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Capillary Waves Understood by an Elementary Method
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The central physics of capillary waves (or ripples) can be understood by an elementary
method which makes use of the balance of static and dynamic pressur e differencesalong
the surface streamline between crest and trough, in the steady reference frame, and
conservation of massthrough vertical cross-sectionsbeneath crest and trough. Basically
Einstein’s(1916) model of surfacegravity wavesisadapted for the pur pose of explaining
the existence of capillary waves of infinitesimal amplitude. One product of the physical
under standing, the phase speed of capillary waves, is derived as a function of the wave
length and surfacetension, and ther esult agr eesexactly with that obtained by theclassical
mathematical procedure.|ntheelementary method itisnot necessary toassumeirrotational
flow, upon which the classical theory isfounded, nor are perturbation expansions of the
nonlinear fluid equationsemployed. Theextension tocapillary-gravity waves, by including
the acceleration of gravity in the physical model, is straightforward, and the calculated
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phase speed of these wavesisidentical to what isfound in the text books as well.

1. Introduction

How isitthat capillary waves, or ripples, canexist? The
most elementary answer to this question apparently isnot to
be found in the scientific literature, although a rather com-
plicated and lengthy answer is available. In order to un-
derstand the standard answer considerable mathematical
preparation is needed. It is to be hoped that the physical
approach given below will facilitate a quicker, and at the
same time, more fundamental appreciation of one of the
more fascinating and important types of waves on the
water’ ssurface. One qualitative measure of the geophysical
importanceof capillary waves, for example, isthat it appears
to be necessary that they must be generated first by thewind
before the more energetic gravity waves can form.

Gravity actsover al length scales, but surface tension
ismost effective at short scal es, about one centimeter or less
for air over water. Surface tension behaves like a stretched
membrane (Batchelor, 1967) by tending toflatten out bulges
inacurving surface. Thussurfacetension actsasarestoring
force: creststry tobecomelower andtroughshigher. Gravity
isarestoring force as well.

In the next section gravity istemporarily neglected, so
that surfacetension isthe only restoring force in the model.
One demonstration of the physical understanding that the
model givesusisthat it provides asimple way to derivethe
formulafor the phase speed of pure capillary waves, i.e. to
find its functional dependence on the wave length and
surfacetension. Theninthesection following that gravity is
reintroduced and combined with surface tension to obtain

easily the propagation speed of capillary-gravity waves.

The central method used in the present discussion
involvesincorporating surfacetensioninto Einsteinis(1916)
model of surface gravity waves, which is a straightforward
and relatively short procedure. By this meansthe physics of
capillary waves can be understood clearly in an elementary
way without the necessity of assuming fromthe start that the
motion is irrotational or using perturbation expansions on
nonlinear fluid dynamics equations, in accordance with the
usual mathematical methods employed in the text books.

Einstein’ sgravity wave model makes use of the steady
referenceframein which the observer movesat the speed of
thewave. Inthisreferenceframethewaveshapeisstationary
and the fluid beneath the surface flows by the observer from
left to right, say. The steady reference frameis the one that
ismost convenient for the purposes here also. Einstein was
not thefirst nor the only oneto make use of the technique of
the steady reference frame, but his succinct statement of the
method makes it the easiest to imitate. Now Einstein's
stimulating short paper, written originally in German, is
available in English for the first time (Kenyon and Sheres,
1997).

Basically, Einstein showed that for surface gravity
waves in the steady frame there is a balance between the
oppositely directed static and dynamic pressure differences
between the crest and trough along the surface streamline.
The dynamic pressure is related to the flow speed, through
Bernoulli’ sequation, and the static pressureisrelated to the
acceleration of gravity and to the height of afluid column
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(thewaveheight). For example, at thewavetroughthestatic
pressure is greatest, because of the hydrostatic head of the
column of fluid of height equal to the wave height, and the
dynamic pressure is least by Bernoulli’s law, because the
perturbed flow speedisgreatest dueto conservation of mass.
By adjusting the mean flow speed the static and dynamic
pressures at the trough can be made to balance. Thisisthe
fundamental physics of the gravity wave.

For a capillary wave the same type of understanding
comes about when the dynamic pressureis still determined
by the flow speed but the static pressure is now determined
by surfacetension. Calculating the wave phase speed isjust
used below as an example of one way to show that we do
understand the physics of capillary waves. Einstein did not
compute the phase speed of surface gravity waves, but he
nevertheless captured the full physics of these wavesin a
nutshell.

2. Capillary Waves

Consider waves of infinitesimal amplitude H/2. First,
Laplace sequationfor thepressuredifferenceacrosstheair-
water interface dueto the effect of surfacetension, whichis
applicable to plane or long-crested (i.e. two-dimensional)
waves, is

T
Ap=— (@)
where Ap isthe pressure differential acrosstheinterface, T
isthe surface tension (taken constant for air and water at a
given temperature and salinity) and Risthe principal radius
of curvature of the surface. (For short-crested waves there
would be two principle radii of curvature.) By convention
the pressure is higher on the concave side of the curving
surface (e.g. Landau and Lifshitz, 1959). Equation (1) is
independent of any motion of the fluid below the surface.
For simplicity takethefluid flow inthesteady reference
frame to be zero. Applying Laplace’ s equation (1) to the
pressure difference between crest and trough gives

T
Ap, =2— 2
p=22 (2)

whereAp; isthepressureat thecrest minusthat at thetrough,
the assumption being madethat theradiusof curvatureisthe
sameat crest and trough (infinitesimal amplitudes). Alsothe
atmospheric pressure is assumed to be constant over the
entire surface. Thus the left side of Eq. (2) just involves a
difference in fluid (water) pressures between crest and
trough. Equation (2) gives the static pressure difference
between crest and trough.

Now assume for the moment that surfacetensionisnot
acting and let the fluid flow past the observer from left to
right (Fig. 1). Below thetrough in the steady framethe flow
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speed is alittle faster than the mean speed, and below the
crest the speed isalittle less than the average speed. Thisis
dueto thedisturbancein theflow caused by thewave shape,
and the disturbed flow is confined in depth to the vicinity of
thewave. Because of the Bernoulli effect the perturbed flow
tries to make the trough lower and the crest higher, or in
other words to make the waves grow bigger in amplitude.

Next, Bernoulli’s equation for steady frictionless and
incompressible flow is

p = const - % pu? (3)

from which is derived the dynamic pressure difference
between crest and trough. Where the speed is greatest the
pressureis least, according to Eq. (3). Therefore below the
trough the pressureis|east and below the crest it isgreatest.
The constant in Eq. (3) means constant along a streamline,
and the crest and trough are on the same streamline.

Forming the dynamic pressure difference, App, be-
tween crest and trough gives

purf 1 aJ_AuDZ

Ap, = %PS—' +

where Au/2 is the perturbation in the flow speed caused by
the shape of thewave. The perturbed flow speed is assumed
tobethesameat crest and trough (infinitesimal amplitudes).

Evidently the static pressure difference between crest
and trough caused by surface tension has the opposite sign
from that due to the dynamic effect of the fluid flow. For a
bal ancebetween thetwo oppositely directed pressurediffer-
ences we have

Fig. 1. Flow inthe steady frame beneath the wave shape W with
crestsB andtrough T, thewave hasinfinitesimal amplitude H/
2. Theperturbationintheflow speed dueto the presence of the
wave diminishes with increasing depth and vanishes at the
depth of waveinfluence h. The acceleration of gravity points
in the direction S. Adapted from Einstein (1916; Fig. 4).



Ap, = Ap, = 2% = pulu. (5)

In order to evaluate Eq. (5) further, the perturbed flow
speed must be expressed in terms of more easily measured
guantities. For this purpose conservation of mass through
vertical cross-sections is used between crest and trough
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where H is the wave height and h is the depth of wave in-
fluence (Fig. 1). It isassumed that the perturbed flow speed,
Au, is constant over the depth of wave influence. This
assumption is not expected to change the final results
qualitatively (Kenyon, 1983). Equation (6) condenses to

uH = Auh. (7)

The next ingredient needed is an expression for the
depth of wave influence, which is adapted from the gravity
wave result of Kenyon (1983)

A
h=o (8)

where A isthe wave length. By definition the wave motion
and wave pressure are confined to depths above the depth of
wave influence. According to Eq. (8) the depth of wave
influenceisproportional tothewavelength andindependent
of the wave height. It isasif arigid plate were to be put at
the depth h (Fig. 1).

Noticethat Eq. (8) isalsoindependent of theaccel eration
of gravity. What this means is that if there is some other
cause of acceleration besides gravity, and surface tension
provides such a cause, then the result Eq. (8) will still be
valid. Therefore Eq. (8) istrue for capillary waves as well.
Alternatively, one can follow the arguments in Kenyon
(1983) step by step, except that the static pressuredifferences
between crest and trough are now due to surface tension
instead of gravity, and the vertical acceleration of the fluid
dueto gravity isreplaced by the vertical acceleration dueto
surfacetension. Insummary, thedepth of waveinfluencefor
capillary waves is proportional to the wave length and
independent of both the wave height and surface tension.

Using Eq. (8) toeliminateh and Eq. (7) to eliminate Au,
Eq. (5) becomes

W = 2T
PRKH

(9)

Finally, the convenient formulafor theradiusof curva-
tureis (Burington, 1948)

Py
1
ﬁ@
N
|~
ooO,

(10)
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for infinitesimal amplitudes, i.e. (8Z/K)? is much smaller
than one. The surface elevation for asinusoidal progressive
wave in the steady frameis

{ = asinkx (11
and a = H/2 is the wave amplitude. With Eq. (11) the

magnitudeof radiusof curvatureat crest andtrough becomes
(we ignore the sign convention)

1

R R
k’a

(12)

where (ka) is proportional to the mean wave slope.
Putting Eq. (12) into Eq. (9) gives the end result

(13)

Equation (13) givesthe square of the phasevelocity for
pure capillary waves can be seen by changing reference
frames from the steady frame to the fixed frame. By this
interpretation c = u, i.e. the phasevelocity inthefixed frame
equalsthe mean flow speed in the steady frame. In thefixed
framethewaves moveby the observer fromright toleft, and
the mean flow speed is zero everywhere.

Equation (13) agrees exactly with the classical result
(e.g. Lamb, 1932), when the air density is neglected com-
pared to thewater density. Thelarger the surfacetensionthe
greater the phase speed, as expected, since surface tension
actslike arestoring force. Also Eq. (13) showsthat shorter
wave length capillary waves move faster than longer ones
(the phase speed increases with increasing wave number).
Thisisexpectedtoo becausesurfacetensionismoreeffective
for smaller scales. However, the result that the square of the
phase speed dependslinearly on both thesurfacetensionand
the wave number is not obvious a priori.

If the fluid were to flow past the observer, who is
attached to the steady frame, from right to left, instead of
from left to right, as assumed above, then in switching back
tothefixed framethewaveswould befoundto movepast the
observer from right to left, and the formula for the wave
speed would be exactly the same. In other words, capillary
waves can propagate equally well in either of the two
horizontal directions. (There is a type of surface gravity
wave, called the roll wave, that can only move in one
direction, i.e. down the slope, and the Einstein method can
be applied to these waves also.)

Capillary Waves Understood by an Elementary Method 345



3. Capillary-Gravity Waves

Let gravity act now in concert with surfacetension. In
the steady reference frame the static pressure difference
between crest and trough, due to gravity alone, is

Ap; = pgH (14)
which isindependent of the motion of the fluid. The static
pressure is higher at the trough than at the crest, just the
opposite of the dynamic pressure, which is lower at the
trough and higher at the crest.

The static pressure between crest and trough due to
surface tension alone is still given by Eq. (2), and it too
produces a higher pressure at the trough than at the crest.
Thus the two separate static pressure differences, Egs. (2)
and (14), which areindependent of each other, can be added
together to give the total static pressure difference between
crest and trough, asis done on the |eft side of Eq. (15).

For abalance among all three pressure effects between
crest and trough in the steady frame Eqg. (5) now becomes

Ap, + Ap; = Ap, (15)

which can be expressed in terms of the mean flow speed as
(16)

whenthe square of thewave slopeissmall compared to one.

Equation (16) agrees with the classical result (Lamb,
1932) after converting back to the fixed frame such that ¢ =
u by the usual interpretation and neglecting the air density
compared to the water density. The phase speed increases
with both increasing and decreasing wave number, as Eq.
(16) shows, so the phase speed must have aminimum value
at one particular wavelength, which turnsout to be about 23
cm/sec at the wave length of about 1.7 cm for water and air
at room temperature. (T = 75 in c.g.s. units for room tem-
peraturesand typical ocean salinities.) For very short scales,
or when gravity can be neglected, Eq. (16) reduces to the
expression (13) found above for pure capillary waves. For
very long waves, or neglecting surface tension, Eq. (16)
reduces to the wellknown formula for the phase speed of
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surface gravity waves in the deep water limit, which has
been derived earlier by asimilar method (Kenyon, 1983).

4. Conclusion

The phase speed for capillary-gravity waves has now
been obtained in Eq. (16) by an elementary physical method
that is more direct than the usual mathematical one. In the
process of computing the phase speed the very existence of
capillary waveshasbeen made understandable and by away
that isquite short and should be easy to follow. Pure surface
gravity waves were explained before by Einstein (1916),
and then Kenyon (1983) later added one small piece to the
puzzle solved by Einstein. The irrotational assumption is
sometimesuseful, but itisnot necessary to account for basic
properties of capillary or gravity waves. The perturbation
technique provides a convenient program for dealing with
the nonlinear equations of fluid motion, but in very few
caseshasit been possibleto check independently theresults
produced by perturbation analyses. However, a qualitative
exampl e of verifying the predictions of perturbation theory,
founded on irrotationality, is given by the above approach
for capillary waves, at least in the infinitesimal amplitude
limit.

Acknowledgements
The journal review produced several helpful com-
ments.

References

Batchelor, G. K. (1967): An Introduction to Fluid Dynamics.
Cambridge University Press, Cambridge, England, p. 61.

Burington, R. S. (1948): Handbook of Mathematical Tables and
Formulas. Handbook Publishers, Sandusky, Ohio, p. 41.

Einstein, A. (1916): Elementare Theorie der Wasserwellen und
des Fluges. Naturwissenschaften, 4, 509.

Kenyon, K. E. (1983): On the depth of wave influence. J. Phys.
Oceanogr., 13, 1968.

Kenyon, K. E. and Sheres, D. (1997): Einstein's gravity wave
method applied to atwo-layer fluid with current shear. Phys.
Essays, 10, 55.

Lamb, H. (1932): Hydrodynamics, 6th ed. Dover, New Y ork, p.
457, 459.

Landau, L. D. and Lifschitz, E. M. (1959): Fluid Mechanics.
Addison-Wesley, Reading, Massachusetts, p. 231.



