
Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

2006

Molecular viewer using Spiegel Molecular viewer using Spiegel

Pavani Baddepudi

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation
Baddepudi, Pavani, "Molecular viewer using Spiegel" (2006). Thesis. Rochester Institute of Technology.
Accessed from

This Master's Project is brought to you for free and open access by RIT Scholar Works. It has been accepted for
inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

https://scholarworks.rit.edu/
https://scholarworks.rit.edu/theses
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/6878?utm_source=scholarworks.rit.edu%2Ftheses%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu

Molecular Viewer Using Spiegel

Pavani Baddepudi

Agenda

Introduction & Background

Project Overview

Implementation Details

Demo

Future work

Q&A Session

Introduction

3-D molecular viewer using Spiegel

framework

Distinctive representations of the molecules

Interactive features

Background Knowledge

Molecular Biology

ProteinDataBase files

CPK Coloring scheme

Covalent and Vanderwaal’s radii

Java3D

Spiegel framework

Related Work

JMOL

Rasmol

Chime

JMV

Algorithm

 -Forms the basis of the structure

 -Used to determine the bonding between the atoms

 -Project uses same algorithm as Chime and Rasmol

 if (distance(coords[i], coords[j]) between min_max)) {

 Bond exists

 } else {

 Bond does not exist

 }

 Where coords[i] and coords [j] are the coordinates of atom1 and atom2
respectively and min = 0.6f max= 1.2 f.

Spiegel Architecture

 Consists of four plugins that form the

building blocks of the system

¬ Extractor

¬ Visual

¬ Camera

¬ Filter

Spiegel framework (as implemented in this project)

 Java Scenegraph

 Overview of the code flow

 Implementation Details

Extractor Plugin

Extractor plugin (Molecules) performs the

function of extracting the relevant information

from the pdb files.

Data Structures

HashTable chainIds stores the chain information

HashTable PositionList holds the position of the
atoms to be placed in the scene.

The class NeighborList calculates determines their
bonding with the atom using the algorithm

HashMap MoleculeIDMap contains the serial
number and name of the atoms.

Input and Output variables

Input – Files with pdb extension only.

Output - passed onto Filter or Visual Plugin.
(MoleculeIdMap)

Representation in Spiegel

Filter plugin

Prunes the data obtained from the pdb files to

 focus on particular strands. Has been applied

to the secondary structure only.

DataStructure

 Depending on the input string from the user

filter plugin stores the serial number and the

relevant chainId in a chainIdMap which is a

SortedMap

Input and Output variables

Input – HashMap MoleculeIDMap from
Extractor

 Strings predefined for DNA file 1d66.pdb

 P – Amino Acid chains N – Nucleic Acid
chains D, E – Individual DNA strands
A, B- Individual Protein strand

Output – SortedMap ChainIDMap

Representation in Spiegel

Visual Plugin

Visual plugin imparts shape, size and color of

the atoms

DataStructure

Wireframe (Wireframe) Representation

 Line Array

Ball and Stick Representation (Molecules3D)

 Line Array and Point Array

Backbone Representation (Backbone)

 LineStrip Array

Spacefill Representation (CPKmodel)

 Sphere

Data Structure

Output from the representations mentioned

above are added to a BranchGroup which

represents the Content BranchGroup and is

passed on to the next plugin

Input and Output variables

Input - HashMap MoleculeIDMap from the

Extractor or SortedMap chainIdMap from

Filter plugin

Output - BranchGroup object

Representation of Spiegel

Camera plugin

Displays the final image on the screen and

provides control parameters to change the

display.

Data Structure

View BranchGroup containing TransformGroup

which has ViewPlatform as its node

ViewPlatform contains the Canvas which is the

placeholder for the image and the View object

contains the viewing transform matrix.

Two types of renderings based the type of Canvas

object used - OnScreen (DirectCanvas) and

OffScreen (Camera3D)canvas

Data Structure (cont’d)

Offscreen canvas -batch rendering

Onscreen canvas -to incorporate all the

interactive features

Both Content BranchGroup (from Visual

Plugin) and View BranchGroup are tied

together under the Locale object and finally

the VirtualUniverse in Camera Plugin

Input and Output variables

Input – BranchGroup from Visual Plugin

 set location(x,y,z) ,lookat (x,y,z) and up (x,y,z)

together form the viewing transform determine how

and where the image is displayed on the screen.

 set size (height, width) changes the size of the

canvas

 set spin (boolean) starts the animation feature

Output – final image on the Screen

Representation in Spiegel

Features added

MouseListener was added to the Onscreen canvas

to achieve the following interactive features
Rotation - mouse is moved with the left mouse button pressed

Translation - mouse is moved with the right mouse button

pressed

Zoom - mouse is moved with the middle mouse button pressed

Rotation Interpolator has been added to to achieve

animation. When enabled the image completes 360

degrees rotation in 4 seconds

Final Output of Different

Models (as seen on the screen)

Ball and Stick Model

Spacefill Model

Backbone Model

Wireframe Model

Output from Filter Plugin

Sprache Scripts

 Spiegel also provides Gui2Script feature

which converts the GUI configuration into

Sprache script that can be executed from the

command prompt.

Future Work

Add support for multiple file types

CIF,MOL,etc

Future dynamic simulation projects could use

these models

Comparison of the models in this project with

models created using various bond calculation

theories

	Molecular viewer using Spiegel
	Recommended Citation

	Molecular_Viewer_Using_Spiegel.ppt

