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Chapter 1

EXERCISE 1.1 To verify first that the representation holds, compute the
second partial derivative of Inp(z, ) with respect to 0. It is

0% Inp(z,0) B 1 (8p(:v,0)>2 1 9*p(z,0)
p(

000 [pe.g)?\ 00 z.0)  96?

. <8 lnp(x,9)>2 N 1 9*p(z,0)
N 00 p(x,0) 062

Multiplying by p(z, ) and rearranging the terms produce the result,

(TR0 ) = PO (FUR0),

Now integrating both sides of this equality with respect to x, we obtain

1(0) = ngy [(ZRBEROY) oy [ (OREON ) o

B 0*p(x,0) 9? In p(x,0)

0? 0% In p(z,0)
- n\aﬁ/ﬂxp(x,é’)dxz—n/ﬂ{ (T)p(a@,@)dx

~
0

B 9* In p(x,0) B 9* In p(x,0)
= —n/]R (—@02 )p(x,Q)dx = _nEe[—&Q? ]

EXERCISE 1.2 The first step is to notice that 6§ is an unbiased estimator of
0. Indeed, Eo[0,] = Eo[(1/n) >o1, (Xi — p)?] = Eo[(X1 — p)?] = 6.
Further, the log-likelihood function for the A(u, #) distribution has the form

1 _ 2
Inp(z,0) = —§ln(2ﬂ6) — (x28,u) .
Therefore,
— )2 2 02
Olnp(z,0) 1  (z—p) and 0"lp(z,0) 1 (z—p)°
00 20 202 00? 202 03
Applying the result of Exercise 1.1, we get
9% Inp(X, 6) 1 (X =
In(6) = —nkEs 062 } = —nl [ﬁ e ]
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Next, using the fact that >, (X; — u)?/60 has a chi-squared distribution
with n degrees of freedom, and, hence its variance equals to 2n, we arrive at

Vary [9;{} = Vary [% zn: (Xi — N)Q]

1=1

_ 2n0% 207 1

n? n I,(0)°
Thus, we have shown that 6, is an unbiased estimator of § and that its vari-

ance attains the Cramér-Rao lower bound, that is, 6, is an efficient estimator

of 6.

EXERCISE 1.3 For the Bernoulli() distribution,

Inp(z,0)=2xlnb +(1—=xz)In(l—90),

thus,
Olnp(z,0) = 1l-uz and O lnp(x,0)  x  l1-u
20 6 1-0 007 & (=67
From here,
X 1-X 0 1-6 n
]"(9>__”E9[_@_(1—9)2}_”(9_2+(1—9)2)_9(1—9)'

On the other hand, Ey [Xn} =y [X] = 0 and Vary [)_(n} = Varyg [X} /n =
0(1 —0)/n = 1/I,(0). Therefore 8 = X, is efficient.

EXERCISE 1.4 In the Poisson(¢) model,

Inp(z,0) = 2Inf—60—Inx!,

hence,
Olnp(z,0) lp(z,0)  z
oo g Lo 00z~ g2
Thus,
X n

The estimate X, is unbiased with the variance Vary[X,| = 0/n = 1/1,(0),
and therefore efficient.



EXERCISE 1.5 For the given exponential density,

lnp(z,0)= —Inf — /0,

whence,
Jlnp(z,0) 1 9*Inp(z,0) 1 2z
06 0 * 02 anl 962 02 03
Therefore,
1 2X 1 20 n

Also, Eq [X'n} = @ and Varg [Xn] = 0?/n = 1/I,(0). Hence efficiency holds.

EXERCISE 1.6 If X4,..., X, are independent exponential random variables
with the mean 1/6, their sum Y = »"" | X, has a gamma distribution with

the density
yn—l an e—y@

= 0.
fY(y) F(TL) , Y=
Consequently,
1 n 1 yn-lgre vl
Eo|=—| = Eg|=| = ———d
G[Xn] H[Y] ”/0 y T 7
no /00 ol e ndT'(n—1)
= — y" e eV dy = —————=
I'(n) Jo I'(n)
_nf(n-2)!  no
(n—-1)!  n—1"
Also,

Vam[l/X’n} = Vam[n/Y] - nz(Ea[l/Yﬂ _ (Eg[l/Y])2>

=’ [9 Flg?n; o (nfn?} - [<n—1)1(n—2) - (n—lUQ}
n? 62
T (n—12m-2)

EXERCISE 1.7 The trick here is to notice the relation

Olnpo(x —0) 1 Ipo(z —0)
06 ~ po(z—0) 06
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1 Ipo(z —06) _ po'(z—10)

po(z —0) Ox polr —0)

Thus we can write

(X —0)\? 0'(y))”

which is a constant independent of 6.

EXERCISE 1.8 Using the expression for the Fisher information derived in the
previous exercise, we write

/ 2 /2 B C a1 ) 9
In(Q) = n/ Mdy — n/ ( Q. COS Y snly) dy
R Po(y) —n/2 C cos®y

w/2 /2
=nCa’ / sin®y cos*?ydy = nCa’ / (1= cos’y) cos* 2y dy
—7'('/2 —7I'/2

w/2

=nCa? / (coso"2y—cosay) dy .
—7/2

Here the first term is integrable if & — 2 > —1 (equivalently, o > 1), while

the second one is integrable if a > —1. Therefore, the Fisher information

exists when o > 1.



Chapter 2

EXERCISE 2.9 By Exercise 1.4, the Fisher information of the Poisson(6)
sample is I,,(0) = n/60. The joint distribution of the sample is

p(Xl,... Xn’ 9) — CnQZXie—nG

where C,, = C,(X71,...,X,) is the normalizing constant independent of 6.
As a function of 6, this joint probability has the algebraic form of a gamma
distribution. Thus, if we select the prior density to be a gamma density,
m(0) = C(a, )02 te P9 0 > 0, for some positive o and 3, then the
weighted posterior density is also a gamma density,

fO1X1,...,X,) = L,(0)C0= XieCla, )9 e Pl
— (X Xita=2 =)0 g -

where C, = nC,(Xy,...,X,)C(a, () is the normalizing constant. The

expected value of the weighted posterior gamma distribution is equal to
R X; —1
/ 07(0]X1,....X,)do = LXita—l
0 n+p

EXERCISE 2.10 As shown in Example 1.10, the Fisher information 1,,(0) =
n/o?. Thus, the weighted posterior distribution of 6 can be found as follows:

S (xi—-0)° (H—M)Z}

202 202

f(0|X1,...,Xn) = C1,(0) exp{ -

:Cﬁexp{_ (ZXf_ZHZXi+n02+ s >}

o? 202 202 202 20} a 207 202
1 n 1 nX,
= Gew{ = 5|5+ ) - 2005+ )]}
1, n 1 2w 2 2 2v)”
= () exp{ — 5(—2—1-—2) (9 — (nog X, + po®)/(noj +o )) }
or o,

Here C, C1, and Cy are the appropriate normalizing constants. Thus, the
weighted posterior mean is (n o3 X, + po?)/(noj + o) and the variance is

(n/o? + 1/03)_1 = o%0}/(noj + o?).

EXERCISE 2.11 First, we derive the Fisher information for the exponential
model. We have

Olnp(z,0) B

1
1 ) =1n6 — 0 -
np(z,0) n X, 50 7

_I,



and

O*Inp(x,0) 1
00? e
Consequently,
1 n
0O = —nBo| - z] =

Further, the joint distribution of the sample is
p(X1,... X, 0) = C,0=Xig 02X

with the normalizing constant C,, = C,, (X7, ..., X,) independent of §. As a
function of #, this joint probability belongs to the family of gamma distri-
butions, hence, if we choose the conjugate prior to be a gamma distribution,
7(0) = Cla, B)0 e P 0 > 0, with some a > 0 and 8 > 0, then the
weighted posterior is also a gamma,

f=0]Xy,...,X,) = L,(0)C, 0= Xi e 0 XX C(a, B) gt e PP
where C,, = nCy(Xy,...,X,)C(a, ) is the normalizing constant. The

corresponding weighted posterior mean of the gamma distribution is equal

to
ZX,‘—F(X—Q

0 (0 LX) dO =

EXERCISE 2.12 (i) The joint density of n independent Bernoulli(#) obser-
vations X ,..., X, is

Using the conjugate prior w(0) = C [9 (1-— 9)}\/5/271, we obtain the non-
weighted posterior density f(6 | X1,...,X,) = COXXtvr/2=1 (] _gyn—L Xitvn/2-1
which is a beta density with the mean

0 — > Xi++/n/2 Y X+ V)2
TN X+ VR24n =Y Xi+vn/2  n+n

(ii) The variance of 6 is

nVarg(X;)  nf(l—0)

Varg [6;] = (n+vn)?  (n+n)?’

and the bias equals to

ba(0,0,) = Eg[0,] — 0 = nd + vn/2 ) vn/2—/nb

n++/n n+n
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Consequently, the non-normalized quadratic risk of 8, is

Eq[(0; — 6)°] = Varg[6;] + b3(6,6,7)
nb(1—0) + (v/2—vnb)" _ n/4 !

(n+ V) S VR AV
(iii) Let t, = t,(X1,...,X,) be the Bayes estimator with respect to a non-
normalized risk function

Ry (0,0,,w) = Eg[w(B, — 0)].

The statement and the proof of Theorem 2.5 remain exactly the same if the
non-normalized risk and the corresponding Bayes estimator are used. Since
0 is the Bayes estimator for a constant non-normalized risk, it is minimax.

EXERCISE 2.13 In Example 2.4, let « = § = 1+ 1/b. Then the Bayes
estimator assumes the form
B Z X, +1 / b

tn(0) n+2/b

where X;’s are independent Bernoulli(f) random variables. The normalized
quadratic risk of ¢,(b) is equal to

Ry (0, tn(b),w) = Ee[( 1,(0) (£ (b) —9))2]

— 1,(0) [Vare [ ()] + b2 (6, tn(b))]
- o [ (L)
n nf(1 —6) nd +1/b 2
9(1—9)[(n—i—12/b)2 <n—:_21/b _9> ]
n nf(1 —0) (1—26)?
0(1—-0) [(n+2/b)2 b2(ﬂ+2/b)2}

—0

n  nd(l—20)
ﬁ
6(1—0) n?2
Thus, by Theorem 2.8, the minimax lower bound is equal to 1. The normal-
ized quadratic risk of X,, = lim,_, t,(b) is derived as

=1 as b— oo.

Ra (6, X w) = By [ (VI) (X~ 0))’]

n  0(1—0)
01—-60) n

That is, it attains the minimax lower bound, and hence X,, is minimax.

= 1,(0) Vary [Xn} = =1.




Chapter 3

EXERCISE 3.14 Let X ~ Binomial(n,#?). Then

/n — 62
|| V&Tn - 0] :Ee[%]
1 1

< 5]E9[|X/n - 92\] < 5\/E9[(X/” - 92)2]

(by the Cauchy-Schwarz inequality)

1 2 __ P2 __ P2
:_\/M:\/l 0 — 0 as n — 0.
0 n n

EXERCISE 3.15 First we show that the Hodges estimator 0, is asymptotically
unbiased. To this end write

A~

Eg[0, — 0] = Eg[0, — X, + X, — 0] = Eg[0, — X, ]

= Ee[ - XnH(|Xn’ < n*1/4)} <n 50 as n— oo.
Next consider the case 6 # 0. We will check that

lim Eg[n(én — 9)2} =1.

n—oo

Firstly, we show that
E9|:n(9n —Xn)2] — 0 as n — oo,
Indeed,
EG[”(QTL _Xn)Q] = nEe[(—Xn)2]I(|Xn] < n*1/4)]

- nl/4_gnl/2 1 ,
< n1/2IP9(|Xn| < n_1/4) = n1/2/ —— e 72z

_nl/A_gni/2 A/ 2T
1/4

n
1 1/2y2
_ ., 1/2 —(u—@n/)/Qd
=N — € u.
/n1/4 V2

Here we made a substitution u = z + #n'/2. Now, since |u| < n'/4, the
exponent can be bounded from above as follows

—(u—0n1/2)2/2 = —u24+ubn'? —0?nj2 < —u?/2 4 0n**t — 0% n)2,
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and, thus, for all sufficiently large n, the above integral admits the upper

bound

" 1 1/2y2
1/2 —(u—0nt/2)2/2
n e du
/_n1/4 V2T
nl/4 1
< n1/2/ 67u2/2+0n3/4792n/2 du
- _nl/a N 2T
1/4

" 1 2
<692"/4/ e 2du — 0 as n — oo.
o _pl/a /27

Further, we use the Cauchy-Schwarz inequality to write

By n (0 — 0)°] = Bo[n (0 — X0 + %o — 0)°]
= Byn (B — X)) ¢ 2B (0, — X)(X0 - 0)] + Bo[n (X, - 6)°]

= X))
< Bo[n (- %)°] +2 {Ba[n (0, - %)’ [

/ J/

—0 —0

X \{Eg[n(Xn — 9)2} }1/2 —|—EE9[n(Xn — 9)2]4 —1 as n— 0.

v~ v~
=1

=1
Consider now the case § = 0. We will verify that
lim Eg[néi} = 0.

n—oo

We have R
Bo[n02] = Bo|n X21(|X,] = n /) |

0 2
e /2 dy

- B (VA (VA > )] =2 [T

o0
SQ/ edy = 2¢ " 50 as n— oo,
n

1/4

EXERCISE 3.16 The following lower bound holds:

R o
sup B 1l0) G =0)"] 2 ml. s Bol 0]

~

> nTI* {]Eeo [(Hn - 90)2} + Eo, [<é" - 91)2} }

nl,

Ey, [(én —00)2 + (B, — 01)? exp {AL, (6, 91)}] (by (3.8))
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S nl,
- 2
> nl*e+p{zo}]E90[((én—HO)Qexp{—zO}+(én—61)2>]I(ALn(QO,Ql) > ZO)}
> ”I"%ME@O[((@”—%)? + (én—01)2>]I(ALn(60,6’1) > zo)} ,

since exp{—2z0} > 1 for 2, is assumed negative,

- nl. exp{z} (61 — 6o)
- 2 2

Ry, [((én —00)? + (6, — 60, exp{z0}> (AL (0 ,0:) > zo)]

i Py, (ALN(GO 61) > ZO)

- n I, po exp{zo} <L>2 1

> 1 N exp{zo} -

EXERCISE 3.17 First we show that the inequality stated in the hint is valid.
For any x it is necessarily true that either |z| > 1/2or |[z—1| > 1/2, because
if the contrary holds, then —1/2 <  <1/2and —1/2 < 1—z < 1/2 imply
that l =2+ (1 —x) <1/2+41/2 =1, which is false.

Further, since w(z) = w(—x) we may assume that x > 0. And suppose that
x > 1/2 (as opposed to the case x —1 > 1/2). In view of the facts that the
loss function w is everywhere nonnegative and is increasing on the positive
half-axis, we have

w(z) + wlx —1) > w(x) > w(l/2).
Next, using the argument identical to that in Exercise 3.16, we obtain
A~ 1 N
sup By [w(vi (6, — 0) | > 5 exp{zo} Bay | (w(v (B — 00)) +

feR 2

Now recall that 6; = 6y + 1/y/n and use the inequality proved earlier to

continue

> %w(l/2)exp{zO}P90<ALn(00,01) > zo) > lw(1/2)po exp{zo} .

N}

EXERCISE 3.18 It suffices to prove the assertion (3.14) for an indicator func-
tion, that is, for the bounded loss function w(u) = I(|u| > 7), where v is
a fixed constant. We write

b—a b—a
/ w(c—u)e‘“Q/Qdu:/ I(|c— ul >7)6_“2/2du

(b—a) —(b—a)

11



c—y ) b—a )
:/ 6_“/2du—|—/ e 2 du.
—(b—a) c+y

To minimize this expression over values of ¢, take the derivative with respect
to ¢ and set it equal to zero to obtain

e~ (c* _ ()’ = 0, or, equivalently, (c—v)? = (c+7).
The solution is ¢ = 0.

Finally, the result holds for any loss function w since it can be written as a
limit of linear combinations of indicator functions,

b-a n b—a
~(b—a) S —(b—a)
where
B b—a

Vi = i, Aw; = w(v) —w(yi-1)-

n

EXERCISE 3.19 We will show that for both distributions the representation
(3.15) takes place.

(i) For the exponential model, as shown in Exercise 2.11, the Fisher infor-
mation 7,(0) = n/0?, hence,

La(8 + t/v/Ti(00)) — La(6o) = La(00 + %) — La(60)
00t 9015

= nln(&ﬁ—%) — (90+%)n)_(n — nn(6y) + Ogn X,

= nla{f) + nln(l—l—%) — O X, — tOyv/n X, — nlaffy) + OgnX,.

Using the Taylor expansion, we get that for large n,

t ¢ t?
~ ) =n <_ _
v T\ T
Also, by the Central Limit Theorem, for all sufficiently large n, X, is ap-
proximately N (1/6y, 1/(n6})), that is, (X,, — 1/60)00 v/n = (00 X, — 1)v/n
is approximately N (0,1). Consequently, Z = — (6y X,, — 1)y/n is approx-
imately standard normal as well. Thus, nln (1 + t/\/n) — t0o/nX, =
tyn —t2)2 + 0,(1) — thyy/nX, = —t (0 X, — 1)y/n — £2/2 + 0,(1) =
tZ — t2/2 + 0,(1).

+ on(%)> =tvn — t2/2 + 0,(1).

nln(1+

12



(ii) For the Poisson model, by Exercise 1.4, I,,(6) = n/0, thus,

Lo(60 + t/\/T.(60)) — La(6o) = Lo (60 + t\/g) — L(60)

= an 1n<90—|—t\/§) — n(90+t\/%) — an ln(@o) +n90

t - t t? 1
:anln(lJr\/eo_n) Hon:an<\/90_n—290n+on(g))—t fon
/ X, t2

t2
=tZ - (1+ )—+0n(1):tZ——+on(1).

2 2

\/Gon

Here we used the fact that by the CLT, for all large enough n, X,, is approx-
imately N (6y, 0p/n), and hence,

e e;/io_ iy =V

is approximately A/ (0, 1) random variable. Also,

X Vbon + Z)\/0 Z
_”:( on ) 0/n:1+ =1+ on(1).
0 00 \/00”

EXERCISE 3.20 Consider a truncated loss function we(u) = min(w(u), C)
for some C' > 0. As in the proof of Theorem 3.8, we write

sup Ea[wc( nl(0) (én - 9))]

0eR

b/\/F .
> VI % iy [wc( n1(9>(en—9>)]de

_ %/ZEUW[@UC( nI(0)0, — t) ] dt

where we used a change of variables ¢t = y/nl(f). Let a, = ni(t//nl(0)).
We continue

1

= Eo[wc(me t) exp {AL, (0.t//nI(0))} | at

T 2%
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Applying the LAN condition (3.16), we get

1

=% Eo[wCWW t) exp{za(0)t — /2 + e(0,6) } | dit

An elementary inequality |z| > |y| — | — y| for any x and y € R implies that

22%9 | Eo[wo(Vanby—t) e {2(0)t — #/2}di+
—i—% _bEO[wC(Mé”_t)‘eXp{Zn(O)t—t2/2—|—gn<O,t)}

— exp{ Z,(0)t — t2/2}Hdt.

Now, by Theorem 3.11, and the fact that we < C, the second term vanishes
as n grows, and thus is o0,(1) as n — oo. Hence, we obtain the following
lower bound

sup EQ[UJC( nl(0) (én _9))]

0eR

2% Eo[wc(\/ﬂe —t) exp{z,(0 t—t2/2}]dt

+on(1).
Put 1, = \/an 0n, — 7,(0). We can rewrite the bound as

1

> o [ B ep (320 we(m— 1 -50) exp{ — 5(t-20)° ]

+o0,(1)

which, after the substitution u =t — Z,(0) becomes

I 1 1
> — E - I(| < — Ry
=5 ) 0[ exp{Qz )} 1(12.(0)] < @) we(n, — u) exp { S U }] du
+o0,(1).
As in the proof of Theorem 3.8, for n — oo,
o[ exp {20} 120) < 0) ] — =,
2

and, by an argument similar to the proof of Theorem 3.9,

b—a b—a
/ wc(nn—U)eXp{—%ﬁ}duZ/ wc(u)exp{—%ﬁ}du.

—(b—a) (b—a)

14



Putting a = b — v/b and letting b,C and n go to infinity, we arrive at the
conclusion that

oup B [uwo (Val0) G, - 0)] 2 [~ e au.

6eR Coo V2T

EXERCISE 3.21 Note that the distorted parabola can be written in the form
2t —12)2+¢e(t) = —(1/2)(t — 2)? + 22/2 +<(1).

The parabola — (1/2)(t — 2)* 4+ 2?/2 is maximized at ¢t = z. The value of the
distorted parabola at ¢t = z is bounded from below by

—(1/2)(z — 2)* + 22 /2 +e(2) = 2°/2+¢(2) > 22/2 6.

On the other hand, for all ¢ such that |t —z| > 2v/4, this function is strictly
less than 2%/2 — 4. Indeed,

—(1/2)(t — 2)2+ 22 /24 e(t) < —(1/2)(2V)% + 22 /2 + £(t)

< —204+22/246 = 22/2-94.

Thus, the value t = t* at which the function is maximized must satisfy

|t — 2| < 2V/0.

15



Chapter 4

EXERCISE 4.22 (i) The likelihood function has the form
H (Xi,0) =67 J] (0 < X; < 0)
i= i=1

=0 "I0< X, <0,0<X,<0,...,0< X, <0) =0"(Xp <96).

Here X,y = max(Xy,...,X,). As depicted in the figure below, function

0" decreases everywhere, attaining its maximum at the left-most point.
Therefore, the MLE of 0 is 0,, = X,).

A 9—”]I(X(n) < 9)

o

2

2
S

(ii) The c.d.f. of X(,) can be found as follows:

Fx, (2) =Py(Xpy < z) = Py(X) < 2,Xp < ,..., X, < )

= Pg(Xl < SL’)P@(XQ < a:) Py (Xn < x) (by independence)
x

_ []P’(Xl < :c)]n = (5)71’ 0<ax<80.

Hence the density of X, is
n—1

y "™\’ nT
Fxw(@ = Fr, @) = (37) = =5

The expected value of X, is computed as

0 n 0 . n@ont! n b
Eol X _/0 T gn do = 9_”/0 vhdr = (n+1)0n  n+1’

n+1 nb
Xn]: — 9.
(n) n n+1l




(iii) The variance of X, is

1

0 _

n 0 )

Varg[Xw] = [ o*"5—de - (=)
ano Xoo] = [ S e = (S5

no (% ne \2 nf"t? ng \2
i [ (R - - ()
o J, n+1 (n+2)0n n+1
_ no? n?0* n?
n+2 (m+1)2 m+1)2n+2)
Consequently, the variance of 0,7 is
n+1 (n+1)2 n6? 02

Varg[ 0] = Varg[ X(n)} = =

n? (n+1)2Mn+2) nn+2)’

EXERCISE 4.23 (i) The likelihood function can be written as

n

Hp(XZ-,(‘)) = exp{ — (2”: X; — n@)} ﬁ I(X; > 6)

i=1 i=1 i=1

:exp{ _ ZXi+n0}H(X1 >0, X, >0,..., X, > 0)

n

= exp {n 0} 1(Xn) > 0) exp{ — Z Xi}

i=1
with X1y = min(Xy,...,X,). The second exponent is constant with re-
spect to 6 and may be disregarded for maximization purposes. The function
exp{n 0} is increasing and therefore reaches its maximum at the right-most
point én = Xq)-

(ii) The c.d.f. of the minimum can be found by the following argument:
1 — Fx, (z) =Py(Xq) > 2) =Pp(Xy > 2, X5 > 2,..., X, > x)

= IP@(Xl 2 5”) IP@(X2 > x) .. Py (Xn > $) (by independence)

= [Pe(Xl > x)r = [/00 e~ =9 dyr = [e—(x—e)r = ¢ nle-0)

whence
Fx,(z) =1 — e n@=0)

Therefore, the density of X(;) is derived as
/
. () = Fi% (2) = 1 — ¢ a0 :ne_"(r_e), x> 0.

17



The expected value of X(;) is equal to

EQ[X(U} :/0 zne "0 gy

- / (g + 9) e Y dy (after substitution y = n(x—e))
0o N
I . 1
_—/ yeydy+0/ eldy = — + 0.
0 , 0 "

n
& /
~~

=1

As a result, the estimator 6 = X(;) — 1/n is an unbiased estimator of 6.

~~
=1

(ili) The variance of X 1) is computed as

VCLTQ[X(D} = / ?ne "0 dp — <ﬁ + 9)
0

= /0°° (y +9)26_ydy - (% +«9>2

n

1 o0 20 [ oo
= —2/ y2e Vdy —l——/ ye Ydy +92/ e Vdy —
n= Jo n Jo 0
1 1
=2 = =
_i_2_9_92:i
n? n n?’

EXERCISE 4.24 We will show that the squared Ls - norm of \/p( -, 8 + Af) —

Vp(+, 0) is equal to A0 + o(Af) as A — 0. Then by Theorem 4.3 and
Example 4.4 it will follow that the Fisher information does not exist. By

definition, we obtain

H\/p(,g—f—Ae) - \/p(,Q)H; -

2

= / [e’(:’”’e’M)/zﬂ(:c > 6+A9) — e’(xfa)/Q]I(x > 9)} dzx
R

0+A0 0o 2
_ / o= @0 gy +/ <e—(x—9—AG)/2 _ e—(z—@)/2) d
0 0+A0

o0

0+A0 9
= / e” @0 dy + (eM/Z - 1) / e” @0 dy
0 0+A0

— ] Ay (eAe/z _ 1)26—A9
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=2 — 27292 = NG + o(AF) as AG — 0.

EXERCISE 4.25 First of all, we find the values of c_ and c; as functions of
f. By our assumption, ¢, — ¢ = 6. Also, since the density integrates to
one, ¢; + c_ = 1. Hence, c. = (1 —0)/2and ¢, = (1+6)/2.

Next, we use the formula proved in Theorem 4.3 to compute the Fisher
information. We have

) = 4[|ov/p(-. 0)/08]]; =
[/1@\/1_7) / (@)2@:}

0

_4 [ 1 n 1 } B 1
- l8(1—6)  8(1+6) )  1-02"
EXERCISE 4.26 In the case of the shifted exponential distribution we have

exp{ —X; + (0 +u/mn) (X, >0+ u/n)
exp{ —X; + H}H(Xi > 6)

2,(0.0 + u/n) = [
exp{ =27 X; + n(0 + u/n) }I(Xq) =0 + u/n)
exp{ =D i Xi + n@}]l(X(l) > 9)
:e]I(X(l>6+u/n):e“MWhereT—n y — 0
(X0 2 9) (X0 2 9) o =0

Here IP’(;(X(l) > 9) =1, and

Po(Tn, > t) = Py(n (X — 0) > t)

=Po(Xq) =0 +t/n) =exp{ —n(@ +t/n—0)} =exp{—t}.

Therefore, the likelihood ratio has a representation that satisfies property (ii)
in the definition of an asymptotically exponential statistical experiment with
A(#) = 1. Note that in this case, T;, has an exact exponential distribution
for any n, and o,(1) = 0.

EXERCISE 4.27 (i) From Exercise 4.22; the estimator 7 is unbiased and its
variance is equal to 6%/[n(n + 2)]. Therefore,

292
T Eo, | (06 = 00)" | = lim 0 Vara, [0;] = Jim s = 68
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(i) From Exercise 4.23, 6% is unbiased and its variance is equal to 1/n?.
Hence,

E90[<7’L(9; —00))2] = n*Varg[0;] = = = 1.

EXERCISE 4.28 Consider the case y < 0. Then

Ao min/ lu — yle 2" du = Ay min / (u — y)e " du
y<O0 0 0

y<0

1 1 .
= mm(— — y> = —, attained at y = 0.
0 Ao
In the case y > 0,

o0
Ao min/ lu — yle " du
0

y=>0

o0 Y
/ (u—y)e_)‘(’“du+/ (y—u)e_’\oudu>
y 0

(26_’\0?/—1+ >_ln2
N V) = N

I
>
o
=
=
—

= min
y=>0

attained at y = In2/\.

Thus,

o In2 1 In2
1 — —Xou = 1 _ . — = —
Ao glelﬂg/o lu — yle du mm( ™ )\0) N

EXERCISE 4.29 (i) For a normalizing constant C', we write by definition

O Xy,..., X)) = Cf(Xy,0) ... f(X,, 0)m(0)

= Cexp{ —zn:(Xi—Q)}]I(Xl >0) ... (X, > 0)%1{(0 <60 <)

i=1
= C1e"I(Xq) > 0)I0<0<b)=Ce"I0<0<Y)

where

Y = .
— no o B .
@ = </0 ‘ d9> Cexp{nY} -1’ Y = min(X), b).

20



ii) The posterior mean follows by direct integration,
p

Y neene 1 1 ny
0, (b) = do = — tetdt
2(0) /0 exp{nY } — 1 nexp{nY}—l/O ‘

1 nY exp{nY} — (exp{nY} — 1) _ vy 1+ Y .
n exp{nY} —1 B n  exp(nY)—1"

(iii) Consider the last term in the expression for the estimator 6(b). Since
by our assumption 6§ > \/Z_), we have that Vb <Y < b. Therefore, for all
large enough b, the deterministic upper bound holds with Py - probability 1:

Y b
<
eXp{nY}—l B exp{n\/g}—l

Hence the last term is negligible. To prove the proposition, it remains to
show that

— 0 as b— 0.

lim ]Eg[nz(Y . 9)2} — 1.

b—oo n
Using the definition of Y and the explicit formula for the distribution of Xy,

we get

B[t (v - - o) ] =
= By | n?( X — % - G)Q]I(X(l) <o) +n2(b - % - 9)2]1()((1) > 0)]
=n? /eb (y — % — Q)Qne_”(y_e)dy + n2(b — % — 0>2P9(X(1) > b)

n(b—0) 9
:/ (t—1)2e’tdt+<n(b—9)—1> e "= L lash— 0.
0
Here the first term tends to 1, while the second one vanishes as b — oo,

uniformly in 6§ € [\/Z_), b— \/5]

(iv) We write

> — Mier;fbﬁEQ[(n(eg(b)—e)ﬂ.

The infimum is whatever close to 1 if b is sufficiently large. Thus, the limit
as b — oo of the right-hand side equals 1.
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Chapter 5

EXERCISE 5.30 The Bayes estimator 6, is the posterior mean,
g — (/) D Oexp{La(®)} _ 35—, 0 exp{La(0) }
" (UYn) gy exp{La(0) } >o—1 exp{ La(0) }

Applying Theorem 5.1 and some transformations, we get

0 — > o1 0 exp{ Ln(0) — Ln(6o) }

" 2ho1 exp{Ln(8) — Lu(fo) }
Siesmen Gt B0) oxp{La(i + f0) — La(60))
a din<jroo<n &PLLa(d + 00) — Ln(6h)}

diii<itbo<n U+ 00) exp{cW(j) — [j|/2}
Zj:1§j+00§n exp{cW(j) — |jl/2}
Dii<jroo<n J exp{eW () — 2[jl/2}
Zj:1§j+90§n exp{cW(j) — 2[jl/2} ~

= 6y +

EXERCISE 5.31 We use the definition of W (j) to notice that W (j) has a
N(0, | j|) distribution. Therefore,

B, | exp{ W) = [4]/2}] = exp{=|i]/2} Ba, | exp{cW (i)} |

—exp{ = Eljl/2+ Elj]/2} = 1
The expected value of the numerator in (5.3) is equal to
B | Y jexp{eW(i) = Ejl/2}] =3 ) = .
JEZ JEZ

Likewise, the expectation of the denominator is infinite,

Ego[Zexp{cW(j) —c2|j|/2}] = Zl = 0.

= JEZ.

EXERCISE 5.32 Note that

- Ky = /OO [ln w}po(x)dx

o0 po(x)
= L L (1 B ey
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- /_OO [Po(fﬁ = 1) — polz) } po(x) da

00 pO(x)

/_OO [po(z £ p) — po(z)]de =1 -1=0.

(e 9]

Here we have applied the inequality In(1 + y) < y, if y # 0, and the fact
that probability densities po(z £ i) and po(x) integrate to 1.

EXERCISE 5.33 Assume for simplicity that 6,, > 6. By the definition of the
MLE, AL, (6o, 6,) = Ln(0,) — Ln(6p) > 0. Also, by Theorem 5.14,

ALn(Qo, é’n) = W(én - 80) - K+ (én - ‘90) = Z g — K+ (én - 90) .

i:00<i<Op
Therefore, the following inequalities take place

Pgo(én —90 = TTL) S ]P)go(én —90 Z m)

MS

< ipe()( n(00, 00 +1) >0) 90<Z€iZK+l>

l=m l=m =1

A similar argument treats the case 6, < bp. Thus, there exists a positive
constant cs such that

P90(|Q~n — b = m) < cym~ BT

Consequently,

E90[|9 — 0| } Z IP’gO —90| = m) < c3 Z m?m Bt < .

m=0

EXERCISE 5.34 We estimate the true change point value by the maximum
likelihood method. The log-likelihood function has the form

0 30
L) = 3 [Xiln(04)+ (1= X,) (06) | + Y- [ Xiln(0.7)+ (1 - X;) n(0.3) |.
=1 i=0+1
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Plugging in the concrete observations, we obtain the values of the log-likelihood
function for different values of #. They are summarized in the table below.

g LO) |0 L) |0 L0
1 -21.87 |11 -19.95 | 21 -20.53
2 -21.18 | 12 -20.51 | 22 -21.09
3 -21.74 |13 -21.07 | 33 -21.65
4 -21.04 | 14 -20.37 | 24 -20.96
5 -21.60 | 25 -20.93 | 25 -21.52
6 -20.91 |16 -20.24 | 26 -20.83
7 -20.22 | 17 -19.55 | 27 -21.39
8 -20.78 | 18 -20.11 | 28 -21.95
9 -21.36 |19 -20.67 |29 -22.51
10 -20.64 | 20 -19.97 | 30 -21.81

The log-likelihood function reaches its maximum -19.55 when 6 = 17.

EXERCISE 5.35 Consider a set X C R with the property that the probability
of a random variable with the c.d.f. Fj falling into that set is not equal to
the probability of this event for a random variable with the c.d.f. F,. Note
that such a set necessarily exists, because otherwise, I} and F, would be
identically equal. Ideally we would like the set X to be as large as possible.
That is, we want X to be the largest set such that

/36 dF (z) # /3€ dFy(z) .

Replacing the original observations X; by the indicators Y; = ]I(XZ- € %),
1 =1,...,n, we get a model of Bernoulli observations with the probability of
a success p; = [, dFi(z) before the jump, and p, = [, dFy(z), afterwards.
The method of maximum likelihood may be applied to find the MLE of the
change point (see Exercise 5.34).
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Chapter 6

EXERCISE 6.36 Take any event A in the o-algebra F. Denote by A° its
complement. By definition, A¢ belongs to F. Since an empty set can be
written as the intersection of A and A€, it is also F - measurable.

EXERCISE 6.37 (i) If 7 = T for some positive integer T', then for any t > 1,
the event {7 = t} is the whole probability space if t = T and is empty if
t # T. In either case, the event {7 =t} € F;. To see this, proceed as in the
previous exercise. Take any event A € F;. Then A¢ belongs to F; as well,
and so do AU A° (the entire set) and AN A° (the empty set). Therefore, 7
is a stopping time by definition.

(i) If 7 =min {7 : X; € [a,b] }, then for any ¢ > 1, we write

t—1

fr=t} =N ({Xi<a}u{xi>p})N{e< X <b}.

i=1

Each of these events belongs to F;, hence {7 = t} is F; - measurable, and
thus, 7 is a stopping time.

(iii) Consider 7 = min(ry, 72). Then
fr=t} = ({n>tn{n=)U ({r>tn{n=1).

As in the proof of Lemma 6.4, the events {71 > t} = {Tl < t}c =

(Uizl{ﬁ = 8}>C, and {r, > t} = (Uizl{Tz = 3}) belong to F;.

Events {7’1 = t} and {7—2 = t} are JF; - measurable by definition of a stopping
time. Consequently, {T = t} € F;, and 7 is a stopping time.

As for 7 = max(m, 7), we write

fr=t} = ({n<ttn{n=0) U ({r<tynin=1)
where each of these events is F; - measurable. Thus, 7 is a stopping time.
(iv) For 7 = 1 + s, where 77 is a stopping time and s is a positive integer,

we get
{T:t} = {let—s}

which belongs to F;_,, and therefore, to F;. Thus, 7 is a stopping time.
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EXERCISE 6.38 (i) Let 7 = max{i : X; € [a,b], 1 <i < n}. The event

== () ({X<a}u{x>0}) N {azx <0},

1=1+1

All events for ¢ >t + 1 are not F; - measurable since they depend on obser-
vations obtained after time t. Therefore, 7 doesn’t satisfy the definition of
a stopping time. Intuitively, one has to collect all n observations to decide
when was the last time an observation fell in a given interval.
(ii) Take 7 = 7y — s with a positive integer s and a given stopping time 7.
We have

{r=t} ={n=t+s}eFy, T F.

Thus, this event is not F; - measurable, and 7 is not a stopping time. Intu-
itively, one cannot know s steps in advance when a stopping time 7 occurs.

EXERCISE 6.39 (i) Let 7 = min{7 : X? +---+ X? > H}. Then for any
t>1,

t—1

{r=t} = ( N {X12+"'+X3§H}> N{X7+ - +X?>H}.

i=1

All of these events are JF; - measurable, hence 7 is a stopping time.

(i) Note that X7 +---+ X? > H since we defined 7 this way. Therefore, by
Wald’s identity (see Theorem 6.5),

H<E[X{+ -+ XZ] = E[X]]E[7] = ¢ E[7].
Thus, E[7] > H/o?.
EXERCISE 6.40 Let u = E[X;]. Using Wald’s first identity (see Theorem

6.5), we note that
E[Xi 4+ X, —pur] =0.

Therefore, we write
Var[ X, 4+ X, —pr] = E[(Xl‘i‘"“i‘XT—MT)Q]

[e.e]

—E[ Y (X4t X ) T =1)]

t=1

— E[(X, - p)?1(r > 1)+(X2—M)211(722>+--.+<Xt—u)211<72t>+...}
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- Y[ wrae 2 0],

The random event {7 > t} belongs to F;_;. Hence, I(7 > t) and X; are
independent. Finally, we get

Var( Xy + -+ X, —pr] = > E[(X, = p)* | P(r > 1)

t=1

= Var[ X, ] Z]P)(T >t) = Var[ X ]E[7].

t=1
EXERCISE 6.41 (i) Using Wald’s first identity, we obtain
. 1 1 1
]EO[HT]:EEQ[Xl‘I'"’XT]:EEG[X”EG[T]:EQ}L:H
Thus, 0, is an unbiased estimator of 6.

(i) First note the inequality derived from an elementary inequality (z+y)? <
2(x? + y?). For any random variables X and Y such that E[X] = px and
E[Y] = Ky,

Var(X +Y] :E[((X — px) + (Y_F‘Y))z]

< 2<E[(X—[Lx)2] + E[(Y—uy)2}> = 2<Var[X] + Var[Y]).

Applying this inequality, we arrive at

N 1
Vargl0;] = ﬁVQT@[Xl—F"‘—FXT—HT—FQT}

2
< e (VCLT@[Xl +o+ X, —07] + Varg[07]> .
Note that Ey[ X; ] = 0. Using this notation, we apply Wald’s second identity
from Exercise 6.40 to conclude that

202 N 202 Varg[ 7|
h h? '

V&m[é‘r] < % (V@TG[X1]]E9[T] + 92VaT9[7]> =

EXERCISE 6.42 (i) Applying repeatedly the recursive equation of the au-
toregressive model (6.7), we obtain

XZ- = 0Xi_1+5i = e[eXi_2+€i_1:| +¢& = 92Xi—2+95i—1+5i
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= 92 [eXi_3+€i_2:| +9 61‘_1—{—61‘ = ... = Gi_l[Hqule] +(9i_2 €2+ e +05i—1 —f-{fl‘
— 0 ey + 0%y + . 4+ O + &

since Xy = 0. Alternatively, we can write out the recursive equations (6.7),

X1 :9X0+€1
X2 :9X1+62

Xiog = 0Xi0 + 5
Xi = eXi,1 + &;.

Multiplying the first equation by 6~!, the second one by 6~2, and so on,
and finally the equation number ¢ — 1 by #, and adding up all the resulting
identities, we get

Xi+60X, 1+ ... +072X, + 071X,
=60X,1 + ...+ 072X, + 07X, + 671X,
+ei+ 014+ ...+ 072y + 07 ey
Canceling the like terms and taking into account that Xy = 0, we obtain
X, =¢ 4+ 01+ ...+ 0725 + 07 ey,

(ii) We use the representation of X; from part (i). Since ¢;’s are independent
N(0,0?%) random variables, the distribution of X; is also normal with mean
zero and variance

Var[X;] = Var[e; + 0eiq + ... + 072y + 67 ey ]
21_92@‘

= Var[e] <1+92+---+02(i_1)) =0

1—62"
(iii) Since || < 1, the quantity 6% goes to zero as i increases, and therefore,
1-6% o
lim Var| X;| = i 2 = .
fim Var[ X;] = m o" 53— = 74

(iv) The covariance between X; and X;;;, 7 > 0, is calculated as

COU[Xi’Xi+j] = ]E|:(€Z -+ (981',1 + ...+ (9i72€2 -+ Hiflal)x
X (eipj +0cipjr + oo+ P+ e+ 4607725 + eiﬂ’—lsl)]

— HJE[(&' + 0 44+ ...+ 072 + Hi_lal)Q}

21
L6
1— 02

= ¢ Var[e:] (1 +6° + ... + 92(i—1)) — 520
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Chapter 7

EXERCISE 7.43 The system of normal equations (7.11) takes the form
Oom + 0, Do Ti = D Y
Oo Doy wi + 00 DL af = 3 iy

with the solution

él _n Z?:l LilYi — (Z:’L:l ;) (Z?:l Yi) 2?21 (s — ) (i — 7))

n E?:l xf - (Z?:l ;) 22;1 (v —2)? ’

and é() =9 — 0,7 where 7 = Yoy xi/mnand g =", yi/n.

EXERCISE 7.44 (a) Note that the vector of residuals (ry,...,7,)" is orthog-
onal to the span-space S, while gy = (1,...,1)" belongs to this span-space.
Thus, the dot product of these vectors must equal to zero, that is, rqy +-- -+
r,=20.

Alternatively, as shown in the proof of Exercise 7.43, 0y = Y — éli', and
therefore,

Z T ZZ(%—Q@') :Z(?Ji—éo—éliﬂi) :Z(yi—ﬂ+é1f—é1$i)
=1 i=1 1=1 =1
=> Wi—9+6) (—z)=0.
i=1 i=1
0 0

(b) In a simple linear regression through the origin, the system of normal
equations (7.11) is reduced to a single equation

n n
6 Z %2 = Z i Yis
i=1 i=1
hence, the estimate of the slope is

G Dicn TiYi
91 = <n 3 -
>t T
Consider, for instance, three observations (0,0),(1,1), and (2,1). We get
0 = 30 wiyi/ Y0, a2 = 0.6 with the residuals 7, = 0, 7, = 0.4, and
r3 = —0.2. The sum of the residuals is equal to 0.2.
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EXERCISE 7.45 By definition, the covariance matrix D = ¢ (G'G)~!. For
the simple linear regression,

—1
D = 52 o 22:1 Tif o Z?:r} Ty =3l T .
PR T detD |— > i, @i n

By Lemmma 7.6,

o2
det D

(i: m?—2( Y xz) x+nw2>.

1= =1

Vare [fn(x) | X] = Doo+2Dg; 2+Dyy 2* =
Differentiating with respect to x, we get

—Qi: T, +2nxz=20.

=1

Hence the minimum is attained at z = ). | z;/n = Z.

EXERCISE 7.46 (i) We write
r=y-y=y-G0 =y-G(GG) Gy = (I,-H)y

where H = G(G'G)™! G’. We see that the residual vector is a linear trans-
formation of a normal vector y, and therefore has a multivariate normal
distribution. Its mean is equal to zero,

Eo[r] = (I, —H)Ee[y]| = (I, — H) G#6
= GO — G(G’G)_1 GG =GO—-GO =0.
Next, note that the matrix I,, — H is symmetric and idempotent. Indeed,
(I, -H)Y = (I, -G(G'G)'G") =1,-G(G'G)'G’' =1, H,

and
(I, — H)2 = (In - G(G'G)*1 G’) (In — G(G’G)*1 G')

=1,-G(GG)'G' =1,-H.

Using these two properties, we conclude that
(I, -H)(I,-H) = (I, —-H).
Therefore, the covariance matrix of the residual vector is derived as follows,
Eo[rr'] = Eo[ (I, - H)yy'(I, - H)'| = (I, - H)Eo|yy' | (I, - H)’
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= (I, - H) 0L, (I, - H) = ¢*(I, — H).

(ii) The vectors r and § — G 6 are orthogonal since the vector of residuals
is orthogonal to any vector that lies in the span-space §. As shown in part
(i), r has a multivariate normal distribution. By the definition of the linear
regression model (7.7), the vector § — GO is normally distributed as well.
Therefore, being orthogonal and normal, these two vectors are independent.

EXERCISE 7.47 Denote by ¢(t) the moment generating function of the vari-
able Y. Since X and Y are assumed independent, the moment generating
functions of X, Y, and Z satisfy the identity

(1—2t)"2 = (1 —2t)"2p(t), for t<1/2.
Therefore, p(t) = (1 —2t)~=™/2 implying that ¥ has a chi-squared dis-

tribution with n — m degrees of freedom.

EXERCISE 7.48 By the definition of a regular deterministic design,
1 —1

1 — = Fx(v;) — Fx(zi-1) = p(a7) (v; — 24-1)

)
n o n n

for an intermediate point z} € (x;_1,x;). Therefore, we may write

n

tim 30 ge) = Jim 3 (=i pladdota) = [ glalpta) da.

i=1 i=1

EXERCISE 7.49 Consider the matrix D! with the (I, m)-th entry o2 fol ™ da,

where [,m =0, ..., k. To show that it is positive definite, we take a column-
vector A = (Ag, ..., A\x) and write
k k 1 1 k 9
NDIA=0") > Amj/ 2ol de = 02/ (Z Ax) dz |
i=0 j=0 0 0 “i=o

which is equal to zero if and only if \; = 0 for all i = 0,..., k. Hence, D!
is positive definite by definition, and thus invertible.

EXERCISE 7.50 By Lemma 7.6, for any design &', the conditional expecta-
tion is equal to

k
Ee[(fn(l’)—f(x))2|x} = Z Dl,mgl(m)gm(x>'

I,m=0
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The same equality is valid for the unconditional expectation, since X is a
fixed non-random design. Using the fact that nD — D, as n — oo, we
obtain

k

lim Eo| (Vi (fule) = £()))*] = Jim 37 nDina(r) gu(a)

n—o0
I,m=0

EXERCISE 7.51 If all the design points belong to the interval (1/2,1), then
the vector dg = (1,...,1) and 9y = (1/2,...,1/2) are co-linear. The prob-
ability of this event is 1/2". If at least one design point belongs to (0,1/2),
then the system of normal equations has a unique solution.

EXERCISE 7.52 The Hoeffding inequality claims that if &;’s are zero-mean
independent random variables and |¢;| < C, then

P(|lziy+ - +§ >t) < 2exp{ — 2/(2nC?)} .

We apply this inequality to & = gi(x;)gm(x;) fo gz x)dz with t = dn
and C' = CZ. The result of the lemma follows.

EXERCISE 7.53 By Theorem 7.5, the distribution of 8 — @ is (k + 1)-variate
normal with mean 0 and covariance matrix D. We know that for regular
random designs, nD goes to a deterministic limit D, independent of the
design. Thus, the unconditional covariance matrix (averaged over the distri-
bution of the design points) goes to the same limiting matrix D,

EXERCISE 7.54 Using the Cauchy-Schwarz inequality and Theorem 7.5, we
obtain

Eo| fu — FI31 %] = 0[/1 Z oia) ) do | ¥

=

< Ee[ i (6; — 0,)? | X] i /01 (gi(ac))2dx =d’tr(D) | gll3.
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Chapter 8

EXERCISE 8.55 (i) Consider the quadratic loss at a point

w(fu= ) = (fale) = f(2))*.

The risk that corresponds to this loss function (the mean squared error)
satisfies

Rulfur ) = Bs[w(fu— D] = Bs[ (Jule) = £(2))*]

= B[ (fu@) = Ef[fu@)] + E;[fu()] = F(2))"]
= B (fule) = Bs[a(@)])"] + By | (Bs[ful@)] = F@))"]

= Ef[&(@)] + bh(2) = Ef[w(&) ] + w(by).
The cross term in the above disappears since

Er| (Jule) = Er[fu@)]) (Er[fu@)] = f(2))]

- 5[ /@) - E/[h@)] ] (5[f@)] - f@)
= (Bf[fua@)] = B [fal@)]) bul2) = 0.

(ii) Take the mean squared difference

w(fa= 1) = 2 32 (falw) = f))*.

i=1

S

The risk function (the discrete MISE) can be partitioned as follows.

n

Rallor ) = By[wla = )] = Be[2 3 (o) = f(@))’]

= Ef[% Z (fn(%) — Ey [fn<xz>} + Ey [.]En('rz)} - f(fUz))Q]

1 &, A 2 1 o . >
= By o> (fulw) Eg[fu(@)])* | 4B | 2 30 (By[fulwd) ] = f(@))’]

n

=By [2 S )| + 3 0 B = Bru@)] + wib).

i=1
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In the above, the cross term is equal to zero, because for any i = 1,...,n,
By | (fale:) = Br[fa(@)]) (Bs[ful@)] — f(@)) ]
= By (Fulwi) = Be[falen)]) ] (Bs[fal@)] = ()
= (B[ fala)] = By [fal@)]) bu(x)) = 0.

EXERCISE 8.56 Take a linear estimator of f,

= Z Un,i(x) Y
=1

Its conditional bias, given the design X, is computed as

bn<x7X):Ef[fn()|X]_f Zvnz Jui| X1 — f(z)

_Zvnl ]Ef[y1’X _f Zvnz _f(>

The conditional variance satisfies
By (€0, %) | X] = By [ (fule) — By [ fule) | X])° | ¥ ]
= B f2@) || = 2(Bg[ful@) 1 X])" + (g fulw) | X])]
= B[ @)1 x| — (E/[fu@)| X])’

B[ (3 nten) 12] - (B 3 el €])
Z ) Ep[y7 | X] <ZvnZ Efyz]X})Q

Here the cross terms are negligible since for a given design, the responses are
uncorrelated. Now we use the facts that E;[y? | X | = o2 and Ey[y; | X ] =
0 to arrive at

B[, 0) | X] = 0? Y47 (2)
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EXERCISE 8.57 (i) The integral of the uniform kernel is computed as

| wwa= [T pi(-1 <u<)yde- /11(1/2)@: N

(ii) For the triangular kernel, we compute

/_Z Klw)du = /_Z<1—|“|)H(—1 <u <1)du

:/ (1+u)du+/1(1—u)du:1/2+1/2:1.

(iii) For the bi-square kernel, we have

/_OO K(u)du = /_OO (15/16) (1 —u?)’I( —1 < uw <1)du

1

= (15/16)/ (1 —u*)?*du = (15/16) / (1 —2u® +u*) du

-1

(15/16) (u — (2/3)u’ + (1/5)u”) 11 = (15/16)(2 — (2/3)(2) + (1/5)(2))
= (15/16)(2—4/3+2/5) = (15/16)(30/15—20/15+6/15) = (15/16)(16/15) = 1.

iv) For the Epanechnikov kernel,

1

/_oo K(u)du = /_OO (B/4)(1-u)I( -1 <u<1) = (3/4)/ (1—u?) du

o) -1

= @/ (- (1/3)*)] = B/E-1/3)2) = B/4)2-2/3)
— (3/4)(6/3 —2/3) = (3/4)(4/3) = 1.

EXERCISE 8.58 Fix a design X. Consider the Nadaraya-Watson estimator

).

falz) = ; Un,i(x) y; where vy, ;(z) = K( xihz i )/]; K( xjh; x

Note that the weights sum up to one, > /" | v,;(z) = 1.

(i) By (8.9), for any constant regression function f(z) = 6y, we have
i=1
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—va )00 — b = 0o va ) —1) = 0.

=1 i=1

(i) For any bounded Lipschitz regression function f € ©(1, L, L), the abso-
lute value of the conditional bias is limited from above by

[, 2] = | 3 vna) (a0 — 1) |

EXERCISE 8.59 Consider a polynomial regression function of the order not
exceeding 0 — 1,

flx)=0g+biz+---+0,2™, m=1,....,0—-1.

The i-th observed response is y; = 0y + 6, x; + - - - + 0,,, " + ¢; where the ex-
planatory variable x; has a Uniform(0,1) distribution, and ¢; is a N'(0, 0?)
random error independent of z;, 2 =1,...,n.

Take a smoothing kernel estimator (8.16) of degree 3—1, that is, satisfying
the normalization and orthogonality conditions (8.17). To show that it is an
unbiased estimator of f(x), we need to prove that for any m =0,...,3 — 1,

1 i —
h_nEf[xgnK<xhnx>} =2", 0<z<l1.

Recalling that the smoothing kernel K (u) is non-zero only if |u| < 1, we

write
Lol ()] [

o+hn o T, — T
__/ s - >d:z:z_/_1(hnu+x) K (u) du

after a substitution z; = h,u + x. If m =0,

/_11 (hpu+ )" K(u) du = /_11 K(u)du = 1,
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'75_1a

by the normalization condition. If m =1, ..

/_11 (hoi + 2)™ K (u) du = 2™ /_11 K(u)du +
R

j=1 ~
Therefore, n )
Ef[n_;n ZlyK<xhan
_ Ef[nin An (90+91xz-+~-+‘9m$7+€i)K(xih_nx”

i=1

=0+ b1z+ - +0,2™ = f(x).
Here we also used the facts that x; and ¢; are independent, and that ¢; has

mean zero.

EXERCISE 8.60 (i) To find the normalizing constant, integrate the kernel

/_11 K(u)du = /_11 C(1—|u?)Pdu = 20/01(1—u3)3du

3 3 7_iu10)‘1
0

220/0(1—3u3+3u6—u9)du:QC(u—Zuﬂ‘%—?u 0

8,3 L) o8 8oy oD

—20(1-24+2_ ) =
C( 4+7 10 140 70

(ii) Note that the tri-cube kernel is symmetric (an even function). Therefore,
it is orthogonal to the monomial z (an odd function), but not the monomial

22 (an even function). Indeed,
0

1 1
/ u(1— |u]*)du = / u(1 +u®) du + / u(l —u®)? du
_ -1 0

1
1 1

= —/ u(l—u3)3du+/ u(l—u*)*du = 0,
0 0

whereas

1 0 1
/ u*(1— |ul*)? du = / u?*(1+u?)? du + / w?(1 —u?)? du
_ 0

1 -1
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_ ' _ .33
—2/0u(1 u’)?du # 0.

Hence, the degree of the kernel is 1.

EXERCISE 8.61 (i) To prove that the normalization and orthogonal condi-
tions hold for the kernel K (u) =4 — 6u, 0 < u < 1, we write

1
0

/OlK(u)du = / (4 —6u)du = (4u_3u2>‘é:4_3:1

and

1 1
/ uK (u) du = / u(4 — 6u) du = (2u2—2u3)‘(1) =2-2=0.
0 0

(ii) Similarly, for the kernel K(u) =4+ 6u, —1 < u <0,

1
1

0 0
/ K(u)du:/(4+6u)du:(4u+3u2)’(i =4-3=1
-1 _
and
0 0 .
/ uK (u) du = / u(4 + 6u) du = (2u2—|—2u3)’_1 =—-2+2=0.
-1 -1

EXERCISE 8.62 (i) We will look for the family of smoothing kernels Ky(u)
in the class of linear functions with support [—6,1]. Let

Kg(’d) = Agu—l—Bg, —0<u<l.

The constants Ay and By are functions of 8 and can be found from the
normalization and orthogonality conditions. They satisfy

1
—0

1
/ u(Agu + Bg)du =0.
—0

The solution of this system is

1-0 146
Ag = —6——— and By = 4 ———.
S () (e
Therefore, the smoothing kernel has the form

3 _
1+0 L= f<u<l.

K@(u)zllm—ﬁum,— >~ =
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Note that a linear kernel satisfying the above system of constaints is unique.
Therefore, for § = 0, the kernel Ky(u) =4 — 6u,0 < u < 1, as is expected
from Exercise 8.61 (i). If # = 1, then Ky(u) turns into the uniform kernel
Kyo(u)=1/2, -1 <u<1.

The smoothing kernel estimator

fal@) = ful0hn) =

i k()

utilizes all the observations with the design points between 0 and x + h,,
since

{—0<T =<1} = {0<m<Ohn+h} = {0 <ath ).
(ii) Take the smoothing kernel Ky(u), —60 < u < 1, from part (i). Then the
estimator that corresponds to the kernel Ky(—u), —1 < u < 6, at the point
x = 1—0h,, uses all the observations with the design points located between
x — h, and 1. It is so, because

{_1§xi_$<9}:{_1§$i_2:‘9hn§9}

={1-06h,—h,<a; <1} ={a—h, <z;<1}.
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Chapter 9

EXERCISE 9.63 If h, does not vanish as n — oo, the bias of the local
polynomial estimator stays finite. If nh, is finite, the number of observations
N within the interval [x — hy,, z+ h,] stays finite, and can be even zero. Then
the system of normal equations (9.2) either does not have a solution or the
variance of the estimates does not decrease as n grows.

EXERCISE 9.64 Using Proposition 9.4 and the Taylor expansion (8.14), we
obtain

6—-1 o B B—-1 B mf(m) 0)

B— p—1 -1
Z (b + N ) = F(0) = p (0, )+ > (=)™ by + > (=

Hence the absolute conditional bias of fn(O) for a given design X admits the
upper bound

)

Note that the random variables N, can be correlated. That is why the con-
ditional variance of f,(0), given a design X', may not be computed explicitly
but only estimated from above by

. < Lhﬁ
B[ £a0) = FO)]] < [ (0. ) Z»bm| < +BCy M = O(h)

Varf[fn(O)’X] :Varf[ﬁz "™ N ’X}

B—1
<8 ZVarf[./\/'m‘X] < 8C,/N = O(1/N).
m=0

EXERCISE 9.65 Applying Proposition 9.4, we find that the bias of m! 6,,, /(h)™
has the magnitude O( (h;)?~™) , while the random term m! N5, /()™ has
the variance O( () ™™ (nh;)™') . These formulas guarantee the optimality
of h¥ = n~Y0+1) Indeed, for any m,

()P = (hy) ™™™ (nhy) ™!

So, the rate (h})?#—m) = p=28=m)/26+1) follows.
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EXERCISE 9.66 We proceed by contradiction. Assume that the matrix D}
is not invertible. Then there exists a set of numbers Ay, ..., Ag_1, not all of
which are zeros, such that the quadratic form defined by this matrix is equal
to zero,

_ B—1 1
- 1 m
0= m§j (DX), A = §lm§j0mm /_1 ut " du

1 S
1
:5/1(&“) du
-1 =0
On the other hand, the right-hand side is strictly positive, which is a contra-

diction, and thus, D! is invertible.

EXERCISE 9.67 (i) Let E[-] and Var|-] denote the expected value and vari-
ance with respect to the distribution of the design points. Using the conti-
nuity of the design density p(z), we obtain the explicit formulas

E[nzziﬁ(%{:x)} :hi:/[)l@?(t;;)p(t)dt

_ / P (Wp(x + hou) du — p(@)| ¢ |13

(i) Applying the fact that (h%)*’ = 1/(nh?)? and the independence of the
design points, we conclude that the variance is equal to

Va?"[ i flz(xi)] = i Var[ ff(x;) ]

i=1 i=1

n

< S E[fi() ZE[ (%

=1

)

1
= o /;1 904(15)}?(1’ +uhl)du < nfll;'; 71n%auxgl 904<u) .
Since nhi — oo, the variance of the random sum Y ", fZ(z;) vanishes as
n — oo.

(iii) From parts (i) and (ii), the random sum converges in probability to the
positive constant p(z)||¢||3. Thus, by the Markov inequality, for all large
enough n,

P(Y s < 2@lelR) = 1/2.

i=1
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EXERCISE 9.68 The proof for a random design X follows the lines of that
in Theorem 9.16, conditionally on X. It brings us directly to the analogue
of inequalities (9.11) and (9.14),

sup Ey(fula)— f(2))° >
f€0(B)

o o(LSoe™)]

W

Finally, we apply the result of part (iii) of Exercise 9.67, which claim that
the latter expectation is strictly positive.
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Chapter 10

EXERCISE 10.69 Applying Proposition 10.2, we obtain

; 51 . - ,
d™ fn(x) i 1/ f9%,) ., T — cg\im
rhe 8 () (5

dxm z:Zm (1t —m)! hm ( il w F big + Nig I,
_ — f(l)(cq) (.CL' —c )z m o L — il b (I — Cq )z—m
B — (i—m) e hy = (1 —m)! e P

B—1

7! T — cg\im
+ﬁim(i—m)!"\[i’q( ha, > '

The first term on the right-hand side is the Taylor expansion around ¢,
of the m-th derivative of the regression function, which differs from f™(z)
by no more than O(h2~™). As in the proof of Theorem 10.3, the second bias
term has the magnitude O(h2~™), where the reduction in the rate is due to
the extra factor h,” in the front of the sum. Finally, the third term is a
normal random variable which variance does not exceed O( h,*™ (nh,)™').
Thus the balance equation takes the form

1

p2(B=—m) _ )
" (hn)?™(nh, )

Its solution is hY = n~1/(2A+1) "and the respective convergence rate is (h*)3~™ .

ExERcIsE 10.70 For any y > 0,

P(2* > ysv2mn) < B( Lcj 61 |Zna| = yv/2Tn)
¢=1m=,0

< QBP(|Z]|> yv2Ilnn) where Z ~N(0,1)
< QpnY  since P(|Z| > z) < exp{—2?/2},z > 1.
Ifn>2and y > 2, then Qn ¥ < 27, and hence

[z 1] = [ "Gz 2 v1%)

2 e’}
) 5
< d 27Ydy = 2 _
—/0 v [ a2t g

Thus (10.11) holds with C, = (2 + 5 )BV2.

41In2
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EXERCISE 10.71 Note that
P(2° > y2PlQ) < Q8Q ™ = QW) < g2y,

if Q > 2andy > 2. The rest of the proof follows as in the solution to Exercise
10.70. Further, if we seek to equate the squared bias and the variance terms,
the bandwidth would satisfy

B = \/(nh,)'InQ, where Q = 1/(2h,).

Omitting the constants in this identity, we arrive at the balance equation,
which the optimal bandwidth solves,

h? = \/—(nh,)"1nh, ,

or, equivalently,
nh?*t = —Inh,, .
To solve this equation, put
b,Inn \1/(26+1)
= (@)
Then b,, satisfies the equation

In(26+4+1) — Inb, — Inlnn

b, =1+
Inn

with the asymptotics b, — 1 as n — oo.

EXERCISE 10.72 Consider the piecewise monomial functions given in (10.12),

%w@):ﬂx630<x;%>m,q:anQ,m:OWWB—l.mﬂ

The design matrix I" in (10.16) has the columns

i = (W(21), . .. ,’yk(xn)),, kE=m+p(¢g—1), q=1,...,Q, m=0,...,0-1.

(0.2)
The matrix I'T of the system of normal equations (10.17) is block-diagonal
with @ blocks of dimension 3 each. Under Assumption 10.1, this matrix is
invertible. Thus, the dimension of the span-space is Q) = K .

EXERCISE 10.73 If ( is an even number, then

e e}

) =) (=1)"2(2nk)? [ axV2 cos(2mkz) + bpV/2sin(2mka) | .

k=1
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If 8 is an odd number, then

(—1)(5“)/2(27#6)6[akﬁcos(Qﬂkx) — bk\/isin(kax)] .

NE

f(ﬁ)(:v) —

k=1

In either case,

|70 = Z’f” ai + b

EXERCISE 10.74 We will show only that
Z sin (2wmi/n) = 0.
i=1

To this end, we use the elementary trigonometric identity
2sinasin 3 = cos(a — §) — cos(a + ()

to conclude that

cos (2rm(i — 1/2)/n) — cos (2rm(i + 1/2)/n) .

2sin (mm/n)

sin (2mmi/n) =

Thus, we get a telescoping sum

Xn:sin (27rmi/n) B zn: [cos (27rm(i — 1/2)/n) — cos (27rm(2' + 1/2)/n)}

- — 2sin (mm/n)

— W [cos (mm/n) — cos (2rm(n + 1/2)/n)]
— W[ cos (mm/n) — cos (27rm+7rm/n)]
1

= W [cos (mm/n) — cos (Wm/n)} =0.
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Chapter 11

EXERCISE 11.75 The standard B-spline of order 2 can be computed as

. /dz:u, if 0 <u<l,

So(u) = / I, 1)(2) Ijp, 1y(u— 2) dz = 7
- / dz =2—u, if 1 <u<?2

u—1

o0

The standard B-spline of order 3 has the form

Ss(u) = /_oo So(2) I, 1y(uw — 2)dz

4 u 1
/zdz:§u2, if 0 <u <1,
0
1 u
3
= / zdz+/(2—z)dz——u2+3u——, it 1 <u <2,
/ (2—z)dz:§(3—u)2, if 2 <wu<3
\ Ju—1

Both splines Sa(u) and S3(u) are depicted in the figure below.

y Sa(u)

, Ss(u)

[N [JV)
Y
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EXERCISE 11.76 For k =0, (11.6) is a tautology. Assume that the statement
is true for some k£ > 0. Then, applying (11.2), we obtain that

— Zk:(_nj (k’) [ Sm—p—1(w—j) — Smp—1(u—7—1)]

- <§) Sm—p-1(u) + (=1)! Kf) - (ﬁ)] Syt (u — 1)
(i) + </{E1>} Sm—k—1(u—k) — (1) (Z) St (u—k—1)

k+1

= Z (k - 1) Sm—(e+1)(u — 7).

Here we used the elementary formulas

k k k+1 k k+1
)+ = . , = =1,
7 7 —1 9 0 0
k k+1
(=1 k — (-1 k+1 )
ot () = o (1)
EXERCISE 11.77 Applying Lemma 11.2, we obtain that

m— m—1
(m—1) = Z (u—i) = Gzz ( )H[O»l)(u_i_l)'

1=
If uw €[5, j+ 1), then the only non-trivial contribution into the latter sum
comes from ¢ and [ such that i + 1 = 7. In view of the restriction, 0 < j <
m — 2, the double sum in the last formula turns into

v B (32,

EXERCISE 11.78 If we differentiate j times the function

and

Nyl

(u — k)ym=1!
(m —1)!

47
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we find that

J m—1—j m—1)(m—2)...(m—7 - u— kyn—i-1
PO () = (u—k) ( )((m—)l)! (m—j) _ ((m—g)'—1)!'

Hence
m—k—1)ym-1
(m—j—1)!

m—2
vj = LPY(m —1) = Z bk(
k=0

EXERCISE 11.79 The matrix M has the explicit form,

(m—l)m71 (m_2)mfl (1)m71
m—1)! m—1)! e m—1)!
(,rr(L_l)vrz—2 (n§_2)w272 El)mJZ
M = (m—2)! (m—2)1  *°° (m—2)
(-t @m=' )
1! 1! o !

so that its determinant
m—1
det M — ( I1 k!)
k=1

where V,,,_; is the (m —1) x (m — 1) Vandermonde matrix with the elements
z1=1,.... 21 =m—1.

1
det Vo # 0

EXERCISE 11.80 In view of Lemma 11.4, the proof repeats the proof of
Lemma 11.8. The polynomial g(u) = 1 — «? in the interval [2, 3) has the
representation

g(w) = bo Po(w) + by Pr(u) + by Po(u) = (—1) = 4 (=2) (u ;!1) N (u ;!2)

with b() = —1, bl = —2, and bg = 1.

EXERCISE 11.81 Note that the derivative of the order (3 —j — 1) of fU) is
=1 which is the Lipschitz function with the Lipschitz constant L by the
definition of ©(4, L, L) . Thus, what is left to show is that all the derivatives
fM ., £6B=D are bounded in their absolute values by some constant L, . By
Lemma 10.2, any function f € ©(3, L, L;) admits the Taylor approximation

p-1 m
f(z) = Z f(wil(c)(x—c)m + p(z,c), 0 <z, e<1,
m=0 ’
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with the remainder term p(z, ¢) such that

Lz —cl? L
| p(w,e)| < Bor < C, where C, = G-

That is why, if f € O(f3, L, L), then at any point = = ¢, the inequality holds

571 rm (.
‘ > . u()@—@m( < [ f@)]| + |p,0)] < L+ C, = L.

m:

So, it suffices to show that if a polynomial g(z) = an_:lo b (x — )™ is
bounded, | g(z)| = | SO b (= )™ | < Lo, for all z,c € [0, 1], then

max |:b0, .. ,bﬁ,l] S LQ (()3)

with a constant Ly independent of ¢ € [0, 1]. Assume for definiteness that
0 < ¢ < 1/2, and choose the points ¢ < xy < -+ < xz_; so that t; =
i, —c=(i+1a,i=0,...,8—1. A positive constant « is such that
af < 1/2, which yields 0 < t; < 1. Put ¢; = g¢(z;). The coefficients
bo, - .., bg_1 of polynomial g(x) satisfy the system of linear equations

bo + bit; + bot? 4+ ...+ btV =g, i =0,...,3—1.

The determinant of the system’s matrix is the Vandermonde determinant,
that is, it is non-zero and independent of ¢. The right-hand side elements of
this system are bounded by Lg . Thus, the upper bound (0.3) follows. Similar
considerations are true for 1/2 < ¢ < 1.
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Chapter 12

EXERCISE 12.82 We have n design points in ) bins. That is why, for any
design, there exist at least ()/2 bins with at most 2n /@) design points. Indeed,
otherwise we would have strictly more than (Q/2)(2n/Q) = n points. Denote
the set of the indices of these bins by M . By definition, M| > @/2. In each
such bin B, the respective variance is bounded by

S Ry Y ()P (U
T; € By T; € By n
< lloll% (h2)* (2n/Q) = 4n|lel% (h2)*™ = 4llp)% lnn

which can be made less than 2a/In @) if we choose ||¢||« sufficiently small.

EXERCISE 12.83 Select the test function defined by (12.3). Substitute M in
the proof of Lemma 12.11 by @), to obtain

—1y £ -1
fztggﬂ)lﬁif[wn 1Fa = Fll | 2 doi? max Ey,|Ef,[1(D,)] X] |

1
> dyyp ' EX) [2P0(DO|X + 35 ZIP’ (D, | X) ]

qfl

where E(Y)[ -] denotes the expectation taken over the distribution of the ran-
dom design.

Note that dotb, ' = (1/2)||¢]lee - Due to (12.22), with probability 1, for
any random design X, there exists a set M(X') such that

1 M| Q/2 1

qfl

Combining these bounds, we get that

swp By 0 1o = flls | 2 (1/16)1¢ ]
feos)

EXERCISE 12.84 The log-likelihood function is equal to

n n

o (e e ) 5y D (e S )

=1 =1
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o = % (flzi, ') = flas, “"”>)2
i=1

and
n

ok (3) (Lot

mi=1

EXERCISE 12.85 By definition,

2 | — 1 z\ 2
Blep{}] = 3¢+ 307 = > i ()

i::ki k+1). : (k4 k) (%)k = ik!12k<zz2>k = i%(%)k = /8,

EXERCISE 12.86 Consider the case 3 = 1. The bandwidth 2* = n~/? and
the number of the bins Q = 1/(2h}) = (1/2)n'/3. Let N = n/Q = 2n?3
denote the number of design points in every bin. We assume that N is an
integer. In the bin B,, 1 < ¢ < @, the estimator has the form

fo =Yg = Z yz‘/N:fq‘*‘gq/\/N

i/n€ By

with f, = Y, men, (@) /N, and independent N(0, 0?)-random variables
gq = Zz/nEB ( - (:El)>/\/_ Zz/neB 67«/\/_

Put fu(x) = f, if x € B,. From the Lipschitz condition on f it follows
that ||f, — f||> < Cn=2/3 with some positive constant C' independent of n .
Next,

1f7 = flI3 < 20 fa = FI3 + 20 fn = fall2

o1



Q Q
_ 2 _ 2
=2h =S+ g2 & =AW fE 28
q=1 q=1
so that
2/3 2 n?/? ! 2 1/3 ! 2
n an—szS?C-i‘?Tqu:QC—l—Qn qu.
qg=1 g=1
By the Law of Large Numbers,
Q 1 Q
Y G- -
qg=1 qg=1

almost surely as n — oo. Hence for any constant ¢ such that ¢ > 2C + o2,
the inequality holds n'/3| f* — f||» < ¢ with probability whatever close to 1
as n — 0o . Thus, there is no py that satisfies

Pr(|fa— fll2 > en™ 3| X) > po.
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Chapter 13

A

EXERCISE 13.87 The expected value E;[¥,] = n~t 37  w(i/n)f(i/n).
Since w and f are the Lipschitz functions, their product is also Lipschitz
with some constant Lg so that

bn| = }Ef[\ijn] - \Il(f)| = |Ef[\ijn] - /0 w(x)f(x)dx‘ < Ly/n.

Next, U, — Ef[W,] = n~' 327, w(i/n)e; , hence the variance of ¥,, equals

to
Z—zzw%/n) - "—2(/0 w?(z) dz + o(n—1)>.

. n
]

EXERCISE 13.88 Note that ¥(1) = e™! fol e'f(t)dt, thus the estimator
(13.4) takes the form

U, =nt Zexp{(i —n)/n}y;.

By Proposition 13.2, the bias of this estimator has the magnitude O(n™1),
and its variance is

2 2

1
Var[¥,] = 0—/ AV dt +0(n?) = (2)-—(1—672)4—0(7172), as n— oo,
0

n n

EXERCISE 13.89 Take any fy € ©(3,L,L;), and put Af = f — fy. Note
that

fr= o + ARAS) + 6f5(AS) + 4f(Af)* + (AT

Hence

V(f) = W) + [ wle f)f@)de + plf. S
with a Lipschitz weight function w(x, fo) = 4f3(x), and the remainder term
oo 1) = [ (SFAPE + 45N + (AN!) do.

Since fo and f belong to the set ©(3, L, L), they are bounded by Ly, and,
thus, |Af| < 2L;. Consequently, the remainder term satisfies the condition

Ip(fo, F)I < (6LF + 4L1(2L1) + (2L1)%) | f = foll3
= 18LI|f = foll; = Collf = foll3 with C, = 18L7.
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EXERCISE 13.90 From (13.12), we have to verify is that

E;[(Vao(f, £))°] =0 as n— oo,

Under the assumption on the remainder term, this expectation is bounded
from above by

By [ (VaCll £ = F13)°] :nczEf[(/;(f;:(x) ~f@)7dr) ]
< an]Ef[ /Ol(f;:(x) —f(x))4dx] —0 as n— 0.

EXERCISE 13.91 The expected value of the sample mean is equal to

U5 ) = 3 Fdpl) (s~ wi) () ()

=1 1=1

/ fla 1+ 0,(1)) du,

because, as shown in the proof of Lemma9.8, np(x;)(x;—x;—1) — 1 uniformly
ini=1,...,n. Hence

U, = (4 +uyn)/n ~ / f(z)p(z) dex 02/n)

To prove the efficiency, consider the family of the constant regression func-
tions fp(z) = 0, 6 € R. The corresponding functional is equal to

U(fo) /fe dx—&/ol()dxze.

Thus, we have a parametric model of observations y; = 6 + &; with the
efficient sample mean.
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Chapter 14

EXERCISE 14.92 The number of monomials equals to the number of non-
negative integer solutions of the equation z; + -+ + 25 = . Indeed, we can
interpret z; as the power of the j-th variable in the monomial, j =1,...,d.
Consider all the strings of the length d + (i — 1) filled with i ones and d — 1
zeros. For example, if d = 4 and ¢ = 6, one possible such string is 100110111.
Now count the number of ones between every two consecutive zeros. In our
example, they are z; = 1, 20 = 0, 23 = 2, and z4 = 3. Each string corresponds
to a solution of the equation z; + -+ + zg = . Clearly, there are as many
solutions of this equation as many strings with the described property. The
latter number is the number of combinations of 7 objects from a set of i+d—1
objects.

EXERCISE 14.93 As defined in (14.9),

foZ% Z gz’j:% Z [f0+f1(i/m)+f2(j/m)+5ij}
ij=1 ij=1
= fot+ — Zfl(z/m)+12f2(j/m)+—€

i=1 j=1
where .

L1 .

E= Eidzlsz] ~ N(0, ¢?)
Put

1 & : 1 ¢ . . : IS

zi:E;(yij—fo) = E; [f0+f1(2/m)+f2(]/m)—f0} + E;Eij

1 1 1
Nokis —¢& with 6, = —— ;fl(i/m) = O(1/m).
The random error &; ~ N(0, 02) is independent of £. The rest follows as in
the proof of Proposition 14.5 with the only difference that in this case the
variance of the stochastic term is bounded by C,N~!(o?/m + o*/m?) .

= fi(t/m) + 6n +

EXERCISE 14.94 Define an anisotropic bin, a rectangle with the sides h; and
hy along the respective coordinates. Choose the sides so that h}" = B> . As
our estimator take the local polynomial estimator from the observations in
the selected bin. The bias of this estimator has the magnitude O(RS') =
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O(h’?), while the variance is reciprocal to the number of design points in the
bin, that is, O( (nhlhg)_l) . Under our choice of the bandwidths, we have

that hy = Y /%2 The balance equation takes the form

B2 = (nhyhy) ™! or, equivalently, poNEVE -1
1 1

The magnitude of the bias term defines the rate of convergence which is equal
to h' = nA/@3+1)

56



Chapter 15

EXERCISE 15.95 Choose the bandwidths hg, = (n/Inn)~Y@%+Y and hy, =
n~1/@0+1) et fs and f3, be the local polynomial estimators of f(zo) with
the chosen bandwidths.

Define fn fs,, if the difference of the estimators |fs, — fg,] > C (hg,)?",
and f, = ng, otherwise. A sufficiently large constant C' is chosen below.

As in Sections 15.2 and 15.3, we care about the risk when the adaptive
estimator does not match the true smoothness parameter. If f € ©(3;) and
fn = fﬁ2 , then the difference |fﬁ1 f5,] does not exceed C' (hg,)* = C 1 (f),
and the upper bound follows similarly to (15.11).

If f € ©(f,), while fo = fgl , then the performance of the risk is controlled
by the probabilities of large deviations P | f3,— fa,] = C (hg,)”" ) . Note that
each estimator has a bias which does not exceed Cj, (hg, )" . If the constant
C' is chosen so that C' > 2C}, + 2C) for some large positive Cj, then the
random event of interest can happen only if the stochastic term of at least
one estimator exceeds Cy(hg, )" . The stochastic terms are zero-mean normal
with the variances bounded by C,(hg,)** and C,(hg,)?? , respectively. The
probabilities of the large deviations decrease faster that any power of n if C
is large enough.

EXERCISE 15.96 From (15.7), we have
* * * -1 *
”fn,ﬁl - f”zo S QAg (hn,ﬂ1)2ﬁ + 2A121 (nhn,ﬁl) (261)2 .
Hence
(P ) B[S 5, — fIS] < 247 + 2ATE,[(25)%] -

In view of (15.8), the latter expectation is finite.
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Chapter 16

EXERCISE 16.97 Note that by our assumption,
a=Py(A;=1) > Py(A, =1).
It is equivalent to
Po(A;, =1, A, =1) + Py(A;, =1,A, =0)

> Po(Ar=1,A,=1) + Po(A; =0, A, =1),
which implies that

Po(AL =0, A, =1) < Py(Ar =1,A,=0).

Next, the probabilities of type II error for A¥ and A,, are respectively equal
to
IP>91(Ajz = 0) = P91(A; =0,A, = O) + P91(AZ =0, A, = 1) )

and
Py, (A, =0) = Py, (Ar =0, A, =0)+Pp,(Ar =1, A, =0).
Hence, to prove that Py, (A, = 0) > Py, (A¥ = 0), it suffices to show that
Py, (A =0,A,=1) < Py (A} =1, A, =0).

obtain

From the definition of the likelihood ratio A, and since A} =I(L,, > ¢), we
Py, (A =0, Ay = 1) = Eo| " T(A; =0, A, = 1) |

< ePo(Ar=0,A,=1) < ePo(Ar=1,A,=0

< Byl 1(a; =1, 4, =0) | = By (847 =1, A, =0).
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