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IN THIS CHAPTER, you will learn how to solve 
problems about motion in a plane. 

Chapter 4 Kinematics in Two Dimensions 
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Chapter 4 Preview 
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Chapter 4 Reading Questions 
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A ball is thrown upward at a 45º angle. In the 
absence of air resistance, the ball follows a 
 
A. Tangential curve.  
B. Sine curve.  
C. Parabolic curve. 
D. Linear curve. 

Reading Question 4.1 
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A hunter points his rifle directly at a coconut that he 
wishes to shoot off a tree. It so happens that the 
coconut falls from the tree at the exact instant the 
hunter pulls the trigger. Consequently, 
 
A. The bullet passes above the coconut.  
B. The bullet hits the coconut. 
C. The bullet passes beneath the coconut.  
D. This wasn’t discussed in Chapter 4. 

Reading Question 4.2 
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Reading Question 4.3 

When discussing relative motion, the notation 
 AB means 
 
A. The absolute velocity. 
B. The AB-component of the velocity. 
C. The velocity of A relative to B. 
D. The velocity of B relative to A. 
E. The velocity of the object labeled AB. 
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The quantity with the symbol ω is called 
 
A. The circular weight.  
B. The circular velocity.  
C. The angular velocity.  
D. The centripetal acceleration. 
E. The angular acceleration. 

Reading Question 4.4 
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The quantity with the symbol α is called 
 
A. The circular weight.  
B. The circular velocity.  
C. The angular velocity.  
D. The centripetal acceleration. 
E. The angular acceleration. 

Reading Question 4.5 
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For uniform circular motion, the acceleration 
 
A. Points toward the center of the circle.  
B. Points away from the circle.  
C. Is tangent to the circle.  
D. Is zero. 

Reading Question 4.6 
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Chapter 4 Content, Examples, and  
QuickCheck Questions 
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 The figure to the right 
shows a particle 
moving along a curved 
path—its trajectory—in 
the xy-plane. 

 We can locate the 
particle in terms of its 
position vector   . 

Motion in Two Dimensions 

 Like many of the graphs we’ll use in this chapter, 
this is a graph of y versus x.  

 It is an actual picture of the trajectory, not an 
abstract representation of the motion. 
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 This figure shows a 
particle moving from 
position  1 at time t1 to 
position   2 at a later time 
t2. 

 The average velocity 
points in the direction Δ 
of the displacement and 
is 

Motion in Two Dimensions 
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 The instantaneous velocity 
is the limit of  avg as ∆t → 0. 

 As shown, the 
instantaneous velocity 
vector is tangent to the 
trajectory. 

 Mathematically: 
 
 
 

Motion in Two Dimensions 

 which can be written: 

 where: 
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 If the velocity vector’s angle 
θ is measured from the 
positive x-direction, the 
velocity components are: 
 
 

Motion in Two Dimensions 

 where the particle’s speed is 

 Conversely, if we know the velocity components, we can 
determine the direction of motion: 
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The average acceleration of a moving object is defined 
as the vector: 
 
 

The acceleration    points in the same direction as     , 
the change in velocity. 
As an object moves, its velocity vector can change in two 
possible ways: 
1. The magnitude of the velocity can change, indicating 

a change in speed, or 
2. The direction of the velocity can change, indicating 

that the object has changed direction. 

Acceleration Graphically 
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Tactics: Finding the Acceleration Vector 
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Tactics: Finding the Acceleration Vector 
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Example 4.2 Through the Valley 
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Example 4.2 Through the Valley 
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 An object’s acceleration can 
be decomposed into 
components parallel and 
perpendicular to the velocity. 

     is the piece of the 
acceleration that causes the 
object to change speed. 

     is the piece of the 
acceleration that causes the 
object to change direction. 

 An object changing direction 
always has a component of 
acceleration perpendicular to 
the direction of motion. 

Analyzing the Acceleration Vector 
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 The average acceleration is found from two 
velocity vectors separated by the time interval Δt.  

 If we let Δt get smaller and smaller, the two 
velocity vectors get closer and closer.  

 In the limit Δt → 0, we have the instantaneous 
acceleration a at the same point on the trajectory 
(and the same instant of time) as the 
instantaneous velocity v. 

Acceleration Mathematically 
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 The figure to the right shows 
the trajectory of a particle 
moving in the x-y plane. 

 The acceleration    is 
decomposed into 
components     and    . 

     is associated with a 
change in speed. 

       is associated with a 
change of direction. 

     always points toward the 
“inside” of the curve because 
that is the direction in which 
is changing. 

Acceleration Mathematically 
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 The figure to the right  
shows the trajectory  
of a particle moving in  
the x-y plane. 

 The acceleration    is  
decomposed into  
components ax and ay. 
 
 

 If vx and vy are the x- and y- components of velocity, 
then 

Decomposing Two-Dimensional Acceleration 
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 If the acceleration                     is constant, then the two 
components ax and ay are both constant. 

 In this case, everything from Chapter 2 about constant-
acceleration kinematics applies to the components. 

 The x-components and y-components of the motion can 
be treated independently. 

 They remain connected through the fact that ∆t must be 
the same for both. 

Constant Acceleration 
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A particle undergoes acceleration    while moving from 
point 1 to point 2. Which of the choices shows the 
velocity vector     as the object moves away from point 
2? 
 

QuickCheck 4.1 
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 Baseballs, tennis balls, and Olympic divers all exhibit 
projectile motion. 

 A projectile is an object that moves in two dimensions 
under the influence of only gravity. 

 Projectile motion extends the idea of free-fall motion  
to include a horizontal  
component of velocity. 

 Air resistance is  
neglected. 

 Projectiles in two  
dimensions follow  
a parabolic trajectory  
as shown in the photo. 

Projectile Motion 
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 The start of a  
projectile’s motion  
is called the launch. 

 The angle θ of the  
initial velocity v0  
above the x-axis is  
called the launch angle. 

 The initial velocity vector can be broken into 
components. 
 
 
 

 where v0 is the initial speed. 

Projectile Motion 
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 Gravity acts downward. 
 Therefore, a projectile  

has no horizontal  
acceleration. 

 Thus: 
 
 
 

 The vertical component of acceleration ay is –g of free 
fall. 

 The horizontal component of ax is zero. 
 Projectiles are in free fall. 

Projectile Motion 
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 The figure shows a  
projectile launched  
from the origin with  
initial velocity: 
 

 The value of vx never  
changes because  
there’s no horizontal  
acceleration. 

 vy decreases by 9.8 m/s  
every second. 

Projectile Motion 
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Example 4.4 Don’t Try This at Home! 
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 Suppose a heavy ball is launched exactly horizontally at 
height h above a horizontal field.  

 At the exact instant that the ball is launched, a second ball is 
simply dropped from height h.  

 Which ball hits the ground first? 

Reasoning About Projectile Motion 

 If air resistance is neglected, 
the balls hit the ground 
simultaneously.  

 They do so because the 
horizontal and vertical 
components of projectile 
motion are independent of 
each other. 
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A heavy red ball is released  
from rest 2.0 m above a flat,  
horizontal surface. At exactly  
the same instant, a yellow ball  
with the same mass is fired  
horizontally at 3.0 m/s. Which  
ball hits the ground first? 
 

A. The red ball hits first. 

B. The yellow ball hits first. 

C. They hit at the same time. 

QuickCheck 4.2 
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A 100 g ball rolls off a table and hits 2.0 m from 
the base of the table. A 200 g ball rolls off the 
same table with the same speed. It lands at 
distance 
 
A. 1.0 m. 
B. Between 1 m and 2 m. 
C. 2.0 m. 
D. Between 2 m and 4 m. 
E. 4.0 m. 

QuickCheck 4.3 
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 Without gravity, the arrow 
would follow a straight line. 

 Because of gravity, the  
arrow at time t has “fallen” a 
distance ½gt2 below this line. 

 The separation grows as  
½gt2, giving the trajectory  
its parabolic shape. 

Reasoning About Projectile Motion 

A hungry bow-and-arrow hunter in the jungle wants to shoot down 
a coconut that is hanging from the branch of a tree. He points his 
arrow directly at the coconut, but as luck would have it, the 
coconut falls from the branch at the exact instant the hunter 
releases the string. Does the arrow hit the coconut? 
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 Had the coconut stayed on the tree, 
the arrow would have curved under its 
target as gravity causes it to fall a 
distance ½gt2 below the straight line. 

 But ½gt2 is also the distance the 
coconut falls while the arrow is in 
flight. 

 So yes, the arrow hits the coconut! 

Reasoning About Projectile Motion 
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Projectile Motion 
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Projectile Motion Problems 
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 This distance is  
sometimes called  
the range of a projectile. 

 Example 4.5 from  
your textbook shows: 
 
 
 

 The maximum distance occurs for θ = 45º. 

Range of a Projectile 
 A projectile with initial speed v0 has a launch angle of θ 

above the horizontal.  
 How far does it travel over level ground before it returns to 

the same elevation from which it was launched? 
Trajectories of a projectile launched at 
different angles with a speed of 99 m/s. 
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Projectiles 1 and 2 are launched 
over level ground with the same 
speed but at different angles. 
Which hits the ground first? 
Ignore air resistance. 
 

A. Projectile 1 hits first. 

B. Projectile 2 hits first. 

C. They hit at the same time. 

D. There’s not enough 
information to tell. 

QuickCheck 4.4 
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QuickCheck 4.4 

Projectiles 1 and 2 are launched 
over level ground with the same 
speed but at different angles. 
Which hits the ground first? 
Ignore air resistance. 
 

A. Projectile 1 hits first. 

B. Projectile 2 hits first. 
C. They hit at the same time. 

D. There’s not enough 
information to tell. 
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Projectiles 1 and 2 are launched 
over level ground with different 
speeds. Both reach the same 
height. Which hits the ground 
first? Ignore air resistance. 
 

A. Projectile 1 hits first. 

B. Projectile 2 hits first. 

C. They hit at the same time. 

D. There’s not enough information 
to tell. 

QuickCheck 4.5 
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 The figure below shows Amy and Bill watching Carlos on 
his bicycle. 

 According to Amy, Carlos’s velocity is (vx)CA = +5 m/s. 
 The CA subscript means “C relative to A.” 
 According to Bill, Carlos’s velocity is (vx)CB = –10 m/s. 
 Every velocity is measured relative to a certain observer. 
 There is no “true” velocity. 

Relative Motion 
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 The velocity of C relative to B is the velocity of C relative 
to A plus the velocity of A relative to B. 
 
 
 
 
 
 

 If B is moving to the right relative to A, then A is moving 
to the left relative to B. 

 Therefore, 

Relative Motion 
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Example 4.6 A Speeding Bullet 
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 A coordinate system in which an experimenter makes 
position measurements is called a reference frame. 

 In the figure, Object C is  
measured in two different  
reference frames, A and B.   

   CA is the position of C  
relative to the origin of A. 

   CB is the position of C  
relative to the origin of B. 

   AB is the position of the  
origin of A relative to the  
origin of B. 

Reference Frames 
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 Relative velocities are found as the time derivative of the 
relative positions. 

   CA is the velocity of C  
relative to A. 

   CB is the velocity of C  
relative to B. 

   AB is the velocity of  
reference frame A relative  
to reference frame B. 
 
 
 

 This is known as the Galilean transformation of 
velocity. 

Reference Frames 

 Slide 4-64 



© 2017 Pearson Education, Inc. 

A factory conveyor belt rolls at 3 m/s. 
A mouse sees a piece of cheese 
directly across the belt and heads 
straight for the cheese at 4 m/s. What 
is the mouse’s speed relative to the 
factory floor? 
 
A. 1 m/s 
B. 2 m/s 
C. 3 m/s 
D. 4 m/s 
E. 5 m/s 

QuickCheck 4.6 
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EXAMPLE 4.7 Flying to Cleveland I 

 Slide 4-67 



© 2017 Pearson Education, Inc. 

EXAMPLE 4.7 Flying to Cleveland I 
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EXAMPLE 4.8 Flying to Cleveland II 
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EXAMPLE 4.8 Flying to Cleveland II 
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EXAMPLE 4.8 Flying to Cleveland II 
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 Consider a ball on a roulette 
wheel. 

 It moves along a circular 
path of radius r. 

 Other examples of circular 
motion are a satellite in an 
orbit or a ball on the end of 
a string. 

 Circular motion is an 
example of two-dimensional 
motion in a plane. 
 

Circular Motion 
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 To begin the study of 
circular motion, consider a 
particle that moves at 
constant speed around a 
circle of radius r. 

 This is called uniform 
circular motion. 

 The time interval to 
complete one revolution is 
called the period, T. 

 The period T is related to 
the speed v: 

Uniform Circular Motion 
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Example 4.9 A Rotating Crankshaft 
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 Consider a particle at a distance 
r from the origin, at an angle θ 
from the positive x-axis. 

 The angle may be measured in 
degrees, revolutions (rev) or 
radians (rad), that are related 
by: 
 

 If the angle is measured in 
radians, then there is a simple 
relation between θ and the arc 
length s that the particle travels 
along the edge of a circle of 
radius r: 

Angular Position 

1 rev = 360º = 2π rad 
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 A particle on a circular path  
moves through an angular  
displacement ∆θ = θf – θi  
in a time interval ∆t = tf – ti.  

 In analogy with linear  
motion, we define 
 
 

 As the time interval ∆t becomes very small, we 
arrive at the definition of instantaneous angular 
velocity: 

Angular Velocity 
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 Angular velocity ω is the  
rate at which a particle’s  
angular position is changing. 

 As shown in the figure, ω  
can be positive or negative,  
and this follows from our  
definition of θ. 

 A particle moves with  
uniform circular motion if ω is constant.  

 ω and θ are related graphically: 

Angular Velocity 
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This is the angular velocity graph 
of a wheel. How many  
revolutions does the  
wheel make in the  
first 4 s? 
 
 
A. 1 
B. 2 
C. 4 
D. 6 
E. 8 

QuickCheck 4.7 
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This is the angular velocity graph  
of a wheel. How many  
revolutions does the  
wheel make in the  
first 4 s? 
 
 
A. 1 
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C. 4 
D. 6 
E. 8 

QuickCheck 4.7 

Δθ = area under the angular velocity curve 
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 When angular velocity ω is constant, this is uniform 
circular motion. 

 In this case, as the particle goes around a circle one 
time, its angular displacement is during one 
period 

 The absolute value of the constant angular velocity is 
related to the period of the motion by 
 

Angular Velocity in Uniform Circular Motion 
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A ball rolls around a circular track with an 
angular velocity of  What is the 
period of the motion?  
 

 

A.    s 

B. 1 s 

C. 2 s 

D.      s 

E.      s 

QuickCheck 4.8 
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QuickCheck 4.8 
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A ball rolls around a circular track with an 
angular velocity of  What is the 
period of the motion?  
 

 

A.    s 

B. 1 s 

C. 2 s 

D.      s 

E.      s 
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Example 4.11 At the Roulette Wheel 
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Example 4.11 At the Roulette Wheel 
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 The tangential velocity component vt is the rate  
ds/dt at which the particle moves around the circle,  
where s is the arc length. 

 The tangential velocity and the angular velocity  
are related by 
 
 

 In this equation, the units of vt are m/s, the units of ω 
are rad/s, and the units of r are m. 

Tangential Velocity 
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 In uniform circular motion,  
although the speed is constant,  
there is an acceleration because  
the direction of the velocity  
vector is always changing.  

 The acceleration of uniform  
circular motion is called  
centripetal acceleration. 

 The direction of the centripetal  
acceleration is toward the  
center of the circle. 

 The magnitude of the centripetal acceleration is constant 
for uniform circular motion. 

Centripetal Acceleration 
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 The figure to the right 
shows a motion diagram of 
Maria riding a Ferris wheel.  

 Maria has constant speed 
but not constant velocity, so 
she is accelerating. 

 For every pair of adjacent 
velocity vectors, we can 
subtract them to find the 
average acceleration near 
that point. 

Centripetal Acceleration 
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 At every point Maria’s 
acceleration points toward 
the center of the circle.  

 This is an acceleration due 
to changing direction, not 
to changing speed. 

Centripetal Acceleration 
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A car is traveling around a curve 
at a steady 45 mph. Is the car 
accelerating? 

 

A. Yes 

B. No 

QuickCheck 4.9 
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A car is traveling around a curve 
at a steady 45 mph. Is the car 
accelerating? 
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QuickCheck 4.9 
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A car is traveling around a 
curve at a steady 45 mph. 
Which vector shows the 
direction of the car’s 
acceleration? 

QuickCheck 4.10 

E. The acceleration is zero. 
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A car is traveling around a 
curve at a steady 45 mph. 
Which vector shows the 
direction of the car’s 
acceleration? 

QuickCheck 4.10 

E. The acceleration is zero. 
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A car is slowing down as it drives over a circular hill.  
 
 
 
 
 
Which of these is the acceleration vector at the highest 
point? 

QuickCheck 4.11 
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A car is slowing down as it drives over a circular hill.  
 
 
 
 
 
Which of these is the acceleration vector at the highest 
point? 

QuickCheck 4.11 

Acceleration of 
changing speed 

Acceleration of 
changing direction 
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 The figure shows the velocity  
    at one instant and the  
velocity     an infinitesimal  
amount of time dt later. 

 By definition,                   .  
 By analyzing the isosceles  

triangle of velocity vectors,  
we can show that: 
 
 
 
which can be written in terms of angular velocity as a = ω2r. 

Centripetal Acceleration 
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Rasheed and Sofia are riding a  
merry-go-round that is spinning  
steadily. Sofia is twice as far from  
the axis as is Rasheed. Sofia’s  
angular velocity is ______  
that of Rasheed.  
 

A. half 

B. the same as 

C. twice 

D. four times 

E. We can’t say without knowing their radii. 

QuickCheck 4.12 
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Rasheed and Sofia are riding a  
merry-go-round that is spinning  
steadily. Sofia is twice as far from  
the axis as is Rasheed. Sofia’s  
speed is ______ that of Rasheed.  
 

A. half 

B. the same as 

C. twice 

D. four times 

E. We can’t say without knowing their radii. 

QuickCheck 4.13 
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Rasheed and Sofia are riding a  
merry-go-round that is spinning  
steadily. Sofia is twice as far from  
the axis as is Rasheed. Sofia’s  
speed is ______ that of Rasheed.  
 

A. half 

B. the same as 

C. twice 

D. four times 

E. We can’t say without knowing their radii. 

QuickCheck 4.13 

 v = ωr
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Rasheed and Sofia are riding a  
merry-go-round that is spinning  
steadily. Sofia is twice as far from  
the axis as is Rasheed. Sofia’s  
acceleration is ______ that  
of Rasheed.  
 

A. half 

B. the same as 

C. twice 

D. four times 

E. We can’t say without knowing their radii. 

QuickCheck 4.14 
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Rasheed and Sofia are riding a  
merry-go-round that is spinning  
steadily. Sofia is twice as far from  
the axis as is Rasheed. Sofia’s  
acceleration is ______ that  
of Rasheed.  
 

A. half 

B. the same as 

C. twice 

D. four times 

E. We can’t say without knowing their radii. 

QuickCheck 4.14 

  
Centripetal acceleration a = v2

r
= ω 2r
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Uniform Circular Motion 
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Example 4.12 The Acceleration of a Ferris Wheel 
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 The figure shows a 
point speeding up as it 
moves around a circle. 

 This motion has 
changing angular 
velocity.  

Nonuniform Circular Motion 

 We define the angular acceleration α (Greek alpha) of 
a rotating object, or a point on the object, to be 

 The units of angular acceleration are rad/s2. 
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 α is positive if |ω| is increasing and ω is counter-
clockwise. 

 α is positive if |ω| is decreasing and ω is clockwise. 
 α is negative if |ω| is increasing and ω is clockwise. 
 α is negative if |ω| is decreasing and ω is counter-

clockwise. 

The Sign of Angular Acceleration 
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The fan blade is slowing down.  
What are the signs of ω and α? 
 
A.   ω is positive and α is positive. 

B.   ω is positive and α is negative. 

C.   ω is negative and α is positive. 

D.   ω is negative and α is negative. 

E.   ω is positive and α is zero. 

QuickCheck 4.15 
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QuickCheck 4.15 

“Slowing down” means that ω and α have opposite signs, not 
that α is negative 

The fan blade is slowing down.  
What are the signs of ω and α? 
 
A.   ω is positive and α is positive. 

B.   ω is positive and α is negative. 

C.   ω is negative and α is positive. 

D.   ω is negative and α is negative. 

E.   ω is positive and α is zero. 
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Constant Angular Acceleration 
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Starting from rest, a wheel with constant angular 
acceleration turns through an angle of 25 rad in a time t. 
Through what angle will it have turned after time 2t? 

 

A. 25 rad 

B. 50 rad 

C. 75 rad 

D. 100 rad 

E. 200 rad 

QuickCheck 4.16 
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Starting from rest, a wheel with constant angular 
acceleration turns through an angle of 25 rad in a time t. 
Through what angle will it have turned after time 2t? 

 

A. 25 rad 

B. 50 rad 

C. 75 rad 

D. 100 rad 

E. 200 rad 

QuickCheck 4.16 

  ∆θ ∝ (∆t)2
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Starting from rest, a wheel with constant angular 
acceleration spins up to 25 rpm in a time t. What will 
its angular velocity be after time 2t? 
 

A. 25 rpm 

B. 50 rpm 

C. 75 rpm 

D. 100 rpm 

E. 200 rpm 

QuickCheck 4.17 
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Starting from rest, a wheel with constant angular 
acceleration spins up to 25 rpm in a time t. What will 
its angular velocity be after time 2t? 
 

A. 25 rpm 

B. 50 rpm 

C. 75 rpm 

D. 100 rpm 

E. 200 rpm 

QuickCheck 4.17 

 ∆ω ∝ ∆t
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Example 4.13 A Rotating Wheel 
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Example 4.14 A Slowing Fan 
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Example 4.14 A Slowing Fan 
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 The particle in the figure is 
moving along a circle and is 
speeding up. 

 The centripetal acceleration 
is ar = vt

2/r, where vt is the 
tangential speed. 

 There is also a tangential 
acceleration at, which is 
always tangent to the circle. 

 The magnitude of the total 
acceleration is 

Tangential Acceleration 
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 Tangential acceleration is the rate at which the 
tangential velocity changes, at = dvt /dt. 

 We already know that the tangential velocity is 
related to the angular velocity by vt = ωr, so it 
follows that 

Tangential Acceleration 
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Chapter 4 Summary Slides 
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General Principles 

 Slide 4-119 



© 2017 Pearson Education, Inc. 

General Principles 
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Important Concepts 
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Important Concepts 
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Applications 

 Slide 4-123 



© 2017 Pearson Education, Inc. 

Applications 
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Applications 
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Applications 
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