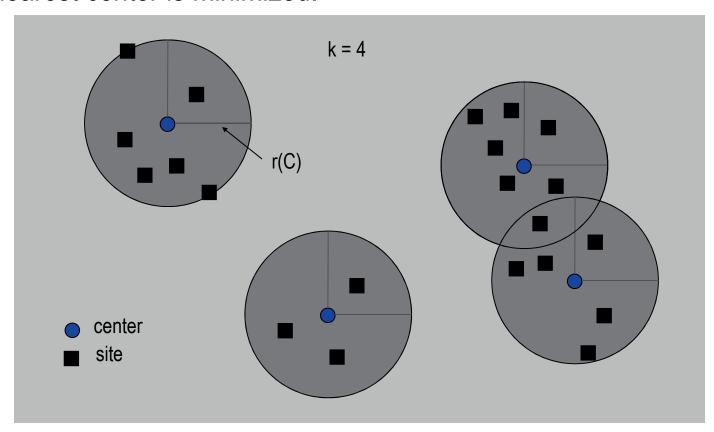
More Approximation

Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$.

Center selection problem (informal).

Select k centers C so that maximum distance from a site to nearest center is minimized.



Center Selection Problem

Input. Set of n sites $s_1, ..., s_n$. Notation.

- dist(x, y) = distance between x and y.
- $dist(s_i, C) = min_{c \in C} dist(s_i, c) = distance from s_i to closest center.$
- $r(C) = max_i dist(s_i, C) = smallest covering radius.$

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.

- dist(x, x) = 0 (identity)

- dist(x, y) = dist(y, x) (symmetry)

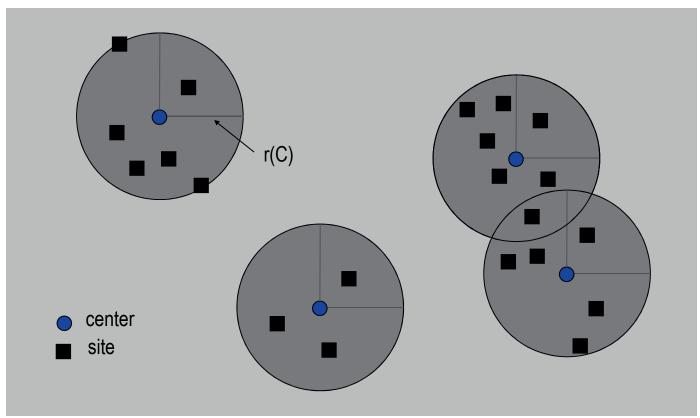
- $dist(x, y) \le dist(x, z) + dist(z, y)$ (triangle inequality)

Center Selection Problem

Example:

each site is a point in the plane, a center can be any point in the plane, dist(x, y) is the Euclidean distance.

Remark: search can be infinite!

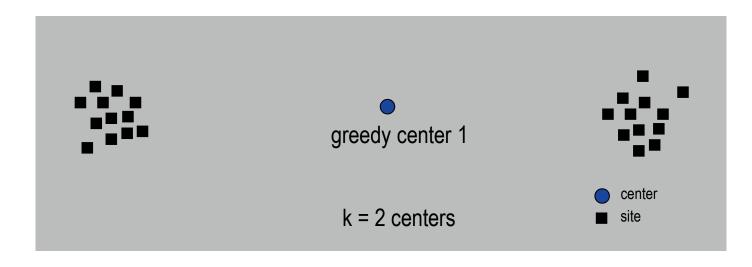


Greedy Algorithm: A False Start

Greedy algorithm:

Put the first center at the best possible location for a single center, and then keep adding centers so as to reduce the covering radius each time by as much as possible.

Remark: arbitrarily bad!



Greedy Algorithm

Greedy algorithm:

Repeatedly choose the next center to be the site farthest from any existing center.

```
\begin{aligned} &\text{Greedy-Center-Selection}(k,\,n,\,s_1,\!s_2,\!...,\!s_n) \\ &\text{set } C\!:=\!\varnothing \\ &\text{repeat } k \text{ times} \\ &\text{select a site } s_i \text{ with maximum dist}(s_i,\,C) \\ &\text{add } s_i \text{ to } C \\ &\text{endrepeat} \end{aligned}
```

Observation.

Upon termination all centers in C are pairwise at least r(C) apart.

Analysis of Greedy Algorithm

Theorem

Let C^* be an optimal set of centers. Then $r(C) \le 2r(C^*)$.

Proof.

By contradiction. Assume $r(C^*) < 1/2 r(C)$.

- For each site c_i in C, consider ball of radius $\frac{1}{2}$ r(C) around it.
- Exactly one c_i* in each ball; let c_i be the site paired with c_i*.
- Consider any site s and its closest center c_i* in C*.

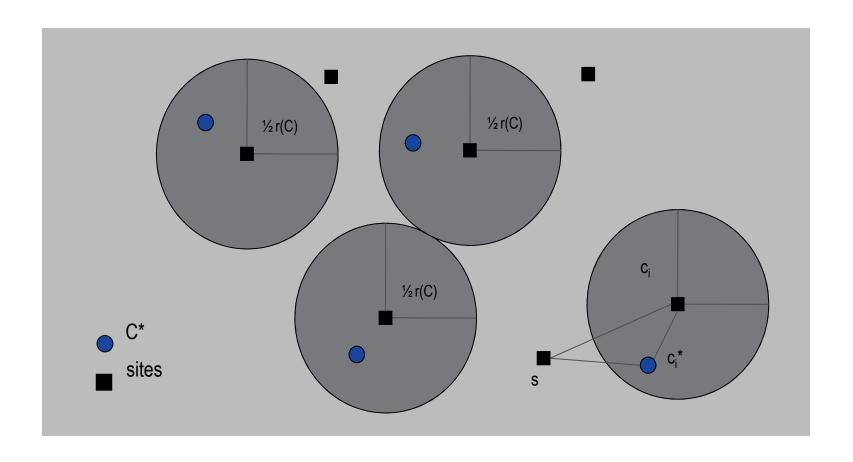
$$- \operatorname{dist}(s, C) \leq \operatorname{dist}(s, c_i) \leq \operatorname{dist}(s, c_i^*) + \operatorname{dist}(c_i^*, c_i) \leq 2r(C^*).$$

- Thus
$$r(C) \leq 2r(C^*)$$
.

QED $\leq r(C^*)$ since c_i^* is closest center

 Δ -inequality

Analysis of Greedy Algorithm: Picture



Analysis of Greedy Algorithm

Corollary

Greedy algorithm is a 2-approximation algorithm for center selection problem.

Remark.

Greedy algorithm always places centers at sites, but is still within a factor of 2 of best solution that is allowed to place centers anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

Theorem

Unless P = NP, there is no ρ -approximation for center-selection problem for any ρ < 2.

Weighted Vertex Cover

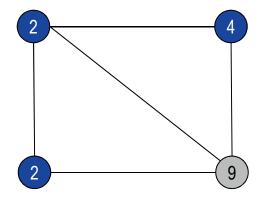
Weighted vertex cover.

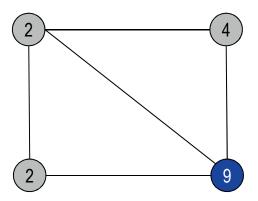
Instance

A graph G with vertex weights

Objective

Find a vertex cover of minimum weight.





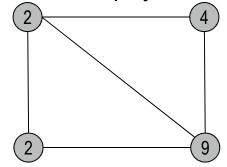
weight =
$$2 + 2 + 4$$

Pricing method.

Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay at most w_i in total.

for each vertex i: $\sum_{e=(i,j)} p_e \le w_i$



Claim.

For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

Proof.

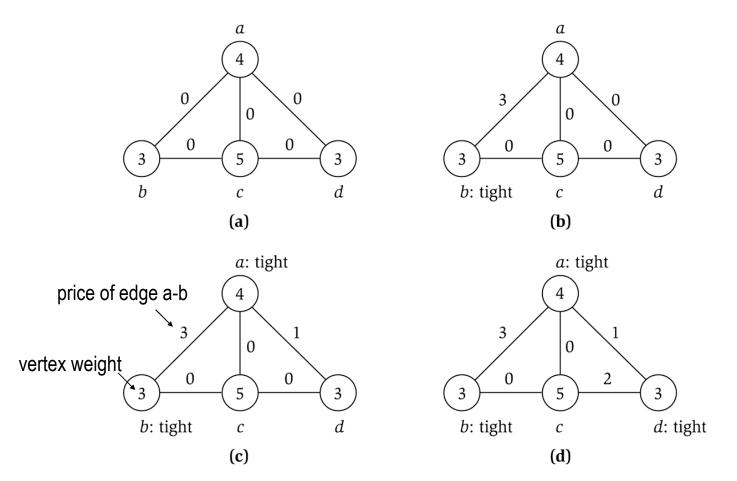
$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$
 each edge e covered by at least one node in S

Pricing Method

Pricing method: Set prices and find vertex cover simultaneously.

```
Weighted-Vertex-Cover-Approx(G,w)
for each e∈E
  set p<sub>e</sub>:=0
while there is edge i-j such that neither i nor j
  are tight do
      select such an edge e
      increase p<sub>e</sub> without violating fairness
endwhile
set S:= set of all tight nodes
return S
```

Pricing Method



Analysis of Pricing Method

Theorem

Pricing method is a 2-approximation algorithm

Proof

Algorithm terminates since at least one new node becomes tight after each iteration of while loop.

Let S = set of all tight nodes upon termination of algorithm.

S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight.

But then while loop would not terminate.

Analysis of Pricing Method

Proof (cntd)

Let S* be optimal vertex cover. We show $w(S) \le 2w(S^*)$.

$$\begin{split} w(S) = & \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \\ \text{all nodes in S are tight} & \text{S} \subseteq \text{V}, & \text{each edge counted twice} & \text{fairness lemma prices} \geq 0 \end{split}$$

QED