1+ Ay]

The average velocity

points in the direction
N

of Ar.

A7 Ax AyA
Ar At At]

_> —
vavg o
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Motion In Two Dimensions

" The instantaneous velocity y tz;;‘[ft“tﬁgfiﬁ‘;“sze ocity v

1S the limit Of avg as At — 0. curve at ¥
= As shown, the "
Instantaneous velocity
vector Is tangent to the

trajectory. As Azz.—> 0, A7 becomes
= Mathematically: tangent to the curve at 1.
v = hmﬂ d?=dx3—|—d—yf
a—o At dt dt dt
which can be written: x
— ~ ~
V=V 0TV, ]
where:
_dx 4 _dy
v, = ” an Vv, = 0

Slide 4-25
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Motion In Two Dimensions

y

= |f the velocity vector’s angle
@ 1s measured from the
positive x-direction, the
velocity components are:
v, = vcoso

v, =V sin@

v, = Vv cos6 :
Angle 6 describes the
direction of motion.

v, = vsinf
where the particle’s speed is "

V= \/vx2 + vy2

= Conversely, if we know the velocity components, we can

determine the direction of motion: 9 — an-! v
— an

y
Vy
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Acceleration Graphically

The average acceleration of a moving object is defined
as the vector: AT

avg At

QU

The acceleration a points in the same direction as A,
the change in velocity.

As an object moves, its velocity vector can change in two
possible ways:

1. The magnitude of the velocity can change, indicating
a change in speed, or

2. The direction of the velocity can change, indicating
that the object has changed direction.

Slide 4-27
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Tactics: Finding the Acceleration Vector

Finding the acceleration vector

To find the acceleration between N\
. = .o 7 -
velocity v; and velocity vy 1 v

© Draw the velocity vector V. /

® Draw —V, at the tip of V;.

© 2017 Pearson Education, Inc.

Slide 4-28



Tactics: Finding the Acceleration Vector

- - -
® Draw Av =v; — v, <
- - -
= Pet0) av
. . . . -
This is the direction of a. -

O Return to the original motion
diagram. Draw a vector at the
middle point in the direction of
AV; label it a. This is the average
acceleration between v; and Vy.

Exercises 1-4 '

© 2017 Pearson Education, Inc.
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Example 4.2 Through the Valley

EXAMPLE 4.2 | Through the valley

A ball rolls down a long hill, through the valley, and back up the
other side. Draw a complete motion diagram of the ball.

MODEL Model the ball as a particle.

© 2017 Pearson Education, Inc.
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Example 4.2 Through the Valley

EXAMPLE 4.2 ‘ Through the valley

VISUALIZE FIGURE 4.4 is the motion diagram. Where the particle
moves along a straight line, it speeds up if ¢ and ¥ point in
the same direction and slows down if @ and ¥ point in opposite

- . —
a is parallel to v.
Only speed is changing.

Both speed and direction are changing.
a has components parallel and perpendicular to .

© 2017 Pearson Education, Inc.

=i

directions. This important idea was the basis for the one-
dimensional kinematics we developed in Chapter 2. When the
direction of ¥ changes, as it does when the ball goes through the
valley, we need to use vector subtraction to find the direction of
AV and thus of a. The procedure is shown at two points in the
motion diagram.

&l

’.‘—y
i s Ve
.‘—>.

. —
a is perpendicular to v.
Only direction is changing.
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Analyzing the Acceleration Vector

= An object’s acceleration can  This component of @ is changing

be decomposed into the direction of motion.
components parallel and (A
perpendicular to the velocity. =N /0 _

= gis the piece of the “\L
acceleration that causes the o
object to change speed. This component of a 1s changing

S : the speed of the motion.
= qa,lIs the piece of the

acceleration that causes the
object to change direction.

= An object changing direction
always has a component of
acceleration perpendicular to
the direction of motion.

© 2017 Pearson Education, Inc.
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Acceleration Mathematically

= The average acceleration is found from two
velocity vectors separated by the time interval At.

= If we let At get smaller and smaller, the two
velocity vectors get closer and closer.

* In the limit At — 0, we have the instantaneous
acceleration a at the same point on the trajectory
(and the same instant of time) as the
Instantaneous velocity V.

Slide 4-33
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Acceleration Mathematically

= The ﬁgure to the right shows The parallel component is associated
the trajectory of a particle with a change of speed.
mOVing In the X-y plane. y Instantaneous velocity

= The acceleration a is :
decomposed into - E /'\
components ajanda, . "] .

= g is associated with a a
change in speed. Biang,

= a | Is associated with a / The perpendicular
change of direction. Tnsronfgneons — SEpONENt 1§ sl
- _ acceleration with a change of direction.

= a,always points toward the i

“Inside” of the curve because_)
that I1s the direction in which v
IS changing.

Slide 4-34
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Decomposing Two-Dimensional Acceleration

= The figure to the right
shows the trajectory
of a particle moving in
the x-y plane.

= The acceleration a is
decomposed into
components a, and a,.

Instantaneous velocity

o
a;%'\

— —
al a,
/' The x- and y-components
are mathematically more
InStantanCOUS Convenien['

acceleration

= Ifv, and v, are the x- and y- components of velocity,

then v,

dt

ay

© 2017 Pearson Education, Inc.

dv

Y

a, — ——
Yoo dt
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Constant Acceleration

= |f the accelerationd = a,1 + a,] is constant, then the two
components a, and a, are both constant.

* |In this case, everything from Chapter 2 about constant-
acceleration kinematics applies to the components.

= The x-components and y-components of the motion can
be treated independently.

= They remain connected through the fact that At must be
the same for both.

X = Xx; + v, Az‘—l—%ax(At‘)2 Ye =¥tV Al‘—l—%cxy(Al‘)2

Ve = Vi, T a, At vg, = vy, + a, At

Slide 4-36
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QuickCheck 4.1

A particle undergoes acceleration @ while moving from
point 1 to point 2. Which of the choices shows the

velocity vector v, as the object moves away from point
27

Slide 4-37
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QuickCheck 4.1

A particle undergoes acceleration @ while moving from
point 1 to point 2. Which of the choices shows the

velocity vector v, as the object moves away from point
27

’M M
a /
Av=a At
v,=v, + Av

Slide 4-38
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Projectile Motion

Baseballs, tennis balls, and Olympic divers all exhibit
projectile motion.

A projectile is an object that moves in two dimensions
under the influence of only gravity.

Projectile motion extends the idea of free-fall motion
to include a horizontal
component of velocity. B Sy

+* between bounces is

Alr resistance is | ”.“ a parabola.
neglected. . o

Projectiles in two
dimensions follow

a parabolic trajectory
as shown in the photo.

Slide 4-39
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Projectile Motion

= The start of a
projectile’s motion
IS called the launch.

= The angle 6 of the
initial velocity v,
above the x-axis is
called the launch angle.

= The initial velocity vector can be broken into
components.

Parabolic
trajectory

Voy — VoCOS 0

Vogy = VpSIno

¥

where v, Is the initial speed.

Slide 4-40
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Projectile Motion

= Gravity acts downward

= Therefore, a projectile ¢
has no horizontal
acceleration.

Parabolic
trajectory

= Thus:
a, =0
(projectile motion)
a,= —g
= The vertical component of acceleration a, is -g of free
fall.

= The horizontal component of a, is zero.
= Projectiles are in free fall.

Slide 4-41
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Projectile Motion

= The figure shows a
projectile launched
from the origin with
Initial velocity:

Vo = (9.87 + 19.67) m/s

= The value of v, never
changes because
there’s no horizontal
acceleration.

= v, decreases by 9.8 m/s
every second.

© 2017 Pearson Education, Inc.

v, decreases by
9.8 m/s every second.

v, 1S constant
throughout the motion.

y %

19.6

Velocity vectors are T

shown every 1 s. L

Values are in m/s. When the particle returns
to its initial height, v, is
opposite its initial value.
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Example 4.4 Don’'t Try This at Home!

EXAMPLE 4.4 | Don’t try this at home!

A stunt man drives a car off a 10.0-m-high cliff at a speed of
20.0 m/s. How far does the car land from the base of the cliff?

MODEL Model the car as a particle in free fall. Assume that the car
is moving horizontally as it leaves the cliff.

Slide 4-43
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Example 4.4 Don’'t Try This at Home!

EXAMPLE 4.4 | Don’t try this at home!

VISUALIZE The pictorial representation, shown in FIGURE 4.12, is
very important because the number of quantities to keep track of is
quite large. We have chosen to put the origin at the base of the cliff.
The assumption that the car is moving horizontally as it leaves the
cliff leads to vy, = vy and vy, = 0 m/s.

X

X0s Yo» Lo
Vo V(}y

e

Known Find
Xo=0m vy, =0m/s £,=0s b
vo=10.0m vy, =v,=20.0 m/s

a, = 0m/s’ a,=—g y;=0m

Slide 4-44
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Example 4.4 Don’'t Try This at Home!

EXAMPLE 4.4 | Don’t try this at home!

SOLVE Each point on the trajectory has x- and y-components of
position, velocity, and acceleration but only one value of time. The
time needed to move horizontally to x; is the same time needed to

fall vertically through distance y,. Although the horizontal and y

vertical motions are independent, they are connected through the X0, Yo, To

time #. This is a critical observation for solving projectile motion Vo Vou

problems. The kinematics equations with a, = 0 and a, = —g are _ >

Xy =X + Vo, (t — Iy) = Vol

— 0 1 _ 1 X1 V1o 2
}71—0—}’0""’03;(11_10)_58(11_10)2—)70_56”12 sl

We can use the vertical equation to determine the time #; needed to 0 : X
fall distance yy: 0
- \/@: \/2(10-0 m) _ L Known Find
Vg 9.80 m/s* Xo=0m vy,=0m/s £,=0s X,

yvo=100m v5 =vy=20.0m/s

We then insert this expression for ¢ into the horizontal equation to o 3 e o
a,=0m/s" a,=—g y;=0m

find the distance traveled:
x; =vofp = (200m/s)(1.43s) =28.6m

ASSESS The cliff height is = 33 ft and the initial speed is
vy = 40 mph. Traveling x; = 29 m = 95 ft before hitting the ground
seems reasonable.

Slide 4-45
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Reasoning About Projectile Motion

Suppose a heavy ball is launched exactly horizontally at
height h above a horizontal field.

At the exact instant that the ball is launched, a second ball is
simply dropped from height h.

Which ball hits the ground first? HBE™

If air resistance is neglected,
the balls hit the ground
simultaneously.

They do so because the
horizontal and vertical
components of projectile
motion are independent of
each other.

Slide 4-46
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QuickCheck 4.2

A heavy red ball is released

from rest 2.0 m above a flat, O O—
horizontal surface. At exactly

the same instant, a yellow ball

with the same mass is fired

horizontally at 3.0 m/s. Which

ball hits the ground first?

A. The red ball hits first.
B. The yellow ball hits first.
C. They hit at the same time.

Slide 4-47
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QuickCheck 4.2

A heavy red ball is released

from rest 2.0 m above a flat,

horizontal surface. At exactly CK
the same instant, a yellow ball

with the same mass is fired

horizontally at 3.0 m/s. Which
ball hits the ground first?

A. The red ball hits first.
B. The yellow ball hits first.
¢/ C. They hit at the same time.

Slide 4-48
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QuickCheck 4.3

A 100 g ball rolls off a table and hits 2.0 m from
the base of the table. A 200 g ball rolls off the
same table with the same speed. It lands at
distance

1.0 m.
Between 1 m and 2 m.
2.0 m.
Between 2 m and 4 m.
4.0 m.

moowy
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QuickCheck 4.3

A 100 g ball rolls off a table and hits 2.0 m from
the base of the table. A 200 g ball rolls off the
same table with the same speed. It lands at
distance

A. 1.0 m.

B. Between 1l m and 2 m.
v'C. 2.0m.

D. Between 2 m and 4 m.

E. 4.0 m.

Slide 4-50
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Reasoning About Projectile Motion

A hungry bow-and-arrow hunter in the jungle wants to shoot down
a coconut that is hanging from the branch of a tree. He points his
arrow directly at the coconut, but as luck would have it, the
coconut falls from the branch at the exact instant the hunter
releases the string. Does the arrow hit the coconut?

= Without gravity, the arrow
would follow a straight line. y

= Because of gravity, the
arrow at time t has “fallen” a
distance Y.gt? below this line.

= The separation grows as
150t?, giving the trajectory

its parabolic shape. i x
Actual trajectory

The distance between
the gravity-free trajectory
and the actual trajectory
. grows as the particle
oo 55 | 2
& falls” 5g2°.

Trajectory
without

gravity \

Slide 4-51
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Reasoning About Projectile Motion

A hungry bow-and-arrow hunter in the jungle wants to shoot down
a coconut that is hanging from the branch of a tree. He points his
arrow directly at the coconut, but as luck would have it, the
coconut falls from the branch at the exact instant the hunter
releases the string. Does the arrow hit the coconut?

= Had the coconut stayed on the tree,
the arrow would have curved under its Y
target as gravity causes it to fall a
distance Y2gt? below the straight line.

=  But %gt? is also the distance the
coconut falls while the arrow is in
flight.

= S0 yes, the arrow hits the coconut!

© 2017 Pearson Education, Inc.

Trajectory
without gravity

s
’
’
s

Actual trajectory
of arrow

1.2
28!

7

X
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Projectile Motion

Projectile motion
For motion under the influence of only gravity.

Model the object as a particle launched  y
with speed v, at angle 0:

_ Parabolic
Mathematically: o trajectory
« Uniform motion in the horizontal > 7

direction with v, = v, cos#.
o Constant acceleration in the vertical A projectile follows a
direction with a,=—g. parabolic trajectory.

e Same At for both motions.

Limitations: Model fails if air resistance is significant.

Exercise 9

Slide 4-53
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Projectile Motion Problems

Projectile motion problems

MoODEL Is it reasonable to ignore air resistance? If so, use the projectile motion
model.

visuaLIZE Establish a coordinate system with the x-axis horizontal and the
y-axis vertical. Define symbols and identify what the problem is trying to find.
For a launch at angle 0, the initial velocity components are v;, = v,cos 6 and

Viy = Vosiné.
soLVE The acceleration is known: a, = 0 and a, = —g. Thus the problem is one
of two-dimensional kinematics. The kinematic equations are
Horizontal Vertical
_ _ 1 2
xp = x; + vy, At ye =it v, At —5g(At)
Ve, = Vi — constant ny = viy =g At

At is the same for the horizontal and vertical components of the motion. Find At
from one component, then use that value for the other component.

Assess Check that your result has correct units and significant figures, is
reasonable, and answers the question.

Slide 4-54
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Range of a Projectile

A projectile with initial speed v, has a launch angle of 4

above the horizontal.

How far does it travel over level ground before it returns to
the same elevation from which it was launched?

This distance Is
sometimes called
the range of a projectile.

Example 4.5 from
your textbook shows:

Vo' sin(20)
g

range =

Trajectories of a projectile launched at
different angles with a speed of 99 m/s.

y (m) Launch angles of 6 and

500 75° 90 _.f?_- give the same range.

400 7 £ Maximum range
300 - s achieved at 45°.
200 -
100 n A s

0

— x (m)

0\ 200 400 600 800 1000

Vo =99 m/s

The maximum distance occurs for 8 = 459,

© 2017 Pearson Education, Inc.
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QuickCheck 4.4

Projectiles 1 and 2 are launched
over level ground with the same
speed but at different angles.

Which hits the ground first? :

Ignore air resistance. 2
A. Projectile 1 hits first.

B. Projectile 2 hits first.

C. They hit at the same time.

D. There’s not enough

Information to tell.

Slide 4-56
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QuickCheck 4.4

Projectiles 1 and 2 are launched

over level ground with the same

speed but at different angles.

Which hits the ground first? :

Ignore air resistance. 2

A. Projectile 1 hits first.
¢/B. Projectile 2 hits first.
C. They hit at the same time.

D. There’s not enough
Information to tell.
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QuickCheck 4.5

Projectiles 1 and 2 are launched
over level ground with different
speeds. Both reach the same
height. Which hits the ground
first? Ignore air resistance.

Projectile 1 hits first.
Projectile 2 hits first.

They hit at the same time.

o0 wp

There’s not enough information
to tell.

Slide 4-58
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QuickCheck 4.5

Projectiles 1 and 2 are launched
over level ground with different
speeds. Both reach the same
height. Which hits the ground
first? Ignore air resistance.

A. Projectile 1 hits first.
B. Projectile 2 hits first.
¢/ C. They hit at the same time.

D. There’s not enough information
to tell.
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Relative Motion

The figure below shows Amy and Bill watching Carlos on
his bicycle.

According to Amy, Carlos’s velocity Is (V,)ca = +5 m/s.
The CA subscript means “C relative to A.”

According to Bill, Carlos’s velocity is (v,)cg = -10 m/s.
Every velocity Is measured relative to a certain observer.
There is no “true” velocity.

Carlos 5 m/
*
Amy l

15 m/s
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Relative Motion

= The velocity of C relative to B is the velocity of C relative
to A plus the velocity of A relative to B.

The first subscript is the The last subscript is the
same on both sides. same on both sides.
I
—— |
(Vx)CB — (Vx)CA + (Vx)AB

The inner subscripts “cancel.”

= If B iIs moving to the right relative to A, then A is moving
to the left relative to B.

= Therefore, (V )AB (V )BA

Slide 4-61
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Example 4.6 A Speeding Bullet

EXAMPLE 4.6 | A speeding bullet

The police are chasing a bank robber. While driving at 50 m/s, they
fire a bullet to shoot out a tire of his car. The police gun shoots

bullets at 300 m/s. What is the bullet’s speed as measured by a TV
camera crew parked beside the road?

MODEL Assume that all motion is in the positive x-direction. The
bullet 1s the object that is observed from both the police car and
the ground.

SOLVE The bullet B’s velocity relative to the gun G is (v,)gg =
300 m/s. The gun, inside the car, is traveling relative to the TV crew
C at (v,)gc = 50 m/s. We can combine these values to find that the
bullet’s velocity relative to the TV crew on the ground is

(v.)pe= (V.)pe + (V) ge = 300 m/s + 50 m/s = 350 m/s

ASSESS It should be no surprise in this simple situation that we
simply add the velocities.
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Reference Frames

= A coordinate system in which an experimenter makes
position measurements is called a reference frame.

In the figure, Object C is
measured In two different
reference frames, A and B.

7 iS the position of C
relative to the origin of A.
7og IS the position of C
relative to the origin of B.
I\ IS the position of the

origin of A relative to the
origin of B.

— o _|_—>
FecB — 'ca™TFAB

© 2017 Pearson Education, Inc.

ObjectCcanbe y
located relative
to A or to B.

Reference frame A

Q¢

b

Reference frame B
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Reference Frames

= Relative velocities are found as the time derivative of the

relative positions. Object C canbe
= 1., IS the velocity of C located relative
relative to A. lodarte b,
- : v
" Vg IS the Ve|0C|ty of C Y C Reference frame A

relative to B.

- . .

= V,g IS the velocity of
reference frame A relative
to reference frame B.

— = +—}
VeB — VAT VAB

Reference frame B

= This is known as the Galilean transformation of
velocity.
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QuickCheck 4.6

A factory conveyor belt rolls at 3 m/s.
A mouse sees a piece of cheese
directly across the belt and heads
straight for the cheese at 4 m/s. What
IS the mouse’s speed relative to the

3 m/s

factory floor? l
A. 1mls Top view
B. 2m/s

C. 3m/s

D. 4ml/s

E. 5m/s
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QuickCheck 4.6

A factory conveyor belt rolls at 3 m/s.

A mouse sees a piece of cheese
directly across the belt and heads

straight for the cheese at 4 m/s. What
IS the mouse’s speed relative to the

factory floor?

A. 1m/s

B. 2m/s Vv

C. 3mils *

D. 4m/s = e N 3 e
vV'E. 5mis

© 2017 Pearson Education, Inc.

3-4-5 right triangle

Top view

M = mouse
B = belt
F = floor
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EXAMPLE 4.7 Flying to Cleveland |

EXAMPLE 4.7 | Flying to Cleveland 1

Cleveland is 300 miles east of Chicago. A plane leaves Chicago
flying due east at 500 mph. The pilot forgot to check the weather
and doesn’t know that the wind i1s blowing to the south at 50 mph.
What is the plane’s ground speed? Where is the plane 0.60 h later,
when the pilot expects to land in Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east
and the y-axis north. The plane P flies in the air, so its velocity rel-
ative to the air A is vp, = 5007 mph. Meanwhile, the air is moving
relative to the ground G at v, = —507 mph.
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EXAMPLE 4.7 Flying to Cleveland |

Chicago

© 2017 Pearson Education, Inc.

EXAMPLE 4.7 | Flying to Cleveland I

SOLVE The velocity equation Vpg = Vs + ¥ag is a vector-addition
equation. FIGURE 4.19 shows graphically what happens. Although
the nose of the plane points east, the wind carries the plane in a
direction somewhat south of east. The plane’s velocity relative to
the ground is

VPG - ‘l_;pA il T}AG - (500? - 50"]\) mph
The plane’s ground speed is
V= \/(vx)PGz + (Vy)PG2 = 502 mph

After flying for 0.60 h at this velocity, the plane’s location (relative
to Chicago) is

x= (v, )pg? = (500 mph)(0.60 h) = 300 mi
¥y = (%)pgt = (=50 mph)(0.60 h) =—30 mi

The plane is 30 mi due south of Cleveland! Although the pilot
thought he was flying to the east, his actual heading has been
tan ' (50 mph/500 mph) = tan !(0.10) = 5.71° south of east.

b d 4 5
vpa Of plane relative to air

Vpg of plane
relative to ground

Cleveland

- g
Vg Of air
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EXAMPLE 4.8 Flying to Cleveland Il

EXAMPLE 4.8 | Flying to Cleveland II

A wiser pilot flying from Chicago to Cleveland on the same day
plots a course that will take her directly to Cleveland. In which
direction does she fly the plane? How long does it take to reach
Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east
and the y-axis north. The air is moving relative to the ground at

?AG — _SOj mph
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EXAMPLE 4.8 Flying to Cleveland Il

EXAMPLE 4.8 ‘ Flying to Cleveland II

SOLVE The objective of navigation is to move between two points
on the earth’s surface. The wiser pilot, who knows that the wind
will affect her plane, draws the vector picture of FIGURE 4.20. She
seesthatshe’llneed (v,)pg = 0, inorderto fly dueeasttoCleveland.
This will require tufning the nose of the plane at an angle 0
north of east, making ¥p, = (500cosf7 + 500sin67) mph.

The velocity equation is Vpg = Vps+V,. The desired heading is
found from setting the y-component of this equation to zero:

(v}.)p(; = (v_‘,)p,\ + (v).)‘.\(; = (500sin0 — 50) mph = 0 mph

50 mph

=5.74°
500 mph ,]

0= sin_l(
The plane’s velocity relative to the ground is then Vpg=
(500 mph) X cos 5.74°7 = 4971 mph. This is slightly slower than
the speed relative to the air. The time needed to fly to Cleveland at

this speed is
300 mi

1= =0.604 h
497 mph

It takes 0.004 h = 14 s longer to reach Cleveland than it would on
a day without wind.

-3 B .
vpa Of plane relative to air

- .
Vg of air

Cleveland

Chicago

I’)PG of plane Slide 4-70
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EXAMPLE 4.8 Flying to Cleveland Il

EXAMPLE 4.8 | Flying to Cleveland 11

ASSESS A boat crossing ariver or an ocean current faces the same
difficulties. These are exactly the kinds of calculations performed
by pilots of boats and planes as part of navigation.

— . .
vpa Of plane relative to air

Vpg of plane .

relative to ground

- .
Vg of air

Cleveland

Chicago
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Circular Motion

= Consider a ball on a roulette
wheel.

= |t moves along a circular
path of radius r.

= Other examples of circular
motion are a satellite in an
orbit or a ball on the end of
a string.

= Circular motion is an
example of two-dimensional
motion in a plane.
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Uniform Circular Motion

The velocity is tangent to the circle.
The velocity vectors are all the same length.

= To begin the study of 3 & .
circular motion, consider a
particle that moves at
constant speed around a
circle of radius r.

= This is called uniform v
circular motion.

= The time interval to
complete one revolution is
called the period, T.

= The period T Is related to
the speed v:
| circumference  2mr

V= = —

1 period T Slide 4-73
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Example 4.9 A Rotating Crankshatft

EXAMPLE 4.9 | A rotating crankshaft
A 4.0-cm-diameter crankshaft turns at 2400 rpm (revolutions per minute). What is the
speed of a point on the surface of the crankshaft?

SOLVE We need to determine the time it takes the crankshaft to make 1 rev. First, we
convert 2400 rpm to revolutions per second:

2400 rev y I min

I min 60 s

If the crankshaft turns 40 times in 1 s, the time for 1 rev is

=40 rev/s

1
T:ESZO.OZSS

Thus the speed of a point on the surface, where r = 2.0 cm = 0.020 m, is

T  0.025s

=5.0m/s

v:
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Angular Position

= Consider a particle at a distance Y
r from the origin, at an angle 6

from the positive x-axis. . ,
This 1s the particle’s

= The angle may be measured in angular position, _ - Particle
degrees, revolutions (rev) or _~ Arc length
radians (rad), that are related P,
. : S
by: _
1 rev = 360° = 27 rad o
= |f the angle is measured in Center of *

radians, then there is a simple circular motion
relation between ¢ and the arc

length s that the particle travels

along the edge of a circle of

radius r:

s=rb (with 6 in rad)

© 2017 Pearson Education, Inc.
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Angular Velocity

. . y Position at
= A particle on a circular path ‘ time £, = £, + At
moves through an angular | |
. _ The particle has r ®
displacement A9 = 6; - 6, g il dlis-
in a time interval At =t —t,.  placementade, -
_ _ e osition
= |n analogy with linear 6; Ab " at time 1,
motion, we define '
_ A0 A X
average angular velocity = A; 0,

= As the time interval At becomes very small, we

arrive at the definition of instantaneous angular

velocity: N
w= lim — = —

= angular velocit
Ar—0 At dt ( 8 Y)
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Angular Velocity

= Angular

rate at which a particle’s

angular

= As shown in the figure, w
can be positive or negative,

and this

velocity w Is the

position is changing.

follows from our

definition of 6.
= A particle moves with

uniform circular motion If o 1S constant.

= wandd

© 2017 Pearson Education, Inc.

are related graphically:

w = slope of the #-versus-f graph at time ¢

w 1s positive for a
counterclockwise
rotation.

w is negative for a
clockwise rotation.

0; = 6, + area under the w-versus-f curve between ¢, and #;
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QuickCheck 4.7

This Is the angular velocity graph
of a wheel. How many
revolutions does the

wheel make In the
first 4 s?  (rev/s)

2_

1_

0 | T T — 1 (S)
0 1 2 3 4

mooOwe»
® o AN PR

Slide 4-78
© 2017 Pearson Education, Inc.



QuickCheck 4.7

This Is the angular velocity graph
of a wheel. How many

revolutions does the w (rev/s)
wheel make in the
first 4 s? 2 -
1 _
A.
B. 0 ' '
0 1 s

A0 = area under the angular velocity curve

O
©® o~ DNPR

© 2017 Pearson Education, Inc.
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Angular Velocity in Uniform Circular Motion

= When angular velocity w Is constant, this is uniform
circular motion.

= |n this case, as the particle goes around a circle one
time, its angular displacement is A9 =2 during one
period Ar =T.

= The absolute value of the constant angular velocity is
related to the period of the motion by

27 rad 27 rad
or =

T =
T o

o] =
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QuickCheck 4.8

A ball rolls around a circular track with an
angular velocity of 4 rrad/s. What is the
period of the motion?

mo o wp
N
"
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QuickCheck 4.8

A ball rolls around a circular track with an
angular velocity of 4 rrad/s. What is the
period of the motion?

VA ls 727

m o O W
N
"
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Example 4.11 At the Roulette Wheel

EXAMPLE 4.11 | At the roulette wheel

A small steel roulette ball rolls ccw around the inside of a 30-cm-
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

a. What is the ball’s angular velocity?
b. What is the ball’s position at r = 2.0 s? Assume 6, = 0.

MODEL Model the ball as a particle in uniform circular motion.
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Example 4.11 At the Roulette Wheel

EXAMPLE 4.11 | At the roulette wheel

SOLVE a. The period of the ball’s motion, the time for 1 rev, is
T =0.60 s. Angular velocity is positive for ccw motion, so

_ 2mrad _ 27 rad
“T T " 060

b. The ball starts at 6, = 0 rad. After At = 2.0 s, its position is
0; = Orad + (10.47 rad/s)(2.0 s) = 20.94 rad

= 10.47 rad/s

where we’ve kept an extra significant figure to avoid round-off
error. Although this is a mathematically acceptable answer, an
observer would say that the ball is always located somewhere
between 0° and 360°. Thus it is common practice to subtract an
integer number of 27 rad, representing the completed revolutions.
Because 20.94/27 = 3.333, we can write

0; = 20.94 rad = 3.333 X 27 rad
=3 X 27 rad + 0.333 X 27 rad
=3 X 27 rad + 2.09 rad
In other words, at 1= 2.0 s the ball has completed 3 rev and i1s

2.09 rad = 120° into its fourth revolution. An observer would say
that the ball’s position is 6; = 120°,
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Tangential Velocity

= The tangential velocity component v, is the rate
ds/dt at which the particle moves around the circle,
where s is the arc length.

= The tangential velocity and the angular velocity
are related by

v,=wr  (with win rad/s)

= In this equation, the units of v, are m/s, the units of w
are rad/s, and the units of r are m.
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Centripetal Acceleration

= |n uniform circular motion,
although the speed is constant,
there Is an acceleration because
the direction of the velocity
vector Is always changing.

= The acceleration of uniform
circular motion is called
ntripetal leration.
ce petal acceleratio The velocity 1s tangent to the circle.

= The direction of the centripetal  The acceleration points to the center.
acceleration 1s toward the
center of the circle.

= The magnitude of the centripetal acceleration is constant
for uniform circular motion.
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Centripetal Acceleration

= The figure to the right

shows a motion diagram of
Maria riding a Ferris wheel.

= Maria has constant speed

but not constant velocity, so

she Is accelerating.

= For every pair of adjacent
velocity vectors, we can
subtract them to find the
average acceleration near
that point.

© 2017 Pearson Education, Inc.

Whichever dot 1s

-
Ve _
. A selected, this method
V| will show that AV
i points to the center
i

of the circle.

T;f - I;i i
Velocity

vectors
_. a .
— -
a a

y o) o |
~ All acceleration
vectors point to the
~ center of the circle.

: = u.. O’H = :
- —
a a

\/

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.
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Centripetal Acceleration

Whichever dot 1s

v ;
] A selected, this method
V! will show that AV
i points to the center
i
A

of the circle.

= At every point Maria’s |
acceleration points toward /\

. Velocit

the center of the circle. Xvecmrsy

All acceleration -
vectors point to the

center of the circle.

g . u' *y Ty
— -
a a
4

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

= This Is an acceleration due
to changing direction, not
to changing speed.
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QuickCheck 4.9

A car Is traveling around a curve
at a steady 45 mph. Is the car
accelerating?

A. Yes
B. NO

© 2017 Pearson Education, Inc.
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QuickCheck 4.9

A car Is traveling around a curve
at a steady 45 mph. Is the car
accelerating?

v A. Yes
B. NoO

Slide 4-90
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QuickCheck 4.10

A car is traveling around a AN
curve at a steady 45 mph.
Which vector shows the -

direction of the car’s
acceleration?

E. The acceleration is zero.

Slide 4-91
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QuickCheck 4.10

A car Is traveling around a A
curve at a steady 45 mph.
Which vector shows the )

direction of the car’s
acceleration?

E. The acceleration is zero.
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QuickCheck 4.11

A car Is slowing down as it drives over a circular hill.

Which of these Is the acceleration vector at the highest
point? 'y

Slide 4-93
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QuickCheck 4.11

A car Is slowing down as it drives over a circular hill.

Which of these Is the acceleration vector at the highest
point? A Acceleration of

changing speed
. .
‘/ o . Acceleration of

changing direction
Slide 4-94
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Centripetal Acceleration

- . M
dv 1is the arc of a circle
with arc length dv = vd0.

* The figure shows the velocity ~ These are the velocities v
V. at one instant and the . i
velocity Vv ¢ an infinitesimal
amount of time dt later.

= By definition, a = d v/dt.

= By analyzing the isosceles
triangle of velocity vectors,
we can show that:

v2

a— PR toward center of circle (centripetal acceleration)

which can be written in terms of angular velocity as a = w?r.
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QuickCheck 4.12

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s
angular velocity is
that of Rasheed.

A. half

B. the same as
C. twice

D. fourtimes

E. We can’t say without knowing their radii.
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QuickCheck 4.12

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s
angular velocity is
that of Rasheed.

A. half
/' B. thesameas

C. twice
D. fourtimes

E. We can’t say without knowing their radii.
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QuickCheck 4.13

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s

speed Is that of Rasheed.

A. half N

B. the same as .

C. twice

D. fourtimes

E. We can’t say without knowing their radii.
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QuickCheck 4.13

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s
speed Is that of Rasheed.

A. half
B. the same as
/' C. twice v

four times

wr

E. We can’t say without knowing their radii.
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QuickCheck 4.14

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s

acceleration is that

of Rasheed. N
A. half

B. the same as

C. twice

D. fourtimes

E. We can’t say without knowing their radii.
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QuickCheck 4.14

Rasheed and Sofia are riding a
merry-go-round that is spinning
steadily. Sofia is twice as far from
the axis as is Rasheed. Sofia’s

acceleration iIs that
of Rasheed.
A. half
B. the same as ,
. . \Y;
v C. twice Centripetal acceleration a = — = @°r

I
D. fourtimes

E. We can’t say without knowing their radii.
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Uniform Circular Motion

Uniform circular motion
For motion with constant angular velocity w.

Applies to a particle moving along a circular
trajectory at constant speed or to points on
a solid object rotating at a steady rate.

Mathematically:
o The tangential velocity is v, = wr.
o The centripetal acceleration is v*/r or w’r.
e w and v, are positive for ccw rotation,
negative for cw rotation.

The velocity is tangent to the circle.
The acceleration points to the center.

Limitations: Model fails if rotation isn’t steady.

Exercise 20
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Example 4.12 The Acceleration of a Ferris Wheel

EXAMPLE 4.12 N The acceleration of a Ferris wheel

A typical carnival Ferris wheel has a radius of 9.0 m and rotates
4.0 times per minute. What speed and acceleration do the riders
experience?

MODEL Model the rider as a particle in uniform circular motion.

SOLVE The period is T=4imin = 15s. From Equation 4.21, a
rider’s speed 1s

e — — e — 3‘
v T 155 77 m/s

Consequently, the centripetal acceleration has magnitude

w2 (377 m/s)? L6 ms?
S

ASSESS This was not intended to be a profound problem, merely
to illustrate how centripetal acceleration 1s computed. The acceler-
ation is enough to be noticed and make the ride interesting, but not
enough to be scary.

© 2017 Pearson Education, Inc.
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Nonuniform Circular Motion

= The figure shows a The angular velocity is changing.
point speeding up as it . #F
moves around a circle. :
This motion has < >
changing angular g
velocity.
We define the angular acceleration a (Greek alpha) of
a rotating object, or a point on the object, to be

o= ) (angular acceleration)

= The units of angular acceleration are rad/s?.
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The Sign of Angular Acceleration

= oIS positive Iif |w| Is Increasing and w IS counter-

clockwise.

= o ls positive if |w| is decreasing and w is clockwise.
= oIS negative If |w| Is Increasing and w IS clockwise.
= @IS negative if |w| Is decreasing and w Is counter-

clockwise.

Initial angular velocity

Speeding up ccw

© 2017 Pearson Education, Inc.

Slowing down ccw

Slowing down cw

Speeding up cw
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QuickCheck 4.15

>

The fan blade is slowing down.
What are the signs of w and a?

w IS positive and « Is positive.

@ IS positive and « is negative.

@ IS negative and a IS positive.

@ IS negative and « Is negative.

m o o W »

w 1S positive and « is zero.
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QuickCheck 4.15

>

The fan blade is slowing down.
What are the signs of w and a?

w IS positive and « Is positive.

B. w Is positive and « is negative.

¢/ C. wis negative and « is positive.
@ IS negative and « Is negative.

E. o Is positive and «a is zero.

“Slowing down’” means that @ and o have opposite signs, not
that « IS negative
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Constant Angular Acceleration

Constant angular acceleration
For motion with constant angular acceleration a.

Applies to particles with
circular trajectories and

0
to rotating solid objects. |/\

Mathematically: The graphs and equatlons for this o / “’1‘ iS éh:fg
S1C

circular/rotational motion are analogous to linear e

motion with constant acceleration.

e Analogs:s—0 v, w a,— «

| —

« 1s the
Rotational kinematics Linear kinematics a slope of @
ws = w; + aAt Ve, = V;, T a, At
Gf =0, + w, At + 3a(AD? 5=+ v, At + 2a,(Af)?
wi = w2 + 2a A6 veZ =v.2 + 2a,As
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QuickCheck 4.16

Starting from rest, a wheel with constant angular
acceleration turns through an angle of 25 rad in a time t.
Through what angle will it have turned after time 2t?

A. 25rad
B. 50 rad
C. 75rad
D. 100 rad
E. 200 rad
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QuickCheck 4.16

Starting from rest, a wheel with constant angular
acceleration turns through an angle of 25 rad in a time t.
Through what angle will it have turned after time 2t?

A. 25rad
B. 50 rad
C. 75rad

¢/’ D. 100rad  AOx (At)?
E. 200 rad
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QuickCheck 4.17

Starting from rest, a wheel with constant angular
acceleration spins up to 25 rpm in a time t. What will
its angular velocity be after time 2t?

A. 25rpm
B. 50 rpm
C. 75rpm
D. 100 rpm
E. 200 rpm
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QuickCheck 4.17

Starting from rest, a wheel with constant angular
acceleration spins up to 25 rpm in a time t. What will
its angular velocity be after time 2t?

A. 25rpm
¢/'B. 50rpm Aw oc At
C. 75rpm
100 rpm

E. 200 rpm
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Example 4.13 A Rotating Wheel

(a) w

EXAMPLE 4.13 | A rotating wheel 5

FIGURE 4.31ais a graph of angular velocity versus time for a rotating
wheel. Describe the motion and draw a graph of angular acceleration r:
versus time. ;

SOLVE This is a wheel that starts from rest, gradually speeds up —
counterclockwise until reaching top speed at ¢;, maintains a constant 0 $ 7
angular velocity until 7,, then gradually slows down until stopping : : .
at t3. The motion is always ccw because w is always positive. The Constant positive Zero slope, Constant negative
angular acceleration graph of FIGURE 4.32b is based on the fact that slope, so «r 1s positive.  so e 1s zero.  slope, SO « 1s negative.
« is the slope of the w-versus-t graph. : : :
Conversely, the initial linear increase of @ can be seen as the (b) «

increasing area under the a-versus-¢ graph as ¢ increases from 0 to
t;. The angular velocity doesn’t change from ¢, to ¢, when the area SE—
under the a-versus-t is zero.
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Example 4.14 A Slowing Fan

EXAMPLE 4.14 | A slowing fan

A ceiling fan spinning at 60 rpm coasts to a stop 25 s after being
turned off. How many revolutions does it make while stopping?

MODEL Model the fan as a rotating object with constant angular
acceleration.
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Example 4.14 A Slowing Fan

© 2017 Pearson Education, Inc.

EXAMPLE 4.14 ’ A slowing fan

SOLVE We don’t know which direction the fan is rotating, but the
fact that the rotation is slowing tells us that w and « have opposite
signs. We'll assume that w is positive. We need to convert the initial
angular velocity to SI units:

1 mi 2
w; = 60 relv X i X il vl = 6.28 rad/s
min 60 s 1 rev

We can use the first rotational kinematics equation in Model 4.3 to
find the angular acceleration:
w;— ;  Orad/s — 6.28 rad/s

_ 2
A 25 0.25 rad/s

a —

Then, from the second rotational kinematic equation, the angular
displacement during these 25 s is

AG = w,At + Sa(At)?
= (6.28 rad/s) (25 s) + 5 (—0.25 rad/s*)(25 s)?

_ 78.9 rad X -V

= |3 rev
27 rad

The kinematic equation returns an angle in rad, but the question
asks for revolutions, so the last step was a unit conversion.

ASSESS Turning through 13 rev in 25 s while stopping seems reason-
able. Notice that the problem is solved just like the linear kinematics
problems you learned to solve in Chapter 2.
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Tangential Acceleration

= The partiC|e in the ﬁgure IS The velocity is always tangent to the circle,
) ] . so the radial component v, is always zero.
moving along a circle and is =
Speeding Up The tangential acceleration

causes the particle to

= The centripetal acceleration chnee speed
s a, = v?/r, where v, is the
tangential speed.

= There is also a tangential
acceleration a,, which is
always tangent to the circle.

= The magnitude of the total
acceleration is w\

a = \/cz,,2 + a,f2
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The radial or centripetal
acceleration causes the
particle to change direction.
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Tangential Acceleration

= Tangential acceleration is the rate at which the
tangential velocity changes, a, = dv, /dt.

= We already know that the tangential velocity is
related to the angular velocity by v, = wr, so it
follows that
dv, dor) do

dt dt dt

a;
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Chapter 4 Summary Slides
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General Principles

The instantaneous velocity

v
v =drldt A
E” ’
a,

is a vector tangent to the trajectory. 'd
The instantaneous acceleration is 4 a

a=dvldt

X

a, the component of @ parallel to , is responsible for change of
speed. a , the component of @ perpendicular to ¥, is responsible
for change of direction.
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General Principles

Relative Motion Object C moves relative
. . to both A and B.
If object C moves relative to reference -
frame A with velocity Vc,, then it moves ¥ y
relative to a different reference frame B Reference
with velocity ag frame A
C
- = -+
Ve = Vea T Vap
— . . . A ¥

where v,g 1s the velocity of A relative
to B. This is the Galilean transformation B) X
of velocity. Reference frame B
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Important Concepts

Uniform Circular Motion

Angular velocity w = df/dt.
v, and w are constant:

v, = wr “’\

The centripetal acceleration points toward the

center of the circle:
2
.
a=—=w"r
r

It changes the particle’s direction but not its speed.
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Important Concepts

Nonuniform Circular Motion

v
Angular acceleration a = dw/dl. ‘\
The radial acceleration 4
2
J
a,=—='r
r

changes the particle’s direction. The tangential component
a,=ar

changes the particle’s speed.
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Applications

Kinematics in two dimensions

If @ is constant, then the x- and y-components of motion are
independent of each other.

Xe=x; + vy At + 3 a,(At)?
_ 1

ye =y + v, At + §a},(flt)2

Ve, = vy, + a, At

ny = Viy = ﬂ.}, AI
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Applications

Projectile motion is motion under the The trajectory
influence of only gravity. y is a parabola.

MODEL Model as a particle launched with
speed v, at angle 6. Vo

VISUALIZE Use coordinates with the 0
x-axis horizontal and the y-axis vertical. ¥

SOLVE The horizontal motion i1s uniform with v, = vycos@. The
vertical motion is free fall with a,=—g. The x and y kinematic
equations have the same value for At.
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Applications

Circular motion kinematics

2ar 2w

Period T =
v {

Angular position 0 = E

Constant angular acceleration
w;= w; + a At
Gf = ﬂi + ; A.t - %H(AI‘)E
wf = w?+2a A6
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Applications

Circular motion kinematics

Circular motion graphs and 6
kinematics are analogous to linear motion
with constant acceleration. \

Angle, angular velocity, and angular |
acceleration are related graphically.

» The angular velocity is the slope of the /
angular position graph. A !

» The angular acceleration is the slope of *.
the angular velocity graph. £ ‘
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