
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Data Visualization with D3 and
AngularJS

Build dynamic and interactive visualizations from
real-world data with D3 on AngularJS

Christoph Körner

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Data Visualization with D3 and AngularJS

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1230415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-848-4

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits

Author
Christoph Körner

Reviewers
Michael Alexander

Amin Ariana

Athos Demetri

Victor Mejia

Aaron Nielsen

Jeremy Zerr

Commissioning Editor
Pramila Balan

Acquisition Editor
Shaon Basu

Content Development Editor
Akashdeep Kundu

Technical Editors
Vijin Boricha

Humera Shaikh

Copy Editor
Relin Hedly

Project Coordinator
Izzat Contractor

Proofreaders
Safis Editing

Paul Hindle

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Author

Christoph Körner is the CTO of GESIM, a Swiss startup company, where he
is responsible for its simulation software and web interface that is built using
AngularJS and D3. He studied electrical engineering and information technology at
Vienna University of Technology, including a 1-year exchange program at the Swiss
Federal Institute of Technology, Lausanne.

Christoph is a passionate, self-taught software developer, coworker, and web
enthusiast with more than 7 years of experience in designing, developing, and
implementing customer-oriented web-based IT solutions. He has always been
enthusiastic and curious about new technologies and started to use AngularJS and
D3 since the very first version. Christoph is not only fascinated by technology, but he
also aims to push cutting-edge technologies to production services.

I would like to thank my colleagues and close friends, Firat Özdemir
and Vidor Kanalas, and my girlfriend, Laura Andrea Rojas Padilla,
for all their input, support, and motivation during all stages of
the book. I also want to offer special thanks to the whole Packt
Publishing team for doing an outstanding job in supervising and
supporting me.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers

Michael Alexander is an Australian FOSS developer who is the author of popular
Angular-D3—a D3.js directive for AngularJS. He is currently employed with
HRMWEB Pty Ltd. and works on several web applications involving a range of
technologies including AngularJS.

Michael also founded Miniand Pty Ltd, a company that helped the mini PC and
developer board market grow in recent years in China through consultation and
development directly with manufacturers.

Amin Ariana is an ex-Google and ex-Microsoft software entrepreneur in San
Francisco and the cofounder and chief technology officer at Sponsorbrite Inc.
He has combined the use of AngularJS and D3.js since the earliest days of their
adoption at Google.

As a Carnegie Mellon University recipient of Director's Return on Education Award,
Amin continues to be an ambassador of change for professionals and technology
organizations alike. He combines his computer science foundations from the
University of Waterloo with the disciplines of engineering, design, business, and
innovation to create products and write entrepreneurial career roadmaps.

His advisory essays on scalable software engineering, entrepreneurship, innovation,
and management are published in Forbes, Quora, and his personal blog at
www.aminariana.com.

www.allitebooks.comwww.allitebooks.com

www.aminariana.com
http://www.allitebooks.org
http://www.allitebooks.org

As the technical cofounder and CTO at Sponsorbrite, Amin leverages big data
with insight-transferring solutions such as AngularJS and D3.js to bring corporate
sponsorship to social institutions and communities that were left underfunded
by the federal government. His team's fundraising and community relationship
management platform is a prime example of how books similar to this can be tools
toward multibillion-dollar social values.

Amin's upcoming book, The Rise of The Rainmaker, is about carving a career path from
engineering to entrepreneurship. He is still writing the book and hopes to publish it
digitally next year. The completed chapters of this book are accessible to members
of his blog.

Special thanks to my wife, Abby Denzin, for keeping me sane
enough to review this exciting book while managing a startup
company and to my reviewer buddies, Izzat Contractor and Neha
Thakur, for helping me reach the finish line.

Athos Demetri works as a freelance developer and technical consultant for a
number of local businesses. He mostly enjoys bringing the power of the Web to
technophobes. In those rare moments when he isn't working, he likes good food,
yoga, techno music, cats, and enjoys laughing with friends.

I'd like to thank my mum and dad for always telling me that there's
no such word as "can't" and for always being right the first time. I'd
also like to thank Anja, without whose support, I'd have given up on
programming years ago.

Finally, I'm also grateful to my friends for their patience and
confidence in my curveball ideas about virtually everything.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Victor Mejia is a full stack web developer. He has been a part of different
industries and enjoys working with full stack JavaScript and data visualization. In
his spare time, you will find him coding, reading, in Bible study, and spending time
with family and friends. He and his wife, Jessica, are in love and happily married.
They are expecting a beautiful baby girl.

Jeremy Zerr is a web software entrepreneur and an experienced web developer,
currently imparting his web application development skills to the world as a
software consultant, educator, and product creator. Changing the world with
well-crafted software is his passion. He writes about web development topics on
his blog at http://www.jeremyzerr.com and offers his web software development
services through his company Zerrtech at http://www.zerrtech.com.

www.allitebooks.comwww.allitebooks.com

http://www.jeremyzerr.com
http://www.zerrtech.com
http://www.allitebooks.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.comwww.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: The Magic of SVG, D3.js, and AngularJS	 1

Building a real-time dashboard to visualize server logs	 2
Terminology and definitions	 4

Document Object Model	 4
Vector graphics and Scalable Vector Graphics	 5
Pixel graphics	 8

Understanding Data-Driven Documents	 11
Why do we use D3.js?	 11
The killer feature – data joins	 13
Finding resources	 17
D3.js meets AngularJS	 17
Testable and maintainable components	 18
Custom directives	 18
Custom filters	 19
Custom loading and parsing service	 19

A brief overview of visualization tools for the Web	 20
Java and Flash	 20
Raphaël (JavaScript – SVG/VML)	 22
Protovis (JavaScript – SVG)	 23
D3.js (JavaScript – HTML/SVG)	 23
Canvas API (JavaScript – Canvas)	 24
Three.js (JavaScript – WebGL)	 25

Summary	 25
Chapter 2: Getting Started with D3.js	 27

Building a simple scatter plot application	 28
Creating an HTML template for D3.js	 29

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

[ii]

Selecting and modifying DOM elements	 30
A closer look at Selections	 33

selection.attr(name[, value])	 35
selection.style(name[, value[, priority]])	 35
selection.property(name[, value])	 36
selection.text([value])	 36
selection.append(name)	 37
selection.insert(name[, before])	 37
selection.remove()	 37

Finding elements in the DOM with Selectors	 38
d3.select(selector)	 39
d3.select(node)	 39
selection.each(function)	 40
selection.call(function[, arguments…])	 40

Binding data to DOM elements	 41
selection.data(values[, key])	 41
Using dynamic properties in Selections	 43
Tracking changes of data with data joins	 45

selection.enter()	 46
selection.exit()	 47

The update pattern	 48
Creating a simple scatter plot	 49
Summary	 52

Chapter 3: Manipulating Data	 55
Manipulating datasets in arrays	 56

Built-in JavaScript array methods	 56
array.filter(callback)	 58
array.map(callback)	 58
array.reduce(callback [, initialValue])	 59

More array manipulation with D3.js	 60
d3.min(array[, accessor])	 61
d3.max(array[, accessor])	 61
d3.sum(array[, accessor])	 61
d3.mean(array[, accessor])	 62
d3.median(array[, accessor])	 62
d3.shuffle(array)	 62
d3.permute(array, indexes)	 63
d3.merge(array)	 63
d3.range([start,]stop[, step)	 63
d3.zip(array, array, ...)	 64
d3.pairs(array)	 64
d3.keys(object)	 64
d3.values(object)	 65
d3.entries(object)	 65

Grouping elements with d3.nest	 65

Table of Contents

[iii]

Formatting numbers and dates	 67
Specifying a number format	 68

Types of formatting	 68
Precision	 69
Thousands separator	 69
Width	 69
Zero padding	 70
The currency symbol	 70
Signs	 70
The align property	 70
The fill option	 71

Customizing date and time formats	 71
Working with scales	 72

Quantitative scales for continuous data (numbers)	 74
scale.domain([numbers])	 75
scale.range([numbers])	 75
scale.clamp([boolean])	 76
scale.nice([count])	 76
scale.ticks([count])	 76
scale.tickFormat(count [,specifier])	 77

Ordinal scales for discrete data (strings)	 77
scale.rangePoints(interval [, padding])	 78
scale.rangeBands(interval [, padding [, outerPadding]])	 78
scale.rangeBand()	 78
scale.rangeExtent()	 79
Predefined ordinal color scales	 79

Time scales for time data (date and time)	 79
All about axes	 80

Drawing the axis	 81
Adding axes to the scatter chart	 83

Summary	 87
Chapter 4: Building a Chart Directive	 89

Setting up an AngularJS application	 90
Organizing the directory	 90
Installing AngularJS	 90
Bootstrapping the index file	 91
Adding a module and a controller	 92

Integrating D3.js into AngularJS	 93
Organizing the directory	 93
Wrapping D3.js	 94

A chart directive	 95
A directive for SVG	 95
Implementing a custom compile function	 98

Table of Contents

[iv]

Drawing charts	 99
Axis, scale, range, and domain	 99
Joining the data points	 101

Advantages of directives	 102
Generalizing the chart directive	 103

Testing the directive	 105
Setting up the testing environment	 106

Getting started with Karma	 106
Getting started with Protractor	 108

Unit testing the chart directive	 110
E2E testing of the chart directive	 113

Summary	 115
Chapter 5: Loading and Parsing Data	 117

Loading external data	 118
XHR – the native XMLHttpRequest	 119
d3.xhr – the XHR wrapper of D3.js	 121

Useful wrappers for common file types	 122
Creating a simple D3 data loading component	 123

Testing the simple D3 data loading component	 125
Summary of D3.js as a data loading service	 128

$http – the Angular wrapper for XHR	 128
Creating an AngularJS data loading component	 129
Testing the AngularJS data loading component	 130
Summary of AngularJS as a data loading service	 131

Parsing log files to JavaScript objects	 131
Parsing log files step by step	 132
Parsing the custom date format to a JavaScript date	 134
A reusable data parsing service	 135

Testing the data parsing service	 137
Grouping log entries	 139

Testing the classifier	 141
Displaying logs	 142
Summary	 144

Chapter 6: Drawing Curves and Shapes	 147
Common shapes and primitives	 148
Curved lines with the SVG path	 151

Drawing straight lines	 154
Bézier curves	 155

Drawing ellipses and elliptical arcs	 159
Generating arcs	 164

Summary	 169

Table of Contents

[v]

Chapter 7: Controlling Transitions and Animations	 171
Animations	 172

Timer in D3.js with d3.timer	 172
Interpolation with D3.js	 174

Easy animations with transitions	 176
Staggered transitions	 177
Chaining transitions	 178
Creating plausible transitions	 180

Interpolate anything with tweens	 181
Realistic animations with easing	 183
Transitions in charts	 187
Summary	 191

Chapter 8: Bringing the Chart to Life with Interactions	 193
Listen for events	 194

Type of Events	 195
Getting event coordinates	 197

Cursors	 198
A simple cursor	 198
Snappy cursors	 201
Labeling the cursor position	 203
Customizing events in D3.js	 208
Displaying self-updating cursor values	 208

Zooming and panning	 211
A simple zoom	 212
An x axis zoom	 213

Interactive filters	 214
Advanced filtering using brushes	 217

Creating a simple brush	 218
Building a custom date filter directive	 222

Summary	 226
Chapter 9: Building a Real-time Visualization to Monitor
Server Logs	 227

Building a real-time monitoring server	 228
Setting up a Node.js application	 228
Setting up a web server that serves static files	 228
Adding server push with WebSockets	 229
Reading logs and pushing them to the client	 231
Watching files for changes	 232

Table of Contents

[vi]

Processing and visualizing logs on the client	 234
Bootstrapping a template with AngularJS and Socket.IO	 234
Using Socket.IO with AngularJS	 235
Processing log files	 237
The dashboard application	 242

Summary	 244
Index	 247

Preface

[vii]

Preface
The question of how I could better visualize my application server's log files has
always hovered around in my mind. In this book, we'll materialize this idea. After
reading the book, you'll be able to analyze the log files of your application server and
display them as a time series chart on a web page—a real-time autoupdating chart.
I picked my two favorite JavaScript libraries—AngularJS and D3.js—to develop such
a visualization.

AngularJS is a web application framework that facilitates the development of modern
web applications with concepts such as the MVC/MVVM pattern, two-way data
binding, testable modules, and dependency injection. I especially like the idea that one
can declare templates to extend the HTML language; this enables a whole new world
of applications and the sharing of work between designers and frontend engineers.

D3.js is a visualization toolkit that facilitates the generation and manipulation
of web-based vector graphics with full access to the underlying SVG standard.
Moreover, animations and interactive visualizations change how users perceive
web applications; D3.js offers everything you need to make a visualization
interactive out of the box.

In this book, I will teach you how to create an interactive real-time visualization for
the Web with AngularJS as the application framework and D3.js as the visualization
toolkit. I will explain the basic concepts of D3.js, when and why we use it, and why
it's so much better than other DOM-transforming libraries, with a focus on its data-
driven approach. Also, I will show you best practices to manipulate datasets and
preprocess data—an everyday job if you want to display data from different sources.
Then, we will spend more time on seeing how a visualization library can be best
integrated into an AngularJS application using modules, directives, and services to
make the components testable and maintainable. Later, we will focus on developing
the visualization.

Preface

[viii]

First, we need to load real data in the application and parse the text data to a
JavaScript array of objects. Then, we need to preprocess and group the data
according to the way we want to display it. Now, we can generate a curve or shape
in the chart that represents our data. Next, we want to animate this curve—to show
a transition between the old and the new state—whenever we update the data of
the chart. We also want to zoom and pan inside the charts and create filters in order
to clamp the chart to a certain range, for example, a starting time and an ending
time for the time series data. Finally, we want to put everything together on to a
dashboard and feed it with real server logs of a web server.

Displaying data on the web is a common task for developers. This books walks you
through an exciting project, explaining best practices and common pitfalls in this
domain using the two most amazing JavaScript libraries: AngularJS and D3.js.

What this book covers
Chapter 1, The Magic of SVG, D3.js, and AngularJS, introduces you to the world of
vector graphics on the web and points out the advantages of D3.js.

Chapter 2, Getting Started with D3.js, explains how to draw vector graphics with D3.js
and its data-driven approach.

Chapter 3, Manipulating Data, walks you through the important task of manipulating
and preprocessing datasets in JavaScript and D3.js.

Chapter 4, Building a Chart Directive, lets you implement a first scatter chart directive
in order to integrate the visualization into a simple AngularJS application with a
focus on modularization and testability.

Chapter 5, Loading and Parsing Data, explains how to load files and parse real
data using AngularJS and D3.js. It also explains how to aggregate information
for the visualization.

Chapter 6, Drawing Curves and Shapes, helps you understand lines, curves, and shapes
in SVG and D3.js in order to create different chart types, such as line charts, area
charts, and bar charts.

Chapter 7, Controlling Transitions and Animations, shows how animations can be used
to better visualize changes in the dataset and the visualization. You will learn about
animations in D3.js and how to create plausible transitions to update chart directives.

Chapter 8, Bringing the Chart to Life with Interactions, explains how to add interactions
to the chart directive, which is a big advantage of web-based visualizations. You will
also see how to combine and encapsulate the interactions of the D3 chart and the
AngularJS application.

Preface

[ix]

Chapter 9, Building a Real-time Visualization to Monitor Server Logs, walks you through
an exciting example where you will use all the acquired knowledge of the book to
build a visualization dashboard to analyze server logs.

What you need for this book
To get started, all you need is a web browser and a text editor, such as Sublime Text.
However, I recommend that you install Node.js (http://nodejs.org/) that includes
the npm package manager and the Bower (http://bower.io/) module in order to
run the tests. I will walk you through the installation of the required packages in the
corresponding chapters.

Starting from Chapter 4, Building a Chart Directive, we will use the http-server module
(https://www.npmjs.com/package/http-server) to run the examples from a local
web server. An internet connection is only required for installing tools and libraries,
but not for running the examples.

Who this book is for
Data Visualization with D3 and AngularJS is intended for web developers with
experience in AngularJS who want to implement fully customizable interactive
vector graphics for all platforms. Whether you already know a bit about SVG and
vector graphics in the browser or have never used any visualization library in
JavaScript before, you will be able to master the data-driven techniques of D3. In
either case, this book will get you up and running quickly and also challenges you if
you have already worked with D3.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The .exit() function will return all elements of the Selection because the dataset
contains no elements."

http://nodejs.org/
http://bower.io/
https://www.npmjs.com/package/http-server

Preface

[x]

A block of code is set as follows:

<html>
 <head>
 <title>My App</title>
 </head>
 <body>
 <h1 class="header>My Application</h1>
 <p class="content">
 Lorem ipsum dolor sit amet, ...
 </p>
 </body>
</html>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<html>
 ...
 <body>
 <object id="vis" width="50" height="30">
 <param name="movie" value="vis.swf">
 <embed src="vis.swf" type="application/x-shockwave-flash">
 </object>
 </body>
</html>

Any command-line input or output is written as follows:

npm install --save express

npm install --save serve-static

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "The t parameter
in the range 0 to 1 defines the position on the curve between the starting point P0
(in the figure P1) and the end point P3 (in the figure P2); P1 (in the figure C1) and P2
(in the figure C2) are called control points and are used to model the shape between
these points."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/8484OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.allitebooks.comwww.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8484OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/8484OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.allitebooks.org
http://www.allitebooks.org

Preface

[xii]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

The Magic of SVG, D3.js,
and AngularJS

In this book, we will develop an application that combines both frameworks D3.js
and AngularJS into a stunning interactive visualization, an interactive dashboard to
visualize server logs in real time. First, I will discuss the outline and the purpose of
this application. Then, I will explain how to modularize the visualization so that all
components can be seamlessly embedded into one single application.

In the second section, we will talk about the terminology and definitions that are
used in this book to introduce you to this topic or to refresh your knowledge of some
basics in computer graphics. It will help you to understand why we are using vector
graphics—especially SVG for the Web—for the visualization that we will develop in
this book (and not, for example, Canvas or WebGL).

The next part of the chapter will give an introduction to D3.js and its data-driven
approach. It will help you to understand the similarities and fundamental differences
of D3.js and other DOM transforming libraries such as jQuery. Then, we will see
an introduction to AngularJS and discuss its strengths for modern application
development as well as the integration of D3.js into an AngularJS application.

The last section of this chapter will help you to understand why we prefer D3.js
over other visualization libraries. It will give a brief outline and comparison of web
visualization tools emphasizing on libraries to create and manipulate vector graphics
and the evolution of web standards. We will discuss the main ideas and advantages
of using D3.js in web applications and the differences between it and other tools for
web visualizations (such as Raphaël or Three.js).

The Magic of SVG, D3.js, and AngularJS

[2]

In this chapter, you will learn:

•	 How to distinguish vector and pixel graphics and to know their
application areas

•	 When and why to use vector graphics, especially SVG
•	 Why D3.js is superior to other common graphical toolkits
•	 When and why to use D3.js for creating graphical content
•	 The advantages of integrating D3.js into an AngularJS application
•	 How to structure and encapsulate a visualization library written in D3.js to

use with an AngularJS application

Building a real-time dashboard to
visualize server logs
Did you ever wonder how many users visit your web application or how many
exceptions your server application raised in the last month? The solution to various
similar problems is to simply analyze and visualize the log or access files of the
particular application.

In this book, we will develop a real-time dashboard to visualize application logs
and the server's system status in the browser. Thus, we will build a custom Google
Analytics-like visualization dashboard for our own server (see the following figure).
Additionally, we want to add custom animation and user interactions—such as
selecting data ranges, zooming, and panning—to the visualization.

Chapter 1

[3]

Google Analytics dashboard

The dashboard (frontend) will be capable of loading, parsing, and grouping log files
of different formats, filtering data based on selected data ranges and displaying,
updating, and animating multiple chart types. We will build the visualization library
with D3.js and the application with AngularJS.

While developing this application, we will see all the advantages, problems, and
best practices of D3.js and AngularJS in action. Also, you will learn to combine both
frameworks to one single application.

During most of the chapters, we will focus on loading log data from static resources.
In the last chapter, we will implement a simple web server (backend) using Node.
js and Express to detect log file changes in real time and push these changes to the
dashboard using WebSockets and the Socket.IO library.

Besides implementing all the functionality, you will also learn how to design and
test (we will use unit and integration tests) the frontend components with the test
runners, Karma and Protractor.

The Magic of SVG, D3.js, and AngularJS

[4]

Terminology and definitions
Let's start from the beginning. In the following chapters, we will discuss computer
graphics and visualizations for the Web. Therefore, it's important to understand the
basic terminology of this domain. In this section, I will refresh your knowledge of
the two most common image representations (vector and pixel graphics). I will also
discuss the web standards that are relevant for graphical applications (DOM, SVG,
and so on). If these definitions are not new for you, then nothing can stop you from
jumping directly to the next section.

Document Object Model
The Document Object Model (DOM) is the tree representation of the hierarchical
elements of an HTML document and it was specified by the World Wide Web
Consortium (W3C). These elements in the DOM are called nodes (for example, html,
head, body, and so on), which can have attributes (for example, class="header")
and content (for example, "My Application" is the content of the h1 node). The
DOM provides a public JavaScript interface with which we can access nodes and
manipulate them.

Let's look at the source code of a simple HTML page to see an example of the
DOM tree:

<html>
 <head>
 <title>My App</title>
 </head>
 <body>
 <h1 class="header>My Application</h1>
 <p class="content">
 Lorem ipsum dolor sit amet, ...
 </p>
 </body>
</html>

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[5]

Developers often visualize the DOM tree and its hierarchical elements by indenting
the HTML code properly. The DOM tree of the previous example can also be
displayed and modified with the developer tools of a modern browser. See the
following screenshot:

DOM tree in Chrome developer tools

Vector graphics and Scalable Vector Graphics
A vector graphic is an image represented solely by the geometric primitives (shape)
and attributes (size, margins, appearance, and so on) of its containing elements.
These elements can be primitive shapes (such as lines, circles, triangles, and so on) or
complex shapes that are composed by these primitives. All elements are included in
the graphic; therefore, the whole graphic can be described by implicit mathematical
expressions. Thus, the size of a vector graphic is only dependent on the number and
complexity of the elements in the image and not on the resolution in which it will be
displayed.

Rule of thumb for vector graphics
The more the elements in the image, the higher the
cost to draw or update the graphic, but in general, the
costs do not depend on the resolution of the generated
image (lossless rescaling).

Let's look at a simple example. An image of a circle can be fully described by the
shape of a circle with the coordinates of its center point and radius. In all modern
browsers, we can generate a vector graphic by embedding Scalable Vector Graphics
(SVG), a web standard for vector graphics specified by the W3C directly in the
DOM, as follows:

<html>
 ...
 <body>
 <svg id="vis" width="640" height="480">

The Magic of SVG, D3.js, and AngularJS

[6]

 <circle cx="25" cy="25" r="20" style="fill:red;">
 </svg>
 </body>
</html>

All containing elements of a vector graphic are usually stored in a scene graph,
a tree representation of the hierarchical elements of the graphic. This concept is
very similar to the DOM tree, and in the case of SVG, the scene graph is directly
embedded in the DOM tree. We can see this in the previous example (by looking at
the svg node) that contains the circle element.

As we mentioned previously, we can also use JavaScript to generate or modify
SVGs. Let's use the partially complete helper function that generates and draws SVG
nodes. Don't worry about the details of this function; just imagine that it will create
a vector graphic element (you can look it up in the source code of this chapter if you
are brave enough):

<script type="text/javascript">
function VectorGraphic(parent, tag, attrs) {

 var el = document.createElementNS('http://www.w3.org/2000/svg',
 tag);

 ...
 return {
 on: function(event, handler){...},
 fill: function(color){...},
 stroke: function(color){...},
 draw: function() {
 parent.appendChild(el);
 }
 }
}
</script>

The preceding function creates a new SVG node and returns a .draw() method. It
appends this new element to the parent container. Additionally, it provides methods
to style the layout of the new element. Let's use this function to create the same circle
from the previous example from within JavaScript:

<script type="text/javascript">
 var ctx = document.getElementById('vis');

 var circle = VectorGraphic(ctx, 'circle', {cx:25, cy:25, r:20});

 circle.fill('red');

 circle.draw();
</script>

Chapter 1

[7]

The preceding code will generate the same circle as before with the center point at
the coordinates 25, 25 and a radius of 20. The following figure shows the result of the
graphic in the browser, where the left-hand side shows the original image and the
right-hand side shows the image after zooming in:

A vector graphic generated in the SVG node (left: normal, right: zoom)

We observe that the circle will always appear in the best resolution no matter how
far we zoom into the image. The reason for this is that the vector graphics are
recomputed (by the mathematical expressions), redrawn, and rasterized according to
the relevant display and zoom factor.

We silently skipped another very important fact of SVGs such that all the elements
of the graphic appear in the DOM tree of the SVG node. In our case, we can see
in the previous example of the HTML page that the SVG node contains a circle
element. This means that the browser also knows about all the elements in the image.
Therefore, we can use all built-in capabilities to style and observe these elements. For
example, it's possible to attach an event listener with JavaScript to the circle and call
event handlers when the user interacts with this element of the graphic. This event
handler could look like this:

<script type="text/javascript">
 var ctx = document.getElementById('vis');
 var circle = VectorGraphic(ctx, 'circle', {cx:25, cy:25, r:20});
 circle.fill('red');
 circle.on('mouseover', function() {
 this.stroke('blue');
 });
 circle.draw();
</script>

The Magic of SVG, D3.js, and AngularJS

[8]

Vector graphics (particularly generated with SVG) are used in the Web, in general,
to draw graphics that contain a moderate number of elements and when interactions
and controls (such as zooming, panning, selecting elements, and so on) are desired.
Graphics for high performance with a big number of elements would rather use
pixel graphics.

Pixel graphics
A pixel graphic (often called as a raster graphic) is an image that is represented
solely by the pixels in the graphic. Thus, its size is only dependent on the resolution
of the image.

Rule of thumb for pixel graphics
The more the pixels in the image (the higher the resolution
of the image), the higher the cost to draw or update the
graphic, but in general, the cost does not depend on the
number of elements in the generated image.

In general, pixel graphics are rasterized images of a geometric representation.
Therefore, an image of a circle can be just as well defined by the shape of a circle
with coordinates of its center point and a radius. The description of the circle is
exactly the same as for vector graphics, only the ways of storing and displaying the
image are different.

Let's write a partially complete JavaScript helper function to generate pixel graphics
with the Canvas API. Don't worry about the details of this function; just imagine that
it will create a pixel graphic element (you can look it up in the source code of this
chapter if you are brave enough):

<script type="text/javascript">
function PixelGraphic(parent, tag, attrs) {

 var el = parent.getContext('2d');
 el.beginPath();
 ...
 return {
 stroke: function (color){... },
 fill: function (color){ ... },
 draw: function () {
 el.arc(attrs.cx, attrs.cy, attrs.r, 0, 2*Math.PI);
 ...
 }
 }
}
</script>

Chapter 1

[9]

If we generate such a circle with JavaScript, the resulting code looks very similar to
the previous vector graphic example:

<script type="text/javascript">
 var ctx = document.getElementById('vis');
 var circle = PixelGraphic(ctx, 'circle', {cx:25, cy:25, r:20});
 circle.fill('red');
 circle.draw();
</script>

The preceding code generates a very similar circle element with the center point at the
coordinates 25, 25 and a radius of 20. However, if we look at the resulting DOM tree,
we observe a small but important difference, that is, the circle element is not visible in
the canvas node. Let's look at the HTML code of this example:

<html>
 ...
 <body>
 <canvas id="vis" width="640" height="480"></canvas>
 </body>
</html>

The pixel graphic in the previous example is now stored in the canvas element. As
a result, the image is rasterized and transformed to a pixel array of color values.
Therefore, the canvas element does not contain any information about the elements
of the image.

If we look at the result of this code in the browser, we see the exact same image
as before with the vector circle. The only small, but very important difference will
become visible once we zoom inside the graphic. We will soon start to see pixels
instead of a sharp and smooth circle. This effect is visualized in the following figure:

A pixel graphic generated in canvas (left: normal, right: zoom)

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

The Magic of SVG, D3.js, and AngularJS

[10]

This effect can be easily explained if we look closer at how pixel graphics are stored.
First, the image is internally drawn on a container with the defined dimension of
the image. Then, the image is divided by a raster, which is defined by the image
resolution. Finally, the image is stored as pixel values of this raster. If we see a
pixelated image, we see exactly these discrete rastered pixel values. The whole
process is called rasterization and is visualized in the following figure:

A pixel graphic generated and rasterized in Canvas

Besides lossy rescaling, we can spot another big difference to vector graphics: the
browser does not know about the elements in the image. Therefore, it's not possible
to see and address the elements of the graphics in the DOM tree anymore. It's not
possible anymore to attach an event listener to the circle and call event handlers
when the user interacts with an element of the graphic. In pixel graphics, we are
primarily interacting with pixel values instead of objects, as we can see in the
following figure:

Interaction with the generated pixel graphic

In pixel graphics, we need to think in pixels rather than in
elements of an image.

Chapter 1

[11]

We usually prefer pixel graphics in the browser—particularly generated with Canvas
(2D) or WebGL (3D)—for graphics that contain a big number of elements and
performance (high frame rate) is more important than the image quality, interactions,
and zooming.

Understanding Data-Driven Documents
Data-Driven Documents (D3.js) is a data-driven library for DOM manipulation and
a graphical toolkit with maximum compatibility, accessibility, and performance. It
utilizes fully the capabilities of modern browsers and web standards (such as HTML,
CSS, and SVG).

It is open source and hosted on GitHub (https://github.com/mbostock/d3) under
a slightly modified BSD 3-clause license; therefore, it can be used in commercial
products without being required to release any modifications. By the way, GitHub
itself uses D3.js to visualize the contribution history of repositories.

Make yourself familiar with the wiki pages and the API reference on
GitHub as they will become your companions during the next weeks:

•	 Wiki pages (https://github.com/mbostock/d3/wiki)
•	 API reference (https://github.com/mbostock/d3/

wiki/API-Reference)

Why do we use D3.js?
D3.js is used for various different tasks, but it's mainly used for the following purposes:

•	 Transforming HTML or SVG elements in the DOM tree, as shown in the
following code:
<script type="text/javascript">
 // Example for HTML
 // Change the background color of all p elements
 d3.selectAll('p').style('background-color', 'red');
</script>

•	 Transforming data into HTML or SVG elements as follows:
<script type="text/javascript">
 // Example for SVG
 d3.selectAll('circle').data(dataArray)
 .enter()
 .append('circle');
</script>

https://github.com/mbostock/d3
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3/wiki/API-Reference
https://github.com/mbostock/d3/wiki/API-Reference

The Magic of SVG, D3.js, and AngularJS

[12]

•	 Generating or preparing complex visual content, as shown in the
following code:
<script type="text/javascript">
 // Create a Chord element
 var chord = d3.layout.chord()
 .sortSubgroups(d3.descending)
 .matrix(matrix);

</script>

•	 Loading data using AJAX requests as follows:
<script type="text/javascript">
 // Load external data
 d3.json('data.json', function(error, data){
 // do something with the data
 });
</script>

D3.js is not a chart library! It provides low-level tools
to build dynamic visualizations; therefore, many chart
libraries are built on top of D3.js.

One reason why D3.js gained a lot of popularity is its data-driven approach. Instead
of explicitly looping over elements in an array and drawing them on the screen, D3.js
allows for an implicit declarative representation. In D3.js, we rather think in terms
of how the visualization is composed than how each element is arranged in the scene. The
second main reason for its popularity is its clear focus on its underlying web standards
(HTML, SVG, and CSS). This brings many advantages such as the following:

•	 Compatibility: D3.js is not abstracting the underlying standards, it's
exploiting them. Therefore, developers can use all standard attributes of
HTML, SVG, and CSS to compose and style their visualizations rather than
learning an abstraction API for the visualization library.

•	 Debugging: D3.js will not only append all HTML elements and styles to the
DOM, but it will also append all SVG elements and their CSS attributes. This
makes it possible to simply open the developer tools of the browser and look
at the generated and modified elements and attributes. It lets developers
use their standard debugging tools and workflows that they are already
familiar with. Whoever dealt with debugging of pixel graphics libraries
(such as OpenGL, WebGL, Canvas, and so on) knows that good debugging
capabilities are a real game changer.

Chapter 1

[13]

•	 Performance: D3.js relies on SVG and therefore facilitates optimizing
performance of interactions and animations by giving full access to all SVG
features. In most other graphical libraries, one is limited to the capabilities
provided by the abstraction layer and the API of the library.

The killer feature – data joins
There is one more feature that distinguishes D3.js from other DOM transforming
libraries such as jQuery: the concept of data joins. When binding an array of data,
D3.js automatically intersects the old dataset with the new one to generate three
new datasets:

•	 The enter set that stores all elements from the new dataset that are not in the
old dataset and therefore need to be added

•	 The update set that stores all elements from the new dataset that are already
in the old dataset and therefore need to be updated

•	 The exit set that stores all the elements from the old dataset that are not in the
new dataset and therefore need to be removed

The following figure visualizes this intersection, where the old dataset is called
Selection and the new dataset is called Data:

Data joins in D3.js

This technique is often referred to as data binding because we are literally binding
an array of elements to a Selection of elements. However, now we know that data
joins are not just data bindings, but they additionally intersect the datasets.

The Magic of SVG, D3.js, and AngularJS

[14]

Let's look at a simple example. In general, the data-driven approach of D3.js allows
developers to declare the manipulations of HTML or SVG elements based on CSS
selectors. This is very similar to jQuery; therefore, I will also show the corresponding
code using jQuery:

<script type="text/javascript">
 // with jQuery
 $('p').css('background-color', 'red');
 // with D3.js
 d3.selectAll('p').style('background-color', 'red');
</script>

However, the big difference is that D3.js implements data joins, which gives
developers the access to match an array of elements (the new dataset) to a Selection
(the old dataset). Corresponding with the enter, update, and exit sets from the
previous intersection figure, D3.js can return these intersected datasets using the
following functions:

•	 selection.data(dataSet).enter() for elements that are new to the
dataset and not yet in the current Selection

•	 selection.data(dataSet) for elements that are already existent in
the dataset

•	 selection.data(dataSet).exit() for elements that are removed from the
dataset and still existent in the current Selection

Let's look at an example where we use all of the preceding methods. First, we will
write a function that appends, updates, and removes p elements in the DOM. Then,
we will play around with it:

<script type="text/javascript">
function join_p(dataSet) {
 var el = d3.select('body');

 var join = el
 // get the selection of all p elements
 .selectAll('p')
 // join the selection with the dataset
 .data(dataSet);

 // elements not yet in the selection
 // they need to be added
 join.enter().append('p');

 // elements currently in the selection
 // they need to be updated

Chapter 1

[15]

 join.text(function(d) { return d; });

 // elements still in selection
 // they need to be removed
 join.exit().remove('p');}
</script>

Let's play with this function in the developer tools of the browser. At first, we
see a blank page without any p elements in the DOM. Okay, now we call the
join_p(['append', 'to', 'DOM']) function from the console inside the browser.

We observe that three paragraphs appear with the content append, to, and DOM; we
can also look at the DOM tree in the developer tools:

<body>
 <p>append</p><p>to</p><p>DOM</p>
</body>

So what happened here? In the join_p() function, we first created a Selection of all
p elements in the body using .selectAll('p') and then created a data join with the
['append', 'to', 'DOM'] dataset using .data(dataSet). It seems weird that we
call .selectAll('p') where not a single p element exists yet in the DOM. However,
if we think in terms of data joins, we solely create an empty Selection of p elements.
This makes sense immediately after calling the enter function, which returns all
elements that are not yet existing in this Selection. In our case of the empty Selection,
this function returns all the elements of the dataset. Finally, we just need to append
them to the DOM using the .append('p') function.

In the following line, the join variable returns all elements of the current Selection
and we just appended three new elements to it. The .text()method updates all
elements of the current Selection and sets the value of the array element as text of the
corresponding p tag (this method is called dynamic properties and will be explained
in more detail in the following chapter). The last method, .exit(), returns no
elements because all elements are available in the dataset and in the Selection. The
following figure shows how the Selection changes with the dataset:

Adding elements to a Selection and updating them

The Magic of SVG, D3.js, and AngularJS

[16]

If we now call the join_p() function again, this time with the following dataset
join_p(['modify', 'in', 'DOM']), we see that the text of the first two
paragraphs will change as follows:

<body>
 <p>modify</p><p>in</p><p>DOM</p>
</body>

Despite the previous function call, the Selection of p elements now is not empty, but
contains the three previous elements. This means that both .enter() and .exit()
methods will return no elements. The join variable solely contains the new updated
elements whose paragraph text is correspondingly updated. We can see the effect on
the Selection in the following figure:

Updating elements of a Selection

Finally, we can try to call join_p([]) with an empty dataset. As we could imagine
by now, this results in all paragraphs being removed. The .exit() function will
return all elements of the Selection because the dataset contains no elements. Calling
.remove() on these elements will remove them from the DOM. We can observe the
change of the Selection in the following figure:

Removing elements from a Selection

Data joins are data bindings with access to the intersection
of the dataset and the Selection.

Chapter 1

[17]

The concept of data joins enable the developer to append new data to a graphic
when new data is available, to update existing data and to remove data from the
graphic when it is not available anymore. Instead of redrawing the complete image,
the elements of the graphic are transformed.

Finding resources
Michael Bostock provides an extensive source of detailed information on D3.js,
helpful posts, and lots of examples. Once you are stuck or need to find particular
information on specific topics or examples, I recommend you to read through the
following links:

•	 Michael Bostock's web page at http://bost.ocks.org/mike/
•	 Infinite amount of examples and demos at http://bl.ocks.org/mbostock
•	 Stack Overflow questions at http://stackoverflow.com/questions/

tagged/d3.js

If you Google D3.js, you will find a lot of additional resources; however, most of
them are just dealing with the basics. To get a good and deeper understanding
of D3.js, I would rather advise you to look up the relevant chapters in the book
Mastering D3.js, Pablo Navarro Castillo, Packt Publishing, or look directly into the
source code of D3.js on GitHub.

D3.js meets AngularJS
AngularJS is a JavaScript framework that modernizes development of web
applications in multiple ways; it introduces client-side templates, MVC/MVVM
pattern, scoping, two-way data binding, dependency injection, and so on. Therefore,
it's our JavaScript application framework of choice. At this point, I assume that you
are already familiar with the main concepts of AngularJS and you know when and
how to apply them. If there are still problems, I would recommend you to read the
relevant chapters in the book Mastering Web Application Development with AngularJS
by Pawel Kozlowski and Peter Bacon Darwin, published by Packt Publishing.

Theoretically, we can simply add a D3.js visualization library to the same application
that also uses AngularJS without caring about modules, isolation, dependency
injection, and so on without any extra effort.

http://bost.ocks.org/mike/
http://bl.ocks.org/mbostock
http://stackoverflow.com/questions/tagged/d3.js
http://stackoverflow.com/questions/tagged/d3.js

The Magic of SVG, D3.js, and AngularJS

[18]

However, once we know how awesome AngularJS is, we want to fully exploit every
single advantage of this framework. Having said that, we want every component
of the application being injectable, maintainable, and testable. We want to extend
HTML syntax and add custom directives to templates. We want proper scope
isolation. We want to put common tasks into reusable services. We want to use
dependency injection on every single component of the application. We want to
integrate D3.js into an application the Angular way.

Testable and maintainable components
AngularJS strongly focuses on testability and maintainability of the components of
an application. Once we use plain D3.js to modify the DOM in order to load data
and create graphical content, it will become very complex and uncomfortable to test
single components or the whole application. We will use the full power of AngularJS,
the concepts of dependency injection, modularization, isolation, and directives to
create testable components.

Custom directives
AngularJS lets you develop your own directives that extend the HTML syntax to
create reusable components for HTML. This is exactly what we want: a reusable
component for each different type of visualization that we are going to build. We aim
to declare the different elements of a visualization like in the following example:

<html>
 <head>
 <script>
 ...
 app.directive('d3Map', function(){ ... });
 app.directive('d3LineChart', function(){ ... });
 app.directive('d3ScatterPlot', function(){ ... });
 app.directive('d3ChordDiagram', function(){ ... });
 </script>
 </head>
 <body>
 <d3-map></d3-map>

 <d3-line-chart data="data"></d3-line-chart>
 <d3-scatter-plot data="data"></d3-scatter-plot>
 <d3-chord-diagram data="data"></d3-chord-diagram>
 </body>
</html>

Chapter 1

[19]

We can immediately see that this is a very clean and elegant way to embed your
visualization components in the HTML document.

Custom filters
AngularJS introduces filters in frontend templates that allow you to modify variables
and filter arrays directly inside the template. For our visualization component, we
want to create custom filters (for example, to clamp the dataset to a specific range)
that can be applied to all graphics at once. Additionally, we want these filters to be
autoupdated whenever data is selected in one graphic as follows:

<html>
 <head>
 <script>
 ...
 app.filter('startDate', function(){ ... });
 </script>
 </head>
 <body>
 <d3-line-chart data="timeData | startDate:'01.01.2015'"></d3-
 line-chart>
 <d3-scatter-plot data="timeData | startDate:
 '01.01.2015'"></d3-scatter-plot>
 </body>
</html>

Custom loading and parsing service
AngularJS emphasizes the concepts of services to implement common
functionalities. We want to implement a data loading and parsing service that uses
AngularJS' Promises and the capabilities of D3.js parsing functions at the same time.
The service should be used like this:

<script type="text/javascript">
 app.controller('MainCtrl', ['$scope', 'myService',

 function($scope, myService) {
 myService.get('data.json').then(function(data){
 scope.data = data;
 });
 }
 }]);
</script>

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

The Magic of SVG, D3.js, and AngularJS

[20]

A brief overview of visualization tools for
the Web
Now, let me explain why we are using D3.js and not any other similar visualization
library to manipulate vector graphics.

When I started with web development in 2004, vector graphics and interactive
applications were mostly embedded as Flash objects into web pages. The main
reason for this was the lack of web standards for vector graphics or good and
powerful JavaScript libraries for image manipulation. It was difficult to create
interactive visualizations that integrate into the underlying page because
functionalities (such as layouts and fonts) defined in CSS and user interactions
written in JavaScript were not available in embedded objects. Thus, these
visualization objects often felt like a strange add-on to the underlying application,
where fonts, size, and colors were not completely matching with the application.
A typical code example for an embedded visualization looks like this:

<html>
 ...
 <body>
 <object id="vis" width="50" height="30">
 <param name="movie" value="vis.swf">
 <embed src="vis.swf" type="application/x-shockwave-flash">
 </object>
 </body>
</html>

We can see in the preceding example that the compiled and embedded vis.swf
Flash object is completely isolated from the scope of the host application. In addition
to the web browser, we would also need a plugin that can interpret the Flash binary
object. While the application and the embedded visualization have the same task—
displaying data on a web page—they are not sharing common styles or a common
scope for user interactions.

Java and Flash
One of the first consistent toolsets for interactive data visualization for the Web was
the Java library Prefuse, which was published by Jeffrey Heer in 2007, who, at this
time, is a member at the Berkley Visualization Lab. Prefuse provided rich tools for
data modeling and interactive graphics. The visualization could be embedded as
Java applets into a web page, but this required the Java runtime environment to be
installed on every browser that wants to display the visualization.

Chapter 1

[21]

Later in 2008, Heer released the first version of Flare, a port of the Prefuse library to
ActionScript, which could compile the visualization to a more common Flash object.
A simple application that shows three circles with different x coordinates in an image
with the size of 50 x 30 pixel looks like this with Flare:

[SWF(width="50", height="30")]
public class Vis extends Sprite
{
 public function Vis()
 {
 // Define the dataset
 var data:Array = [15, 25, 35];
 for each (var d:int in data) {
 var sprite:Sprite = new Sprite();
 // Draw and color the circles
 sprite.graphics.beginFill(0xff0000, 1.0);
 sprite.graphics.drawCircle(0, 0, 5);
 this.addChild(sprite);
 // Set the coordinates of the circle
 sprite.x = d;
 sprite.y = 15;
 }
 }
}

Looking at the preceding code, we can see that in each loop, we create a drawing
container (sprite) and a circle element. We also color it and with sprite.x = d, we
set the x coordinate of the sprite container to the current value d of the data array.
Don't worry if this code looks quite complicated to you because this is exactly the
reason why I am showing it. It's complicated and not intuitive to create containers, add
elements, and move containers to the position where we want to display the circle.
Furthermore, to run this example in the browser, we have a very similar problem as
before with Prefuse: each browser needs the Flash runtime installed. The resulting
image generated by the previous code will look like the following figure:

Image of three circles

The Magic of SVG, D3.js, and AngularJS

[22]

Raphaël (JavaScript – SVG/VML)
By 2008, most of the major browsers provided native support for SVG and signified
the certain end of Flash in the upcoming years. However, Internet Explorer
implemented a different markup language for vector graphics than SVG; it used the
similar, but different Vector Markup Language (VML).

In 2009, Dmitry Baranovskiy announced the first release of Raphaël, a JavaScript
library that aims to simplify the manipulation of vector graphics by providing a
JavaScript API for SVG with a compatibility layer for VML for Internet Explorer. The
representation of graphics inside the DOM not only enabled the use of JavaScript
event handlers for user interactions on elements of the image, but it also enabled
the use of CSS to style these elements. This was a huge step towards open web
standards, accessibility, and acceptance of SVG. An example of drawing the same
three circles looks like this:

<script type="text/javascript">
 // Define the dataset
 var data = [15, 25, 35];
 // Draw the canvas
 var paper = Raphael(0, 0, 50, 30);
 // Draw and color the circles
 for (var i = 0; i < 3; i ++) {
 var circle = paper.circle(data[i], 15, 5);
 circle.attr('fill', 'red');
 }
</script>

Again, we generate a circle with the x coordinate of the data array each time we loop
over the array. In a modern browser, the preceding code produces an SVG image
that looks exactly like the previous example, but additionally outputs directly to the
DOM of the HTML page. It adds three circle elements with different x coordinates
of the center point to the DOM tree inside the SVG node. The generated SVG code
embedded in the web page will look like this:

<html>
 ...
 <body>
 <svg width="50" height="30">
 <circle cx="15" cy="15" r="5" style="fill:red;">
 <circle cx="25" cy="15" r="5" style="fill:red;">
 <circle cx="35" cy="15" r="5" style="fill:red;">
 </svg>
 </body>
</html>

Chapter 1

[23]

Protovis (JavaScript – SVG)
In the same year at Stanford, Michael Bostock and Jeffrey Heer published the
visualization library Protovis for SVG manipulation in JavaScript. Its new
data-driven approach allowed the developers to declare the representation of data,
rather than looping and drawing multiple elements explicitly. The following code
uses Protovis to generate the exact same SVG graphic of the three circles shown in
the previous figure:

<script type="text/javascript">
 // Define the dataset
 var data = [15, 25, 35];
 // Define the canvas
 var vis = new pv.Panel()
 .width(50)
 .height(30);
 // Define the circles and their color
 vis.add(pv.Dot)
 .data(data)
 .left(function(d) { return d; })
 .bottom(15)
 .radius(5)
 .fillStyle('red');
 // Draw the canvas and the circles
 vis.render();
</script>

The main difference in the previous example is that the explicit loop over the data
array in Raphaël is replaced by the a implicit data() function in Protovis, where the
x coordinate of each circle is called as a function that returns the current element of
the data array.

D3.js (JavaScript – HTML/SVG)
In 2011, when SVG was finally supported in all major browsers and Internet
Explorer, the same authors of Protovis—Michael Bostock and further members of
the Stanford Visualization Group—published D3.js, a more generalized version of
Protovis with built-in support for animations. The goal was not to restrict the library
anymore on just the SVG object, but to access the complete DOM tree and use all
of its features and underlying standards. Therefore, all updates and extensions for
HTML and CSS (for example, new attributes, and so on) are immediately available in
D3.js. To support dynamic visualizations, D3.js also introduced the concepts of data
joins, which let the developer add, update, and remove elements depending on data
that was added, updated, or removed from a Selection (this will be discussed in more
detail in the next chapter).

The Magic of SVG, D3.js, and AngularJS

[24]

The same graphic as previously generated with Raphael and Protovis can be created
with D3.js as follows:

<script type="text/javascript">
 // Define the dataset
 var data = [15, 25, 35];
 // Draw the canvas
 var vis = d3.select('body')
 .append('svg')
 .attr('width', 50)
 .attr('height', 30);
 // Draw and color the circles
 vis.selectAll('circle')
 .data(data)
 .enter().append('circle')
 .attr('cx', function(d) { return d; })
 .attr('cy', 15)
 .attr('r', 5)
 .style('fill', 'red');
</script>

We remark that D3.js implements more general methods, for example, attr('r')
that uses the underlying SVG attribute r for the radius explicitly instead of the
radius() function, which is an abstraction of the SVG attribute r in Protovis.

The selectAll().data().enter() construct in this static example looks more
complicated than the simple data() function of Protovis, but it implements data
joins to create new elements for new data in the Selection. Therefore, it will be very
useful to update dynamic graphics in the following chapters of this book.

D3.js forces developers to use the underlying standards
HTML, CSS, and SVG instead of providing an
abstraction of these attributes.

Canvas API (JavaScript – Canvas)
Since the introduction of HTML5, we can also use the Canvas element and its
JavaScript API to draw the exact same circles as in the previous examples. The
performance of Canvas is much better than SVG when drawing large amount of
objects/elements. However, the content of the Canvas will be drawn as a pixel
graphic and no element will be appended to the DOM or the Canvas node, which
is a huge drawback.

Chapter 1

[25]

Three.js (JavaScript – WebGL)
With WebGL that was introduced in 2011, we can also draw the example of the
three circles using the Three.js JavaScript library. WebGL has access to hardware
acceleration of the operating system and is mainly used for 3D graphics. The
resulting image is a pixel graphic. However, it's worth mentioning that it's not
available in all modern browsers.

Summary
In this chapter, we discovered the benefits of the powerful combination of SVG,
D3.js, and AngularJS. SVG are lossless and rescalable vector graphics that are
supported in all modern browsers. All the elements of an image are directly
appended to the DOM tree of the HTML page, which makes debugging with the
browser's developer tools very comfortable. D3.js is a versatile low-level library for
generating interactive graphical content based on the underlying standards (HTML,
CSS, and SVG).

In the first section of this chapter, we outlined the sample application that we will
develop during this book: a dashboard for interactive real-time visualizations of web
server logs and system status.

You learned about the concept of data joins, which differentiates D3.js from other
DOM-transformation libraries like jQuery. Developers can not only bind data to a
Selection, but also retrieve the enter, update, and exit sets (the intersection of the
dataset with a current Selection of DOM elements).

D3.js and AngularJS can live side by side in an application, but we want to integrate
the D3.js visualization into the AngularJS application the Angular way. This enhances
maintainability, testability, and reusability of all components of an application.

In the next chapter, we will start to develop our first visualization with D3.js. In the
first step, you will learn about Selections and transformations and use them to draw
circles in SVG. Then, we will apply the concepts of data binding and data joins to draw
a simple scatter chart based on an array of data samples.

[27]

Getting Started with D3.js
In this chapter, we will build our first simple scatter plot application using D3.js.
Don't worry if you have no experience with D3.js, we will cover all the necessary
topics from setting up a simple HTML template, selecting DOM elements, and
binding data to DOM elements.

First, you will learn how to draw vector graphics with the use of D3.js. To get started,
we will set up a simple D3.js application template that serves for all examples in
this chapter.

In the second section, you will learn how to select and modify elements from the
DOM and change their attributes and their appearance. Starting with modifying
HTML elements, I will answer some common questions to understand the
similarities and differences between D3.js and other JavaScript libraries. We will then
apply these transformations to SVG elements.

Then, we will take a closer look at D3 Selections and CSS Selectors in D3.js. This will
help us to understand how to find and select specific elements in the DOM and how
these elements are stored in the Selection.

In the next section, we will look at data binding and introduce dynamic properties,
an important characteristic of data-driven libraries. We will continue to discuss data
joins and the update pattern in D3.js, which helps us to modify elements based on the
difference of a Selection and the bound data. At the end of this chapter, we will use all
of this knowledge to draw a simple scatter chart with D3.js based on an array of data.

In this chapter, you will learn the following topics:

•	 Including D3.js in our applications
•	 Selecting and modifying HTML and SVG elements
•	 Applying selectors to find elements in the DOM
•	 Storing elements in a Selection

Getting Started with D3.js

[28]

•	 Binding data to elements
•	 Using dynamic properties
•	 Drawing a simple scatter chart

Building a simple scatter plot application
Did you ever wonder how Google Analytics, GitHub, or Wolfram Alpha create these
beautiful and colorful plots of your data? Did you know that with D3.js, you have
the power to create similar or even better visualizations right at your fingertips?

In this chapter, we will build a simple scatter plot application. This type of plot can
be used to visualize the areas and frequency of clicks on a web page; the following
figure shows an example of such a plot. The circles indicate typical areas of the
website that are often clicked on, whereas the size and color of the circles show the
amount of clicks on an area. To keep things simple, in the beginning, we will create
a scatter plot and fill it with random data.

Simple scatter plot application

Chapter 2

[29]

Creating an HTML template for D3.js
To set up a template page for all visualization examples, we first need to download
D3.js and include it to the application. In this book, we will use version 3.5.5, but all
of the examples should also work with slightly different versions (~3.4.12 and ~3.5.0).
There are multiple ways to add D3.js to an application:

•	 Installing it with the package manager bower (recommended):
bower install d3#3.5.5

•	 Loading it from a Content Delivery Network (CDN) (//cdnjs.
cloudflare.com/ajax/libs/d3/3.5.5/d3.js).

•	 Downloading it and storing it to a libs directory (https://github.com/
mbostock/d3/releases/tag/v3.5.5).

The easiest way to use D3.js in our application is to simply download D3.js directly
from GitHub and extract it into the libs directory. In contrast to the CDN method,
this does not require an active Internet connection while developing. However,
the recommended way is to use a package manager such as bower to manage and
configure all third-party dependencies.

So, go ahead and download D3.js from GitHub, extract it, and store the d3.js file in
the libs directory! Now, we can create an index.html file and reference D3.js as a
JavaScript library in the header as follows:

<!DOCTYPE html>
<html>
 <head>
 <script src="libs/d3.js" charset="UTF-8"></script>
 </head>
 <body>
 <!-- D3.js example go here -->
 </body>
</html>

Bear in mind that due to the usage of Greek letters in the unminified version of D3.js,
we also need to set the charset attribute of the <script> tag to UTF-8. In the whole
book, I will use the exact same HTML template as used in the preceding code for all
code samples; I will solely change the body of the HTML page. Whenever we modify
the <head> tag to add more libraries, I will indicate this in the relevant examples.

www.allitebooks.comwww.allitebooks.com

//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.js
//cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.js
https://github.com/mbostock/d3/releases/tag/v3.5.5
https://github.com/mbostock/d3/releases/tag/v3.5.5
http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with D3.js

[30]

Selecting and modifying DOM elements
D3.js provides a variety of functions to manipulate elements of the DOM tree, such as
setting their attributes, changing their content, creating new elements, or removing
them. As you learned in the first chapter, instead of looping through elements
and modifying them one by one, with D3.js, we are applying transformations in a
declarative way directly to an array of elements. We call the object that stores all the
elements in an array a Selection.

To extract such an array of elements from the DOM tree, D3.js offers the
d3.selectAll(selector) function to select all elements of a specific type and the
d3.select(selector) function to select just a single element. While both functions
return a Selection that contains an array of elements, the latter function returns an
array with solely a single element.

To tell D3.js which elements we want to select, we use so-called CSS selectors (these
are the standard CSS selectors that most developers are already familiar with). Thus,
a selector is usually a tag name (body, div, and so on), an ID (#head, #content, and
so on), or a class name (.nav-item, .media, and so on). We will take a closer look at
selectors in a later section of this chapter.

Once we have a Selection, we can apply transformations to all containing elements.
For example, we can modify their HTML attributes with the .attr() method, we
can set CSS styles with the .style() method, or remove elements from the DOM
with the .remove() method. We will see more transformations in the next section;
for now, let's just try all of this and look at some code:

<p>Some fruits:</p>
<p class="item" id="first-item">Apple</p>
<p class="item" id="second-item">Banana</p>
<p class="item" id="third-item">Orange</p>

<script type="text/javascript">
 // Select all p tags
 var ps = d3.selectAll('p');
 // Select all elements with the class 'item'
 var items = d3.selectAll('.item');
 // Select the first element with the id 'first-item'
 var first = d3.select('#first-item');

 // Add a HTML attribute to all p tags
 ps.attr('align', 'center');
 // Change the background-color of the items
 items.style('background-color', 'red');
 // Remove the element #first-item from the DOM
 first.remove();
</script>

Chapter 2

[31]

In the following screenshot, we can see the resulting HTML page before
transformation on the HTML elements:

HTML page before previous transformations

The following image shows the HTML page after transformation:

HTML page after previous transformations

When looking at this simple example, the preceding code may look very familiar as
it can be written in a very similar way with plain JavaScript or the jQuery library. In
general, some people come up with concrete questions when seeing an example like
this, so I want to go ahead and answer them:

•	 This example looks pretty boring. Why is it useful?: It is useful because it
shows how to use D3.js to select elements from the DOM and to transform
all the elements of the Selection in a data-driven way, for example, we write
items.style('background-color', 'red'); to modify all elements with
an item class.

•	 I can do the exact same thing with other libraries. Where exactly is the
difference?: Despite other libraries, d3.selectAll() returns a D3-Selection—
an object that stores and groups all the selected elements and offers specific
methods that are different from other libraries. I will just name a few of these
functions that are specific for D3.js: the .data() method for data binding and
dynamic properties, the .enter() and .exit() methods for data joins—we
will see both these methods later in this chapter—and the .transition()
method for animations that will be discussed in a later chapter.

Getting Started with D3.js

[32]

•	 This example is not at all related with computer graphics or generating
visualizations. Why do I need all of these?: We need all of these because
in the previous example, we selected and modified HTML elements in the
DOM tree. In the first chapter of this book, you learned about Scalable
Vector Graphics (SVG) and that the scene graph of SVG—the container that
stores all the elements of the image—is directly embedded into the DOM
tree. This means that we can also use D3.js to select, style, and modify all the
graphical elements of a SVG.

Now, we will try a similar example where we apply transformations to the
SVG elements:

<svg width="400" height="120">
 <text x="10" y="40">Some shapes:</text>
 <rect class="item" id="first-item" width="100" height="50" x="0"
 y="50" />
 <circle class="item" id="second-item" cx="150" cy="25" r="25" />
 <line class="item" id="third-item" x2="400" y2="100"
 style="stroke:black" />
</svg>

<script type="text/javascript">
 // Select all circle tags
 var circ = d3.selectAll('circle');
 // Select all elements with the class 'item'
 var items = d3.selectAll('.item');
 // Select the first element with the id 'first-item'
 var first = d3.select('#first-item');

 // Add a SVG attribute to all circle tags
 circ.attr('r', '50');
 // Change the fill color of the items
 items.style('fill', 'red');
 // Remove the element #first-item from the DOM
 first.remove();
</script>

In the following figure, we can see the HTML page from the previous
transformations on the SVG elements:

HTML page before previous transformations

Chapter 2

[33]

The following image shows the HTML page after transformation:

HTML page after previous transformations

We observed that we can apply the transformations to the SVG elements in the DOM
tree that allows you to modify the graphical content. In the example, we used very
basic transformations that can also be written in the SVG itself or by including CSS
styles. In the Binding data to DOM elements section, you will learn more advanced
techniques on how to create and modify the graphical content completely with D3.js.

A closer look at Selections
A Selection is a subclass of the array object that stores grouped arrays of DOM
elements and implements methods to modify all of its elements.

Let's look at an example with the most basic Selection:

<svg width="400" height="200">
 <circle cx="50" cy="50" r="40" />
 <circle cx="150" cy="50" r="40" />
</svg>

<script type="text/javascript">
 // Get a Selection of the circles
 var circles = d3.selectAll('circle');

 console.log(circles);
 // [[<circle />, <circle />]]
</script>

The Selection of the preceding example contains an outer array with one element
inside. This inner element is an array that contains two DOM elements—the two
circles. Whenever a Selection is applied via d3.selectAll(), it will return just a
single outer group with an array of resulting elements inside. Whenever Selections
are nested—.selectAll() is called on another Selection—D3.js will group the
result; we see this in the following example.

<svg width="400" height="200">
 <g>
 <circle cx="50" cy="50" r="40" />
 <circle cx="150" cy="50" r="40" />

Getting Started with D3.js

[34]

 </g>
 <g>
 <circle cx="250" cy="50" r="40" />
 <circle cx="350" cy="50" r="40" />
 </g>
</svg>

<script type="text/javascript">
 // Get a Selection of the groups
 var groups = d3.selectAll('g');

 // Get a nested Selection of the circles
 var circles = groups.selectAll('circle');

 console.log(circles);
 // [[<circle />, <circle />], [<circle />, <circle />]]
</script>

D3.js provides a variety of functions that can be applied to Selections; I will list the
most important ones:

•	 Selections:
°° .select(selector|node)

°° .selectAll(selector|nodes)

°° .filter(selector)

°° .sort(comparator)

•	 Content modification:
°° .attr(name[, value])

°° .style(name[, value[, priority]])

°° .property(name[, value])

°° .text([value])

°° .append(name)

°° .insert(name[, before])

°° .remove()

•	 Data binding:
°° .data([values[, key]])

°° .enter()

°° .exit()

Chapter 2

[35]

•	 Animation and interaction:
°° .on(type[, listener[, capture]])

°° .transition()

•	 Flow control:
°° .each(function)

°° .call(function[, arguments…])

In this chapter, we will mostly use the methods for content modification, so you
will spot many of them in the examples. Therefore, I will briefly discuss them in
this section. Selectors and Selection functions as well as flow control functions are
explained in the next section. The data binding methods will be discussed in a later
section of this chapter and animation and interaction will appear in more detail later
in this book.

Refer to the D3.js API available at https://github.com/mbostock/d3/wiki/
Selections for detailed information on all these functions.

selection.attr(name[, value])
This sets the attribute of a DOM element if the value is defined; otherwise, it returns
the current value of the attribute:

<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Set the attribute
 d3.select('p').attr('class', 'my-class');
 // Get the attribute
 console.log(d3.select('p').attr('class'));
 // 'my-class'
</script>

selection.style(name[, value[, priority]])
This sets the CSS style of a DOM element if the value is defined; otherwise, it returns
the current value of the CSS style. This function also accepts an object literal to set
multiple CSS styles at once. The priority for the CSS style can take either the value
null or important:

<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Set the CSS style

https://github.com/mbostock/d3/wiki/Selections
https://github.com/mbostock/d3/wiki/Selections

Getting Started with D3.js

[36]

 d3.select('p').style('color', 'red');
 d3.select('p').style({'font-size': 14, 'font-weigth': 'bold'});
 // Get the CSS style
 console.log(d3.select('p').style('color'));
 // 'rgb(255, 0, 0)'
</script>

selection.property(name[, value])
This sets the property of a DOM element if the value is defined; otherwise, it returns
the current value of the property. This function also accepts an object literal to set
multiple properties at once. These HTML properties are usually not assignable by
standard attributes or styles, such as checked, selected, and so on:

<input type="checkbox" name="my-box" >

<script type="text/javascript">
 // Set the property
 d3.select('input').property('checked', true);
 // Get the property
 console.log(d3.select('input').property('checked'));
 // true
</script>

selection.text([value])
This sets the text content (based on the textContent property) of a DOM element if
the value is defined; otherwise, it returns the current text content of the element. This
function will override all existing child elements of the element:

<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Set the text content
 d3.select('p').text('I prefer meat.');
 // Get the text content
 console.log(d3.select('p').text());
 // 'I prefer meat.'
</script>

Chapter 2

[37]

selection.append(name)
This appends a name element as the last child to the current Selection as follows:

<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Append a p element
 d3.select('p')
 .append('p').text('I also eat meat.');
</script>

The preceding code will insert the second p element after the original one, as shown
in the following code:

<p>Apple, Banana and Orange</p>
<p>I also eat meat.</p>

selection.insert(name[, before])
This inserts a name element before the first matching element with the before
selector of the current Selection:

<p class="first">Apple, Banana and Orange</p>
<p class="second">Kiwi, Grapes and Pineapple</p>

<script type="text/javascript">
 // Insert a p element
 d3.select('body')
 .insert('p', '.first').text('I like fruits.');
</script>

The preceding code will insert the new p element before the first one as follows:

<p>I like fruits.</p>
<p class="first">Apple, Banana and Orange</p>
<p class="second">Kiwi, Grapes and Pineapple</p>

selection.remove()
This removes all elements of the current Selection from the DOM:

<p>I like fruits.</p>
<p class="second">Apple, Banana and Orange</p>

<script type="text/javascript">
 // Remove the element with class second
 d3.select('.second').remove();
</script>

Getting Started with D3.js

[38]

The preceding code will remove the second element from the DOM as follows:

<p>I like fruits.</p>

Finding elements in the DOM with Selectors
At the beginning of this chapter, we saw that D3.js uses CSS Selectors to select
elements in the DOM tree with the d3.select(selector) function and the
d3.selectAll(selector) function. This means that in general, we can use selectors
by the tag name: body, div, the ID: #head, #content, the class name: .nav-item,
.media, and attributes: [width=100], [align=center].

To find the desired elements, selectors can also be applied hierarchically to elements
inside elements by containment: svg circle (circle tags in svg tags), div p (p tags
in div tags), and by ancestors: svg > circle (circle tags with a parent svg tag),
div > p (p tags with a parent div tag).

Also, they can be logically combined by logical and: .item[width=100] (selects
.item AND [width=100]), .this.that (selects .this AND .that) and logical or:
.item,[width=100] (selects .item OR [width=100]), .this,.that (selects .this
OR .that).

A well-arranged list of all available CSS selectors is provided
on the W3schools website (http://www.w3schools.com/
cssref/css_selectors.asp).

While working with D3.js, you will most probably use the common CSS 1 and CSS
2 selectors. For more advanced Selections, you can also use the CSS 3 selectors;
however, they are not supported in all browsers.

In particular, D3.js uses the native CSS selector implementation of the browser.
This means that the CSS 1 and CSS 2 selectors are fully available across all common
browsers, whereas CSS 3 selectors are solely available in modern browsers. To
ensure full backwards compatibility for complex selectors, we can simply include the
JavaScript selector engine Sizzle (http://sizzlejs.com/) to the application. D3.js will
automatically use Sizzle if it's already loaded. A typical setup would look like this:

<html>
 <head>
 <script src="libs/sizzle.js"></script>
 <script src="libs/d3.js" charset="UTF-
 8"></script>

 </head>
 ...
</html>

http://www.w3schools.com/cssref/css_selectors.asp
http://www.w3schools.com/cssref/css_selectors.asp
http://sizzlejs.com/

Chapter 2

[39]

d3.select(selector)
This selects an array of elements that matches the CSS Selector and returns a
Selection of a single element:

<p>I like fruits.</p>
<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Select the first element
 var elem = d3.select('p:first-child');
</script>

d3.select(node)
Another way to get a Selection of an element is to use d3.select(node) or
d3.selectAll(nodes) on the DOM elements itself. This is useful when we already
have the DOM element and want to make a D3-Selection out of this element.
This enables us to use all the methods of the D3-Selection on this element, thus
transforming a DOM element—that might be selected by plain JavaScript or another
library—to a D3-Selection. Let's see an example:

<form></form>

<script type="text/javascript">
 // document is the global root DOM element
 console.log(document);
 // #document
 // doc is now a Selection
 var doc = d3.select(document);

 // Get a DOM Element
 var dom_elem = document.getElementsByTagName('form')[0];
 // elem is now a Selection
 var elem = d3.select(dom_elem);
</script>

We will also use this in the setter functions of dynamic properties to transform the
this keyword—that references the current DOM element—into a Selection. We will
see this applied in the next section; here is an example of how we create the Selection:

 // we are in a scope, where the keyword
 // this references a DOM element p
 console.log(this);
 // <p class="item" id="first-item">Apple</p>
 // self is now a Selection containing this element
var self = d3.select(this);

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with D3.js

[40]

The flow control functions of Selections are useful helpers to apply functions to all
elements of a Selection. I will give a brief description of these functions now because
we will often need to select the current DOM node via d3.select(this).

selection.each(function)
The .each() method calls the function argument for each element inside the
Selection, as shown in the following code:

<p>I like fruits.</p>
<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 // Invokes the function for each element
 d3.selectAll('p').each(function(d, i){
 var self = d3.select(this);
 // Output the text of every element
 console.log(self.text());
 });
</script>

The preceding code will output the text of both p elements.

selection.call(function[, arguments…])
The .call() method is very similar to the native Function.prototype.call
function. It invokes the function once and passes the current selection Selection
as the first argument and other optional user-defined arguments to this function:

<p>I like fruits.</p>
<p>Apple, Banana and Orange</p>

<script type="text/javascript">
 function set_custom_attr(selection, attr, value) {
 selection
 .attr(attr, value);
 }

 // Invokes the function once
 d3.selectAll('p').call(set_custom_attr, 'align', 'center');
</script>

Chapter 2

[41]

In this simple example, we solely change the align attribute on the p elements:

<p align="center">I like fruits.</p>
<p align="center">Apple, Banana and Orange</p>

Binding data to DOM elements
Data binding techniques are very powerful in D3.js because they enable us to
generate graphical content based on data. In general, with the data-driven approach,
we can declare the graphical elements to match the data instead of looping through
the data and drawing the elements one by one.

selection.data(values[, key])
D3-Selections provide the .data([values[, key]]) method to bind an array of
arbitrary data to a Selection. It will return a new Selection that stores the bound data
internally and binds every element of the data array to an element of the Selection.

The first values argument is an array of values or a function that returns an array
of values. With the second optional key argument, we can specify a function that
identifies each element of the array. The key argument is important for D3.js to
identify and keep track of the elements for the data joins. Let's first take a look at a
simple example:

<svg width="400" height="200">
 <circle cx="50" cy="50" r="40" />
 <circle cx="150" cy="50" r="40" />
 <circle cx="250" cy="50" r="40" />
 <circle cx="350" cy="50" r="40" />
</svg>

<script type="text/javascript">
 // Create a data array
 var data = [10, 20, 30, 40];
 // Bind data array to the Selection
 var circles = d3.selectAll('circle').data(data);

 console.log(circles.data());
 // [10, 20, 30, 40]
</script>

Getting Started with D3.js

[42]

In the preceding example, we create a data array with four values and a Selection
of the 4 circles by d3.selectAll('circle'). Then, we use the .data() function to
bind the data to the Selection as well as to retrieve the new Selection afterwards. The
action of binding data solely stores the data in the Selection and is not modifying the
Selection itself. As we can see in the following screenshot, the resulting HTML page
looks the same before and after executing the JavaScript code:

HTML page before and after binding the data

If we bind an array of data with a differing number of elements to a Selection, D3.js
will automatically adjust the data to match the Selection, either append undefined
values to the data array if it has less elements than the Selection or slice values from
the data array if it has more elements than the Selection. We will see what exactly is
happening to these values and how to access them in the data join section. Now, we
want to look at an example of these adjustments to the bound data, so we extend the
code of the previous example with the following code:

// Create data arrays
var data_1 = [10, 20];
var data_2 = [10, 20, 30, 40];
var data_3 = [10, 20, 30, 40, 50, 60];

// Bind data_1 to the Selection
circles = d3.selectAll('circle').data(data_1);
console.log(circles.data());
// [10, 20, undefined, undefined]

// Bind data_2 to the Selection
circles = d3.selectAll('circle').data(data_2);
console.log(circles.data());
// [10, 20, 30, 40]

// Bind data_3 to the Selection
circles = d3.selectAll('circle').data(data_3);
console.log(circles.data());
// [10, 20, 30, 40]

Chapter 2

[43]

Using dynamic properties in Selections
Once we bound data to a Selection, we can access this data in attribute and style
methods that are applied on a Selection. We achieve this by replacing the value that
we want to set with a function similar to function(d, i) { return d; }. In this
function, the first d argument refers to the element in the data array that is bound
to the element of the Selection. The second i argument refers to the index of the
element and the return value of the function serves as the value to set as attribute or
style. This concept should become clearer when we look at an example:

<svg width="400" height="200">
 <circle cx="50" cy="50" r="40" />
 <circle cx="150" cy="50" r="40" />
 <circle cx="250" cy="50" r="40" />
 <circle cx="350" cy="50" r="40" />
</svg>

<script type="text/javascript">
 // Create a data array
 var data = [10, 20, 30, 40];

 // Bind data array to the Selection
 var circles = d3.selectAll('circle').data(data);

 // Use dynamic properties for the radius
 circles.attr('r', function(d, i) { return d; });
</script>

In the preceding code, we bind the data array to the d3.selectAll('circle')
Selection. This returns a new Selection, which we store in the circles variable.
Now, we can access the values of data for each element of circle in the .attr()
function and set the radius of each element depending on the value of the bound
data. The concept of referencing attributes of the array elements rather than values is
called dynamic properties. In the following screenshot, we can see the resulting HTML
page after declaring the radius with dynamic properties:

HTML page after applying dynamic properties

Getting Started with D3.js

[44]

Dynamic properties can not only return the current array element, they can also be
used to reference properties of the element of an array of objects. Having said that, we
can extend the example from before and now bind an array of objects to the Selection:

<svg width="400" height="200">

 <circle />
 <circle />
 <circle />
 <circle />
</svg>

<script type="text/javascript">
 // Create a data array containing objects
 var data = [
 {cx:50, cy:50, r: 10, color: '#ff0000'},
 {cx:150, cy:50, r: 20, color: '#ff0066'},
 {cx:250, cy:50, r: 30, color: '#ff00aa'},
 {cx:350, cy:50, r: 40, color: '#ff00ff'}
];

 // Bind data array to the Selection
 var circles = d3.selectAll('circle').data(data);

 // Use dynamic properties for the radius

 circles.attr('r', function(d, i) { return d.r; });

 circles
 // Set the stroke color to black
 .attr('stroke', 'black')
 // Set the fill color
 // depending of the bound object
 .attr('fill', function(d, i) { return d.color; })
 // Set the x coordinate of the center
 // depending of the bound object
 .attr('cx', function(d, i) { return d.cx; })
 // Set the y coordinate of the center
 // depending of the bound object
 .attr('cy', function(d, i) { return d.cy; });
</script>

Chapter 2

[45]

In the preceding example, we saw how to dynamically return properties depending
on the bound elements of the object array. The d argument in each of the property
functions references an element from the array, in this case, an object. In the following
figure, we can see the circles after applying the previous dynamic transformations:

HTML page after applying dynamic properties on an array of objects

If we want to set a property that is dependent on the index, we can use the i
argument (the second argument) of the property function:

 // Set the stroke width
 // depending on the index
 circles.style('stroke-width', function(d, i) { return i*2; }) ;

HTML page after applying dynamic properties with index argument

Tracking changes of data with data joins
As we already saw in the previous chapter, data bindings in D3.js are much more
powerful than in other DOM transforming libraries. The reason for this is that D3.js
implements so called data joins. You learned that due to data joins, D3.js intersects
the data array with the Selection while binding the data and provides the developer
three subsets of the data array: an enter set, an update set, and an exit set:

•	 Enter set: These are elements of the data array that do not exist in the
Selection, so they need to be added

Getting Started with D3.js

[46]

•	 Update set: These are elements of the data array that already exist in the
Selection, so they need to be updated

•	 Exit set: These are elements of the Selection that are not in the data array;
therefore, to be removed

selection.enter()
Once we bound data to a Selection with the .data() method, D3.js provides the
.enter() and .exit() methods to return the enter and exit sets, whereas the update
set is returned when calling the Selection itself:

<svg width="800" height="500"></svg>
<script type="text/javascript">
var svg = d3.select('svg');
// Get an empty Selection of all circle elements
// and bind a data array to the selection
var circles = svg.selectAll('circles').data([10, 20, 30]);
// Get the enter Selection and append circle elements
circles.enter()
.append('circle');
// The circle elements have been merged to the Selection
circles
.attr('cx', function(d, i) { return (i+1)*100; })
.attr('cy', 50)
.attr('r', function(d) { return d; });
</script>

In the previous example, we first load an empty Selection of circle elements. In the
second step, we bind the data array [10, 20, 30] to this empty Selection. Then,
the .enter() method returns all elements from the dataset because none of these
elements exist in the Selection. Therefore, we call .append() on these elements and
create a circle for each data element:

HTML Page after appending elements

Once we use the .enter() method to return the enter set, the elements will
be internally merged with the update set. Thus, the enter set will be cleared
automatically after calling .enter()!

Chapter 2

[47]

selection.exit()
This returns all elements of the Selection that does not exist in the bound data array.
Thus, we need to use the .remove() method to remove these elements from the
DOM and therefore from the Selection. We can extend the previous example with
the following lines:

// Remove element 30 from the bound data
circles
.data([10, 20])
.exit()
.remove();

In the preceding code, we removed the element 30 from the array. Therefore, the
.exit() method returns exactly this element and we can remove it from the DOM:

HTML Page after removing one element

Now, the question is where is selection.update()?

There is no specific function to return the update set from the Selection because the
Selection itself will always return the update set. The data join of an array with three
elements, which includes appending, updating, and removing elements is visualized
in the following figure:

Data joins in D3.js: enter, update and exit

Getting Started with D3.js

[48]

The update pattern
The update pattern illustrates when to update original elements of a Selection, new
elements in a Selection, all existing elements of a Selection, and elements that are
removed from a Selection. Let's take a look at the implementation:

<svg width="800" height="500"></svg>
<script type="text/javascript">
// Create a data array
var data = [];
// Do every 1s
setInterval(function(){
 // Add new random element to data array
 if (data.length < 8) {
 data.push(Math.random());
 }
 else {
 data = [];
 }
 // Redraw the scene
 draw();
}, 1000);
function draw() {
 var svg = d3.select('svg');
// Bind data array to the Selection
 var circles = svg.selectAll('circle').data(data);
 // Update all original elements from the Selection
 circles
 .attr('fill', 'orange');
 // Update all elements, that are new to the Selection
 circles.enter()
 .append('circle')
 .attr('fill', 'red')
 .attr('r', 40)
 .attr('cx', function(d, i) { return i*100 + 50; })
 .attr('cy', 50);
 // Update all elements in the Selection
 circles
 .style('stroke', 'black');
 // Update all elements, that are removed from the Selection
 circles.exit()
 .delay()
 .remove();
}
</script>

Chapter 2

[49]

Coloring depending on data join

We observe that in the update pattern, the functions are applied in the following order:

•	 selection to update all original elements
•	 selection.enter() to append all new elements
•	 selection to update all existing elements
•	 selection.exit() to remove all non existing elements

Creating a simple scatter plot
In this chapter, we have so far gathered a lot of knowledge that we want to apply to
a real-world application. Let me briefly summarize what you learned so far: creating
a Selection of circles, binding an array of data to the Selection, creating new circles
if there are new values in the array, and changing their attributes depending on the
bound data. These are all the necessary prerequisites to create a first scatter chart. In
the following figure, we can already see what we want to create:

Simple scatter chart

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Getting Started with D3.js

[50]

To go one step further, we want to add and delete data points to the chart to use
and see the power of data joins. Let's start with a simple setup and create the parent
container of the chart:

<svg width="800" height="500"></svg>
<script type="text/javascript">
// Our code goes here
</script>

Now, we need to create an array of data points that we want to draw. These points
can differ in the coordinates of their center point and in the radius of the circles. In
the preceding figure, we can also see that we want to color the circles depending on
their radius value. We create a function that generates a random data point:

function randPoint() {
 var rand = Math.random;
 return { x:rand()*10, y: rand()*10, r: rand()*10 };
}
Next, we create an array of data and fill it with random data
points.
// Create a data array
var data = [];
// Add 300 random elements
for (var i=0; i < 300; i++) {
 data.push(randPoint());
}

Now, we have an array of random data points that we want to draw in the following
step. To achieve this, we need to create a Selection of circles inside the svg element
and bind the data array to this Selection. Due to the fact that we can have multiple
points with the same x coordinate and multiple points with the same y coordinate,
we need to set a key function to identify the elements of the bound data. Let's write
a key function identifier and bind the data to a selection of circles:

// Get the Selection of the svg element
var svg = d3.select('svg');
// Set a key function to identify the elements
function key(d, i) {
 return d.x + '#' + d.y;
}
// Bind data array to the Selection
var circles = svg.selectAll('circle').data(data, key);

Chapter 2

[51]

Now, we create a circle for each new element of the Selection and set its radius and
center point coordinates according to the bound data and the canvas size. Then, we
color each circle depending on its radius:

// Add circles for new data
circles.enter()
.append('circle')
.attr('r', function(d) { return d.r; })
.attr('cx', function(d) { return d.x*70 + 10; })
.attr('cy', function(d) { return d.y*40 + 10; })
.attr('fill', function(d) {
 return 'rgb(' + parseInt(d.r*25) + ',0,0)';
});

When running this code, we see that the resulting page looks already like the figure
of the scatter chart in the beginning.

Great! However, I want to go one step further and update the chart at a time interval
of 150 milliseconds. We want to add new data points, modify existing ones, and
remove data points when the values are removed from the bound data. Therefore,
we wrap the previous D3-specific code in a draw() function and modify the color
filling process of the circle. All circles—also the existing ones—should now adjust
their color value. Finally, we will remove the data points when the values are
removed from the array. The resulting function should look like this:

function draw() {
 // Get the Selection of the svg element
 var svg = d3.select('svg');
 // Set a key function to identify the elements
 function key(d, i) {
 return d.x + '#' + d.y;
}
 // Bind data array to the Selection
 var circles = svg.selectAll('circle').data(data, key);
 // Add circles for new data
 circles.enter()
 .append('circle')
 .attr('r', function(d) { return d.r; })
 .attr('cx', function(d) { return d.x*70 + 10; })
 .attr('cy', function(d) { return d.y*40 + 10; });;
 // Update the color of all circles
 circles
 .attr('fill', function(d) {
 return 'rgb(' + parseInt(d.r*25) + ',0,0)';
 });

Getting Started with D3.js

[52]

 // Delete circles when removed from data
 circles.exit()
 .remove();
}

Now, we can implement a function that adds elements to and removes elements
from the array. After modifying the data we need to redraw the image as follows:

// Do every 150ms
setInterval(function(){
 // Remove first element from data array
 data.shift();
 // Add new random element to data array
 data.push(randPoint());
 // Redraw the scene
 draw();
}, 150);

Now, the scatter chart is automatically updating its data and redrawing itself. In
every update, we can observe these three steps:

1.	 For new values in the data array, circles are generated and their radius and
center coordinates are specified.

2.	 For all values in the Selection, the circles change their fill color depending on
the bound data value.

3.	 For all removed values of the data array, the circles are removed from
the scene.

Summary
This chapter gave an introduction to the basic usage of D3.js. You learned how to
properly use CSS Selectors to find elements by name, #id, .class, and [attribute] in
the DOM tree. We saw how to combine selectors with selector1selector2 by logical
AND and with selector1,selector2 by logical OR, and how to apply hierarchically
selector1 selector2 or by direct ancestors selector1 > selector2.

We also discussed how to modify all elements in Selections of HTML and the SVG
elements with the usage of the methods .attr(), .style(), .property(), .text(),
and so on. It's important to remember that most of the time we will use the .append()
function to insert new elements to a Selection.

Chapter 2

[53]

Later in this chapter, we learned how to use data binding with D3.js. We used the
.data() function to bind data to a Selection and access dynamic properties with a
function similar to the (d, i){ return d; } function. In D3.js data, the .enter()
and .exit() functions give the developer access to the enter and exit sets of data joins
whereas the Selection itself returns the update set. In the last section, we implemented
an autoupdating chart that displays random values with circle elements of different
center point coordinates, radius, and fill color.

In the next chapter, you will learn how to manipulate data and arrays in D3.js. This
will help us to automatically scale the scatter chart and to retrieve statistical values
of the data arrays. Later, we will discuss date and time formats in D3.js and use this
knowledge to extend the chart such that it displays time series data instead of data
points with x and y coordinates.

[55]

Manipulating Data
In this chapter, you will learn how to manipulate data in order to preprocess it for
visualization and to extract statistical information.

We will start with discussing arrays and array functions in general because this is
the canonical representation of data in D3.js. The presented techniques for array
manipulation will form a basic toolset to extract relevant data for the visualization
and to transform and adapt the structures of flat datasets.

In the following section, we will see very useful string formatting techniques. You will
learn how to format numbers on one hand and dates and times on the other hand.

Then, we will discuss scales for numbers, strings, and times in order to map datasets
to specific ranges, for example, to linear, logarithmic, or time ranges.

In the last section, we will see the built-in representation for axes in D3.js. With the
previously seen techniques, we will be able to construct axes that automatically scale
and format the data according to our needs. We will extend the example from the
previous chapter, plot time series data and axes and automatically scale the data to
these axes.

In this chapter you will learn:

•	 How to extract statistical information out of arrays
•	 How to reorganize arrays and associative arrays
•	 How to group associative arrays
•	 How to format numbers, dates, and times
•	 How to use scales to map an input domain to an output range
•	 How to construct and draw axes
•	 How to draw time series data

Manipulating Data

[56]

Manipulating datasets in arrays
In data visualizations, we will usually not display the raw data itself, but moreover
aggregate and preprocess the data beforehand. Let me give you an example. You
are given the access log from a web server that stores every single visitor with his IP
address and user agent (a string that contains information about the browser). Rather
than plotting all these rows on its own, you may want to sum up all visitors per minute
(or per day) and plot a time series histogram of these sums. Or maybe, you want to
group the data by different properties, for example, plotting visitors from Europe vs
visitors from North America. It is important to know that your ability of plotting this
aggregated data is directly dependent on your ability to manipulate datasets.

Most visualizations are backed by data that is stored in arrays. These datasets, for
example, consist of simple arrays, associative arrays, or even nested maps. In many
cases, the data that we want to visualize comes from different sources; therefore,
it has different formats and structures. Thus, we need array manipulations as a
preprocessing step.

Working with arrays of data often requires additional methods that can be applied
to the whole dataset. These are typically all statistical functions, order and sorting
functions, or data transforming functions (such as scaling).

JavaScript and D3.js provide useful functions for array manipulations and
transformations. We will go through the most important array manipulation
techniques in this section. It might seem a little boring to go through a list of
functions, but it enables you to adapt data in all different representations to your
needs. In general, the more control you have over the data, the more flexible you are
with creating a visualization of the data.

Built-in JavaScript array methods
In general, data manipulation and data processing for visualizations is mostly done
with the use of arrays. Thus, the canonical representation of data in D3.js is also an
array. JavaScript provides a rich set of native array mutator (manipulate arrays),
accessor (access array values), and iterator (loop through arrays) methods that one
has to know before continuing with D3.js.

Mutator functions:

•	 array.pop(): This removes and returns the last element from an array
•	 array.push(value[, value[, …]]): This adds elements to an array after

its last element
•	 array.reverse(): This reverses the order of elements in an array and

returns the reversed array

Chapter 3

[57]

•	 array.shift(): This removes and returns the first element of an array
•	 array.sort([comparator]): This sorts the elements of an array by a

comparator function and returns the sorted array
•	 array.splice(array[, accessor]): This replaces the elements of an array

and returns the new array
•	 array.unshift(value[, value[, …]]): This adds elements to the

beginning of an array

Accessor functions:

•	 array.concat(value[, value[, …]]): This concatenates an array with
other elements or arrays and returns the new array

•	 array.join([separator]): This combines all elements of the array to a
string in which the elements will be separated by a separator

•	 array.slice([begin[, end]]): This extracts and returns a range of
elements from an array

•	 array.indexOf(value[, fromIndex]): This returns the index of the first
occurrence and the value in the array

•	 array.lastIndexOf(value[, fromIndex]): This returns the index of the
last occurrence and the value in the array

Iterator functions:

•	 array.filter(callback): This returns a new array containing elements
from the original array whose callback returns true

•	 array.forEach(callback): This calls the callback function for each element
•	 array.every(callback): This returns true if the callback for every element

returns true
•	 array.map(callback): This returns an array containing values returned by

the callback for each element
•	 array.some(callback): This returns true even if a single callback returns

true

•	 array.reduce(callback [, initialValue]): This applies a callback
function on each element of an array where the result of the last callback is
provided as an argument (left to right)

•	 array.reduceRight(callback): This is the same as array.reduce(),
whereas the array is iterated in the reverse order (right to left)

Manipulating Data

[58]

If you do not know how to use some of the previous functions, I encourage you to
look these functions up and learn them properly. They will be very useful every
time you have to work on arrays. Believe me, this will happen often in this book,
especially mutator methods will be important to add data to arrays and retrieve data
from arrays; whereas map and reduce functions will be very useful for statistical
computations.

Let me just explain to you three of the above functions that are very useful in data
processing and visualization: array.filter(callback), array.map(callback),
and array.reduce(callback).

array.filter(callback)
As described previously, the filter function returns a new array that contains a subset
of the original array for which the callback function returns true. Let's try this and
return a list of people who are older than 26:

var data = [
 {name: 'Ben', age: 27},
 {name: 'Flo', age: 22},
 {name: 'Phil', age: 28},
 {name: 'Chris', age: 26}
];

var filtered = data.filter(function(d){
 return d.age > 26 ?
});

console.log(filtered);
// [{name: 'Ben', age: 27}, {name: 'Phil', age: 28}]

array.map(callback)
As described before, the map function executes the callback function on every
element of an array and returns a new array with all the values of the callback
functions. Let's transform an array of objects to an array of strings by solely returning
the name of every element as follows:

var data = [
 {name: 'Ben', age: 27},
 {name: 'Flo', age: 22},
 {name: 'Phil', age: 28},
 {name: 'Chris', age: 26}
];

Chapter 3

[59]

var mapped = data.map(function(d){
 return d.name;
});

console.log(mapped);
// ["Ben", "Flo", "Phil", "Chris"]

From the previous example, the function of map should be clear; it's calling the
callback function for every element. Let's look at a slightly different example where
we now pass an existing function as argument:

var data = [9, 16, 25];

var mapped = data.map(Math.sqrt);
console.log(mapped);
// [3, 4, 5]

array.reduce(callback [, initialValue])
As described previously, reduce is calling the callback function on each element of
an array and also providing the result of the previous callback. Then, it returns the
result of the last callback function. It's often used to sum properties over an array
of objects.

Let's compute the sum of the people's ages using the reduce function. Don't forget
to add an initial value of 0 so that the d argument always contains the current
element; otherwise, the prev argument will contain the first element on the first
iteration as follows:

var data = [
 {name: 'Ben', age: 27},
 {name: 'Flo', age: 22},
 {name: 'Phil', age: 28},
 {name: 'Chris', age: 26}
];

var total = data.reduce(function(prev, d, i, array){
 return prev + d.age;
}, 0);

console.log(total);
// 103

Manipulating Data

[60]

More array manipulation with D3.js
D3.js provides a variety of functions to extract statistical information from a dataset
and operators to manipulate arrays. We will use the former to extract additional
information of the data—for example, to scale the axis to the maximum value of the
dataset—and the latter to preprocess the data.

I will discuss a selection of the most useful statistic functions and array
transformations.

Refer to the D3.js wiki link at https://github.com/
mbostock/d3/wiki/Arrays to explore all the available
array manipulation functions.

The following is the list of statistics:

•	 d3.min(array[, accessor])

•	 d3.max(array[, accessor])

•	 d3.sum(array[, accessor])

•	 d3.mean(array[, accessor])

•	 d3.median(array[, accessor])

The following are the operators:

•	 d3.shuffle(array)

•	 d3.permute(array, indexes)

•	 d3.merge(array)

•	 d3.range([start,]stop[, step])

•	 d3.zip(array, array, …)

•	 d3.pairs(array)

The following are the associatives:

•	 d3.keys(object)

•	 d3.values(object)

•	 d3.entries(object)

The statistic functions take an accessor function as a second optional argument. This
function is used to map the array to a new modified array—equivalent to the array.
map(accessor) operation—before computing the statistic values of the array.

https://github.com/mbostock/d3/wiki/Arrays
https://github.com/mbostock/d3/wiki/Arrays

Chapter 3

[61]

d3.min(array[, accessor])
This function returns the minimum value of an array in natural order, whereas
undefined values are ignored, as shown in the following code:

var data = [1, 3, 5];

// Min Number
console.log(d3.min(data));
// 1

// Min of square with Accessor
console.log(d3.min(data, function(d) { return d*d; }));
// 1

d3.max(array[, accessor])
This function returns the maximum value of an array in natural order, whereas
undefined values are ignored as follows:

var data = [1, 3, 5];

// Min Number
console.log(d3.max(data));
// 5

// Max of square with Accessor
console.log(d3.max(data, function(d) { return d*d; }));
// 25

d3.sum(array[, accessor])
This function returns the sum of the values, whereas strings are parsed as numbers
and undefined values and NaN values are ignored, as shown in the following code:

var data = [1, 3, 5];

// Sum of Numbers
console.log(d3.sum(data));
// 9

// Sum of square with Accessor
console.log(d3.sum(data, function(d) { return d*d; }));
// 35

Manipulating Data

[62]

d3.mean(array[, accessor])
This function returns the mean value of an array, whereas strings are parsed as
numbers and undefined values and NaN values are ignored as follows:

var data = [1, 3, 5];

// Mean of Numbers
console.log(d3.mean(data));
// 3

// Mean of square with Accessor
console.log(d3.mean(data, function(d) { return d*d; }));
// 11.66

d3.median(array[, accessor])
This function returns the median value of an array, whereas undefined values and
NaN values are ignored. If the array contains one or more number values, it will
return the median of the number values and parse all strings to numbers. If the array
contains solely strings, it will return the median string of the array:

var data = [1, 3, 5, 6, 10];

// Median of Numbers
console.log(d3.median(data));
// 5

// Median of square with Accessor
console.log(d3.median(data, function(d) { return d*d; }));
// 25

d3.shuffle(array)
This function shuffles the order of the elements of array randomly:

var data = [1, 3, 5, 6, 10];

// Shuffle the array
d3.shuffle(data)

console.log(data);
// [3, 1, 10, 6, 5]

Chapter 3

[63]

It's not straightforward to seed the pseudorandom generator
in JavaScript and make random experiments repeatable.
Other projects like https://github.com/Dashed/
javascript-seed-project tackle this by overriding the
built-in Math.random() function.

d3.permute(array, indexes)
This function returns a new array with a permutation of the elements in array
according to the indexes (an array of integer values), as shown in the following code:

var values = [124, 643, 321, 346, 163, 239];

// Return a permutation of values
console.log(d3.permute(values, [0, 2, 1, 3, 5, 4, 0, 1]));
// [124, 321, 643, 346, 239, 163, 124, 643]

d3.merge(array)
This function combines the elements of array with a new array and returns it
as follows:

var data_1 = [1, 3, 5];
var data_2 = [6, 7, 8];
var data_3 = ["abc", "def", "ghi"];

// Merge the first 2 arrays
console.log(d3.merge([data_1, data_2]));
// [1, 3, 5, 6, 7, 8]

// Merge all arrays
console.log(d3.merge([data_1, data_2, data_3]));
// [1, 3, 5, 6, 7, 8, "abc", "def", "ghi"]

d3.range([start,]stop[, step)
This function returns a new array of numbers whose values start with start (default
is 0) and increase by step (default is 1) until stop, whereas stop is not included in
the range:

// Generate a range from 0 to 5
console.log(d3.range(5));
// [0, 1, 2, 3, 4]

https://github.com/Dashed/javascript-seed-project
https://github.com/Dashed/javascript-seed-project

Manipulating Data

[64]

// Generate a range from 10 to 20 with a step of 2
console.log(d3.range(10, 20, 2));
// [10, 12, 14, 16, 18]

// Generate a range from 10 to 0
console.log(d3.range(10, 0, -1));
// [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

d3.zip(array, array, ...)
This function returns a new array where the elements from the array arguments are
piecewise combined together, as shown in the following code:

var keys = [1, 2, 3, 4, 5];
var values = [124, 643, 321, 346, 163];
var colors = ["red", "blue", "green", "purple", "pink"];

// Zip the Values
console.log(d3.zip(keys, values, colors));
// [[1,124,"red"], [2,643,"blue"], [3,321,"green"],
// [4,346,"purple"], [5,163,"pink"]]

d3.pairs(array)
This function combines every subsequent elements of array to a pair of 2 elements
and returns them as a new array:

var values = [124, 643, 321, 346, 163, 239];

// Group the values in pairs of 2
console.log(d3.pairs(values));
// [[124,643], [643,321], [321,346], [346,163], [163,239]]

d3.keys(object)
This function returns an array of the keys from object:

var values = {
 name: "Peter", age: 25, gender: "male", eyes: "brown"
};

// Extract the Keys
console.log(d3.keys(values));
// ["name", "age", "gender", "eyes"]

Chapter 3

[65]

d3.values(object)
This function returns an array of the values from object:

var values = {
 name: "Peter", age: 25, gender: "male", eyes: "brown"
};

// Extract the Values
console.log(d3.values(values));
// ["Peter", 25, "male", "brown"]

d3.entries(object)
This function returns an array of objects that contain the keys and values
from object:

var values = {
 name: "Peter", age: 25, gender: "male", eyes: "brown"
};

// Extract the Entries
console.log(d3.entries(values));
// [{key:"name", value:"Peter"},
// {key:"age", value:25},
// {key:"gender", value:"male"},
// {key:"eyes", value:"brown"}]

Grouping elements with d3.nest
Often, the visualization data is loaded from flat-structured sources such as comma-
separated lists, but contains hierarchical-structured data. Let me give you an
example. Let's look at the access log of a web server that consists of a list of visitors.
Each entry stores the user agent (detailed information about the browser of a
visitor) as a string, whereas this string contains data about the used browsers. We
immediately see that all visitors using a Chrome browser or all visitors from Europe
are somehow related. In our mind, we can easily create a hierarchical tree structure,
where every branch of this tree contains visitors from different browsers: one branch
for Chrome, one branch for Safari, and so on. However, the flat-structured file does
not provide access to this hierarchical structure.

Manipulating Data

[66]

In D3.js, it's very easy to create nested tree structures of flat datasets with the
d3.nest() operator. This operator also allows multiple levels of hierarchical groups;
in order to create such a group, we use the .key() function. The different levels can
also be sorted with the .sortKeys() function. Let's look at an example:

var values = [
 {n: "Peter", age: 25, gender: "male", eyes: "brown"},
 {n: "Linda", age: 22, gender: "female", eyes: "brown"},
 {n: "Susi", age: 28, gender: "female", eyes: "blue"},
 {n: "Hans", age: 36, gender: "male", eyes: "green"},
 {n: "Carine", age: 42, gender: "female", eyes: "brown"},
 {n: "Fred", age: 47, gender: "male", eyes: "brown"},
 {n: "Philipp", age: 19, gender: "male", eyes: "brown"},
 {n: "Flo", age: 34, gender: "male", eyes: "blue"}
];

var sorted_values = d3.nest()
 // Group by property gender (male, female) on 1. level
 .key(function(d) { return d.gender; })
 // Sort 1. level keys with descending order
 .sortKeys(d3.descending)
 // Group by property ages (10, 20, 30, 40, 50) on 2. level
 .key(function(d) { return Math.floor(d.age / 10) * 10; })
 // Sort 2. level keys with ascending order
 .sortKeys(d3.ascending)
 // Add the dataset
 .entries(values);

Applying the nest operator on the flat data structure in the preceding example will
create a hierarchical-structured object that looks like this:

[
 { key: 'male', values: [
 { key: 10, values: [
 {n: "Philipp", age: 19, gender: "male", eyes: "brown"}
]
 },
 { key: 20, values: [
 {n: "Peter", age: 25, gender: "male", eyes: "brown"},
]
 },
 { key: 30, values: [
 {n: "Hans", age: 36, gender: "male", eyes: "green"},
 {n: "Flo", age: 34, gender: "male", eyes: "blue"}
]

Chapter 3

[67]

 },
 { key: 40, values: [
 {n: "Fred", age: 47, gender: "male", eyes: "brown"}
]
 },
]
 },
 { key: 'female', values: [
 { key: 20, values: [
 {n: "Linda", age: 22, gender: "female", eyes: "brown"},
 {n: "Susi", age: 28, gender: "female", eyes: "blue"}
]
 },
 { key: 40, values: [
 {n: "Carine", age: 42, gender: "female", eyes: "brown"}
]
 },
]
 },
]

D3.js provides two comparator functions: d3.ascending and
d3.descending. One can easily implement a custom comparator
function, for example, take a look at the following code to compare
strings by its length:

var custom_comp = function(a, b) {
 return a.length < b.length ? -1 : a.length >
b.length
 ? 1
 : 0;
}

Formatting numbers and dates
In visualizations, we will often be confronted with labeling our data properly and
make the values easy to read. Floating point divisions often return ugly and long
decimal numbers that do not have to be displayed with the very last position after
the decimal point. When displaying time series data, we often want to customize the
label captions such that they just display, for example, the current day, month, or
year. You will first learn about number formats in D3.js and afterwards take a look
at date and time formatting.

Manipulating Data

[68]

Specifying a number format
To create a custom number formatting function—that formats a number to a string—
we use the d3.format(specifier) helper function. As an argument, we will specify
the format of the output. This will return a custom function that takes the number as
an argument and returns the formatted output.

The specifier has the following form:

[[fill]align][sign][symbol][0][width][,][.precision][type]

Normally, we would first define a formatter function and then apply it to the
numbers that we want to format, similar to the following example:

// Create Formatter function
var formatter = d3.format('e');

// Apply Formatter function to number
console.log(formatter(0.3123));
// "3.123e-1"

However, in the following examples, I will call the result of d3.format() directly as
a new function in order to make the examples more readable and comparable.

Types of formatting
In D3.js, we can use the following types to format number values:

•	 e: Exponent
•	 g: General
•	 f: Fixed
•	 d: Integer
•	 r: Rounded to precision if specified
•	 %: Percentage
•	 p: Percentage rounded to precision if specified
•	 b: Binary
•	 o: Octal
•	 x: Hexadecimal
•	 X: Hexadecimal with uppercase letters
•	 c: Unicode character
•	 s: SI-suffixed and rounded

Chapter 3

[69]

Let's look at some examples:

console.log(d3.format('e')(0.3123)); // "3.123e-1"
console.log(d3.format('g')(31.223e3)); // "31223"
console.log(d3.format('f')(31.23)); // "31"
console.log(d3.format('d')(124)); // "124"
console.log(d3.format('r')(31.53)); // "31.53"
console.log(d3.format('%')(0.23)); // "23%"
console.log(d3.format('p')(0.2314)); // "23.14%"
console.log(d3.format('b')(23)); // "10111"
console.log(d3.format('o')(32)); // "40"
console.log(d3.format('x')(59)); // "3b"
console.log(d3.format('X')(63)); // "3F"
console.log(d3.format('c')(81)); // "Q"
console.log(d3.format('s')(31.223e3)); // "31.223k"

Precision
The precision of the decimal number can be defined with the .precision notation.
Let's look at some examples:

console.log(d3.format('.2e')(0.3123)); // "3.12e-1"
console.log(d3.format('.2f')(31.23213)); // "31.23"

Thousands separator
The thousands separator can be enabled by placing a comma in front of the precision.
By default, D3.js uses a comma as a separator.

To change the default localization of D3.js, one can declare a
new custom locale. More information on how to customize
a locale can be found in the wiki link at https://github.
com/mbostock/d3/wiki/Localization.

Let's take a quick look at an example:

console.log(d3.format(',')(31231.23213)); // "31,231.23213"
console.log(d3.format(',.2f')(31231.23213)); // "31,231.23"

Width
The width property specifies the minimum length of the formatted string. In the
following example, we can see that both strings have the same length:

console.log(d3.format('9.2e')(31231.23213)); // " 3.12e+4"
console.log(d3.format('9,.2f')(31231.23213)); // "31,231.23"

https://github.com/mbostock/d3/wiki/Localization
https://github.com/mbostock/d3/wiki/Localization

Manipulating Data

[70]

Zero padding
All spaces that are added with the width property can be set to 0 with the zero
padding options. As we can see in the example, this can be activated via the 0 string
in the number format:

console.log(d3.format('09.2e')(31231.23213)); // "003.12e+4"
console.log(d3.format('09,.2f')(31231.23213)); // "31,231.23"

The currency symbol
We can easily add currency symbols or a base suffix with the symbol property. To
use custom currency symbols, they need to be defined in a locale, which is similar to
the thousands separator. Let's look at a standard example:

console.log(d3.format('#8b')(164)); // "0b10100100 "
console.log(d3.format('$.2e')(331.213)); // "$3.31e+2"

Signs
We can define the utilization of signs with the following options:

•	 +: This sign is used for positive and negative numbers
•	 -: This sign is used solely for negative numbers
•	 ' ': This is used as a space for positive numbers and a sign for negative ones

Let's see some examples:

console.log(d3.format('.2f')(331.213)); // "331.21"
console.log(d3.format('.2f')(-331.213)); // "-331.21"
console.log(d3.format('+.2f')(331.213)); // "+331.21"
console.log(d3.format('+.2f')(-331.213)); // "-331.21"
console.log(d3.format('-.2f')(331.213)); // "331.21"
console.log(d3.format('-.2f')(-331.213)); // "-331.21"
console.log(d3.format(' .2f')(331.213)); // " 331.21"
console.log(d3.format(' .2f')(-331.213)); // "-331.21"

The align property
We can define the alignment of the number in the string with the following options:

•	 <: This is used for left aligning
•	 >: This is used for right aligning
•	 ^: This is used for center aligning

Chapter 3

[71]

Let's look at some code:

console.log(d3.format('<8.2f')(0.213)); // "0.21 "
console.log(d3.format('>8.2f')(0.213)); // " 0.21"
console.log(d3.format('^8.2f')(0.213)); // " 0.21 "

The fill option
When we use the align property, we can also combine it with the fill option and
place an additional character to fill the blank spaces. We can see the # character in the
following examples:

console.log(d3.format('#<8.2f')(0.213)); // "0.21####"
console.log(d3.format('#>8.2f')(0.213)); // "####0.21"
console.log(d3.format('#^8.2f')(0.213)); // "##0.21##"

Customizing date and time formats
D3.js provides an excellent parser for dates and times, which is very similar to the
number format. We use the d3.time.format() function to create a formatter. It can
be later applied to JavaScript dates in order to format them to a string.

Let's define a formatter function and then apply it to the numbers that we want to
format, as shown in the following example:

// Create Format function
var formatter = d3.time.format('%Y-%m-%d');

// Apply Format function to date
console.log(format(new Date(2014, 0, 1)));
// "2014-01-01"

Please note that the Date(year, month, day) native object
takes the month argument in a range [0, 11]; therefore,
0 corresponds to January, and so on. I advise you to take a
close look at the reference of the Date object at https://
developer.mozilla.org/de/docs/Web/JavaScript/
Reference/Global_Objects/Date for further details.

D3.js formatters can be constructed using the following specifiers:

•	 %a: This displays an abbreviated weekday name
•	 %A: This displays a full weekday name
•	 %b: This displays an abbreviated month name

https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Date

Manipulating Data

[72]

•	 %B: This displays a full month name
•	 %c: This displays the date time format %a %b %e %H:%M:%S %Y
•	 %d: This displays the zero-padded day of the month [01, 31]
•	 %e: This displays the space-padded day of the month [1, 31]
•	 %H: This displays the hour in a 24-hour format [00, 23]
•	 %h: This displays the hour in a 12-hour format [01, 12]
•	 %j: This displays the zero-padded day of the year [001, 366]
•	 %m: This displays a zero-padded month [01, 12]
•	 %M: This displays a zero-padded minute [00, 59]
•	 %L: This displays time in zero-padded milliseconds [000, 999]
•	 %p: This displays time in AM or PM
•	 %S: This displays time in zero-padded second [00, 61]
•	 %U: This displays the zero-padded week number of the year (Sunday as the

first day of the week) [00, 53]
•	 %w: This displays the week that starts with Sunday [0, 6]
•	 %W: This displays the zero-padded week number of the year (Monday as the

first day of the week) [00, 53]
•	 %x: This displays the date in the %m/%d/%Y format
•	 %X: This displays the time in the %H:%M:%S format
•	 %y: This displays the zero-padded year without century [00, 99]
•	 %Y: This displays the year with century
•	 %Z: This displays the time zone offset (for example, '-0700')
•	 %a: This displays the abbreviated weekday name
•	 %a: This displays the abbreviated weekday name
•	 %%: This displays the literal character (%)

Working with scales
In data visualization, we will always have to deal with mapping our dataset to a
specific range of pixels. Let me give you an example. We have a dataset [0, 2, 4,
6, 8, 10] that we want to display for mobile and desktop devices. On mobiles, we
want to display the dataset with a total width of 480px and on desktops with a width
of 1024px. In order to draw the dataset on these pixel ranges, we need to map it to
these ranges. We can see this example in the following figure:

Chapter 3

[73]

Mapping the dataset to a pixel range

D3.js provides a very useful tool to map a dataset to a certain range of pixels:
d3.scale. In D3.js, we call the mapping function's scale, the slice of the dataset that
we want to map the domain to, and the pixel range on which we want to map the
dataset range. In the following figure, we can see a dataset, where only the positive
values are mapped to the width of the axis:

Visualizing a scale

In order to represent different data types with scales, we distinguish between
quantitative scales for continuous data such as numbers ([1, 2, 3, 4, ...]),
ordinal scales for discrete data such as strings (["small", "medium", "big", ...]),
and time scales for time data ([Date, Date, Date, ...]).

Manipulating Data

[74]

Quantitative scales for continuous data
(numbers)
There are a variety of quantitative scales implemented in D3.js, for example, linear
scales, power scales, logarithmic scales, and so on. In this section, we will solely discuss
linear scales because the methods can be applied in the same way to other scales.

A scale can be constructed by calling the corresponding scale constructor, in this
case, d3.scale.linear(); this will return a scale object. To apply the scale, we can
simply call the scale(x) object on a value. This operation will map the x value to a
pixel value. We can also apply the opposite transformation—mapping a pixel value
to a value from the dataset—by calling the scale.invert(y) function. However
first, let's construct such a scale and apply it to some data:

var scale = d3.scale.linear();

This will return the scale object for a default domain of values [0, 1] and a default
range of pixels [0, 1]. This means that it will map the values [0, 1] to [0, 1].
Therefore, it's not surprising that if we scale all values from an array using this default
domain and scale, the resulting array will be exactly the same as the input dataset:

var data_in = [1, 3, 5];
var data_out = [];

data_in.forEach(function(d){
 data_out.push(scale(d));
});

console.log(data_out);
// [1, 3, 5]

In the above code, we can see that the default domain and scale is not very
fascinating because it returns the same dataset. In the beginning of this chapter, we
talked about the native array.map(func) function. Let's use this function to write
the preceding code a little more compact:

console.log([1, 3, 5].map(scale));
// [1, 3, 5]

Wow, that's much shorter! Let's move on to look at some examples of how we can
modify the scale object:

•	 scale.domain([numbers])

•	 scale.range([values])

•	 scale.clamp([boolean])

Chapter 3

[75]

•	 scale.nice([count])

•	 scale.ticks([count])

•	 scale.tickFormat(count, [format])

scale.domain([numbers])
We can define the domain of the dataset by passing an array of two (or more) values
as an argument. Let's see an example, where we map the domain [0, 10] to the
default range of [0, 1] as follows:

var scale = d3.scale.linear().domain([0, 10]);
console.log([1, 3, 5].map(scale));// [0.1, 0.3, 0.5]

We observe that all values from the dataset get divided by the factor 10. This makes
absolute sense as we are mapping values from [0, 10] to a range of [0, 1].

If we pass an array of more than two values as an argument,
we construct a polylinear scale for which we also need the same
number of elements in the range.

scale.range([numbers])
We can define the range of the scale by passing an array of two (or more) values as
an argument. Let's see an example, where we map the domain [0, 10] to a range of
[0, 100]:

var scale = d3.scale.linear()
 .domain([0, 10])
 .range([0, 100]);
console.log([1, 3, 5].map(scale));// [10, 30, 50]

We can see that all values are multiplied by a factor 10, as we expected from
mapping [0, 10] to a range of [0, 100].

If we define more than two numbers, we construct a polylinear scale. An example will
look like this:

var scale = d3.scale.linear()
 .domain([-1, 0, 1])
 .range([0, 50, 100]);
console.log([[-0.5, 0.2, 0.8].map(scale));// [25, 60, 90]

Manipulating Data

[76]

scale.clamp([boolean])
It might look a little strange in the previous examples, where we mapped values
from the dataset [1, 3, 5] that are not inside the defined domain of [0, 1]. The
reason for this is that D3.js scales do not clamp the data by default. This clamping
behavior can be enabled by setting scale.clamp(true). Then, range values are
computed only if the x value is inside the input domain and otherwise just replaced
with the minimum or maximum range value. We can see this behavior in the
following example:

var scale = d3.scale.linear()
 .domain([0, 3])
 .range([0, 300])
 .clamp(true);
console.log([1, 3, 5].map(scale));// [100, 300, 300]

scale.nice([count])
The .nice() method extends the input domain such that the starting and ending
values are nicely rounded values. If a count argument is specified, it takes the step
sizes for count number of ticks (see next section) into account:

var scale = d3.scale.linear()
 .domain([0.112, 3.123])
 .range([0, 50])
 .nice(3);
console.log([1, 3, 5].map(scale));
// [12.5, 37.5, 62.5]

scale.ticks([count])
The .ticks() method returns approximately count (default is 10) values in between
the input domain. Let's look at an example:

var scale = d3.scale.linear()
 .domain([0, 5])
 .range([0, 100]);

console.log(scale.ticks());
// [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]

console.log(scale.ticks(5));
// [0, 1, 2, 3, 4, 5]

Chapter 3

[77]

scale.tickFormat(count [,specifier])
This sets a format defined by specifier for the tick values with the .tickFormat()
method, as shown in the following code:

var scale = d3.scale.linear()
 .domain([0, 1])
 .range([0, 100]);

var ticks_formatter = scale.tickFormat(5, "%");

console.log(scale.ticks(5).map(ticks_formatter));
// ["0%", "20%", "40%", "60%", "80%", "100%"]

Ordinal scales for discrete data (strings)
Similar to quantitative scales, we can map discrete input values to a defined
output domain in ordinal scales. Now, we need to define a domain of discrete
input values (such as strings) and map each of them to an output range. Let's take
a look at an example:

var scale = d3.scale.ordinal()
 .domain(["A", "B", "C", "D", "E", "F"])
 .range([0, 1, 2, 3, 4, 5]);

console.log(["A", "B", "C"].map(scale));
// [0, 1, 2]

In addition to the linear scale methods, we will add the following useful functions to
compute dimensions for discrete values:

•	 scale.rangePoints(interval[, padding])

•	 scale.rangeBands(interval[, padding[, outerPadding]])

•	 scale.rangeBand()

•	 scale.rangeExtent()

Manipulating Data

[78]

scale.rangePoints(interval [, padding])
The scale.rangePoints()method computes a range to draw data points, which is
often used in plotting discrete functions. The range in interval is divided by the
number of elements in the domain and adds padding to each element. Let's look at
the following example:

var scale = d3.scale.ordinal()
 .domain(["A", "B", "C", "D", "E", "F"])
 .rangePoints([0, 100], 0.5);

console.log(scale.range());
// [4.54, 22.72, 40.90, 59.09, 77.27, 95.45]

console.log(["A", "B", "C"].map(scale));
// [4.54, 22.72, 40.90]

scale.rangeBands(interval [, padding [,
outerPadding]])
The scale.rangeBands()method computes a range to draw data bands like in bar
charts. The range in interval is divided by the number of elements in the domain
and adds padding and outerPadding to each element. Let's look at an example:

var scale = d3.scale.ordinal()
 .domain(["A", "B", "C", "D", "E", "F"])
 .rangeBands([0, 100]);

console.log(scale.range());
// [0, 16.66, 33.33, 50, 66.66, 83.33]

console.log(["A", "B", "C"].map(scale));
// [0, 16.66, 33.33]

scale.rangeBand()
This returns the width of a single band that was configured with scale.
rangeBands(). Take a look at the following example:

var scale = d3.scale.ordinal()
 .domain(["A", "B", "C", "D", "E", "F"])
 .rangeBands([0, 100], 0.2, 0.1);

Chapter 3

[79]

console.log(scale.range());
// [1.66, 18.33, 35, 51.66, 68.33, 85.00]

console.log(scale.rangeBand())
// 13.33

scale.rangeExtent()
This returns an array containing the minimum and maximum value of the range that
was configured with scale.rangeBands(). Let's see an example:

var scale = d3.scale.ordinal()
 .domain(["A", "B", "C", "D", "E", "F"])
 .rangeBands([0, 100], 0.2, 0.1);

console.log(scale.range());
// [1.66, 18.33, 35, 51.66, 68.33, 85.00]

console.log(scale.rangeExtent());
// [0, 100]

Predefined ordinal color scales
D3.js has various built-in ordinal color scales such as d3.scale.category10(),
d3.scale.category20(), d3.scale.category20b(), and d3.scale.
category20c(). They can be used easily to quickly color discrete sets of values. Here
is a simple example of how to use this scale:

var scale = d3.scale.category10();

console.log([1,2,3,4,5,6,7,8,9,10].map(scale));
// ["#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b",
// "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", "#1f77b4"]

Time scales for time data (date and time)
The time scale extends the linear scale and adds a linear representation of dates
and time. It's used very similar to the linear scale with the exception that it takes
JavaScript dates as input for the values to be scaled. Also, the arguments for the
scale.domain() function are now dates. Let's see this in an example:

var data = [
 new Date(2015,2,1),
 new Date(2015,4,1),
 new Date(2015,6,1)

Manipulating Data

[80]

];
var domain = [
 new Date(2015,0,1),
 new Date(2015,11,31)
];

var scale = d3.time.scale()
 .domain(domain)
 .range([0,100]);

console.log(data.map(scale));
// [16.20, 32.95, 49.71]

We can also use the built-in d3.time.scale.utc() function to create a time scale
with a preconfigured UTC tickFormat.

All about axes
Until now, we just scaled our dataset without drawing a single shape on the screen.
For the next step, I want to introduce d3.svg.axis(), a built-in function to draw
axes and labels. This function makes it very easy and comfortable to add an axis to
a chart, as shown in the following code:

var axis = d3.svg.axis();

First, we create a new axis object with d3.svg.axis(), which we can then
configure by calling different methods on it. I will now discuss the most important
of these methods:

•	 axis.scale([scale]): This adds scaling to an axis as follows:
var scale = d3.scale.linear()
 .domain([0, 10])
 .range([0, 100]);

var axis = d3.svg.axis()
 .scale(scale);

•	 axis.orient([orientation]): This specifies an orientation of the ticks
values relative to the axis. The orientation can be top, bottom, left, or right:
var axis = d3.svg.axis()
 .orient('bottom');

Chapter 3

[81]

•	 axis.ticks([arguments…]): This specifies the tick number or interval
relative to the given scale, as shown in the following code:
var axis = d3.svg.axis()
.ticks(20);

var axis = d3.svg.axis()
.ticks(d3.time.minutes, 15);

•	 axis.tickValues([values]): This specifies an array of custom tick values
as follows:
var axis = d3.svg.axis()
 .tickValues([1, 2, 3, 5, 8, 13, 21]);

•	 axis.tickFormat([format]): This sets a format for the tick values specified
by a formatting function format, as shown in the following code:
var axis = d3.svg.axis()
 .tickFormat(d3.format(".3s"));

Drawing the axis
Finally, in order to draw the axis, we need to call the axis function on a D3-Selection
selection that serves as axis container. The axis function we generate completes the
SVG layout for the axis, including the axis itself, the ticks, and tick labels:

var scale = d3.scale.linear()
 .domain([0, 10])
 .range([50, 150]);

var axis = d3.svg.axis()
 .scale(scale);

d3.select('svg').append('g')
 .attr('class', 'axis')
 .call(axis);

As we remember from the last chapter, the selection.call(func)method executes
the func function and provides the selection object as an argument identical
to func(selection).

Manipulating Data

[82]

When we look at the resulting SVG in a browser, we observe that the axis generator
function is so smart that it takes the range values from the scale function and
translates the axis according to this range, as shown in the following screenshot:

Autogenerated axis

We can see this more clearly if we inspect the element with the developer tools, as
shown in the following screenshot:

Autogenerated axis inspected

This is very useful and comfortable. We can now generate scales for our dataset and
link it with axis and then just autogenerate the complete axis layout.

Chapter 3

[83]

Adding axes to the scatter chart
Now, we want to apply all this knowledge to a real-world visualization. The aim is
to extend the visualization of the previous chapter, which is similar to the following
figure of a time series chart. We want to display time series data and implement self
updating axes that automatically scales to the maximum values of the dataset.

Time series scatter chart

First, we set up our application. We need to create a structure of our svg container,
which holds the chart, data values, and the axes. Additionally, we need to define a CSS
snippet (which we will use for all visualizations) to render the axis with crisp edges:

<style type="text/css">
 .axis path, .axis line {
 fill: none;
 stroke: #999;
 shape-rendering: crispEdges;
 }
 .tick {
 font: 10px sans-serif;
 }
</style>

Manipulating Data

[84]

<script type="text/javascript"> var width = 800;
 var height = 500;

 // Create the containers
 var svg = d3.select('body').append('svg')
 .attr("width", width)
 .attr("height", height);
 var svg_data = svg.append('g')
 .attr('class', 'data');
 var svg_axis = svg.append('g')
 .attr('class', 'axis');
 var svg_x_axis = svg_axis.append('g')
 .attr('class', 'x-axis');
 var svg_y_axis = svg_axis.append('g')
 .attr('class', 'y-axis');

 // Margins
 var margin = {top: 40, right: 40, bottom: 40, left:60};

 // code continues here
 ...
</script>

Then, we create a function that generates a random time series data point between a
start and end date as follows:

 // Domain for values

 var start = new Date('2013-01-01');
 var end = new Date('2013-12-31');

 // Random data point generator
 var randPoint = function() {
 var rand = Math.random;
 var rand_time = start.getTime() + rand() * (end.getTime() -
 start.getTime());
 return { x:new Date(rand_time), y: rand()*5000, r: rand()*10
 };
 }

Next, we create a data array with 300 random data points, as shown in the
following code:

 // Create a data array with 300 random data points
 var data = d3.range(300).map(randPoint);

Chapter 3

[85]

Now, let's create a draw() function, a function that draws and updates the chart, as
shown in the following code:

function draw() {
 // code continues here
 ...
}

In this function, we implement two scale functions: one time scale for the x-axis and
a linear scale for the y-axis as follows:

function draw() {

 var x_scale = d3.time.scale()
 .domain([start, d3.max(data, function(d) { return d.x; })])
 .range([margin.left, width - margin.right])
 .nice();

 var y_scale = d3.scale.linear()
 .domain([0, d3.max(data, function(d) { return d.y; })])
 .range([margin.top, height - margin.bottom])
 .nice();
 ...
}

Now, we can configure and draw the axes; we want the x axis to be aligned at the top
and the ticks oriented also at the top, whereas we want the y axis to be aligned on
the left-hand side and the ticks oriented also on the left-hand side. We also need to
translate the x and y axis according to the margins, as shown in the following code:

function draw() {
 ...
 var x_axis = d3.svg.axis()
 .scale(x_scale)
 .orient('top')
 .tickFormat(d3.time.format('%b %d'));

 svg_x_axis
 .attr("transform", "translate(0, " + margin.top + ")")
 .call(x_axis);

 var y_axis = d3.svg.axis()
 .scale(y_scale)
 .orient('left')
 .tickFormat(d3.format(".3s"));

Manipulating Data

[86]

 svg_y_axis
 .attr("transform", "translate(" + margin.left + ")")
 .call(y_axis);
 ...

}

Finally, we can bind the data and add, update, and delete the circle. We should not
forget to pass a valid key identifier function that identifies each data point in the
chart as follows:

function draw() {
 ...
 // Set a key function to identify the elements
 var key = function(d, i) { return d.x + '#' + d.y; }

 // Bind data array to the Selection
 var circles = svg_data.selectAll('circle').data(data, key);

 // update the dataset
 circles

 // Add circles for new data
 .enter()
 .append('circle')

 // Change the properties of all circles
 .attr('r', function(d) { return d.r; })
 .attr('cx', function(d) { return x_scale(d.x); })
 .attr('cy', function(d) { return y_scale(d.y); })
 .attr('fill', function(d, i) {
 return 'rgb(' + parseInt(d.r*25) + ',0,' + parseInt(d.r*25)
 + ')';
 })

 // Delete circles when removed from data
 .exit()
 .remove();
}

Then, we want to bring the visualization to life, generate new data points, and
delete old data points every 50 milliseconds and update the chart, as shown in the
following code:

// Do every 50ms
setInterval(function(){

Chapter 3

[87]

 // Remove first element from data array
 data.shift();

 // Add new random element to data array
 data.push(randPoint());

 // Redraw the scene
 draw();
}, 50);

The result looks exactly like the image of the time series scatter chart. We can see
that due to our configuration of the axes inside the draw() function, the chart is
automatically adjusting the ranges on the axes according to the maximal values.

Summary
In this chapter, I explained the usage of the most important statistical functions
(such as d3.min() and d3.max()), and we saw them applied in the last example.
They are useful to resize the axes and the chart automatically, when values in the
dataset are out of the current range of the axis.

We also discussed array manipulation functions, which help us to modify, structure,
and preprocess the data for the visualization. In the first section, we also saw an
example of d3.nest() that groups elements as an associative array by their keys in
multihierarchical levels.

You learned how to format number values and convert them to strings with
d3.format(). The specifier defines how the formatter parses the values and formats
them in different data types, currencies, and alignments.

Then, we introduced scales as a way to map an input domain to an output range. We
saw linear scales for quantitative and ordinal scales as well as time scales, which are
basically linear scales with JavaScript date objects.

In the last section, you learned about drawing axis and putting the previous
knowledge all together. This enabled you to extend the demo from the previous
chapter such that it displays time series values and auto updates.

In the next chapter, we will include the visualization in an AngularJS application and
write our first testable and reusable chart directive.

[89]

Building a Chart Directive
In the last two chapters, we saw a basic introduction to D3.js and learned about data
preprocessing and array manipulation. In this chapter, we will apply the acquired
knowledge to integrate a D3.js visualization into a simple AngularJS application.

First, we will set up an AngularJS template that serves as a boilerplate for the examples
and the application. We will see a typical directory structure for an AngularJS project
and initialize a controller. Similar to the previous example, the controller will generate
random data that we want to display in an autoupdating chart.

Next, we will wrap D3.js in a factory and create a directive for the visualization. You
will learn how to isolate the components from each other. We will create a simple
AngularJS directive and write a custom compile function to create and update the chart.

In the end, you will learn about unit tests, integration tests, set them up, and
implement them for the visualization components. This will make the component
maintainable and keep it bug free.

In this chapter, you will learn how to:

•	 Set up a simple AngularJS application
•	 Integrate D3.js into AngularJS
•	 Create a visualization directive
•	 Write unit tests in the visualization component
•	 Write integration tests for the application

Building a Chart Directive

[90]

Setting up an AngularJS application
To get started with this chapter, I assume that you feel comfortable with the main
concepts of AngularJS: the application structure, controllers, directives, services,
dependency injection, and scopes. I will use these concepts without introducing
them in great detail, so if you do not know about one of these topics, first try an
intermediate AngularJS tutorial or read the recommended literature in Chapter 1,
The Magic of SVG, D3.js, and AngularJS.

Organizing the directory
To begin with, we will create a simple AngularJS boilerplate for the examples and
the visualization application. We will use this boilerplate during the development of
the sample application throughout the book. Let's create a project root directory that
contains the following files and folders:

•	 bower_components/: This directory contains all third-party components
•	 src/: This directory contains all source files
•	 src/app.js: This file contains source of the application
•	 src/app.css: CSS layout of the application
•	 test/: This directory contains all test files (test/config/ contains all test

configurations, test/spec/ contains all unit tests, and test/e2e/ contains
all integration tests)

•	 index.html: This is the starting point of the application

Installing AngularJS
In this book, we use the AngularJS version 1.3.14, but different patch versions
(~1.3.0) should also work fine with the examples. Let's first install AngularJS with the
Bower package manager. Therefore, we execute the following command in the root
directory of the project:

bower install angular#1.3.14

Now, AngularJS is downloaded and installed to the bower_components/ directory.
If you don't want to use Bower, you can also simply download the source files from
the AngularJS website and put them in a libs/ directory.

Note that—if you develop large AngularJS applications—you
most likely want to create a separate bower.json file and keep
track of all your third-party dependencies.

Chapter 4

[91]

Bootstrapping the index file
We can move on to the next step and code the index.html file that serves as a
starting point for the application and all examples of this section. We need to include
the JavaScript application files and the corresponding CSS layouts, the same for
the chart component. Then, we need to initialize AngularJS by placing an ng-app
attribute to the html tag; this will create the root scope of the application. In this
book, we will call the AngularJS application myApp, as shown in the following code:

<html ng-app="myApp">
 <head>
 <!-- Include 3rd party libraries -->
 <script src="bower_components/d3/d3.js" charset="UTF-
 8"></script>
 <script src="bower_components/angular/angular.js"
 charset="UTF-8"></script>

 <!-- Include the application files -->
 <script src="src/app.js"></script>
 <link href="src/app.css" rel="stylesheet">

 <!-- Include the files of the chart component -->
 <script src="src/chart.js"></script>
 <link href="src/chart.css" rel="stylesheet">

 </head>
 <body>
 <!-- AngularJS example go here -->
 </body>
</html>

For all the examples in this section, I will use the exact same setup as the preceding
code. I will only change the body of the HTML page or the JavaScript or CSS sources
of the application. I will indicate to which file the code belongs to with a comment
for each code snippet.

If you are not using Bower and previously downloaded D3.js
and AngularJS in a libs/ directory, refer to this directory
when including the JavaScript files.

Building a Chart Directive

[92]

Adding a module and a controller
Next, we initialize the AngularJS module in the app.js file and create a main
controller for the application. The controller should create random data (that represent
some simple logs) in a fixed interval. Let's generate some random number of visitors
every second and store all data points on the scope as follows:

/* src/app.js */
// Application Module
angular.module('myApp', [])

// Main application controller
.controller('MainCtrl', ['$scope', '$interval',
 function ($scope, $interval) {

 var time = new Date('2014-01-01 00:00:00 +0100');

 // Random data point generator
 var randPoint = function() {
 var rand = Math.random;
 return { time: time.toString(), visitors: rand()*100 };
 }

 // We store a list of logs
 $scope.logs = [randPoint()];

 $interval(function() {
 time.setSeconds(time.getSeconds() + 1);
 $scope.logs.push(randPoint());
 }, 1000);
}]);

In the preceding example, we define an array of logs on the scope that we initialize
with a random point. Every second, we will push a new random point to the logs.
The points contain a number of visitors and a timestamp—starting with the date
2014-01-01 00:00:00 (timezone GMT+01) and counting up a second on each
iteration. I want to keep it simple for now; therefore, we will use just a very basic
example of random access log entries. Later in this book, we will use the socket.
io library to push a list of real logs from our server applications directly to the
AngularJS application in real time.

Consider to use the cleaner controller as syntax for larger
AngularJS applications because it makes the scopes in HTML
templates explicit! However, for compatibility reasons, I will
use the standard controller and $scope notation.

Chapter 4

[93]

Integrating D3.js into AngularJS
We bootstrapped a simple AngularJS application in the previous section. Now, the
goal is to integrate a D3.js component seamlessly into an AngularJS application—
in an Angular way. This means that we have to design the AngularJS application
and the visualization component such that the modules are fully encapsulated and
reusable. In order to do so, we will use a separation on different levels:

•	 Code of different components goes into different files
•	 Code of the visualization library goes into a separate module
•	 Inside a module, we divide logics into controllers, services, and directives

Using this clear separation allows you to keep files and modules organized and clean.
If at anytime we want to replace the D3.js backend with a canvas pixel graphic, we can
just implement it without interfering with the main application. This means that we
want to use a new module of the visualization component and dependency injection.

These modules enable us to have full control of the separate visualization component
without touching the main application and they will make the component
maintainable, reusable, and testable.

Organizing the directory
First, we add the new files for the visualization component to the project:

•	 src/: This is the default directory to store all the file components for
the project

•	 src/chart.js: This is the JS source of the chart component
•	 src/chart.css: This is the CSS layout for the chart component
•	 test/test/config/: This directory contains all test configurations
•	 test/spec/test/spec/chart.spec.js: This file contains the unit tests of

the chart component
•	 test/e2e/chart.e2e.js: This file contains the integration tests of the

chart component

If you develop large AngularJS applications, this is probably not
the folder structure that you are aiming for. Especially in bigger
applications, you will most likely want to have components in
separate folders and directives and services in separate files.

Building a Chart Directive

[94]

Then, we will encapsulate the visualization from the main application and create
the new myChart module for it. This will make it possible to inject the visualization
component or parts of it—for example just the chart directive—to the main application.

Wrapping D3.js
In this module, we will wrap D3.js—which is available via the global d3 variable—
in a service; actually, we will use a factory to just return the reference to the d3
variable. This enables us to pass D3.js as a dependency inside the newly created
module wherever we need it. The advantage of doing so is that the injectable d3
component—or some parts of it—can be mocked for testing easily.

Let's assume we are loading data from a remote resource and do not want to wait
for the time to load the resource every time we test the component. Then, the fact
that we can mock and override functions without having to modify anything within
the component will become very handy. Another great advantage will be defining
custom localization configurations directly in the factory. This will guarantee that we
have the proper localization wherever we use D3.js in the component.

Moreover, in every component, we use the injected d3 variable in a private scope
of a function and not in the global scope. This is absolutely necessary for clean and
encapsulated components; we should never use any variables from global scope
within an AngularJS component.

Now, let's create a second module that stores all the visualization-specific code
dependent on D3.js. Thus, we want to create an injectable factory for D3.js, as shown
in the following code:

/* src/chart.js */
// Chart Module

angular.module('myChart', [])

// D3 Factory
.factory('d3', function() {

 /* We could declare locals or other D3.js
 specific configurations here. */

 return d3;
});

Chapter 4

[95]

In the preceding example, we returned d3 without modifying it from the global
scope. We can also define custom D3.js specific configurations here (such as locals and
formatters). We can go one step further and load the complete D3.js code inside this
factory so that d3 will not be available in the global scope at all. However, we don't
use this approach here to keep things as simple and understandable as possible.

We need to make this module or parts of it available to the main application.
In AngularJS, we can do this by injecting the myChart module into the myApp
application as follows:

/* src/app.js */

angular.module('myApp', ['myChart']);

Usually, we will just inject the directives and services of the visualization module
that we want to use in the application, not the whole module. However, for the start
and to access all parts of the visualization, we will leave it like this. We can use the
components of the chart module now on the AngularJS application by injecting them
into the controllers, services, and directives.

The boilerplate—with a simple chart.js and chart.css file—is now ready. We can
start to design the chart directive. The chart.spec.js and chart.e2e.js files will
be discussed in the last section of this chapter.

A chart directive
Next, we want to create a reusable and testable chart directive. The first question that
comes into one's mind is where to put which functionality? Should we create a svg
element as parent for the directive or a div element? Should we draw a data point as
a circle in svg and use ng-repeat to replicate these points in the chart? Or should we
better create and modify all data points with D3.js? I will answer all these question in
the following sections.

A directive for SVG
As a general rule, we can say that different concepts should be encapsulated so that
they can be replaced anytime by a new technology. Hence, we will use AngularJS
with an element directive as a parent element for the visualization. We will bind the
data and the options of the chart to the private scope of the directive. In the directive
itself, we will create the complete chart including the parent svg container, the axis,
and all data points using D3.js.

Building a Chart Directive

[96]

Let's first add a simple directive for the chart component:

/* src/chart.js */
…

// Scatter Chart Directive
.directive('myScatterChart', ["d3",
 function(d3){

 return {
 restrict: 'E',
 scope: {

 },
 compile: function(element, attrs, transclude) {

 // Create a SVG root element
 var svg = d3.select(element[0]).append('svg');

 // Return the link function
 return function(scope, element, attrs) { };
 }
 };
}]);

In the preceding example, we first inject d3 to the directive by passing it as an
argument to the caller function. Then, we return a directive as an element with
a private scope. Next, we define a custom compile function that returns the link
function of the directive. This is important because we need to create the svg
container for the visualization during the compilation of the directive. Then, during
the link phase of the directive, we need to draw the visualization.

Let's try to define some of these directives and look at the generated output. We
define three directives in the index.html file, as shown in the following code:

<!-- index.html -->
<div ng-controller="MainCtrl">

 <!-- We can use the visualization directives here -->

 <!-- The first chart -->
 <my-scatter-chart class="chart"></my-scatter-chart>

 <!-- A second chart -->
 <my-scatter-chart class="chart"></my-scatter-chart>

Chapter 4

[97]

 <!-- Another chart -->
 <my-scatter-chart class="chart"></my-scatter-chart>

</div>

If we look at the output of the html page in the developer tools, we can see
that for each base element of the directive, we created a svg parent element for
the visualization:

Output of the HTML page

In the resulting DOM tree, we can see that three svg elements are appended to the
directives. We can now start to draw the chart in these directives. Let's fill these
elements with some awesome charts.

Building a Chart Directive

[98]

Implementing a custom compile function
First, let's add a data attribute to the isolated scope of the directive. This gives us
access to the dataset, which we will later pass to the directive in the HTML template.
Next, we extend the compile function of the directive to create a g group container
for the data points and the axis. We will also add a watcher that checks for changes
of the scope data array. Every time the data changes, we call a draw() function that
redraws the chart of the directive. Let's get started:

/* src/capp..js */
...
// Scatter Chart Directive
.directive('myScatterChart', ["d3",
 function(d3){

 // we will soon implement this function
 var draw = function(svg, width, height, data){ … };

 return {
 restrict: 'E',
 scope: {
 data: '='
 },
 compile: function(element, attrs, transclude) {

 // Create a SVG root element
 var svg = d3.select(element[0]).append('svg');

 svg.append('g').attr('class', 'data');
 svg.append('g').attr('class', 'x-axis axis');
 svg.append('g').attr('class', 'y-axis axis');

 // Define the dimensions for the chart
 var width = 600, height = 300;

 // Return the link function
 return function(scope, element, attrs) {

 // Watch the data attribute of the scope
 scope.$watch('data', function(newVal, oldVal, scope) {

 // Update the chart
 draw(svg, width, height, scope.data);
 }, true);
 };
 }
 };
}]);

Now, we implement the draw() function in the beginning of the directive.

Chapter 4

[99]

Drawing charts
So far, the chart directive should look like the following code. We will now
implement the draw() function, draw axis, and time series data. We start with
setting the height and width for the svg element as follows:

/* src/chart.js */
...

// Scatter Chart Directive
.directive('myScatterChart', ["d3",
 function(d3){

 function draw(svg, width, height, data) {
 svg
 .attr('width', width)
 .attr('height', height);
 // code continues here
 }

 return {
 restrict: 'E',
 scope: {
 data: '='
 },
 compile: function(element, attrs, transclude) { ... }
 }]);

Axis, scale, range, and domain
As you learned in the last chapter, we first need to create the scales for the data and
then the axis for the chart. The implementation looks very similar to the scatter chart
of the last chapter. We want to update the axis with the minimum and maximum
values of the dataset; therefore, we also add this code to the draw() function:

/* src/chart.js --> myScatterChart --> draw() */

function draw(svg, width, height, data) {
 ...
 // Define a margin
 var margin = 30;

 // Define x-scale

Building a Chart Directive

[100]

 var xScale = d3.time.scale()
 .domain([
 d3.min(data, function(d) { return d.time; }),
 d3.max(data, function(d) { return d.time; })
])
 .range([margin, width-margin]);

 // Define x-axis
 var xAxis = d3.svg.axis()
 .scale(xScale)
 .orient('top')
 .tickFormat(d3.time.format('%S'));

 // Define y-scale
 var yScale = d3.time.scale()
 .domain([0, d3.max(data, function(d) { return d.visitors; })])
 .range([margin, height-margin]);

 // Define y-axis
 var yAxis = d3.svg.axis()
 .scale(yScale)
 .orient('left')
 .tickFormat(d3.format('f'));

 // Draw x-axis
 svg.select('.x-axis')
 .attr("transform", "translate(0, " + margin + ")")
 .call(xAxis);

 // Draw y-axis
 svg.select('.y-axis')
 .attr("transform", "translate(" + margin + ")")
 .call(yAxis);
}

In the preceding code, we create a timescale for the x-axis and a linear scale for the
y-axis and adapt the domain of both axes to match the maximum value of the dataset
(we can also use the d3.extent() function to return min and max at the same time).
Then, we define the pixel range for our chart area. Next, we create two axes objects
with the previously defined scales and specify the tick format of the axis. We want to
display the number of seconds that have passed on the x-axis and an integer value of
the number of visitors on the y-axis. In the end, we draw the axes by calling the axis
generator on the axis selection.

Chapter 4

[101]

Joining the data points
Now, we will draw the data points and the axis. We finish the draw() function with
this code:

/* src/chart.js --> myScatterChart --> draw() */
function draw(svg, width, height, data) {
 ...
 // Add new the data points
 svg.select('.data')
 .selectAll('circle').data(data)
 .enter()
 .append('circle');

 // Updated all data points
 svg.select('.data')
 .selectAll('circle').data(data)
 .attr('r', 2.5)
 .attr('cx', function(d) { return xScale(d.time); })
 .attr('cy', function(d) { return yScale(d.visitors); });
}

In the preceding code, we first create circle elements for the enter join for the data
points where no corresponding circle is found in the Selection. Then, we update the
attributes of the center point of all circle elements of the chart.

Let's look at the generated output of the application:

Output of the chart directive

Building a Chart Directive

[102]

We notice that the axes and the whole chart scales as soon as new data points are
added to the chart, similar to the example of the previous chapter. In fact, this result
looks very similar to the previous example with the main difference that we used
a directive to draw this chart. This means that the data of the visualization that
belongs to the application is stored and updated in the application itself, whereas the
directive is completely decoupled from the data.

To achieve a nice output like in the previous figure, we need to add some styles to
the cart.css file, as shown in the following code:

/* src/chart.css */
.axis path, .axis line {
 fill: none;
 stroke: #999;
 shape-rendering: crispEdges;
}
.tick {
 font: 10px sans-serif;
}
circle {
 fill: steelblue;
}

We need to disable the filling of the axis and enable crisp edges rendering; this will
give the whole visualization a much better look.

Advantages of directives
We can see this immediately if we add more directives to the application. Each
directive will behave on its own and act in its own scope, whereas the application
stores all the data. We can simply add three more charts by extending the index.
html file and providing more logs data via a moreLogs array (defined on the
MainCtrl and filled with random data for four charts):

<!-- index.html -->
<div ng-controller="MainCtrl">
 <my-scatter-chart class="chart" data="moreLogs[0]">
 </my-scatter-chart>
 <my-scatter-chart class="chart" data="moreLogs[1]">
 </my-scatter-chart>
 <my-scatter-chart class="chart" data="moreLogs[2]">
 </my-scatter-chart>
 <my-scatter-chart class="chart" data="moreLogs[3]">
 </my-scatter-chart>
</div>

Chapter 4

[103]

In the generated output, we can now see that four charts are getting filled with the
data from the logs:

Output of four logs shows four isolated directives

In the preceding output, we can see that now four charts are drawn on the screen.
This means that we have successfully implemented the chart directive and are now
able to place a my-scatter-chart tag in the HTML file and bind the proper data,
instead of recalling a JavaScript function to do so. A big advantage of AngularJS and
the concept of directives is that we can implement a set of chart directives that can
be easily reused by people without a deep knowledge of JavaScript, for example,
designers that are much more comfortable writing HTML tags than JavaScript
functions (and messing around with the DOM). We also notice that with the use of
directives, we are declaring the chart in HTML rather than calling it in JavaScript.

Generalizing the chart directive
The preceding directive works fine for our example and fulfills our goal of a reusable
component. However, we explicitly referred to the time and visitors property
of the dataset. It will be much better if the chart directive can display all kinds of
datasets, not just those with this specific properties. Therefore, we will create a
mapping function, which maps the custom dataset object to a general object, such as
{x, y}. The advantage is clear; now, we just have to add a mapping function, and
we can immediately display all kinds of different dataset objects, such as {date,
errors} or {t, value}. This concept is called generalization.

Building a Chart Directive

[104]

Let's generalize the draw() function as follows:

/* src/chart.js --> myScatterChart --> draw() */
function draw(svg, width, height, data) {

 ...
 // Define x scale
 var xScale = d3.time.scale()
 .domain(d3.extent(data, function(d) { return d.x; }))
 .range([margin, width-margin]);

 // Define y-scale
 var yScale = d3.time.scale()
 .domain([0, d3.max(data, function(d) { return d.y; })])
 .range([margin, height-margin]);

 ...
 // Updated all data points
 svg.select('.data')
 .selectAll('circle').data(data)
 .attr('r', 2.5)
 .attr('cx', function(d) { return xScale(d.x); })
 .attr('cy', function(d) { return yScale(d.y); });
}

Now, we need to add a mapping function to map the dataset to the internal format,
as shown in the following code:

/* src/chart.js */
...
// Scatter Chart Directive
.directive('myScatterChart', ["d3",
 function(d3){

 function draw(svg, width, height, data) { ... }

 return {
 restrict: 'E',
 scope: {
 data: '='
 },
 compile: function(element, attrs, transclude) {
 ...

 // Return the link function

Chapter 4

[105]

 return function(scope, element, attrs) {

 // Watch the data attribute of the scope
 scope.$watch('data', function(newVal, oldVal, scope) {

 // Map the data to internal format
 var data = scope.data.map(function(d){
 return {
 x: d.time,
 y: d.visitors
 }
 });

 // Update the chart
 draw(svg, width, height, data);
 }, true);

 };
 }
 };
}]);

In the preceding code, we simply call the map function on the data array and return
the internal data point representation of the chart library. Then, instead of the raw
scope.data array, we call the draw() function with this new data array.

Testing the directive
Testing is a very important and indispensable technique when writing good quality
code. It makes sure that developers can test code repeatedly and automatically, for
example, after the code was modified or when it runs in a different environment.
Therefore, testing makes your code scalable, maintainable, and hopefully bug free.

Often, tests of a software are also seen as a documentation of the code because the
tests show the proper usage of the code with all possible arguments and options.
Moreover, this documentation is always up-to-date and executable, which is a huge
advantage to static documentations.

In general, there exist multiple levels for software tests:

•	 Unit tests: It is used to test single encapsulated components (functions)
•	 Integration tests: It is used to test the integration of two or more components
•	 System tests: It is used to test the entire application in the complete

system stack

Building a Chart Directive

[106]

When developing frontend JavaScript code, it's common to test the first two levels:
unit tests on the local development machine after each file save and integration tests
on the testing environment after each committed change. We mostly use so-called
test runners to bootstrap, configure a testing environment, and test a framework for
an easier and clear testing syntax.

Unit tests are often referred to as specs because they are describing and testing the
specification of a component. In a test-driven development, we will even write the
specs of the component first before implementing it. In AngularJS, we use Karma as
the test runner software and Jasmine as the testing framework.

Integration tests are often referred to as end-to-end (e2e) because they represent the
integration of the component within an application into the web browser. A user
action or request in the browser is sent all the way through the application and is
responded by the component. The response is tested in the browser. In AngularJS,
we use Protractor as the test runner software and Jasmine as the testing framework.

Setting up the testing environment
Before we can start to test the component, we need to set up a testing environment. For
the purpose of this book, we will install Karma and Protractor on the local machine
and run unit tests as well as integration tests on the local development machine.

Getting started with Karma
Karma is the de facto unit test runner for AngularJS applications and built by the
AngularJS team. It takes care of all AngularJS-specific setup and configurations and
provides a rich toolset to test AngularJS applications.

Let's install Karma and its command-line interface globally on our machine; to do so,
we execute the following command in the root folder of the project:

sudo npm install -g karma karma-cli

We also want to use Angular-Mocks, a module that supports injecting mocks of
AngularJS services into the application; therefore, we install it by running the
following command:

bower install angular-mocks#1.3.14

Now, we can set up a configuration for Karma to run the unit tests; we can use Karma
to initialize the configuration. We type the following command in the terminal:

karma init test/config/karma.conf.js

Chapter 4

[107]

This will start an interactive prompt, where we can select the settings for the
configuration; this dialog box will look similar to the following figure:

Console output when initializing Karma configuration

We will select Jasmine as the testing framework, Chrome as the testing browser, and
a pattern to search files like the following test/spec/**/*.spec.js. This means
that Karma looks for all files in all the subfolders of the test/spec/ directory to find
files with a .spec.js ending.

We need to open the previously generated configuration file and edit the files
section at hand. We extend it to also load AngularJS, Angular-Mocks, and all our
application files as follows:

/* test/config/karma.conf.js */
// list of files / patterns to load in the browser
 files: [
 'bower_components/angular/angular.js',

Building a Chart Directive

[108]

 'bower_components/angular-mocks/angular-mocks.js',
 'bower_components/d3/d3.js',
 'app/src/**/*.js',
 'test/spec/**/*.spec.js'
],

We defined Chrome as the browser to run the unit tests. On Linux, we need to
tell Karma where to find the executable of Chrome. Hence, we export the path to
chromium-browser, as shown in the following code snippet:

export CHROME_BIN=/usr/bin/chromium-browser

We can look for the path of the executable of Chrome by
typing which chromium-browser to the terminal. If we
permanently want to export the path of Chrome's binary, we
can add the preceding line to the ~/.bashrc file.

Now, we can start the Karma test runner and keep it opened and running during the
development of the visualization component. It will autorun the test suite whenever
we save changes to a file.

Getting started with Protractor
Protractor is the de facto standard tool to run integration tests for AngularJS
applications and it's built by the AngularJS team. It manages all the AngularJS-
specific details (such as scaffolding the application, and so on) for us. Protractor
provides an easy API to interact with the AngularJS application in our tests.

Let's install Protractor globally on our machine; this can be achieved by running the
following command in the terminal:

sudo npm install -g protractor

When we execute the preceding command, protractor and webdriver-manager—a
manager for the web page testing tool Selenium web driver—command-line tools
will be installed. Selenium is a tool to control different browsers from the command
line, whereas Protractor is a wrapper for Selenium web driver, which offers
AngularJS-specific functionality and settings. Note that Selenium also needs a Java
Runtime Environment to be installed.

First, we need to install the latest Selenium binaries. We use the webdriver manager
for this and call the update function:

sudo webdriver-manager update

Chapter 4

[109]

Protractor is using the standard browsers on your machine to access your
application. Therefore, we want to make sure that it can access the application
without problems. To do so, we will install a very simple static web server
(http-server) that serves the application files for Protractor:

sudo npm install -g http-server

Now, we need to create a configuration for Protractor; we create a test/config/
protractor.conf.js file with the following content:

/* test/config/protractor.conf.js */
exports.config = {

 // The address of a running selenium server.
 seleniumAddress: 'http://localhost:4444/wd/hub',

 // Spec patterns are relative to the configuration file location
 passed
 // to proractor (in this example conf.js).
 // They may include glob patterns.
 specs: [
 '../e2e/**/*.e2e.js'
],

 baseUrl: 'http://127.0.0.1:8000',

 // Options to be passed to Jasmine-node.
 jasmineNodeOpts: {
 showColors: true, // Use colors in the command line report.
 }
};

Unlike Karma, we need to define a testing directory that is
relative to the configuration file for Protractor!

In the preceding configuration, we tell Protractor to look in the test/e2e/ folder in
all subfolders for files with the .e2e.js ending. We also defined 127.0.0.1:8000
as our base URL for the application. Later, we need to make sure that http-server is
serving the application at port 8000.

Building a Chart Directive

[110]

Unit testing the chart directive
We need to check every unit of the software on its own for its proper usage. Let's
unit test the chart component with the Karma test runner and Jasmine as a testing
framework. We want to automatically check whether the chart directive creates the
correct elements, nodes, and draws the correct circles when data is assigned to it. We
open the chart.spec.js file in the test/spec/ directory and start with creating a
test suite for the directive, as shown in the following code:

/* test/spec/chart.spec.js */
describe('my-scatter-chart', function() {
 /* Here goes the code for the test suite */

});

We open the terminal in the root directory of the project and let Karma autowatch
the file changes and run the test suite as follows:

karma start test/config/karma.conf.js

We see that the test finishes with errors because we have not defined any tests yet;
the output should look similar to the following figure:

Output of running the empty test suite with Karma

We need to configure and initialize the module and the directive in test suite before
running each test; this can be done easily with the beforeEach() function. Let's add
some bootstrapping code for the tests:

/* test/spec/chart.spec.js */
var elm, scope;

beforeEach(module('myChart'));

beforeEach(inject(function($rootScope, $compile) {

 /* Define the Directive */
 elm = angular.element(

Chapter 4

[111]

 '<my-scatter-chart class="chart" data="data">' +
 '</my-scatter-chart>');

 /* Define the Data on the Scope */
 scope = $rootScope.$new();
 scope.data = [];

 $compile(elm)(scope);
 scope.$digest();
}));

In the preceding code, we can see that before each test specification, we will initialize
the myChart module and compile a directive with sample data on its scope, that is,
$rootScope.$new(). This creates a new isolated scope for the directive.

You can find more detailed information on Karma on the
projects website at http://karma-runner.github.io/.

Now, we can run the first real test; we want to check whether the svg parent element
is created for the directive. We first create a test specification and then check whether
the number of svg elements in the directive equals to 1:

/* test/spec/chart.spec.js */
it('should create svg parent', function() {
 var svg = elm.find('svg');
 expect(svg.length).toBe(1);
});

The syntax of the Jasmine testing framework is written in an understandable way
and should read easily like a short description of the test.

Read the introduction to Jasmine on its web page at
http://jasmine.github.io/2.0/introduction.
html, if the syntax is not completely clear.

http://karma-runner.github.io/
http://jasmine.github.io/2.0/introduction.html
http://jasmine.github.io/2.0/introduction.html

Building a Chart Directive

[112]

When we switch back to the terminal, we should see that Karma has restarted the
test suite and already shows the result—this time our tests are passing, great.

Karma runs the tests automatically in the background

Now, we can continue and also test the group container elements, which contain the
data points and the axis. We add the following specification:

/* test/spec/chart.spec.js */
it('should create containers for data and axis', function() {
 var groups = elm.find('svg').find('g');
 expect(groups.length).toBe(3);
});

We also see that this test will autorun and pass. Now, we can go one step further and
simulate a change on the scope data so that the directive can update and draw some
data points. We add another specification:

/* test/spec/chart.spec.js */
it('should create a data point', function() {
 var circles = elm.find('svg').find('circle');
 expect(circles.length).toBe(0);

 scope.data.push({
 time: (new Date('2014-01-01 00:00:00')).toString(),
 visitors:3
 });
 scope.$digest();

 circles = elm.find('svg').find('circle');
 expect(circles.length).toBe(1);
});

Chapter 4

[113]

In the preceding code, it's observed that we can easily modify the scope and trigger
a digest cycle by calling scope.$digest(). Now, we can go into more details, add
different data points, and check whether they are set properly. In general, one should
test all possible combinations of the input data for a component under test.

E2E testing of the chart directive
We want to create the integration tests of the chart directive and test the proper
behavior of the chart directive if a user interacts with the visualization. In integration
tests, the visualization component is integrated in the application and tested
together with the application. Unfortunately, we have not implemented any form of
interaction yet. Therefore, we will just initialize the testing setup for our component
and develop integration tests later in this book.

Let's create e2e tests for the chart directive with the Protractor test runner and
Jasmine as a testing framework. We create a simple test suite in the chart.spec.js
file in the test/e2e/ folder:

/* test/e2e/chart.e2e.js */
describe('Scatter Chart application', function() {
 /* Here goes the code for the test suite */

});

Usually, we will not run these tests on the local machine on every file save, but more
likely on a testing environment on every committed change in the version control.
For now, we will just run everything on the development machine. First, we need to
start the webdriver with the following command:

webdriver-manager start

Next, we serve the application files with the http-server tool in a new terminal
window as follows:

http-server -p 8000

We switch again to a new terminal and call Protractor with the following
configuration file:

protractor test/config/protractor.conf.js

Building a Chart Directive

[114]

This starts the test runner who checks the files that are matching the pattern defined
in the configuration file and runs the tests on them.

Protractor output for a blank test suite

In the preceding screenshot, we see the output when running protractor on our
project—the empty test suite. Unlike Karma, Protractor returns no error for an empty
test suite. We also remark that we have to start the test manually every time we want
to use it.

You can find more information on Protractor scenario runner
on its home page at http://angular.github.io/
protractor/.

Let's create a simple test where we test the previously developed page that displays
four scatter charts if all four svg gets successfully created. First, we initialize a
beforeEach() function that executes code before every test. We want to load the
content from the index.html file here and then write a test to check whether the
application contains four charts:

describe('Scatter Chart application', function() {

 beforeEach(function() {
 browser.get('index.html');
 });

 it('has 4 charts', function() {

 var charts = element.all(by.css('svg'));
 expect(charts.count()).toEqual(4);
 });
});

We run Protractor again and hopefully also pass this test. Now, we are prepared for
developing more exciting features!

http://angular.github.io/protractor/
http://angular.github.io/protractor/

Chapter 4

[115]

Summary
In this chapter, you learned how to properly integrate a D3.js component into an
AngularJS application—the Angular way. All files, modules, and components should
be maintainable, testable, and reusable.

You learned how to set up an AngularJS application and how to structure the
folder structure for the visualization component. We put different responsibilities
in different files and modules. Every piece that we can separate from the main
application can be reused in another application; the goal is to use as much
modularization as possible.

As a next step, we created the visualization directive by implementing a
custom compile function. This gives us access to the first compilation of
the element—where we can append the svg element as a parent for the
visualization—and other container elements.

Then, we discussed the setup of testing frameworks in AngularJS. We used the
Karma test runner to test different separate units and the Protractor test runner to
test the integration of the component in the browser and the users' interaction.

In the next chapter, you will learn how to load and parse data with D3.js and how to
integrate these functionalities into the AngularJS world. We will use this knowledge
to load, parse, and display real-world data in our visualization.

[117]

Loading and Parsing Data
In the previous chapters, you learned how to create a simple scatter chart directive
with D3.js and include it in an AngularJS application. Until now, we just generated
random data to plot in charts.

In this chapter, you will learn how to feed the visualization directive with real data.
Therefore, we need to load raw data from an external resource, we need to parse
it to JavaScript objects, and we need to group the data for the visualization. First,
we need to load log files from a remote server. Therefore, we will take a look at
different techniques to load data into the AngularJS application: XHR with D3.js and
$http with AngularJS. The goal is to understand the advantages and disadvantages
of these techniques and to know which data loading module suits the best for the
visualization application.

Once we have the raw data in the format of a string on the client, we need to parse
and process it in order to feed it into the JavaScript application. This means parsing
the log string into an array of readable and debugable objects and grouping the log
data in nice intervals. We rather want to display the number of errors in a certain
interval (for example, 1 minute) than plotting every single error log in the chart. In
the following section, you will learn how to build a flexible parser service to generate
a JavaScript object out of a string of data logs. We will also build a very simple
Classifier to group the logs in intervals and display aggregated information. In this
chapter you will learn how to:

•	 Load data from external resources
•	 Choose the best XHR wrapper for your application
•	 Parse log strings into JavaScript objects
•	 Group data to display aggregated information
•	 Plot real data from a log file

Loading and Parsing Data

[118]

Loading external data
In a modern web application, it's a common task to load and reload data from
external resources, regardless of whether we read from the database or plain text
files. Thus, nearly every JavaScript framework includes its own functions to load
external data, that is, in most of the cases a wrapper of the native XMLHttpRequest
(XHR) object. In our application setup, we have the following options to load
external data:

•	 XMLHttpRequest: This is a native XHR object provided by most
modern browsers

•	 d3.xhr(): This is a wrapper function for the XMLHttpRequest object in D3.js
•	 $http: This is an Angular wrapper module for the XMLHttpRequest object

These implementations use the unidirectional XMLHttpRequest to request data from
a web server. Unidirectional means that we can solely request data from the client
and then wait for the response of the server. Thus, we also don't know if there is new
data available on the server. If we want a "real-time-like" behavior, we will need to
continuously send requests.

Real real-time behavior needs a real bidirectional connection instead of an
unidirectional request. WebSockets provide such a bidirectional connection over
TCP for modern web browsers. This means that the client is connected with the
server and data changes can be pushed from the server directly to the client—rather
than requesting them. In this chapter, we will look at d3.xhr() and $http in more
detail. In the last chapter, we will use WebSockets and the socket.io library to push
changes in real time to the client.

Let's get started and take a look at a real Apache access log file:

test/access.log.66.249.64.121 - - [22/Nov/2014:01:56:00 +0100]
 "GET /index.html HTTP/1.1" 200 2507 "-" "Mozilla/5.0 (X11; Linux
 x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu
 Chromium/41.0.2272.76 Chrome/41.0.2272.76 Safari/537.36"
66.249.64.129 - - [22/Nov/2014:01:56:01 +0100] "GET / HTTP/1.1"
 200 2487 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
 (KHTML, like Gecko) Ubuntu Chromium/41.0.2272.76
 Chrome/41.0.2272.76 Safari/537.36"
66.249.64.125 - - [22/Nov/2014:03:09:07 +0100] "GET /about.html
 HTTP/1.1" 200 2525 "-" "Mozilla/5.0 (X11; Linux x86_64)
 AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu
 Chromium/41.0.2272.76 Chrome/41.0.2272.76 Safari/537.36"

Chapter 5

[119]

First, we want to load this file with our application. To not raise any cross origin
request errors in our local browser, we have to again use a static web server. We can
do this by starting http-server in the root directory of our project:

http-server -p 8000

Now, we will navigate to http://localhost:8000/files/access.log in the
browser and see the full content of the log file (see the following screenshot). Perfect!
Now, we will try to load this file in JavaScript.

Viewing the log file in the browser

XHR – the native XMLHttpRequest
XMLHttpRequest (XHR) is a native interface that implements HTTP requests in
JavaScript; therefore it represents the foundation of the AJAX technology and is
available in most modern browsers.

AJAX is an acronym for Asynchronous JavaScript And XML. It stands for
requesting the XML data from within JavaScript. However, nowadays, we use the
much simpler and more accessible JSON format instead of XML. To understand the
following abstractions and wrappers of XHR, we want to first see and understand
the native XHR object. Here is a very simple example:

var url = "files/access.log";
var r = new XMLHttpRequest();
r.open("GET", url, true);
r.onreadystatechange = function() {

Loading and Parsing Data

[120]

 if (r.readyState != 4 || r.status != 200) return;
 console.log(r.responseText);
};
r.send();

In the preceding code, we first generated an XMLHttpRequest object and used
the .open() function to load a specific file. Then, we added a callback function,
which is executed on the onreadystatechange event. To trigger this event and to
execute the callback function, we need to send the request by calling the .send()
method on the XMLHttpRequest object. When the server responds to the client,
the onreadystatechange event gets triggered. Once the response is complete, the
readyState parameter on the response object will be set to the status code 4. If
the server responds with a status 200 (OK), we print the body of the response. The
output of the request will look similar to the following screenshot:

Output of the XHR request using the native XMLHttpRequest

For more information and detailed documentation of the
methods and events of the XMLHttpRequest object, visit
https://developer.mozilla.org/en-US/docs/
Web/API/XMLHttpRequest.

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

Chapter 5

[121]

The implementation does not look very difficult and is straightforward.
Nevertheless, it requires a lot of code to call a simple GET request with XHR. We
can easily write this code in our application and it will work for us, but we will not
do it because we forgot an important point with this implementation. It's the native
XHR implementation of the browser. Therefore, like every native implementation,
its behavior is not the same across different browsers. To avoid dealing with cross-
browser issues and to have an easier syntax, we will continue using the XHR
wrapper of D3.js.

d3.xhr – the XHR wrapper of D3.js
D3.js provides the d3.xhr(url[, mimeType][, callback]) method, which is
a useful and easy-to-use wrapper on the XMLHttpRequest object. As a callback
function, we can use a function(response){} structure. Let's take a look at the
same GET request as before using this method:

var url = "files/access.log";
var xhr = d3.xhr(url, function(response){
 console.log(response.responseText);
});

Wow! This API is much simpler than before and the output looks exactly the same
(see the following screenshot):

Output of the XHR request using d3.xhr()

Loading and Parsing Data

[122]

At the top, D3.js implements more useful methods such as .get([callback]) and
.post([data][, callback])on the xhr object . Let's take a look at two examples
that return the same list of logs as before:

var url = "files/access.log";
var xhr = d3.xhr(url)
 .get(function(error, response){
 console.log(response.responseText);
 });

The preceding code implements a GET request, whereas the following code uses a
POST request to send additional data to the server:

var url = "files/access.log";
var data = {'test': 'my-data'};
var xhr = d3.xhr('url)
 .post(data, function(error, response){
 console.log(response.responseText);
 });

In the preceding examples, we saw that the wrappers on the GET and POST requests
use a callback function with the function(error, response){} structure.

Useful wrappers for common file types
D3.js also implements wrappers for predefined file types. It sets their mime types in
the accept property of the HTTP header properly and parses the output for us. We
can use these functions to load and parse the following data types:

•	 Plain text: d3.text(url[, mimeType][, callback])
•	 JSON: d3.json(url[, callback])
•	 XML: d3.xml(url[, mimeType][, callback])
•	 HTML: d3.html(url[, callback])
•	 CSV (comma-separated): d3.csv(url[, accessor][, callback])
•	 TSV (tabulation-separated): d3.tsv(url[, accessor][, callback])

In our sample project, we will deal with log files that usually don't have a predefined
structure. Therefore, we will use the d3.text() function for now. We will write a
custom parser for the Apache access logs in the next section.

Chapter 5

[123]

Creating a simple D3 data loading component
Once we know how to load the external data, we need to include a data loading
component to the AngularJS application. The best Angular method to use is to wrap
the loader function in a reusable factory component. This encapsulates the data
loading component and makes it modular, reusable, and testable. Let's implement a
service for the data loader for the example application of the previous chapter:

/*.src/chart.js.*/
...
// D3 Loader service
.factory('SimpleD3Loader', ["d3",
 function(d3) {
 return function(url, callback) {
 d3.text(url, 'text/plain', callback);
 };
}])

The preceding code will create an injectable SimpleD3Loader service in the chart
module with two arguments called url and callback. We can now initialize the
d3.text() function or create a progress listener. The component itself is injectable,
reusable, testable, and replaceable—everything that we initially aimed for. Now, we
want to use this function to load the data into the AngularJS application. Therefore, we
change the main controller of the application to load the data of the log file as follows:

/* src/app.js */
// Application Module
angular.module('myApp', ['myChart'])
// Main application controller
.controller('MainCtrl', ["$scope", "SimpleD3Loader", function
 ($scope, SimpleD3Loader) {

 $scope.log = {
 src: 'files/access.log',
 data: ''
 };
 SimpleD3Loader($scope.log.src, function(data){
 $scope.log.data = data;
 $scope.$digest();
 });
}]);

Loading and Parsing Data

[124]

In the preceding code of the application module, we inject the SimpleD3Loader
service into the MainCtrl controller. Then, we define a log object and load
the access.log file with the SimpleD3Loader service. We need to add a
$scope.$digest() call to trigger the digest circle of the controller and inform
Angular JS about the changes on the scope. In the following HTML directive, we can
now display the content of the log file and see whether the component works:

<!-- index.html -->
<div ng-controller="MainCtrl">
 <h3>{{ log.src }}</h3>
 <p>{{ log.data }}</p>
</div>

If we look at the resulting HTML page (see the following figure), we see that the log
file was successfully loaded and is now available inside the application controller:

Implementing and testing a D3 loading service

Now, we manually tested the component and it looks fine. However, before we
continue parsing the log data, we want to make sure that the components always
work. Thus, we implement an unit test for the SimpleD3Loader service.

Chapter 5

[125]

Testing the simple D3 data loading component
First, we create a files/ directory for all the test files inside the test folder. The
folder structure should look like this:

•	 test/

•	 test/config/

•	 test/e2e/

•	 test/spec/

•	 test/files/

Now, we add a testAccessApache.log file with the following content to the test/
files/ folder:

66.249.64.121 - - [22/Nov/2014:01:56:00 +0100] "GET /index.html
 HTTP/1.1" 200 2507 "-" "Mozilla/5.0 (X11; Linux x86_64)
 AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu
 Chromium/41.0.2272.76 Chrome/41.0.2272.76 Safari/537.36"

We need to be careful and not add additional line breaks at the end because we want
to test the result of the loader against the content of this file.

Let's tell Karma that we want to access the files from the test/files/ folder inside
our tests. Therefore, we add the last line of the following snippet to the file pattern
list in test/conf/karma.conf.js:

/* test/conf/karma.conf.js */
...
// list of files / patterns to load in the browser
files: [
 'bower_components/angular/angular.js',
 'bower_components/angular-mocks/angular-mocks.js',
 'bower_components/d3/d3.js',
 'src/**/*.js',
 'test/spec/**/*.spec.js',
 {pattern: 'test/files/**', included: false}
], ...

The preceding configuration tells Karma to serve all the files from the test/files/
directory, but not include them with a <script> tag in the generated HTML test
file. Finally, we can add the D3 loader test scenario to the previously created data
loading service:

/* test/spec/chart.spec.js */
describe('simple-d3-loader', function() {
 var elm, scope, loader;

Loading and Parsing Data

[126]

 beforeEach(module('myChart'));

 beforeEach(inject(function(SimpleD3Loader) {
 loader = SimpleD3Loader;
 }));
});

In the preceding code, we see that for each test case, we inject
the SimpleD3Loader object as a loader variable. This
means that we can now add an asynchronous test case to test
the data loading service. To debug, we can write iit instead
of it to solely run a single test and skip all other tests of the
application. However, this requires Jasmine 1.3 and won't
work in the current version of Jasmine 2.0.

First, we will create a regular expression to test the access log string against this
expression and put it at the beginning of the file.

If you wonder how to create such a regular expression, first
take a look at the syntax for regular expression and then
use a tool like the one from https://regex101.com/ to
develop and evaluate the expression.

Let's develop a regular expression that matches the access log format:
/* test/spec/chart.spec.js */
var accessApacheRegExp = /^([0-9]{0,3}\.[0-9]{0,3}\.[0-
 9]{0,3}\.[0-9]{0,3})\s*-(.*?)-\s*\[(.*?)\]\s*"(.*?)"(.*?)\s*"-
 "\s*"(.*?)"$/ig;

Now, we can add a test to the D3.js Loader scenario.
/* test/spec/chart.spec.js */
it('should load the data', function() {
 var result;
 runs(function() {
 loader('/base/test/files/testAccessApache.log', function
 (error, data){
 result = data;
 });
 });
 waitsFor(function(){
 return result;
 }, "AJAX should complete", 2000);
 runs(function() {
 expect(result).toMatch(accessApacheRegExp);
 });
});

https://regex101.com/

Chapter 5

[127]

The preceding code doesn't look straightforward because we are testing an
asynchronous function call (loading the file with XHR is asynchronous). Let's walk
through the code step by step.

First, we define a result variable that stores the result of the service. Then, we
execute the asynchronous function using a first runs() block until the following
waitsFor() block returns true. We observe that this block takes a time-out value as
a third argument that stops the run block after the time-out is reached. In the second
runs() block, which is executed after the first one has stopped, we implement the
expect() statement to check the actual result.

Once you understand the runs-waitFor-runs order, it
should not be hard to write asynchronous tests yourself. Bear in
mind that we can also mock the behavior of the asynchronous
function to behave synchronously. We will see this in the
following section.

Now, we can run the test by starting Karma with the following command:

karma start test/config/karma.conf.js

When we check the output of Karma, it should run one test successfully and skip the
other three tests:

Output of the Karma test runner

Cool! We now know that we can work on the code without breaking the
functionalities of the existing components.

Loading and Parsing Data

[128]

Summary of D3.js as a data loading service
In this section, you learned how to implement a simple loading component in D3.js
and include it as a service in the AngularJS application. We observed that we need
to write asynchronous tests to test the service. An obvious advantage would be that
if we already have a chart component written in D3.js, we can use this technique to
seamlessly integrate it into our application. Also, we can encapsulate the different
components and make them reusable and testable.

A reasonable disadvantage is that we have to nest a draw() function inside the
callback function of the data load function because the data is only available when
the callback function is executed. However, we would have to implement event
handlers or trigger a digest circle to inform the application about the new data.

If we write the visualization component for the AngularJS application from scratch,
we will probably use the AngularJS-specific feature such as the $http module, which
informs the application about new data for us.

$http – the Angular wrapper for XHR
If we are developing a component for AngularJS, then we should use all the benefits
and advantages that this framework provides, such as Promises, caching, mocking,
and so on. For XHR, AngularJS provides an easy-to-use function that implements
Promises. Let's take a look at an example:

var url = "files/access.log";
$http.get(url)
.then(function(response){
 console.log(response.data);
});

Looks pretty neat, doesn't it? This is exactly why we want to use an abstraction
provided by AngularJS. Now, we can make an HTTP request with all the advantages
from the AngularJS world. For completeness, let's also look at the POST request:

var url = "files/access.log";
var data = {'test': 'my-data'};
$http.post(url, data)
.then(function(response){
 console.log(response.data);
});

Also, the preceding code will load the log file and print it as the previous examples.

Chapter 5

[129]

Creating an AngularJS data loading component
Now, we will use the AngularJS implementation for the data loading service in our
chart module and see the differences to the D3 version. Let's add a new service called
SimpleHttpLoader and inject the $http module:

/* src/chart.js */
...
// Simple Http loader service
.factory('SimpleHttpLoader', ["$http",
function($http) {
 return function(url) {
 return $http.get(url);
 }
}])

In the preceding code, we wrap the XHR GET requests and return the Promise
created by the $http.get() method. Now, in the application module, we can
replace the SimpleD3Loader service with the new SimpleHttpLoader service:

/* src/app.js */
// Application Module
angular.module('myApp', ['myChart'])
// Main application controller
.controller('MainCtrl', ["$scope", "SimpleHttpLoader",
function ($scope, SimpleHttpLoader) {
 $scope.log = {
 src: 'files/access.log',
 data: ''
 };
 SimpleHttpLoader($scope.log.src)
 .then(function(response){
 $scope.log.data = response.data;
 });
}]);

If we run the preceding example, we will see no difference in the resulting output to
the previous example. However, we observe that we don't have to trigger the digest
circle anymore because the $http module does this internally for us.

There are more advantages that are not immediately obvious. Now, we have all the
capabilities of the AngularJS $http module. This means that we can simply extend
the get method to $http.get(url, { cache: true }) and enable caching. Another
advantage is that we can use a mock-up of the $http module for testing purposes,
where the .get() method will return the predefined file content directly for a defined
URL. This means that in our test scenario, we will not have to wait for the XHR
request in every test, but the .get() method will return the file content directly.

Loading and Parsing Data

[130]

Testing the AngularJS data loading component
Now, let's create a test for the new service. We need to add a new test scenario,
where we set up the mock-up for the $http module called the $httpBackend mock.
This allows you to not only perform the real XHR requests every time we run the
tests, but it also allows you to respond on a certain route with a predefined result:

/* test/spec/chart.spec.js */
...
describe('simple-angular-loader', function() {
 var elm, scope, loader, httpBackend;
 beforeEach(module('myChart'));
 beforeEach(inject(function(SimpleHttpLoader, $httpBackend) {
 loader = SimpleHttpLoader;
 $httpBackend
 .when('GET', '/base/test/files/testAccessApache.log')
 .respond('66.249.64.121 - - [22/Nov/2014:01:56:00 +0100] "GET
 /index.html HTTP/1.1" 200 2507 "-" ""');
 httpBackend = $httpBackend;
 }));
});

First, we inject the $httpBackend mock and assign a default response for the route
that leads to the log file. Now, we can use the httpBackend mock in our tests instead
of loading the test files. Let's implement a test:

/* test/spec/chart.spec.js */
...
it('should load the data', function() {
 var result;
 loader('/base/test/files/testAccessApache.log').then
 (function(response){
 result = response.data;
 });
 httpBackend.flush();
 expect(result).toMatch(accessApacheRegExp);
});

In the preceding code, we defined the expected response for the /base/test/files/
testAccessApache.log route to be the content of the file. We should not forget to
flush the httpBackend mock-up after the service has called the external resource to
tell the $http module to load the results from the $httpBackend mock. It's easy to
see that with this technique, we don't need to use the asynchronous test constructs,
which we used in the SimpleD3Loader service in our previous example.

Chapter 5

[131]

Output of the Karma test runner

Summary of AngularJS as a data loading
service
If we are writing the data loading component from scratch, we should implement
all data loading methods with AngularJS. This enables us to use all the beautiful
aspects of AngularJS, such as Promises, mocks, synchronous testing, caching, and so
on. Caching requests is performed by simply adding the cache option to the .get()
function and the mocking of the $http module allows you to write synchronous
tests with the $httpBackend mock.

Parsing log files to JavaScript objects
Once we load the string of log entries, we need to parse these entries to an array of
data points in order to display them. We want to parse the plain text log file to an
array of JavaScript objects.

In this section, I will show you a convenient way to mix all techniques and to retrieve
the best of both worlds. We will implement a preprocessing service component. This
uses regular expressions to split the text into an array and D3.js to parse time strings
to dates.

Loading and Parsing Data

[132]

Parsing log files step by step
Let's look at the structure of the log files again:

66.249.64.121 - - [22/Nov/2014:01:56:00 +0100] "GET /robots.txt
 HTTP/1.1" 302
507 "-" "Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)"
66.249.64.129 - - [22/Nov/2014:01:56:01 +0100] "GET / HTTP/1.1"
 302 487 "-"
"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com
 /bot.html)"

From this string, we ultimately want to generate an array of JavaScript objects in the
shape of [{ip: 66.249.64.121, time: 2014-11-22 01:56:00 +0100, …}, …]
as a clean input dataset for the visualization. This means that we first need to cut the
string into an array, where each element contains a row of the log file. To remove
blank lines and line breaks from the beginning and the end, we should also trim the
string. In the following examples, we assume that the data variable contains the
string of the log entries. We can use the .split(separator) function to split a string
into an array of pieces. Let's try this:

var lines = data.trim().split("\n");
console.log(lines);

The resulting array looks like this:

Output of splitting text into lines

Chapter 5

[133]

Now, we need to look at every line and split it into smaller chunks, such as the IP
address, the date, and so on. We can see that the - and " symbols could be possible
separators; let's split every line using these symbols. We will use the map() function on
the array of lines to access every line and split it with the /[-"]/gi regular expression
(this means that we split every line at every occurrence of the - or " symbol):

var lines = data.trim().split("\n")
.map(function(line){
 return line.split(/[-"]/gi);
});
console.log(lines);

Let's look at the result:

Output of splitting each line

In the output, we can see that we should trim every element in the line and remove
the[and] symbols to extract the time properly. We can again use map() to process
all the elements of a single line. We remove symbols by calling the replace()
function with the /["\[\]]/gi regular expression:

var lines = data.trim().split("\n")
.map(function(line){
 return line.split(/[-"]/gi)
 .map(function(element){
 return element.trim().replace(/["\[\]]/gi,'');
 });
});
console.log(lines);

Loading and Parsing Data

[134]

Let's take a look at the result:

Output of trimming every word

Now, we extracted the JavaScript array from the log string.

Parsing the custom date format to a
JavaScript date
As a next step, we need to parse the date string to JavaScript dates in order to use
them in our chart directive. Therefore, we look at the date string provided in log files:

22/Nov/2014:01:56:00 +0100

We will use D3.js' powerful date formatter to parse the date string to a JavaScript
date. To start, we need to define a formatter that has the same format as the string
that we want to parse. Thus, we construct a formatter that matches our date:

var format = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");

Finally, we can also convert the array to an object, which makes it easier to access
and use in the visualization process. Again, we map the array and assign the
elements to associative keys:

var data = r.responseText;
var lines = data.trim().split("\n")
.map(function(line){
 return line.split(/[-"]/gi)
 .map(function(element){
 return element.trim().replace(/["\[\]]/gi,'');

Chapter 5

[135]

 });
});
var format = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");
lines = lines.map(function(d){
 return {
 ip: d[0],
 time: format.parse(d[2]),
 request: d[3],
 status: d[4],
 agent: d[8]
 };
});
console.log(lines);

The resulting array now looks pretty good, as shown in the following screenshot.
We parsed the whole log string with a few simple operations to a fully iterable and
plotable JavaScript object:

Output of an associative array with parsed dates

A reusable data parsing service
Finally, we will wrap the code to a StringParser service and add it to the
visualization module and make it injectable, reusable, and testable:

/* src/chart.js */
...
// Parser service
.factory('StringParser', function(){
 return function(str, line, word, rem) {
 line = line || "\n";

Loading and Parsing Data

[136]

 word = word || /[-"]/gi;
 rem = rem || /["\[\]]/gi;

 return str.trim().split(line).map(function(l){
 return l.split(word).map(function(w){
 return w.trim().replace(rem,'');
 });
 });
 };
})

In the preceding code, we create a customizable parser component with the function
that we previously developed. Now, we have some basic functionalities to parse a
variety of different log strings. Let's see an example where we use the StringParser
service in action. We will now parse the log string in the MainCtrl controller of the
application module:

/* src/app.js */
// Application Module
angular.module('myApp', ['myChart'])
// Main application controller
.controller('MainCtrl', ["$scope", "SimpleHttpLoader",
 "StringParser",
 function ($scope, SimpleHttpLoader, StringParser) {

 var formatter = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");
 $scope.log = {
 src: 'files/access.log',
 data: ''
 };
 SimpleHttpLoader($scope.log.src)
 .then(function(response){
 // Response
 var responseDataStr = response.data;
 // Parse string to an array of datum arrays
 var parsed = StringParser(responseDataStr);
 // Map each datum array to object
 var mapped = parsed.map(function(d) {
 return {
 time: formatter.parse(d[2]),
 ip: d[0],
 request: d[3],
 status: d[4],
 agent: d[8]
 };
 });
 $scope.log.data = mapped;
 });
}]);

Chapter 5

[137]

In the preceding code, we added the previous processing steps to the main controller
of the application module. After loading the data, we parse it to an array of arrays
and then map it to an array of objects. Now, we can easily access the properties in the
template as follows:

<!-- index.hmtl -->
<div ng-controller="MainCtrl">
 <h3>{{ log.src }}</h3>
 <div ng-repeat="l in log.data">
 Date: {{ l.time }}
 IP: {{ l.ip }}
 Request: {{ l.request }}
 <hr>
 </div>
</div>

The result of the previous template is shown in the following screenshot:

Output of the parsed log entries

Testing the data parsing service
As a last step, we want to write unit tests for the new service. We create a new test
scenario for the service and a test case to parse all the values properly:

/* test/spec/chart.spec.js */
 var elm, scope, parser, logString;
 beforeEach(module('myChart'));

 beforeEach(inject(function(StringParser) {

Loading and Parsing Data

[138]

 parser = StringParser;
 logString = '66.249.64.121 - - [22/Nov/2014:01:56:00 +0100]
 "GET /robots.txt HTTP/1.1" 302 507 "-" "Mozilla/5.0
 (compatible; Googlebot/2.1; +http://www.google.com
 /bot.html)"';
 }));
 it('should parse the data', function() {
 var parsed = parser(logString);
 var mapped = parsed.map(function(d) {
 return {
 ip: d[0], time: d[2], request: d[3], status: d[4], agent:
 d[8]
 };
 })
 expect(mapped[0].ip).toBe('66.249.64.121');
 expect(mapped[0].time).toBe('22/Nov/2014:01:56:00 +0100');
 expect(mapped[0].request).toBe('GET /robots.txt HTTP/1.1');
 expect(mapped[0].agent).toBe('Mozilla/5.0 (compatible;
 Googlebot/2.1; +http://www.google.com/bot.html)');
 expect(mapped[0].status).toBe('302 507');
 });
});

In the preceding code, we use the StringParser service to parse the log string to
an array. After mapping the result to an array of objects, we compare it with the
expected values. The output of Karma should show one successful test, similar to the
following screenshot:

Output of Karma test runner

Chapter 5

[139]

Grouping log entries
Until now, we parsed all the log entries into an array of readable JavaScript objects.
However, when we are visualizing log information, we rather want to display
aggregated entries (for example, plotting the amount of people that accessed my
application in an interval of 5 minutes) than display all single log entries.

We can achieve this by using the d3.nest() function. This function is used to turn
a flat data structure into a hierarchical structure based on a single (or multiple) key
function. We will use a key function that rounds the time of the log entries to the
specified interval (for example, of 5 minutes) and groups all entries of this interval.
We are primarily interested in the amount of log entries during this interval, so we
can just use the number of entries in the interval. Let's implement this:

/* src/app.js */
// Application Module
angular.module('myApp', ['myChart'])
// Main application controller
.controller('MainCtrl', ["$scope", "SimpleHttpLoader",
 "StringParser",
 function ($scope, SimpleHttpLoader, StringParser) {
 var formatter = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");
 $scope.log = {
 src: 'files/access.log',
 data: ''
 };
 SimpleHttpLoader($scope.log.src)
 .then(function(response){
 // Response
 var responseDataStr = response.data;
 // Parse string to an array of datum arrays
 var parsed = StringParser(responseDataStr);
 // Map each datum array to object
 var mapped = parsed.map(function(d) {
 return {
 time: +formatter.parse(d[2]),
 ip: d[0],
 request: d[3],
 status: d[4],
 agent: d[8]
 };
 });
 var grouped = d3.nest()
 .key(function(d){
 // Round to interval of 5 minutes
 var coeff = 1000 * 60 * 5;
 return Math.round(d.time / coeff) * coeff;

Loading and Parsing Data

[140]

 })
 .entries(mapped);
 $scope.log.data = grouped;
 });
}]);

In the preceding code, we added the d3.nest() function to group the data with a
specified key function. In our case, the key function rounds the timestamp value (in
milliseconds) to an interval of 5 minutes. We can display the result of this grouping
with a simple HTML template:

<!-- index.html -->
<div ng-controller="MainCtrl">
 <h3>{{ log.src }}</h3>
 <div ng-repeat="l in log.data">
 Key: {{ l.key | date:'medium' }}
 Elements: {{ l.values }}
 <hr>
 </div>
</div>

The output of the preceding template can be seen in the following screenshot:

Displaying the grouped log entries

Let's create a small reusable grouping service in the chart module and call it
Classifier:

/* src/chart.js */
...

Chapter 5

[141]

// D3 Classifier service
.factory('Classifier', function(){
 return function(data, key){
 return d3.nest()
 .key(key)
 .entries(data)
 .map(function(d){
 return {
 x: d.key,
 y: d.values.length
 };
 });
 };
 }
})

In the preceding code, we also added a final mapping function that returns the
classifier key as the x property and the number of elements in the group as a y
property. This is our internal format for the visualization component.

Testing the classifier
As in the previous services, we want to make sure that the classifier is working
properly; therefore, we create a test scenario and a simple test for it. We also want
to test the grouping of intervals in a second test. Let's get started:

/* test/spec/chart.spec.js */
describe('classifier', function() {
 var elm, scope, classifier, sample;
 beforeEach(module('myChart'));

 beforeEach(inject(function(Classifier) {
 classifier = Classifier;
 sample = [{a:1}, {a:2}, {a:3}];
 }));
 it('should group the data', function() {
 var grouped = classifier(sample, function(d){
 return d.a;
 });
 expect(grouped[0].y).toBe(1);
 expect(grouped[1].y).toBe(1);
 expect(grouped[2].y).toBe(1);
 });
 it('should group the data in an interval', function() {
 var grouped = classifier(sample, function(d){
 var coeff = 2;
 return Math.round(d.a / coeff) * coeff;

Loading and Parsing Data

[142]

 });
 expect(grouped[0].y).toBe(2);
 expect(grouped[1].y).toBe(1);
 });
});

In the preceding code, we injected the Classifier service and initialized a sample
array of objects. In the following tests, we test the basic grouping operation and the
grouping of entries in a certain interval (we define this with the coeff variable). The
output of the test runner should preferably look similar to the following screenshot:

Output of Karma test runner

Displaying logs
In the previous sections, we wrote data loading, parsing, and grouping services;
now, it's time to use them in a simple example to display the logs. We want to
display the number of visitors of our application in an interval of 5 minutes. We
define the appearance of the logs directly in the controller as follows:

/* src/app.js */
// Application Module

Chapter 5

[143]

angular.module('myApp', ['myChart'])
// Main application controller
.controller('MainCtrl', ["$scope", "d3", "SimpleHttpLoader",
 "StringParser", "Classifier", function ($scope, d3,
 SimpleHttpLoader, StringParser, Classifier) {

 // Formats date strings 22/Nov/2014:01:56:00 +0100
 var formatter = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");
 $scope.log = {
 // Source of the log file
 src: 'files/access2.log',

 // Data entries
 data: [],
 // Maps response array to readable JSON object
 map: function(d) {
 return {
 time: +formatter.parse(d[2]),
 ip: d[0],
 request: d[3],
 status: d[4],
 agent: d[8]
 };
 },
 // Group the x-values in an interval of x minutes
 groupByMinutes: 5
 };
 // Load the source file
 SimpleHttpLoader($scope.log.src).then(function(response){
 // Concat all responses to string
 var responseDataStr = response.data;
 // Parse string to an array of datum arrays
 var parsed = StringParser(responseDataStr);

 // Map each datum array to object
 var mapped = parsed.map($scope.log.map);

 // Group the dataset by time
 var grouped = Classifier(mapped, function(d) {
 var coeff = 1000 * 60 * $scope.log.groupByMinutes;
 return Math.round(d.time / coeff) * coeff;
 });
 // Use the grouped data for the chart
 $scope.log.data = grouped;
 });
}]);

Loading and Parsing Data

[144]

In the preceding example, we use SimpleHttpLoader to load the log file from
the server. Then, we parse the log string with the previously implemented
StringParser. After mapping the array of entries of JavaScript objects, we group
them in an interval of 5 minutes using the Classifier service and a custom key
function. Now, let's use the MyScatterChart directive from the previous chapter to
display the visitors in a chart:

<!-- index.html -->
<div ng-controller="MainCtrl">

 <my-scatter-chart class="chart" data="log.data"></my-scatter-
 chart>
</div>

The chart should show data points for the number of visitors on the page in an
interval of 5 minutes; let's look at the output:

Output of the access log file

Summary
In this chapter, you learned about two different XHR techniques to load external data
for the visualization: d3.xhr with D3.js and $http with AngularJS. If we include
an already existing chart application in the AngularJS application, we can wrap the
D3.js loading component into a service. In order to test this component, we need to
write asynchronous unit tests.

Chapter 5

[145]

If we write the visualization from scratch, we'd better implement the data loading
technique with the $http module of Angular JS. This allows you to mock the
behavior of $httpBackend and automatically serve data for specified routes. With
this method, we can continue to write synchronous tests, which are more readable
and expressive.

In the second part of this chapter, we parsed a string of log entries into an array of
JavaScript objects. In addition to the parser service, we implemented a grouping
service based on the d3.nest() function. In the end, we brought all the parts
together and plotted an aggregated view of the log file with the scatter chart directive
of the previous chapter.

In the next chapter, you will learn about drawing paths and shapes with SVG and
D3.js. This will help us to extend the current simple scatter chart to a line or area chart.

[147]

Drawing Curves and Shapes
In the last chapter, you learned how to load, parse, and group real data from the
server and we displayed this data in a scatter chart. In this chapter, we will create
multiple types of charts to be more flexible in visualizing all the information.

First, we will go through the common shapes in SVG and discuss their usage and
attributes. These shapes are easy to use, but solely for simple polygons or ellipses.

In the following section, we will take a look at the more flexible SVG path element
and the command to draw lines and curves. After an introduction to Bézier curves,
we will be able to draw arbitrary shapes and curves with the SVG commands.

In the third section, we will look at the built-in path generators of D3.js, which
facilitate the construction of complex shapes. We will go through a lot of examples to
see the different options and parameters in action.

In the last section, we will apply the newly discovered features and implement
different chart types for our chart directive. After reading this chapter, it should
be very easy to improve the scatter chart of the previous chapters such that it can
display lines, areas, bars, or even more complex shapes.

In this chapter you will:

•	 Learn how to use common SVG shapes
•	 Learn how to draw polygons with the path element
•	 Understand the main concepts of Bézier Curves
•	 Learn how to draw curves and arcs with the path element
•	 Understand the path generators in D3.js
•	 Learn how to implement multiple chart types for the chart directive

Drawing Curves and Shapes

[148]

Common shapes and primitives
Until now, we solely used the circle element to draw data points in the chart.
However, SVG provides a rich set of more common shapes, which can also be
directly used in D3.js. SVG built-in shapes are:

•	 rect

•	 circle

•	 ellipse

•	 line

•	 polyline

•	 polygon

To use built-in shapes in D3.js, we just append them to the SVG node and modify the
attributes, just like before with the circle element.

To read more about built-in SVG shapes and their attributes,
take a look at the specification at http://www.w3.org/
TR/SVG/shapes.html.

Let's look at some simple examples. By now, we should have no problems drawing
an ellipse. All attributes and their usage can be found in the SVG specification, as
shown in the following code:

var svg = d3.select("body").append("svg")
 .attr("width", 400)
 .attr("height", 400);

var ellipse = svg.append("ellipse")
 .attr("cx", 200)
 .attr("cy", 200)
 .attr("rx", 180)
 .attr("ry", 90);

http://www.w3.org/TR/SVG/shapes.html
http://www.w3.org/TR/SVG/shapes.html

Chapter 6

[149]

The output of the code in the browser looks like the following screenshot:

Ellipse with D3.js

In the preceding screenshot, we see that D3.js does exactly what we expected it to do;
it creates the ellipse node and assigns the cx, cy, rx, and ry attributes. You learned
already in the previous chapters that we can use all attributes of the underlying
SVG standard with D3.js. Therefore, we can also easily draw a rectangle with round
corners by just using the proper attributes of rect as follows:

var svg = d3.select("body").append("svg")
 .attr("width", 400)
 .attr("height", 400);

var rect = svg.append("rect")

Drawing Curves and Shapes

[150]

 .attr("x", 10)
 .attr("y", 110)
 .attr("width", 380)
 .attr("height", 180)
 .attr("rx", 50);

Rectangle with round corners in D3.js

In the preceding screenshot, we can see that the rx attribute is responsible for the
corner radius. However, what if we want to be more flexible and want to draw an
arbitrary polygon. The SVG polygon element uses a points attribute that stores a
list of all the points that are connected by the polygon. The format of the points is:
x1, y1 x2, y2 x3, y3, and so on, whereas for the polygon primitive, the last point is
automatically connected to the starting point. Let's look at an example:

var svg = d3.select("body").append("svg")
 .attr("width", 800)
 .attr("height", 400);

var polygon = svg.append("polygon")
 .attr("points", "350,75 379,161 469,161 397,215 423,301 350,250
277,301 303,215 231,161 321,161");

Chapter 6

[151]

In the preceding example, we see that in order to draw a star-shaped polygon, we
need to connect 10 points and the starting point with straight lines.

Star-shaped polygon and its corresponding DOM tree

In the preceding screenshot, we see that the star-shaped polygon is the result of
connecting 10 points from the points attribute and the starting point by straight lines.

Curved lines with the SVG path
What if we need to draw with curved lines? Now, we will be able to draw all
possible polygons, but we lack the possibility of drawing more complex shapes (such
as curves and polynomial functions). Fortunately, the SVG standard provides a very
flexible element for this called the path element. With this element, one can draw the
most flexible curves and shapes as well as all the previous common shapes.

The path element takes a d attribute to define the exact shape of the path. The shape
can be defined with special commands (such as drawing straight line, drawing
smooth curve, and so on) and point coordinates.

Drawing Curves and Shapes

[152]

Let us first look at the preceding example; we want to draw the same star-shaped
polygon, but this time with the use of the path element, as shown in the following code:

var svg = d3.select("body").append("svg")
 .attr("width", 800)
 .attr("height", 400);

var polygon = svg.append("path")
 .attr("d", 'M350,75 L379,161 469,161 397,215 423,301 350,250
277,301 303,215 231,161 321,161 z');

In the preceding code, we wrote the exact same 10 points as before to the d
attribute of the path element and added some additional characters M, L, and z.
These characters are actual commands that are used to interpret the subsequent
coordinates, as we'll see in the following screenshot:

Star-shaped path and its corresponding DOM tree

Chapter 6

[153]

In the preceding screenshot, we see that the shape looks exactly the same, but is now
defined via a path element and a d attribute. So, what shapes can be drawn in SVG
and which commands need to be used?

In the SVG standard, the following commands are available to draw. Don't worry
if this looks complicated; I will give examples for these commands right after the
following list:

•	 M (moveto): This sets the starting point for a new curve: M x0, y0.
•	 L (lineto): This connects the previous and the first coordinates with a straight

line: ...x0, y0 L x1, y1.
•	 H (horizontal lineto): This connects the previous and the first x coordinate with

a horizontal line: ...x0, y0 H x1.
•	 V (vertical lineto): This connects the previous and the first y coordinate with a

vertical line: ...x0, y0 V y1.
•	 C (curveto): This connects the previous point and the third coordinates with a

cubic Bézier curve using the first two as control points: ...x0, y0 C x1, y1
x2, y2 x3, y3.

•	 S (smooth curveto): This connects the previous point and the second
coordinates with a cubic Bézier curve. It reflects the last control point and
uses the first point as a new control point: ...x0, y0 S x1, y1 x2, y2.

•	 Q (quadratic curveto): This connects the previous point and the second
coordinates with a quadratic Bézier curve. It uses the first point as control
point: ...x0, y0 Q x1, y1 x2, y2.

•	 T (smooth quadratic curveto): This connects the previous point and the first
coordinates with a quadratic Bézier curve. It reflects the last control point:
...x0, y0 T x1, y1.

•	 A (elliptical arc): This connects the previous and the fourth coordinates with
an ellipse using the first coordinates as radius in the x and y direction, the
second value as rotation around the x axis, and the third coordinates as large
arc and sweep flags: ...x0, y0 A x1, y1 x2 x3, y3 x4, y4.

•	 Z (closepath): This connects the previous point and the starting point with a
straight line: ...x0, y0 Z.

All paths have to start with the M moveto command and in all these commands,
capital letters assume the coordinates are absolute and small letters assume the
coordinates are relative to the previous point.

Drawing Curves and Shapes

[154]

Drawing straight lines
Drawing straight lines with the SVG commands is very simple. We define starting
coordinates with the M moveto command and then continue adding coordinates to
the L lineto command. This will simply connect the points with lines. Let's look at
an example:

var line1 = svg.append("path")
 .style("stroke", 'steelblue')
 .attr("d", 'M10,10 L100,100 300,100 400,10');

In the following figure, we can see the resulting graphic. To better see the points that
define the shape, I added little circles to the coordinates:

Line path with lineto

In order to not fill the area, I added a small styling to the examples:

<style type="text/css">
path {
 stroke-width: 2;
 fill: none;
}
circle {
 stroke: none
}
</style>

Chapter 6

[155]

Let's add two horizontal lines at the top and bottom of the previous shape; we just
need to define one x coordinate, as shown in the following code:

var hline1 = svg.append("path")
 .style("stroke", 'red')
 .attr("d", 'M10,1 H400');
var hline2 = svg.append("path")
 .style("stroke", 'red')
 .attr("d", 'M10,110 H400');

Line path with horizontal lineto

Let's add two vertical lines on the left-hand side and the right-hand side of the
previous shape; we solely need to define one y coordinate as follows:

var vline1 = svg.append("path")
 .style("stroke", 'green')
 .attr("d", 'M1,0 V110');
var vline2 = svg.append("path")
 .style("stroke", 'green')
 .attr("d", 'M410,0 V110');

Line path with vertical lineto

Bézier curves
Modeling polynomial functions and curves with cubic or quadratic polynomials in
the shape of the following expression is neither easy nor intuitive:

3 2()f x a x b x c x d= ⋅ + ⋅ + ⋅ +

Drawing Curves and Shapes

[156]

Modifying the coefficients in such a function to draw and design a shape is nearly
impossible because the change of a coefficient results in a very unpredictable change
of the function value. However, fortunately, Bézier and De Casteljau developed the
concept of Bézier curves in the 60s. Bézier curves use easy-to-model control points
and binomial expansion to derive a parametric function as a sum of polynomials
with the following formula:

(),
0

()
n

i n i
i

f t B t P
=

= ⋅∑

B is the so-called Bernstein polynomial and it has the following shape:

(), () 1 n ii
i n

n
B t t t

i
− 

= − 
 

Pi is the control points to model the curve. Let's write the cubic polynomial function
from the preceding code in this shape; we get the following parametric function:

3 2 2 3
0 1 2 3() (1) 3 (1) 3 (1)f t t P t t P t t P t P= − ⋅ + − ⋅ + − ⋅ + ⋅

This resulting polynomial describes a cubic function that is interpolated between the
four control points: P0, P1, P2, and P3. The t parameter in the range 0 to 1 defines the
position on the curve between the starting point P0 (in the figure P1) and the end point
P3 (in the figure P2); P1 (in the figure C1) and P2 (in the figure C2) are called control
points and are used to model the shape between these points. Let's visualize this:

Cubic Bézier Curve

Chapter 6

[157]

We can immediately see the advantage of this representation: The control points Pi
can be directly used to model the cubic function. Changes in the control points result
in predictable changes in the function values.

The interpolation of the function can be easily implemented with the recursive
De Casteljau algorithm, which I am doing graphically for t = 0.1, 0.25, 0.5, 0.75,
and 0.9 in the following figure. We connect P0, P1, P2, and P3 with straight lines
and find the relative position t on these lines. This gives three new points, which
we again connect with straight lines and do the same as before until we are left with
a single point (after three iterations). This point is the desired point on the curve for
a given parameter t.

De Casteljau algorithm for cubic polynomial evaluated at t = 0.1, 0.25, 0.5, 0.75, and 0.9

For quadratic polynomials (order 2), we have solely one control point. Let's also
visualize this example:

Quadratic Bézier Curve

Drawing Curves and Shapes

[158]

We can again use the De Casteljau algorithm to interpolate the quadratic function
graphically for t = 0.1, 0.25, 0.5, 0.75, and 0.9:

De Casteljau algorithm for quadratic polynomial evaluated at t = 0.1, 0.25, 0.5, 0.75, and 0.9

When doing this for the first time, the transition from polynomial functions to
parametric Bézier curves seems a bit complicated; this is absolutely normal. The
important message here is that we are interpolating the curve between start points,
end points, and control points. This lets us easily modify the shape of these curves by
moving the control points in the desired directions.

Let's look at the actual implementation of the cubic and quadratic curves from the
preceding example with D3.js and SVG:

var cubic = svg.append("path")
 .attr("d", 'M15,15 C15,300 200,15 400,200');
var quadratic = svg.append("path")
 .attr("d", 'M15,15 Q200,300 400,100');

In the preceding code, we see that the cubic Bézier curve takes the starting moveto
command, then 2 control points, and one end point with the curveto command. In
comparison, the quadratic curve takes one control point and one end point with the
quadratic curveto command.

Both the commands: smooth curveto and quadratic smooth curveto allows smooth
connections of multiple Bézier curve segments by reflecting the previous control point
in the new segment. The connection is only perfectly smooth if the reflected control
point of the previous end point is used as a control point for the new starting point.

Let's look at some example, where we construct two quadratic Bézier curves, one
without smooth curveto and a control point and the other with smooth curveto and
without a control point:

var quadratic1 = svg.append("path")
 .attr("d", 'M15,15 Q200,300 400,100 Q500,50 800,100');
var quadratic2 = svg.append("path")
 .attr("d", 'M15,215 Q200,500 400,300 T800,300');

Chapter 6

[159]

Two quadratic Bézier curves: normal segments (top), smooth segments (bottom)

In the preceding figure, we see that solely with reflected control points, the transition
between the two segments of quadratic Bézier curves is smooth.

Drawing ellipses and elliptical arcs
The elliptical arc command can be used to draw segments of ellipses. The
configuration allows you to define the starting point of the segment, radius in x and
y direction, rotation around the x axis, large arc and sweep flag, and ending point of
the segment.

The only new options here are the two flags. The large arc flags define if the arc is
connected via the shorter or the larger side and the sweep flag mirrors the shape.
Let's look at all possible variations:

var arc1 = svg.append("path")
 .style("stroke", 'red')
 .attr("d", 'M50,200 A150,100 0 0,0 300,100');

var arc2 = svg.append("path")
 .style("stroke", 'green')
 .attr("d", 'M50,200 A150,100 0 1,0 300,100');

var arc3 = svg.append("path")
 .style("stroke", 'orange')
 .attr("d", 'M50,200 A150,100 0 0,1 300,100');

var arc4 = svg.append("path")
 .style("stroke", 'blue')
 .attr("d", 'M50,200 A150,100 0 1,1 300,100');

Drawing Curves and Shapes

[160]

In the following figure, we see the output of the preceding code. Red and orange are
small arcs—where orange is mirrored—and blue and green are large arcs—where
blue is mirrored:

The elliptical arc command with all variations of large arc and sweep flags

Path generators in D3.js
Designing and defining custom paths with plain SVG commands is possible, but
difficult and very uncomfortable. Fortunately, D3.js provides very useful methods
to generate the d attribute of the path element for different shapes. Once we know
what the magic is behind these generators, we can use them to abstract all the SVG
commands and to work directly on the datasets.

Generating straight lines
We can create a line generator by calling the d3.svg.line() function. This will
return a function, which generates the SVG command for the path of the shape. Let's
try a simple example:

var points =[[15,15], [200, 300], [400,100]];

var line = d3.svg.line();

var path1 = svg.append("path")
 .datum(points)
 .attr("d", line);

Chapter 6

[161]

In the preceding code, we observe that we solely plug the line generator returned by
d3.svg.line() in the d attribute. As a result, the line generator will be invoked for
every point that is defined in the .datum() function. The output of the code looks
like the following figure:

Output of the line generated with the line generator

The big advantage here is that we can continue to work with our data arrays without
caring about the actual SVG command. To transform the straight line into a smooth
curve, we need to solely add an interpolation option to the line generator as follows:

 var points =[[15,15], [200, 300], [400,100]];

 var line = d3.svg.line();

 var path1 = svg.append("path")
 .datum(points)
 .style("stroke", 'green')
 .attr("d", line.interpolate('cardinal').tension(0));

 var path2 = svg.append("path")
 .datum(points)
 .style("stroke", 'yellow')
 .attr("d", line.interpolate('cardinal').tension(0.25));

 var path3 = svg.append("path")
 .datum(points)
 .style("stroke", 'orange')
 .attr("d", line.interpolate('cardinal').tension(0.5));

Drawing Curves and Shapes

[162]

 var path4 = svg.append("path")
 .datum(points)
 .style("stroke", 'red')
 .attr("d", line.interpolate('cardinal').tension(0.75));

 var path4 = svg.append("path")
 .datum(points)
 .style("stroke", 'steelblue')
 .attr("d", line.interpolate('cardinal').tension(1));

In the preceding code, we observe an .interpolate() function and a .tension()
function. The .interpolate() function defines the current interpolation method for
the current shape and the .tension() function sets the tension of the interpolated
curve. We use the smooth cardinal interpolation that works very similar to the Bézier
curves concept of interpolation between control points. Let's look at the resulting image:

Output of the interpolated line generated by the line generator

There are various predefined interpolation functions (such as linear, step, monotone,
and so on). These can be found in the D3.js documentation.

Generate paths for areas
Similar to the line generator, we can also create the SVG commands for an area; to do
so, we can use the d3.svg.area() function. Let's create an example area:

var points =[[15,15], [200, 300], [400,100]];

var area = d3.svg.area()
 .y0(390);

Chapter 6

[163]

var shape1 = svg.append("path")
 .datum(points)
 .attr("d", area);

In the previous code, we see that we can call an additional .y0() method to the
generator that defines the y boundaries of the area. Let's look at the outputted figure:

Output of the area generated with the area generator

We can also use dynamic properties in the .y0() method and the same interpolation
functions as in the previous section. Let's apply both of these in the next example:

var points =[[15,15], [200, 300], [400,100]];

var area = d3.svg.area()
 .y0(function(d){ return d[1]+90; });

var shape1 = svg.append("path")
 .datum(points)
 .attr("d", area.interpolate('cardinal'));

In the preceding code, we see that using the .datum() method allows you to also use
dynamic properties in the generator function.

Drawing Curves and Shapes

[164]

As expected, the connections between the points are interpolated now and also the
second boundary changes with every data point. We can see the expected results in
the following figure:

Output of the interpolated area generated with the area generator

Generating arcs
Until now, we solely used Cartesian coordinates to define lines and curves. Another
huge feature of D3.js is that it includes a lot of projection and conversion tools
(such as the arc generator). The d3.svg.arc() arc generator can be designed with
the starting and ending angle as well as the inner and outer radius. Let's look at an
easy example:

var arc = d3.svg.arc()
 .innerRadius(40)
 .outerRadius(100)
 .startAngle(0)
 .endAngle(1);

var shape1 = svg.append("path")
 .attr("d", arc)
 .attr("transform", 'translate(200,200)');

Chapter 6

[165]

The resulting graphic shows an arc as we defined it in the preceding code. We see
that angles are measured in radiant, and we need to move the center of the arc to the
visible area. The resulting figure looks like this:

Output of the arc generated with the arc generator

We can also draw multiple arc segments and use dynamic properties on the arc, for
example, to change the angle. Let's try this:

var points =[[0,15,'red'], [20, 90,'green'], [110,180,'orange']];

var arc = d3.svg.arc()
 .innerRadius(40)
 .outerRadius(100)
 .startAngle(function(d){return d[0] * Math.PI/180;})
 .endAngle(function(d){return d[1] * Math.PI/180;});

var shape1 = svg.selectAll("path")
 .data(points)
 .enter().append("path")
 .attr("d", arc)
 .style("fill", function(d) { return d[2]; })
 .attr("transform", 'translate(200,200)');

Drawing Curves and Shapes

[166]

We add the dataset via the .data() method and generate arcs for every element
in the dataset. Then, we define the starting and ending angles depending on the
elements in the dataset. The resulting figure looks like the following figure:

Output of the arc segments generated with the arc generator

Different chart types
Now, we are finally ready to improve the scatter chart directive from the previous
chapters. In this section, we will define a base chart that displays points, lines, the
area of the graph, and bar charts, which displays a bar for each value.

Implementing line charts
Let's refresh how we previously drew the data points on the screen. We added the
dataset in the .data() function because we wanted to draw one point per data
value. We also need to scale the x and y coordinates of the data points according to
our previously defined linear scaling:

/* src/chart.js */
svg.select('.data')
 .selectAll('circle').data(data)
 .enter()
 .append('circle')
 .attr('class', 'data-point');

svg.select('.data')
 .selectAll('circle').data(data)
 .attr('r', 2.5)
 .attr('cx', function(d) { return xScale(d.x); })
 .attr('cy', function(d) { return yScale(d.y); });

Chapter 6

[167]

This was pretty easy. Now, we want to draw a smooth line that connects all
data points and interpolates the space in between. First, we need to define a line
generator. This generator returns the proper x and y coordinates. Then, we add the
cardinal interpolation.

Finally, we can add the dataset in the .datum() method because we want to draw
solely one line (but with multiple points):

/* src/chart.js */
var line = d3.svg.line()
 .x(function(d) { return xScale(d.x); })
 .y(function(d) { return yScale(d.y); })
 .interpolate('cardinal');

svg.select(".data-line")
 .datum(data)
 .attr("d", line);

As a last step, we want to fill the area under the graph. Similar to the previous
line generator, we define an area generator and all its accessors. Then, we add the
dataset along with the .datum() function to the path element and autogenerate
an area path element:

/* src/chart.js */
var area = d3.svg.area()
 .x(function(d) { return xScale(d.x); })
 .y0(yScale(0))
 .y1(function(d) { return yScale(d.y); })
 .interpolate('cardinal');

svg.select(".data-area")
 .datum(data)
 .attr("d", area);

In the following figure of a real Apache access log, we can see the result of the newly
created base chart:

Base chart (points, line, and area)

Drawing Curves and Shapes

[168]

Drawing lines and areas is a matter of three lines of code, but it's important to
understand what's going on under the hood. When creating custom interpolation or
customized adjustments, we may have to dig in the path element and get our hands
dirty. Then, it's absolutely necessary to know the basics of SVG paths and Bézier curves.

Designing bar charts
Creating bar charts is also very straightforward. We need to draw a rectangle for
every data point with a certain width and height. The best way is to start first with
computing the width of a single bar by dividing the available width by a number of
required bars (a number of data points).

Now, we can define the x coordinate and the width without problems. The y
coordinate and the height are a little bit tricky, as we are drawing from the top to
the bottom. So, we need to switch these values and draw to the difference of the
maximum value minus the current coordinate:

/* src/chart.js */
var barWidth = (width-2*margin)/data.length;

svg.select('.data')
 .selectAll('rect').data(data)
 .enter()
 .append('rect')
 .attr('class', 'data-bar');

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('y', function(d) { return yScale(d.y); })
 .attr('width', function(d) { return barWidth; })
 .attr('height', function(d) { return yScale(0) - yScale(d.y);
});

Once implemented, the resulting bar chart looks like this:

Bar chart

Chapter 6

[169]

Summary
In this chapter, you learned the basics of SVG curves and shapes and how they are
generated in D3.js.

In the first section, we saw common shapes such as rectangles (with round corners),
ellipses, polygons, and so on. These shapes are very easy to construct because they
take a small number of self explaining arguments. The polygon element is the most
flexible common shape because we can connect an arbitrary number of data points
with straight lines to a shape. Next, we saw the various commands responsible for
drawing curves and lines with the path element. Every line starts with the moveto
command and takes an arbitrary number of commands and coordinates. We saw the
lineto and curveto commands as well as elliptic arcs.

This chapter also contained a small introduction to the origin of Bézier curves as a
parametric version for polynomial functions with the use of binomial expansion.
This enables us to modify the shape of the polynomial function with start, end, and
control points rather than the plain coefficients.

Later, we discussed the built-in path generator functions of D3.js. These can be used
to easily generate complex, flexible curves, and shapes.

In the last section, we extended the base chart directive so that it can also display
points, lines, and areas. Theoretically, we could implement various arbitrary shapes
for our chart directives. As a second example, we implemented bar charts directive
by just placing rectangle elements on the proper positions of the chart.

In the next chapter, we will take a closer look at transitions, animations, and
implement update transitions for all our directives. Animating chart updates will
make it not only easier to see when an update occurred, but will also make it more
fancy and intuitive. We can make much more sense of data, for example, if new data
slides in from the right-hand side and old data slides out to the left.

[171]

Controlling Transitions
and Animations

In the previous chapters, you learned how to generate different charts from server log
data such as scatter charts, line charts, area charts, and so on. If we want to update the
chart to display the most recent logs, we will simply have to redraw the whole chart.
However, this will make it very difficult to see where and how the changes affected the
visualization. In this chapter, we will take a close look at transitions and animations as
a way to visualize and better understand the data changes.

First, we will start with an introduction to animations in D3.js that consist of
timers and interpolations. This will give us a good notion to understand how D3.js
processes animations under the hood.

In the second section, you will learn more about transitions, a special kind of
animation that solely describe the change from one state to another. With previous
knowledge, we will understand how timers and interpolations internally work for
transitions. We will also see examples for staggered and chained transitions and how
to design plausible transitions.

Whenever attributes cannot be automatically interpolated, we need to use custom
interpolation functions; to use them in the transitions we need tweens, a form
of customized transitions. In this section, you will learn how to design a simple
attribute tween function to animate the area of a path element.

After learning about linear transitions, you will learn about easing and easing
functions in computer graphics. With the introduction of Bezier curves in the
previous chapter, it will be straightforward to understand and design custom easing
functions with D3.js.

At the end of this chapter, we will apply the acquired skills to implement different
transitions for the previously designed charts.

Controlling Transitions and Animations

[172]

In this chapter, you will:

•	 Learn about animations with timers and interpolations
•	 Create staggered and chained transitions
•	 Understand when to use animations
•	 Implement simple attribute tweens
•	 Understand easing functions
•	 Implement transitions for multiple chart types

Animations
In data visualizations, animations are a way to visualize changes in the dataset,
which makes it much easier to see, understand, and follow the data changes. An
animation usually consists of timed key frames that represent these changes over
time in the visualization. Now, we will go through an animation step by step and see
the different things that need to be considered when creating a custom animation.

Let's look at a simple example. In the following figure, we can see an animation built
by six key frames to create an illusion of a color transition from blue to red:

Animation with 6 key frames

Timer in D3.js with d3.timer
To implement this animation, D3.js provides an efficient and smart timer queue.
This lets you run multiple concurrent timers. To create a timer, we can simply
call the d3.timer(tickFn[, delay[, time]]) function. The delay and time
arguments let you schedule the start of the timer after a certain delay of milliseconds
or at a specific point in time.

Chapter 7

[173]

The first argument: tickFn is the callback function that is executed every time the
timer is updated. The tickFn(elapsed) callback function is internally called with
the elapsed time in milliseconds as argument. The timer only stops if the callback
returns true and cannot be canceled in any other way.

D3.js uses the native requestAnimationFrame()
method if available, which times your animation smoothly
with about 60 FPS.

Let's implement the example from the preceding figure and implement a circle and
a tick function that changes the color of the circle after every 100 milliseconds from
blue to red in five frames:

var svg = d3.select("body").append("svg")
 .attr("width", 800)
 .attr("height", 400);

var circle = svg.append("circle")
 .attr("class", "frame")
 .attr("cx", 50)
 .attr("cy", 50)
 .attr("r", 25);

var tickFn = function(elapsed){

 // Frame 0
 if (elapsed <= 100) {
 circle.style("fill", "rgb(0,0,255)");
 }

 // Frame 1
 else if (elapsed <= 200) {
 circle.style("fill", "rgb(50,0,200)");
 }

 // Frame 2
 else if (elapsed <= 300) {
 circle.style("fill", "rgb(75,0,150)");
 }

 // Frame 3
 else if (elapsed <= 400) {
 circle.style("fill", "rgb(150,0,75)");
 }

 // Frame 4

Controlling Transitions and Animations

[174]

 else if (elapsed <= 500) {
 circle.style("fill", "rgb(200,0,50)");
 }

 // Frame 5
 else {
 circle.style("fill", "rgb(255,0,0)");

 /* End Timer */
 return true;
 }
}

To start the timer, we need to simply add the following line:

// Start timer
d3.timer(tickFn);

When we run this example, we see the exact same change of the color from blue to
red as in the previous figure. The first thing that we realize when looking at the code
is that we manually interpolated the color values between blue and red. In the next
step, we will look at parametric interpolation.

Interpolation with D3.js
Manually interpolating the colors is not really a good idea; D3.js provides a broad
set of functions to interpolate different variables: numbers, strings, colors as well as
arrays and objects.

Interpolators are generated by calling the corresponding interpolator constructor,
for example, d3.interpolateRgb(a, b) (where a and b are both d3.rgb objects).
This interpolator constructor returns an interpolation function interpolate(t)
with the parametric argument t. For t equals 0, the result of the interpolation is a,
for t equals 1, the result of the interpolation is b, and between 0 and 1, a and b are
interpolated. Let's see the example for our previous animation:

var blue = d3.rgb(0,0,255);
var red = d3.rgb(255,0,0);
var interpolate = d3.interpolateRgb(blue, red);

We can now rewrite the tick function to set the interpolated color values in the
frames as follows:

var tickFn = function(elapsed){

 // Frame 0

Chapter 7

[175]

 if (elapsed <= 100) {
 circle.style("fill", interpolate(0));
 }

 // Frame 1
 else if (elapsed <= 200) {
 circle.style("fill", interpolate(1/5));
 }

 // Frame 2
 else if (elapsed <= 300) {
 circle.style("fill", interpolate(2/5));
 }

 // Frame 3
 else if (elapsed <= 400) {
 circle.style("fill", interpolate(3/5));
 }

 // Frame 4
 else if (elapsed <= 500) {
 circle.style("fill", interpolate(4/5));
 }

 // Frame 5
 else {
 circle.style("fill", interpolate(1));

 /* End Timer */
 return true;
 }
}

In the next step, we will use all the frames that the tick function provides, not only
the five key frames as before. This can be done by simply defining the t interpolation
parameter as the ratio of elapsed time and animation duration:

var duration = 500;

var tickFn = function(elapsed){

 var t = elapsed/duration;

 if (t <= 1.0) {
 circle.style("fill", interpolate(t));

Controlling Transitions and Animations

[176]

 }
 else {
 circle.style("fill", interpolate(1));

 /* End Timer */
 return true;
 }
}

When we compare the preceding code with the previous examples, we can see that
it's much more elegant and the animation looks much smoother because we are
using the available frame rate of the tick function for the color change animation.

In this example, we have seen a very simple animation, the change from one color to
another and the transition from one state to another state. In D3.js, there is a much
easier and cleaner way to describe transitions than using timers and interpolations;
we will discuss this in the following section.

Easy animations with transitions
Transitions are a special kind of animations where solely the change (transition)
between two discrete values—so called states—is described. We can simply think of
the previous animation example, a 1-dimensional dataset with the values blue and
red, where these two values are interpolated during the animation period. In this
previous example of the first section, we started from a custom animation and ended
up step by step with a transition between these two states:

Transition between two states

In D3.js, we call the .transition() method on a Selection to create a transition
object, which is again very similar to a Selection itself. This means that we can apply
methods like .attr(), .style(), .delay(), and .duration() on this transition
object to create automatically interpolated state transitions. Let's take a look at this in
action and see how the previous example looks with the usage of transitions:

var blue = d3.rgb(0,0,255);
var red = d3.rgb(255,0,0);

Chapter 7

[177]

var duration = 500;

circle
 .style("fill", blue)
 .transition()
 .duration(duration)
 .style("fill", red);

In the preceding code, we can see that .duration() and .style() are called on the
transition object, which is returned by the .transition() method. This is a much
cleaner way to describe the animation of a change from one state to another state. We
keep in mind that all the values that we set on the transition object are automatically
interpolated by D3.js within the duration period.

D3.js uses the appropriate interpolator to interpolate the property values,
interpolateRgb for color values, interpolateNumber for number values, or
interpolateString that interpolates numbers embedded in strings.

Staggered transitions
Most of the time when animating multiple elements, we don't want to animate all
elements at the same time. It's much easier to follow the animation if it's staggered
in time.

We can also use dynamic properties for transition methods such as the .delay() or
.duration() method. Let's create staggered transitions for multiple elements where
each transition is delayed. We can see this example in the following figure:

Delayed transitions

Controlling Transitions and Animations

[178]

In the code of the delayed transitions, we need to add dynamic properties in the
.delay() function:

var blue = d3.rgb(0,0,255);
var red = d3.rgb(255,0,0);
var duration = 2500;
// elements per row
var epr = 15;

var data = [];
for (var i=0; i<105; i++) {
 data.push(i);
}

var circles = svg.selectAll("circle")
 .data(data).enter()
 .append("circle")
 .attr("class", "frame")
 .attr("cx", function(d,i) { return (i%epr + 1)*50; })
 .attr("cy", function(d,i) { return Math.floor(i/epr + 1)*50; })
 .attr("r", 25);

circles
 .style("fill", blue)
 .transition()
 .delay(function(d,i) { return i*100; })
 .duration(duration)
 .style("fill", red);

Chaining transitions
In most cases, it's much easier, more elegant, and more comfortable to create an
animation by piecing together transitions rather than to deal with timers and
interpolations manually. In D3.js, we can use the .each(callback) method on the
transition object to chain transitions or the .each(event, callback) event handler
to listen for start, end, or interrupt events.

Chapter 7

[179]

If we want to detect the end of a transition, we need to add the .each(event,
callback)event listener to the selection of circles and listen for the end event of
each transition of the circles. Whenever the event occurs, the callback function is
executed. In the scope of the callback function, the this variable holds the reference
to the current element of the Selection whose event was triggered. The element can
be easily transformed to a D3-Selection by calling d3.select(this). Let's extend the
previous example, as shown in the following code:

circles
 .style("fill", blue)
 .transition()
 .delay(function(d,i) { return i*100; })
 .duration(duration)
 .style("fill", red)
 .each("end", function(){
 d3.select(this)
 .transition()
 .attr("r", 15);
 });

In the preceding code, we wait for each element to finish the color transition, and
in a subsequent step, we start a new transition that shrinks the radius of the current
element down to 15px. We can see the resulting animation of the preceding code in
the following figure:

Event handler detects end of transition

Controlling Transitions and Animations

[180]

Creating plausible transitions
As we discussed before, animations should help the reader to make sense of data
changes; thus, animations and transitions should be solely used to visualize the data
changes in a plausible way.

In general, we distinguish three common transitions for state changes in data
visualizations (see the following figure):

•	 Enter transitions: Here, data is added to the visualization
•	 Update transitions: Here, data is updated in the visualization
•	 Exit transitions: Here, data is removed from the visualization

Data value transition

In contrast to data value transitions, we can also animate the transition between two
different data representation styles, for example, the transition from a bar chart to a
pie chart. These transitions change the representation type of the data where the data
remains the same. In the following figure, we can see an example where the data
representation is changed from a circle to a rectangle:

Data representation transition

Both methods—value transitions and representation transitions—should never be
mixed together in one single transition.

Chapter 7

[181]

Interpolate anything with tweens
When dealing with complex properties in transitions, for example, line and area
functions that generate the d attribute, automatic interpolations can get a bit
tricky. This can especially cause problems when D3.js does not have any proper
interpolation for the desired properties. In these cases, we need to use a custom
interpolation function for the attribute transition; this is called tween in D3.js. We can
either use attrTween(attr, tweenFn), styleTween(style, tweenFn), or a tween
factory tween(name, factory) to create custom interpolators. Let's switch back to
the AngularJS project where you already learned to display area charts. In order to
create animations for the area chart, we need to interpolate the points of the dataset.
Let's first draw the area with the following code:

var area = d3.svg.area()
 .x(function(d) { return xScale(d.x); })
 .y0(yScale(0))
 .y1(function(d) { return yScale(d.y); })
 .interpolate('cardinal');
svg.select(".data-area")
 .datum(data)
 .attr("d", area);

The preceding code will create an output similar to the following screenshot:

Area chart generated with area function

To animate the d attribute, we need a custom interpolation function that can
interpolate the array of objects that is passed to the area generator; thus, we need
to use tweens. Let's implement an interpolation function interpolatePoints for
arrays of objects in the form of {x:0,y:0};:

var interpolatePoints = function(A, B) {

 var interpolator_x = d3.interpolateArray(
 A.map(function(d){ return d.x; }),
 B.map(function(d){ return d.x; })
);

Controlling Transitions and Animations

[182]

 var interpolator_y = d3.interpolateArray(
 A.map(function(d){ return d.y; }),
 B.map(function(d){ return d.y; })
);

 return function(t) {
 var x = interpolator_x(t);
 var y = interpolator_y(t);

 return x.map(function(d,i){
 return {
 x: x(i),
 y: y(i)
 };
 });
 };
};

The preceding code combines the x and y values to arrays and runs the array
interpolation function on them. Then, it returns an interpolation function, which
combines both the interpolated arrays, back to an array of objects.

Let's assume we want to create a transition that grows the area in the direction of
the y axis, similar to the following screenshot:

Attribute tween transition in an area chart

We can achieve this by creating an attrTween function for the d attribute and
returning an interpolated value between an array with all y values, 0, and the data
array. The code will look like this:

svg.select(".data-area")
 .datum(data)
 .transition()
 .duration(duration)
 .attrTween("d", function(){

 var min = d3.min(data, function(d){ return d.y; });

Chapter 7

[183]

 var start = data.map(function(d){
 return {
 x: d.x,
 y: min
 };
 });

 var interpolate = interpolatePoints(start, data);

 return function(t) {
 return area(interpolate(t));
 };
 });

In the preceding code, we grow the area in the direction of the y axis. First in the
attrTween function, we create a start array. This stores the correct x values and
the minimum y value of the dataset. Then, we create the custom interpolation
function between the start array and the dataset. In the end, we return the
interpolated area function.

Realistic animations with easing
Until now, we animated all attribute changes with the same time step size. However,
all physical realistic animations are accelerated or decelerated; therefore, the
animation over time is not linear anymore. If we want to create plausible and realistic
animations, we have to adapt the linear step size with a nonlinear easing function.

Easing functions describe the change of a value over time, where value is the
property that we want to animate. Let's imagine the transition of a ball from position
0 (left-hand side) to position 1 (right-hand side), the ball moves from left to right. If
the ball moves with a constant speed from left to right, we call it a linear transition
(or linear easing).

We can also visualize this. Let's assume that the whole animation takes 1 second
and every 0.2 seconds we take a picture of the ball in the scene. We can see that the
position changes linearly with a step size of 0.2 because of the constant speed. We
can see this linear transition in the following figure:

Controlling Transitions and Animations

[184]

Let's look at this transition in a 2D chart where we plot the time on the x-axis and the
position of the ball on the y-axis (see the following figure). This plot is the so-called
easing function, in this case, the linear easing function that describes the change of
the animation value (here, the position) over time:

Linear easing function

Let's assume that the ball is not moving with constant speed; let's say it's lying on
the left-hand side in the beginning and then accelerated with a constant acceleration.
This is the so-called quadratic easing and is displayed in the following figure. We can
see that the position changes quadratically over time:

Chapter 7

[185]

This effect is also visible in the easing function in the next figure. We can see that
instead of a straight line of the linear easing, the function of quadratic easing is
nonlinear. In D3.js, we can use the built-in d3.ease('quad') easing function to
create a transition with quadratic easing.

Quadratic easing function

If we want to model an animation with an increasing acceleration, we can use the
cubic easing function d3.ease('cubic'), which we can see in the following figure.
Now, the position values increase by the power of three for every interval:

We can see the slightly steeper cubic easing function in the next figure:

Cubic easing function

Controlling Transitions and Animations

[186]

In general, we are free to design any easing function that we want in order to
create custom easing effects. For example, let's take the slope of a sine function
as an easing function:

Sine easing function

The transition of the ball using the preceding easing function looks like the
following figure:

We can use any easing that we want if we can design an appropriate easing function.
All the previous examples can be easily created with cubic Bézier curves, but this
is not really a constraint. We can also use much more complex functions to model
bouncing or elastic materials if we can describe it with a parametric equation.

Custom easing function

Chapter 7

[187]

In general, we will use the built-in d3.ease() function or design the animations
with the control points of Bézier curves (this is also possible in CSS transitions). In
all other cases, we will probably use easing functions that some very clever people
already wrote for us.

You can find very useful information about easing functions
and many implementations for the Web in CSS and
JavaScript at http://easings.net/.

Transitions in charts
In this section, we will apply the knowledge of the discussed sections on animations
and transitions to the charts that we designed in the previous chapters.

To create a basic enter animation for a bar chart—like the one that we can see in the
following figure—we need to first create a transition for the position of each bar on
the y axis and the height of each bar:

The bar chart

We want to animate from the position of the 0 value to the y value of the data point.
Let's write this down as follows:

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('width', function(d) { return barWidth; })
 .attr('y', yScale(0))
 .attr('height', 0)
 .transition()
 .attr('y', function(d) { return yScale(d.y); })
 .attr('height', function(d) { return yScale(0) -
 yScale(d.y); });

http://easings.net/

Controlling Transitions and Animations

[188]

This is the most basic enter transition that we can think of because we are animating
solely along the y axis with the same duration for every data point. We can see a
schematic of the animation in the following figure:

Linear transition along the y axis

If the duration of the animation of every data point should depend on its y value, we
need to add a relative duration:

var max = d3.max(data, function(d){ return d.y; });
var duration = 2500;

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('width', function(d) { return barWidth; })
 .attr('y', yScale(0))
 .attr('height', 0)
 .transition()
 .duration(function(d, i){ return duration*(d.y/max); })
 .attr('y', function(d) { return yScale(d.y); })
 .attr('height', function(d) { return yScale(0) -
 yScale(d.y); });

Now, as we can see in the following figure, the duration for small y values is
shorter than for big ones and the maximum y value will have the maximum
duration of the animation:

Linear transition with varying durations along y axis

Chapter 7

[189]

To make the animation slightly more realistic, we add a cubic easing function:

var max = d3.max(data, function(d){ return d.y; });
var duration = 2500;

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('width', function(d) { return barWidth; })
 .attr('y', yScale(0))
 .attr('height', 0)
 .transition()
 .duration(function(d, i){ return duration*(d.y/max); })
 .ease('cubic')
 .attr('y', function(d) { return yScale(d.y); })
 .attr('height', function(d) { return yScale(0) -
 yScale(d.y); });

We can see in the following figure that the animation is not linear anymore, but cubic
along the y axis:

Cubic transition with varying durations along the y axis

Now, the animation along the y axis looks great, but all the values are animated
at the same time. In the next step, we stagger the transitions along the x axis by
enabling a delay for every element:

var max = d3.max(data, function(d){ return d.y; });
var duration = 2500;

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('width', function(d) { return barWidth; })
 .attr('y', yScale(0))

Controlling Transitions and Animations

[190]

 .attr('height', 0)
 .transition()
 .duration(function(d, i){ return duration*(d.y/max); })
 .delay(function(d,i) { return 100*i; })
 .ease('cubic')
 .attr('y', function(d) { return yScale(d.y); })
 .attr('height', function(d) { return yScale(0) -
 yScale(d.y); });

In the following figure, we see the output of the preceding code. The chart is now
created from left to right and it's very easy to follow how the data gets appended to
the visualization:

Linear transition along the x axis

To also make this animation along the x axis more realistic, we can add easing to
the time staggering delay of the animation. To achieve this, we need to create an
easing function and use it depending on the x position of the chart. Let's take a look
at the code:

var easing = d3.ease('cubic');
var max = d3.max(data, function(d){ return d.y; });
var duration = 2500;

svg.select('.data')
 .selectAll('rect').data(data)
 .attr('r', 2.5)
 .attr('x', function(d) { return xScale(d.x) - barWidth*0.5; })
 .attr('width', function(d) { return barWidth; })
 .attr('y', yScale(0))
 .attr('height', 0)
 .transition()
 .duration(function(d, i){ return duration*(d.y/max); })
 .ease('cubic')
 .delay(function(d,i) { return duration*easing
 ((i+1)/data.length); })

Chapter 7

[191]

 .attr('y', function(d) { return yScale(d.y); })
 .attr('height', function(d) { return yScale(0) -
 yScale(d.y); });

First, we create a custom parametric easing(t) function, which we then apply on
the delay property of every element. The delay element is computed using the
duration time—the easing factor (between 0 and 1), which is defined by the ith
position of the element, and the used easing method. Thus, the first element has a
very short delay and the last element is delayed by the duration time. We see the
nonlinear transition along the x axis in the output of the preceding code (see the
following figure):

Cubic transition along the x axis

Summary
In this chapter, you learned the basics of animations in D3.js. You also learned
that animations are timer triggered changes of properties. D3.js implements high
performance timers and uses the native requestAnimationFrame() method if
available.

Interpolators are parametric functions that return an interpolated value for a parameter
between 0 and 1. D3.js integrates a variety of interpolation functions, but we can easily
implement a new one for our data types. Transitions are much more comfortable and
elegant than creating custom timers and interpolators. We also saw how to chain and
stagger transitions and put them together piecewise to create animations.

After playing around with some examples of transitions, we discovered that there
exist attributes that cannot be automatically interpolated. This concerns mainly the
area and line generators that are used to generate the d attribute for path elements.
Tweens are a way to implement custom interpolation functions for the transition of
complex attributes and styles.

Controlling Transitions and Animations

[192]

In the following section, we made the transition from linear animation step sizes to
arbitrary step sizes with the use of easing functions. We also discussed physically
realistic quadratic easing, cubic easing, and also bounce easing.

Finally, we applied all the theory about transitions, tweens, and easing to the
previously designed chart types. We saw that we need to design all the enter,
update, and exit transition separately.

In the following chapter, we will bring the charts to life and add interactions. We will
learn how to use filters and brushes to control the datasets by interaction with the
visualizations.

[193]

Bringing the Chart to Life
with Interactions

In this chapter, we want to bring the chart to life and make the previous
visualizations interactive. The biggest advantage of presenting data visualizations
and graphs on the Web is that they can become interactive very easily. Interactive
visualizations allow a much better understanding and processing of the data.

First, we will speak about events and event listeners in JavaScript in general. Then,
we will focus on D3.js. This will enable us to understand how interactions are
implemented on the lowest level and take this knowledge to implement a higher
level control.

Then, we will directly use the event listeners to implement cursors for the previously
developed chart directives. After a simple example, you will learn how to extract the
nearest data point relative to the cursor position in order to implement snappy cursors.

In the following section, you will learn how to create custom events with D3.js
in order to update the AngularJS scope from within the D3.js chart library. We
will understand how proper encapsulation and event systems can facilitate the
integration of our components.

After cursors, we will take a close look at zooming and panning. We will start with a
simple zooming example. This example can be very useful in different applications.
However, in a chart application, we would prefer a more functional zoom and
panning (such as zooming on the time scale x axis). We will implement this as a
second example. Later, we will come back to the AngularJS application-side to learn
about filters and how they can be used in the application. We will then use the filter
directly in the directive to implement a fully synchronous date range filter for all our
chart directives.

Bringing the Chart to Life with Interactions

[194]

Range filters for selecting ranges on the x axis are a common task in data
visualizations; thus, D3.js implements a very flexible advanced filter for this
job—so-called brushes. We will modify the range filter from the previous section
and implement a similar filter with brushes in the last section. In this chapter, you
will learn about native events and event listeners:

•	 Learn how to extract the nearest data point relative to the cursor position
•	 Implement a snappy cursor
•	 Implement labels
•	 Learn about custom events and event listeners
•	 Integrate an event system into the chart application
•	 Implement a simple zoom
•	 Implement an x axis zoom for time series
•	 Implement a date range filter and brushes

Listen for events
Interactions in JavaScript are based on the concept of events and event listeners. This
concept works like this: first, one defines an event listener on an element. Then, it
waits for a specific event of the element to occur, for example, this could be a click
event. Every time the event occurs (the element is clicked on), a callback function is
executed. Having said that, we can attach listeners to any element of the DOM and
trigger functions as soon as the event occurs.

In D3.js, we can attach listeners directly to Selections via the .on(event, callback)
method. Whenever D3.js handles an event, the d3.event variable stores all the
information of the currently triggered event. Let's look at a simple example:

svg.on('click', function(){

 var e = d3.event;

 // Get relative cursor position
 var xpos = (e.offsetX==undefined) ? e.layerX : e.offsetX;
 var ypos = (e.offsetY==undefined) ? e.layerY : e.offsetY;

 svg.append("circle")
 .attr("cx", xpos)
 .attr("cy", ypos)
 .style("fill", "steelblue")
 .attr("r", 50);
});

Chapter 8

[195]

In the preceding example, we attached a click listener to the svg node that
generates a circle element with the center point coordinates of the current click
event (actually, we use the offset coordinates, namely, offsetX and offsetY in
Chrome and layerX and layerY in Firefox of the root svg node). The output of the
example after a few clicks looks similar to the following figure:

Circles generated by click events

Type of Events
Now, we know how listeners are attached to elements and callbacks are executed
when a specific event occurs. In web visualizations, we will mostly use mouse
events; thus, I will provide a list of the most common ones in their correct execution
order (from top to bottom):

•	 mouseenter: This event occurs when the mouse cursor is entering the element
•	 mouseover: This event occurs when the mouse cursor is hovering over

the element
•	 mousemove: This event occurs when the mouse is moved over the element
•	 mousedown: This event occurs when the mouse button is pressed
•	 mouseup: This event occurs when the mouse button is released
•	 click: This event occurs when the element is clicked on
•	 dblclick: This event occurs when the element is double-clicked
•	 mouseleave: This event occurs when the mouse cursor is leaving the element

A complete list of DOM events and detailed explanations are
available at https://developer.mozilla.org/en-US/
docs/Web/Events.

https://developer.mozilla.org/en-US/docs/Web/Events
https://developer.mozilla.org/en-US/docs/Web/Events

Bringing the Chart to Life with Interactions

[196]

Let's take a look at how these events are dispatched when they are assigned to an event
handler. Therefore, we create an array of events and attach them to a circle node:

var circle = svg.append("circle")
 .attr("cx", 100)
 .attr("cy", 100)
 .attr("r", 50);

var events = [
 'click', 'dblclick',
 'mouseover', 'mouseenter', 'mouseleave',
 'mousemove', 'mousedown', 'mouseup'
];

events.map(function(e){
 circle.on(e, function(){
 console.log("Triggered", d3.event.type);
 });
});

In the preceding example, we use the type property on d3.event to obtain
information on the type of event that was triggered. If we open the example in the
browser and move the mouse over the circle to perform a double-click on it, we can
see the order of the dispatched events in the console. The output should look similar
to the following screenshot:

Multiple events are dispatched

Chapter 8

[197]

Getting event coordinates
As we saw before, we have access to the current event in the event callback function
with the d3.event object. This object gives us access to a variety of useful properties
of the event, such as the position of the mouse cursor, the key code of a pressed key,
or the time stamp of the event. Besides, the position of the cursor in global screen
coordinates (screenX, screenY) and in local DOM coordinates (clientX, clientY),
we also have access to the relative offset (offsetX, offsetY) to the element on which
the event listener was called in Chrome. However, in Firefox, we need to use layerX
and layerY to get the coordinates relative to the parent.

More information on the Event object and detailed
explanation of the attributes can be found at https://
developer.mozilla.org/en-US/docs/Web/
API/Event. You can find detailed information on the
MouseEvent at https://developer.mozilla.org/
en-US/docs/Web/API/MouseEvent.

More useful coordinates are provided by d3.mouse(container) and
d3.touch(container), which return the position of the mouse or touches relative to
a container element.

Let's see an example for this and implement a simple drawing tool:

var is_drawing = false;

svg.on('mousemove', function(){

 var pos = d3.mouse(this);

 if (is_drawing) {
 svg.append("circle")
 .attr("cx", pos[0])
 .attr("cy", pos[1])
 .style("fill", "red")
 .attr("r", 3);
 }
}).on('mousedown', function(){
 is_drawing = true;
}).on('mouseup', function(){
 is_drawing = false;
});

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent

Bringing the Chart to Life with Interactions

[198]

In the preceding example, we set is_drawing to true when we press the mouse
button (mousedown) and we set this to false when we release the mouse button
(mouseup). Once is_drawing is true, we obtain the position of the mouse relative to
the current element (the svg node) by calling d3.mouse(this). Finally, we place a
small circle on the current position of the cursor. The output of my drawing skills can
be observed in the following screenshot:

Simple drawing application

Cursors
With the previous knowledge, we are already prepared to implement cursors for
our visualization directives. Cursor lets us interact with the visualization because
they can show us more detail about the presented values. In my opinion, every
two-dimensional graph should have an option to enable cursors; it facilitates
understanding a graph.

A simple cursor
First, we want to start with a cursor that solely follows the mouse movements and
shows the current values of the axes at the position of the cursor. The following
image visualizes what we want to achieve. I bordered the cursor values with red
color to better show where we want to place the cursor labels later:

A simple cursor

Chapter 8

[199]

First, let's discuss the steps that we have to implement to achieve a result similar to
the previous image. Every time we move the mouse, we need to:

•	 Find the coordinates of the cursor
•	 Get the corresponding axis values of the cursor's coordinates
•	 Draw a line parallel to the y axis at the x position of the cursor
•	 Draw a line parallel to the x axis at the y position of the cursor
•	 Add a label of the x value at the x position of the cursor on the x axis
•	 Add a label of the y value at the y position of the cursor on the y axis

Okay, let's get started and add a cursor container and the lines and labels of the
cursor to our bar chart directive. We will add these steps to the initialization of the
chart to make sure the elements are created just once:

/* src/chart.js */
...
.directive('myBarChart', ["d3",
 function(d3){
 ...
 var cursorCont = axisCont.append('g').attr('class', 'cursor');
 cursorCont.append('line').attr('class', 'x-cursor cursor');
 cursorCont.append('line').attr('class', 'y-cursor cursor');
 cursorCont.append('text').attr('class', 'x-label label');
 cursorCont.append('text').attr('class', 'y-label label');
 }
])

Now, we can modify the draw() function where we actually draw the graph.
We add an event listener for the mousemove event in order to compute the cursor
position and values every time users move the mouse:

/* src/chart.js --> draw() */

...

.directive('myBarChart', ["d3",
 function(d3){
 function draw(...) {
 ...
 var xCursor = svg.select('.x-cursor');
 var yCursor = svg.select('.y-cursor');
 var xLabel = svg.select('.x-label');
 var yLabel = svg.select('.y-label');
 svg.on('mousemove', function(){

Bringing the Chart to Life with Interactions

[200]

 // Implement fancy cursors here
 });
 }
 }
])

First, in the mousemove event handler, we need to get the cursor coordinates relative
to the svg node and the corresponding axis values:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
 var pos = d3.mouse(this);
 var xValue = xScale.invert(pos[0]);
 var yValue = yScale.invert(pos[1]);
 var xMin = d3.min(data, function(d) { return d.x; });
 var xMax = d3.max(data, function(d) { return d.x; });
 var yMax = d3.max(data, function(d) { return d.y; });
});

In the preceding code, we use the scale .invert() method to obtain a valid
dataset value from a given pixel value (this is discussed in more detail in Chapter 3,
Manipulating Data). We also compute the maximum values of both x and y axis.

Finally, we can move the first line to the x position of the cursor and add the x value
as a label rotated 90 degrees to the x axis. We also want to format the label such that
it shows hours, minutes, and seconds and that the cursor can just move between the
areas of the chart:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
...
 xCursor
 .attr('x1', pos[0])
 .attr('y1', yScale(0))
 .attr('x2', pos[0])
 .attr('y2', yScale(yMax));

 xLabel
 .attr('transform', 'translate('+pos[0]+','+(yMax + 8)+')
 rotate(-90)')
 .text(d3.time.format('%H:%I:%S')(+xValue));
});

Chapter 8

[201]

Also, as a last step, we do the same for the second line of the cursor and the label on
the y axis. The format of this label can be the same as the one we used previously for
the ticks on the y axis:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
...
 yCursor
 .attr('x1', xScale(0))
 .attr('y1', pos[1])
 .attr('x2', xScale(xMax))
 .attr('y2', pos[1]);

 yLabel
 .attr('transform', 'translate('+(xScale(0)-8)+','+pos[1]+')')
 .text(d3.format('f')(yValue));
});

This wasn't very complicated, wasn't it? Let's make the cursor a little bit more helpful
because right now this cursor just blindly follows the mouse cursor!

Snappy cursors
Although cursors help us to understand the data of a graph better, cursors that
move completely aligned with the mouse coordinates do not show the most
valuable information. In the next step, we want to implement cursors that
automatically snap to the nearest data point from the cursor position; the following
image visualizes our goal:

Explanation of a snappy cursor

To solve this particular problem, we have to add one more step (the third point in
the following list) to the previous implementation:

•	 Find the coordinates of the cursor
•	 Get the corresponding axis values of the cursor's coordinates

Bringing the Chart to Life with Interactions

[202]

•	 Get the nearest data point
•	 Draw a line parallel to the y axis at the x position of the nearest data point
•	 Draw a line parallel to the x axis at the y position of the nearest data point
•	 Add a label of the x value at the x position of the cursor on the x axis
•	 Add a label of the y value at the y position of the cursor on the y axis

In this implementation, I will only discuss the difference to the previous
example—finding the nearest value in the dataset—and I will implement this cursor
for the area chart. Let's start with getting the x-value of the current cursor position:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
 var pos = d3.mouse(this);
 var valueX = xScale.invert(pos[0]);
});

As a second step, we need to find the nearest data point. To do so, we will need
to traverse the dataset and return the index of the element whose value is bigger
than the provided value. In D3.js, this can be achieved by using the d3.bisector()
function, in our case, custom bisectors and an accessor function for the x coordinate:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
 ...
 // Create a bisector with an accessor function
 // that traverses the array from left
 var xBisect = d3.bisector(function(d) { return d.x; }).left;
 // Apply the bisector
 var index = xBisect(data, xValue);
});

This is a really neat function because we don't need to implement the traversal
ourselves! Now, we have the index of the element after the intersection; we need to
compare whether the current value is closer to the previous value or the following
one. We also check whether the index is in a valid range for our next steps:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
 ...
 if (index == 0 || index > data.length) {
 return;
 }
 var d0 = data[index - 1];

Chapter 8

[203]

 var d1 = data[index];
 // get the nearest value
 var d = xValue - d0.x > d1.x - xValue ? d1 : d0;
});

In the preceding example, the d variable references the nearest data point that
corresponds to the current mouse cursor position. This was already the hardest part
of the problem The rest is similar to the previous example of simple cursors, while
just swapping the cursor position with the position of the data point in the graph
(xScale(d.x), yScale(d.y)). Once we implemented this and added a focus to the
active element, the result will look similar to the following figure:

The snappy cursor in action

In the preceding image, we can see that the mouse cursor is above the data point
and it's shifted slightly to the right-hand side along the x axis. However, the snappy
cursor highlights the nearest data point on the x axis—just as we wanted.

Labeling the cursor position
Once we know the cursor position and its corresponding values on the axes, it's
fairly easy to display labels that show the current cursor values. We want to display
these labels as an overlay on the chart axis at the same position as the axis tick
values. The label should have a label icon and contain the current value of the cursor
on the corresponding axis.

First, we need to create a group that contains the label icon and the label text. We
need to style the icon according to our needs. Note that in the previous example, we
solely create a label text node, whereas now we will create a g node with a path
node and text node inside. As we did previously with the cursor, we create the label
once and later just move it to the current cursor position. Let's create all the elements
in the chart initialization of the line chart directive:

/* src/chart.js */
...
.directive('myBarChart', ["d3",
 function(d3){

Bringing the Chart to Life with Interactions

[204]

 ...
 var xLabelNode = focusCont.append('g').attr('class', 'x-label
 label');
 var yLabelNode = focusCont.append('g').attr('class', 'y-label
 label');

 // Path for the label shape
 var tag_path = 'M 51.166,23.963 62.359,17.5 c 1.43,-0.824
 1.43,-2.175 0,-3 L 51.166,8.037 48.568,1.537 2,1.4693227
 2,30.576466 48.568,30.463 z';

 xLabelNode.append('path')
 .style('display', 'none')
 .attr('d', tag_path)
 .attr('transform', 'translate(-30, -15) scale(0.7)');
 xLabelNode.append('text')
 .attr('transform', 'translate(-20)');

 yLabelNode.append('path')
 .style('display', 'none')
 .attr('d', tag_path)
 .attr('transform', 'translate(-30, -15) scale(0.7)');
 yLabelNode.append('text')
 .attr('transform', 'translate(-20)');
 }])

In the preceding code, we add the label groups to focusCont—the container that
shows all focus elements on the top of the chart. Thanks to this, the labels will be
overlaying the axis ticks.

Now, we can implement the labels and move them to the corresponding position on
the axis when the cursor moves. Let's define some margins and translate the label
groups to their corresponding positions:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
...
 var xMargin = -8, yMargin = 3;

 var xLeft = xScale(d.x) + xMargin;
 var xTop = yScale(0);

 xLabel
 .transition()

Chapter 8

[205]

 .ease(easing)
 .duration(duration)
 .attr('transform', 'translate('+xLeft+','+xTop+') rotate(-
 90)');

 var yLeft = xScale(xMin);
 var yTop = yScale(d.y) + yMargin;

 yLabel
 .transition()
 .ease(easing)
 .duration(duration)
 .attr('transform', 'translate('+yLeft+','+yTop+')');
});

Now, we need to display the label and update the values of the labels. So, we extend
the preceding function by the following code:

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){
...
 xLabel.select('text')
 .text(d3.time.format('%H:%M')(+d.x));

 xLabel.select('path')
 .style('display', 'block');

 yLabel.select('text')
 .text(d3.format('f')(d.y));

 yLabelNode.select('path')
 .style('display', 'block');
});

In the preceding code, we use the same formatting functions that we used previously
in the axis.

Bringing the Chart to Life with Interactions

[206]

Now, if we look at the result of the cursor with the new labels, we see a chart similar
to following figure:

Snappy cursor with labels updating the AngularJS scope from D3.js

As a next step, we want to use the cursor data within the whole AngularJS
application to display the current cursor position in another part of the application.
This means that we need to somehow update the variables in the scope of the
directive from within the chart library.

The first idea that comes to mind is to simply store the scope for each chart while
initializing it, similar to the following example:

/* src/chart.js --> AngularJS directive */
...
link: function(scope, element, attrs) {
 var chart = new Chart(element[0], scope);
 ...
}

/* src/chart.js --> D3.js chart library */
...
redraw: function() {
 ...
 this.scope.xCursor = xCurrent;
 ...
}

Chapter 8

[207]

In the preceding code, we see that we could just call scope.xCursor, and so on to
update variables on the scope from within the chart library. This technique might
work as expected for a quick and dirty example, but it's a very bad integration; we
just created a hard-coded dependency on AngularJS. If we want to use the chart
library with any other JavaScript application framework in the future, we will have
to rewrite and adapt the library for this framework.

The proper way to integrate the chart library and the application is to use an event
system with event registrations and an event handler function. With this technique,
we can listen for certain events—such as change of the cursor position—and update
the scope outside the chart library. Thus, the chart library will not have to be adapted
for any other frameworks. Let's see how the following example looks with the use
of events:

/* src/chart.js --> AngularJS directive */
...
link: function(scope, element, attrs) {
 var chart = new Chart(element[0]);

 chart.on('cursorchange', function(xCurrent){
 scope.$apply(function() {
 scope.xCursor = xCurrent;
 });
 });
}

In the preceding example, we can see that now we have all the AngularJS relevant
code inside the directive—only by encapsulating both services (the AngularJS
directive and the D3.js library) and using an event system. With the .on() method,
we will create an event listener for the cursorchange event and set the scope
variable in the event handler. We need to wrap the code in the scope.$apply()
block to trigger a digest after its execution and inform AngularJS about the changes.
Let's take a look at how we can implement such an .on() function and integrate
custom events into our chart library.

Events and encapsulation are the cleanest and most robust
way of integrating services.

Bringing the Chart to Life with Interactions

[208]

Customizing events in D3.js
Fortunately, D3.js provides a solid and simple event system. This is also used by
D3.js internally. To implement custom events, we need to first initialize an event,
then register an event listener, and finally dispatch the event:

•	 d3.dispatch(event): This initializes an event and creates a dispatcher
•	 dispatch.on(event, listener): This registers an event handler
•	 dispatch.event(args): This dispatches the event and calls all

registered handlers

Let's look at an example where we want to listen for a customevent:

// Create dispatcher
var dispatch = d3.dispatch("customevent");

// Register handler
dispatch.on("customevent", function(args){

 console.log("Custom event called with", args);
});

// Disatch event
dispatch.customevent('some args');

If we run this example and look at the JavaScript console, we see the Custom event
called some args expected output. In the preceding example, we also see how
easy it is to use events in your D3.js library, so there is no excuse not to use it!

Displaying self-updating cursor values
Finally, we want to use the custom event system to implement a box that displays
the custom cursor position. We will simply store the cursor position on the scope
of the directive and bind it to a span tag below the chart. Then, we will update the
scope variable with the new event system.

Chapter 8

[209]

First, we need to set up and integrate the event system into the chart library. Then,
we need to provide an .on() method on the chart object in order to register events.
Let's get started; we will implement this in the initialization of the chart:

/* src/chart.js */
...
.directive('myBarChart', ["d3",
 function(d3){ ...
 // Initialize the 'cursorchange' event
 var dispatch = d3.dispatch("cursorchange");
 }
])

In the preceding example, we initialize the cursorchange event and make the
event listener available directly on the dispatch variable. Now, we also need to
make the dispatch variable available inside the draw() function; therefore, we add
it as a draw(..., dispatch) argument. As a next step, we need to call the event
dispatcher when the cursor position changes (the mouse moves over the chart):

/* src/chart.js --> draw() */
...
svg.on('mousemove', function(){

 ...
 // dispatch all cursor change events
dispatch.cursorchange([d.x, d.y]);
});

In the end, we dispatch the cursorchange event with the current cursor values
as arguments.

Now, we can implement the event listener in the directive—exactly as we saw in the
integration example in the beginning of this section. Don't forget to add the cursor
variable to the private scope of the directive:

/* src/chart.js */
...
scope: {
 data: '=',
 cursor: '='
},
link: function(scope, element, attrs) {
 ...
 /* Listen on cursor change */
 dispatch.on('cursorchange', function(cursor) {

Bringing the Chart to Life with Interactions

[210]

 if (cursor){
 scope.$apply(function() {
 scope.cursor = cursor;
 });
 }
 });
 ...
}

In the preceding example, we can see that custom events work exactly as they should
by simply registering a listener on the dispatch variable with the .on(event,
listener) method. Now, let's add the cursor to the main controller of the application:

/* src/app.js */
...
// Main application controller
.controller('MainCtrl', ["$scope", ...
 function ($scope, ...) {

 $scope.display = {
 cursor: []
 };
 ...
 }
]);

Finally, we can display the cursor variables in the application:

<!-- index.html -->
<div>
 Cursor:

 {{ display.cursor[0] | date : 'dd.MM.yyyy HH:mm' }}

 {{ display.cursor[1] | number:2 }}

</div>
<bar-chart class="chart" data="log.data"
cursor="display.cursor"></bar-chart>

Chapter 8

[211]

In the preceding code snippet, we bind the display.cursor object from the scope
of the controller to the private scope of the directive. This automatically updates
the cursor value in the controller for us. Then, we display both values with a date
filter for the x value and a number filter for the y value. We can see the result of this
implementation in the following image:

Chart with self-updating cursor values

Zooming and panning
We will very soon encounter a problem that some differences between two
neighboring data points are very small and hard to grasp. In this case, it will be
very handy to just zoom in to this particular position.

Bringing the Chart to Life with Interactions

[212]

A simple zoom
Let's start with a simple example of a zoom where we just want to enlarge the
viewpoint of the svg image. The following figure illustrates the problem:

Zoomed viewpoint of the chart

To implement this zoom, we need to add another group layer to the svg element,
which contains all the previous underlying layers and handles zooming and panning
properly via the translate and scale transformation attributes so that we don't
have to touch other components.

Then, zooming can be implemented with the d3.behavior.zoom() function, a
helper method that can automatically handle zooming and panning events for mouse
and touch inputs. If the event is triggered, d3.event provides the current scale and
translation values to zoom and pan. Let's add this behavior to the area chart:

/* src/chart.js --> draw() */
...
var translateZ = [0,0];
var scaleZ = 1;
var zoom = d3.behavior.zoom()
 .on("zoom", function() {
 translateZ = d3.event.translate;
 scaleZ = d3.event.scale;
 svg.select('.vis')
 .attr("transform", "translate(" + translateZ + ")scale(" +
 scaleZ + ")");
 });

Now, we just need to call the zoom function on the element that listens for the
zoom event. In our case, this element will be the root svg node; thus, we write the
following code:

svg.call(zoom);

This is already the solution to the simple zooming problem. However, we want a
better zooming experience, so let's zoom the chart just along the x axis.

Chapter 8

[213]

An x axis zoom
The simple zoom example is a nice gimmick, but not really helpful in a real visualization
application. More likely, we want to zoom the data area of the graph and update the
axis accordingly. This is exactly what we want to implement now for the x axis.

This is again done with the use of d3.behavior.zoom() and it's nearly completely
automatic. The reason for this is that we can attach a scale object to the zoom object,
which adapts the domain of the scale automatically for us according to the current
zoom and pan. The only thing left to do is to update the data points and the axis.
Let's take a look at the implementation directly in our chart library:

/* src/chart.js --> draw() */
...
var zoom = d3.behavior.zoom()
 .x(xScale)
 .on("zoom", function() {

 // Update x-Axis
 svg.select('.x-axis').call(xAxis);
 svg.select('.x-grid').call(xGrid);

 // Update data points
 svg.select('.data')
 .selectAll('circle').data(data)
 .attr('cx', function(d) { return xScale(d.x); })
 .attr('cy', function(d) { return yScale(d.y); });

 // line1 contains the line generator
 svg.select(".data-line").attr('d', line1);
 // area1 contains the area generator
 svg.select(".data-area").attr('d', area1);
 });

svg.call(zoom);

As we see in the preceding example, simply attaching the scale object to the zoom
function magically does all the zooming and panning actions. We can see the output
of the x axis zoom in the following image:

Zoom on x axis

Bringing the Chart to Life with Interactions

[214]

Interactive filters
Let's switch back to AngularJS for a section. To be precise, let's take a look at filters.
Let's implement two filters that compare Date objects and returns the elements of
an array that are greater than or equal to a specific date (gte_date) and less than or
equal to a specific date (lte_d). First, we need to add a filter via the .filter(name,
filter_func) function to the AngularJS chart component. The filter_func
argument needs to return a function in the shape of function(arg1, arg2, …),
where arg1 is usually the input array that finally returns the filtered array. Okay,
let's implement this:

/* src/chart.js */
.filter('gte_date', function(){
 return function(input, raw_date){
 var date = new Date(raw_date);
 return isNaN(date.getTime()) ? input :
 input.filter(function(d){
 return d.x >= date;
 });
 };
})

.filter('lte_date', function(){
 return function(input, raw_date){
 var date = new Date(raw_date);
 return isNaN(date.getTime()) ? input :
 input.filter(function(d){
 return d.x <= date;
 });
 };
})

In the preceding code, we added a check if the provided raw_date parameter
generates a valid Date object. If so, we apply the filter and if not, we return the input
unfiltered. We can now use this filter directly in the directive template, as shown in
the following code snippet:

/* src/app.js */
...
// Main application controller
.controller('MainCtrl', ["$scope", ...
 function ($scope, ...) {

 $scope.startDate = '2014-11-26T12:00:00+0100';
 $scope.endDate = '2014-11-26T17:00:00+0100';
 ...

Chapter 8

[215]

 }]);

<!-- index.html -->
<my-line-chart data="log.data | gte_date:startDate |
lte_date:endDate"></my-line-chart>

For our application, another approach is more interesting. We want to share the
selected start and ending dates throughout the whole AngularJS application and in
D3.js as well. Therefore, it's better to define startDate and endDate as attributes for
the directive so that we can modify them from within the visualization; let's adapt
the directive in such a way that it links both attributes on scope:

/* src/chart.js */
...scope: {
 data: '=',
 cursor: '=',
 startDate: '=',
 endDate: '='
},
...

The HTML template of the directive also needs to be adapted as follows:

<my-line-chart data="data" start-date="startDate" end-
date="endDate"></my-line-chart>

The previous changes imply that we now need to apply the previously implemented
filters in the directive. An AngularJS filter can be called outside the HTML template
with the $filter('name')(arg1, arg2, ...) syntax. Let's inject the $filter
module to the bar chart directive and add a filter() function to the directive:

/* src/chart.js */
...// Bar Chart directive
.directive('myBarChart', ["d3", "$filter",
 function(d3, $filter){
 ...
 function filter(data, minDate, maxDate) {
 // Create a new array
 var d = data.slice(0);
 if (minDate !== undefined) {
 d = $filter('gte_date')(d, minDate);
 }
 if (maxDate !== undefined) {
 d = $filter('lte_date')(d, maxDate);
 }
 return d;
 }
 ...
 }])

Bringing the Chart to Life with Interactions

[216]

Now, we can simply call this new filter() function in the link function of the chart
directive to filter the dataset and extract the data between minDate and maxDate:

/* src/chart.js --> link() */
...
// Watch the data attribute of the scope
scope.$watch('[data, startDate, endDate]', function(newVal, oldVal,
scope) {

 // Update the chart
 if (scope.data) {
 var data = filter(scope.data, scope.startDate, scope.endDate);
 draw(svg, width, height, data, dispatch);
 }
}, true);
...

I want to quickly summarize what the last changes enabled us to do. It allows you
to keep the starting and ending dates of the date filter inside the app controller and
link them to all time series directives. This means that we can filter all charts in our
visualization at the same time with a simple date filter. That's awesome.

To make the filter visually more appealing, we can add an AngularJS Bootstrap date
range picker (see the following image) to select the period of interest more easily:

AngularJS Bootstrap date range picker

Chapter 8

[217]

However, we should also somehow consider that the DateTime input for the date
filter accepts time as an input, so we should also provide this as a Selection method.
Moreover, a better way will be to use the native HTML5 input elements for date and
time to define the starting and ending point for the filter. If we implement this, the
result looks similar to the following figure:

Date and time filters

Advanced filtering using brushes
In the previous section, we saw that D3.js can handle all the filtering action with
solely modifying the domain and range attributes of the axis object. Filtering and
selecting data is a common task in data visualization; therefore, D3.js implements a
much more advanced filtering method called brushes.

Bringing the Chart to Life with Interactions

[218]

A brush is a D3.js module initialized with an x and/or a y axis scale and automatically
creates a draggable and resizeable box on top of a visualization container. While
dragging and resizing this box, the brush automatically adapts the range and domain
of the axis scales. A brush often looks similar to the following image:

Filtering time scale axis with a brush

This brush looks really cool as a filter; we also want to implement such a brush for
the start and end date filter of the application. The goal is to build a very simple
area chart in the navigation bar that shows the data of the first chart. This chart
should serve as a graphical date filter, where we can move the box of the brush
and automatically filter all charts in our application. We also want to create a new
directive for this, so we can easily test and reuse it.

Creating a simple brush
First, let's take a look at brushes in D3.js and how to initialize and use them. A simple
brush object can be created by the d3.svg.brush() function. Afterward, we can set
the scales for the axes with the .x(scale) and/or .y(scale) methods. Finally, we
can draw the brush controls in a Selection with selection.call(brush).

We start with implementing a container for the visualization that will contain our
simple brush:

var width = 800, height = 200, margin = 15;

var svg = d3.select("body").append("svg")
 .attr("width", width)
 .attr("height", height);

Chapter 8

[219]

Next, we create a scale for the data with the range of visualization container; we will
solely use the x axis for this simple example and an arbitrary range from 0 to 10:

var xScale = d3.scale.linear()
 .range([margin, width-margin])
 .domain([0, 10]);

Let's display an axis for this scale:

var axis = d3.svg.axis()
 .scale(xScale)
 .orient('top');

var axisContainer = svg.append("g")
 .attr("class", "axis")
 .attr("transform", "translate(0, "+(height-margin)+")")
 .call(axis);

The result of the preceding example shows a simple axis at the bottom of the
chart (see the following image). When we move the mouse over the chart, we see
the standard mouse cursor. This is the default cursor, meaning that currently no
interaction is possible:

Simple container with axis

Now, we can create a new brush based on our scale and add the brush container
to the chart. In order to use the brush for a single axis, we need to scale the brush
elements to the fixed height of the visualization area:

var brush = d3.svg.brush()
 .x(xScale);

var brushContainer = svg.append("g")
 .attr("class", "brush")
 .call(brush);

brushContainer.selectAll("rect")
 .attr("y", 0)
 .attr("height", height);

Bringing the Chart to Life with Interactions

[220]

Let's look at the result and move the cursor over the chart area (see the top portion
of the following image); we see a crosshair cursor symbol that indicates a possible
interaction. The cursor is autogenerated by the D3.js brush and enables the user to
draw a box in the chart area.

When we look at the DOM tree (see the bottom portion of the following figure), we
see the generated brush group that contains a rect background (which enables the
crosshair cursor), a rect extent (which enables to move the cursor and shows the
current brush range), and two more resize groups (which enable the resize cursor
and enables horizontal resizing of the current brush range):

Simple container with axis and brush (top) and current DOM tree (bottom)

Let's add a little style to the visualization:

<style type="text/css">
.brush .extent {
 stroke: rgba(255, 185, 88, 0.9);
 fill-opacity: .125;
 shape-rendering: crispEdges;
}
</style>

Chapter 8

[221]

If we now start to draw a rectangle on the brush area while holding the left mouse
button, we can see the extent rectangle appearing in light gray on the chart surface
(see the following image):

Simple container with brush and active extent

Finally, we want to do something with the chart after drawing an extent area with
the brush. To have full control over the interaction, D3.js provides three events for
brush interactions:

•	 brushstart: This event gets fired when we start brushing
•	 brush:This event gets fired while we are brushing
•	 brushend: This event gets fired after we stop brushing

The current extent can be simply retrieved by calling the .extent() method on the
brush object. Let's extend the example so that the axis resizes automatically with the
brush extent. We should not forget to clear the extent after resizing the axis. This can
be achieved by executing (brush.clear())(selection) on the brush selection or
the equivalent selection.call(brush.clear()) function:

brush.on('brushend', function(){

 // Use the current extent
 xScale.domain(brush.extent());

 // Redraw the axis
 axisContainer
 .transition()
 .duration(250)
 .call(axis);

 // Clear the brush
 brushContainer.call(brush.clear());
});

Bringing the Chart to Life with Interactions

[222]

In the preceding code, we animated the changes of the axis scale with a transition
after the brush extent has changed. In the end, we clear the brush extent. The result
of this brush can be seen in the following image, where the extent is selected at the
top and the axis changed to the new scale at the bottom:

Modifying the axis scale with a brush while changing extent (top) and after changing extent (bottom)

Building a custom date filter directive
We will use the previously learned technique to create a date filter directive that
previews a little area chart and lets us select a certain date range for the application.
This means that we need to implement a new chart type for the brush and create a
directive of it; let's get started. We implement a directive that is almost equal to the
line chart directive; we solely add the brush container and brush event handlers:

/* src/chart.js */
...
// Brush Chart directive
.directive('myBrushChart', ["d3",
 function(d3){
 function draw(svg, width, height, data, dispatch) {
 ...
 }

 return {
 restrict: 'E',
 scope: {
 data: '='

Chapter 8

[223]

 },
 compile: function(element, attrs, transclude) {
 // Create a SVG root element
 var svg = d3.select(element[0]).append('svg');

 /* Create container */
 var visCont = svg.append('g').attr('class', 'vis');
 var dataCont = visCont.append('g').attr('class', 'data');
 var brushCont = visCont.append('g').attr('class', 'brush');

 dataCont.append('path').attr('class', 'data-line');
 dataCont.append('path').attr('class', 'data-area');

 // Initialize the brush events
 var dispatch = d3.dispatch(
 "brushstart", "brush", "brushend"
);

 // Define the dimensions for the chart
 var width = 200, height = 50;

 // Return the link function
 return function(scope, element, attrs) {

 // Watch the data attribute of the scope
 scope.$watch('data', function(newVal, oldVal, scope) {

 // Update the chart
 if (scope.data) {
 draw(svg, width, height, scope.data, dispatch);
 }
 }, true);
 };
 }
 };
}])

Now, we implement the brush in the draw() function to draw the brush area onto
the Selection of the brush container. This is very similar to what you learned in the
previous section about brushes:

/* src/chart.js --> draw() */...
var brush = d3.svg.brush()
 .x(xScale)
 .on('brushstart', function(){

Bringing the Chart to Life with Interactions

[224]

 dispatch.brushstart(brush);
 })
 .on('brush', function(){
 dispatch.brush(brush);
 })
 .on('brushend', function(){
 dispatch.brushend(brush);
 });

svg.select('.brush')
 .call(brush)
 .selectAll("rect")
 .attr("y", 0)
 .attr("height", height-margin);

Let's look at the result of the preceding directive:

Brush directive as filter

Finally, we will append an event listener for the brush event. Every time the brush
changes, we will write the extent to the brush variable on the scope. In the template,
we will finally connect the brush variable with the date filter of the other charts:

/* src/chart.js */
...
// Brush Chart directive
.directive('myBrushChart', ["d3",
 function(d3){
 ...
 return {

Chapter 8

[225]

 restrict: 'E',
 scope: {
 ...
 brush: '='
 },
 compile: function(element, attrs, transclude) {
 ...
 dispatch.on('brush', function(brush){

 scope.$apply(function(){
 scope.brush = brush.extent();
 });
 });
 }
 }
]);

Now, we can place the directive in the navigation bar. Voila! We have an awesome
date filter that displays the area chart of the first dataset of the controller. We need to
link the start-date and end-date attributes with the brush attribute:

<!-- index.html -->
...
<my-brush-chart class="chart" brush="display.date"
data="log.data"></my-brush-chart>
<my-bar-chart class="chart blue" data="log.data"
cursor="display.cursor" start-date="display.date[0]" end-
date="display.date[1]">

If we look at the resulting page, we can see that the custom filter looks very good in
the navigation bar. The preview of the first dataset as an area chart is also helpful
when selecting a certain time span:

Brush directive as date filter

Bringing the Chart to Life with Interactions

[226]

Summary
In this chapter, you learned various interaction techniques to enhance the usability of
charts and to make them fully accessible.

First, we saw the concept of event listeners and events in JavaScript and how they
are used with D3.js. We used the .on(event, callback) method to attach event
callbacks directly on selection of elements. All the details about the triggered event
are available in the d3.event object. When dealing with relative coordinates, the
d3.mouse(container) function becomes quite handy because it returns the mouse
coordinates relative to the container.

Then, we implemented a simple cursor for the chart directive that strictly follows the
mouse position. We can easily compute the values on the axis by using the scale.
invert() method. In the second cursor implementation, we also needed to compute
the nearest value of the dataset to our current position on the axis. To achieve this, we
used the d3.bisector() method with an accessor for the x value of the dataset values.

In the following section, we implemented floating labels for cursors. We realized
that once the cursor position and axis values are known, drawing labels is very
simple. Like the cursors, the labels are drawn once and moved to their corresponding
position thereafter.

After understanding the concept of events and listeners and after using native events,
we understood that event systems help us to encapsulate and integrate services.
Therefore, we use the internal event system of D3.js to enable custom events for our
chart, for example, the cursorchange event. Later in the directive, we can simply
listen for this event and adapt the scope variables directly inside the directives. This
enables a clear separation of the D3.js chart library and the AngularJS application.

Next, we looked at zooming and panning. In the first simple example, we used
d3.behavior.zoom() to simply zoom the whole graphic. The second example was
more important for data visualizations because it showed the zooming and panning
actions on a single axis. We implemented this by attaching the xScale object for
the axis scale to the zoom object. D3.js handles all translation and scaling operations
automatically in the domain property of the scale object.

In the next chapter, we will put all the pieces together and finally create a dashboard
to visualize real-time server logs.

[227]

Building a Real-time
Visualization to Monitor

Server Logs
In previous chapters, you learned different ways to load, process, and visualize
data in the browser. In this chapter, we want to use all this knowledge to build an
application that lets us monitor and visualize server logs in real time. If we think
about a typical client-server approach, our application is divided into two parts: a
web server that monitors log files and a client that interprets and visualizes these logs.

In the first section of this chapter, we will set up a Node.js server with the Express
framework and use the built-in file system tools to monitor log files. We will
propagate file changes in real time to the client with the use of a bidirectional
WebSocket connection; we will use the Socket.IO library for this.

In the second section, we will implement and construct the client for the application
whose job is to organize, process, and visualize the log data. We will also use Socket.
IO on the client to load data from the bidirectional WebSocket connection. Finally,
we will set up the log data and create custom parsers and processors for different
styles of log files.

In this chapter, you will:

•	 Implement a static file server with Node.js, npm, and Express
•	 Implement real-time server push with Socket.IO
•	 Learn how to read and monitor files with Node.js
•	 Set up a simple web client with Bootstrap
•	 Learn how to use Socket.IO on the client with AngularJS

Building a Real-time Visualization to Monitor Server Logs

[228]

•	 Create custom parsers for different log types
•	 Be very happy for everything you achieved

Building a real-time monitoring server
In this section, we implement the server application. This application should be
able to monitor files and communicate with multiple clients at the same time. These
are the perfect requirements to use an event-driven, nonblocking I/O application
platform such as Node.js. The fact that we can also code the server application in
JavaScript is another huge advantage. Additionally, the built-in package manager
npm provides a variety of useful and easy to use packages.

Setting up a Node.js application
First, we need to install Node.js on our development machine. We can download and
install the latest binaries from http://nodejs.org/. Node.js automatically installs
its npm package manager, which we will use to install all the required packages for
the server application.

To create a Node.js application, we will first create a package.json file, a file that
contains all metainformation about the application (such as name, version number,
and dependencies):

{
 "name": "webserver-monitor",
 "version": "0.0.1",
 "description": "Webserver Monitor Application",
 "dependencies": {
 }
}

For now, we leave the dependencies section empty and add the dependencies
automatically when we install packages via npm and the --save flag.

Setting up a web server that serves static files
In this book, we will use the excellent Node.js web framework Express and the
serve-static package to kick off a web server in under 10 lines of code. I will
not go into the details about Express, but we will see that it's very easy and
straightforward to use for our purpose.

http://nodejs.org/

Chapter 9

[229]

So, let's add both the packages to our application. To do so, we open the terminal in
the root directory of the project and execute the following commands in the terminal:

npm install --save express

npm install --save serve-static

These commands will add both the packages and their current versions as
dependencies to the package.json file and download and install them in the
npm_packages directory. The native Node.js function require(), which imports
packages and modules, will automatically look for third-party libraries in this folder.

We can now implement the web server, so we create a server.js file:

/* server.js */
var app = require('express')();
var http = require('http').Server(app);
var serveStatic = require('serve-static');

// Serve all files of the root directory
app.use(serveStatic('.', {'index': ['index.html']}));

// Listen on port 3000
http.listen(3000, function(){
 console.log('listening on 0.0.0.0:3000');
});

I will quickly guide you through the steps in the preceding code. First, we load the
express package and initialize it by calling (). It returns the app reference for the
web framework. In the second line, we load the internal http module and use the
.Server() method to handle all requests with the Express framework. The third
line loads the serve-static package. In the following step, we create an instance of
the serve-static module and add it as a middleware to Express. We do this to tell
Express to look for every URL for static files in the root directory and it's subfolders.
The last line finally starts the server application on port 3000.

We can now run the server by calling node server.js and navigate to http://
localhost:3000/ to open the client application (we will do this a little bit later).

Adding server push with WebSockets
In the title of this chapter, we referred to a real-time application, meaning changes in
log files should be available on the client in real time/immediately. Thus, we cannot
use standard http requests anymore because they are unidirectional from the client
to the server. It's not possible to notify the client about data changes.

Building a Real-time Visualization to Monitor Server Logs

[230]

Real-time applications are usually implemented with a bidirectional communication
between the web server and the client; thus, the WebSockets technology is exactly
what we need. WebSocket is a standardized implementation of a bidirectional
TCP connection for the Web. We do not want to deal with low-level protocols or
compatibility issues, so we will use the awesome Socket.IO library, a wrapper for
WebSockets with an extra compatibility layer.

Socket.IO uses long polling to simulate a server push
behavior in older browsers.

Let's add Socket.IO to our server application and package.json file:

npm install --save socket.io

We can now add the Socket.IO module to our server.js file:

/* server.js */
var app = require('express')();
var http = require('http').Server(app);
var serveStatic = require('serve-static');
var io = require('socket.io')(http);

// Serve all files of the root directory
app.use(serveStatic('.', {'index': ['index.html']}));

// Wait for socket connection
io.on('connection', function(socket){
 // do while a client is connected

 socket.on('disconnect', function(){
 // do when client disconnects
 });
});

http.listen(3000, function(){
 console.log('listening on 0.0.0.0:3000');
});

Besides initializing the socket.io module with the http server object, we implement
the two event listeners: .on('connection', callback) and .on('disconnect',
callback) in the preceding code. These let us execute functions whenever a client
connects to the server through WebSockets and lets us cleans up everything when the
client disconnects again.

Chapter 9

[231]

We already saw that Socket.IO waits for events that are triggered by clients (such
as connecting or disconnecting clients). The same principle as the .on(type,
callback) function can be used to listen for custom events that are triggered by the
client, for example, to transfer data from the client to the server. In the callback
function, the data that was sent by the client can be accessed with the first argument.
To send data from the server to the client, we use the .emit(type, data) function.
This function takes an event type and a message object data as arguments.

Reading logs and pushing them to the client
Now, it's time to send some useful data through the WebSockets connection.
Therefore, we add the native file system module, fs, to the application in order to
read a file and push its content to the client:

var fs = require('fs');
var app = require('express')();
...
// Wait for socket connection
io.on('connection', function(socket){

 // Send the content of a file to the client
 var sendFile = function(name, path) {
 // Read the file
 fs.readFile(path, 'utf8', function (err, data) {
 // Emit the content of the file
 io.emit(name, data);
 });
 };

 // Wait for events on socket
 socket.on('watch', function(obj){
 sendFile(obj.name, obj.path);
 });

 socket.on('disconnect', function(){
 // do when client disconnects
 });
});

Building a Real-time Visualization to Monitor Server Logs

[232]

In the preceding example, we implement the sendFile()function inside the
connection handler. In this function, we call the readFile() function. This function
reads a file asynchronously and—once it is finished—pushes the content to the client
via .emit() with an event type of the filename. Then, we set up a listener for an
event watch whose message object should contain the name and path of a file and
return the content of the file.

Now, we can implement a simple client that emits a watch event with the name and
path of a log file and listens to an event with the name of the file. This client will look
like the following code:

/* example/of/a/client.js */
socket.emit('watch', {
 name: 'nginx.error',
 path: '/var/log/nginx/error.log'
});

socket.on('nginx.error', function(data){
 console.log("Received: " + data);
});

We will use a very similar implementation later for the client. For now, let's continue
with the final step.

Watching files for changes
We want to add a file watcher for every file requested by a client. This watcher should
detect file changes and automatically push them to the client. Also, once a client
disconnects, we need to clean up and remove all file watchers. To watch files for
changes, we will use the asynchronous watchFile() function from the fs module:

/* server.js */
var fs = require('fs');
var app = require('express')();
var http = require('http').Server(app);
var serveStatic = require('serve-static');
var io = require('socket.io')(http);

// Serve all files from the root directory
app.use(serveStatic('.', {'index': ['index.html']}));

// Wait for socket connection
io.on('connection', function(socket){

 var watchers = [];

Chapter 9

[233]

 // Send the content of a file to the client
 var sendFile = function(name, path) {
 // Read the file
 fs.readFile(path, 'utf8', function (err, data) {
 // Emit the content of the file
 io.emit(name, data);
 });
 };

 // Wait for events on socket
 socket.on('watch', function(obj){

 if (!watchers.hasOwnProperty(obj.name)){

 console.log("Watching " + obj.name);
 watchers[obj.name] = obj;
 sendFile(obj.name, obj.path);

 // Watch the file for changes
 fs.watchFile(obj.path, function (curr, prev) {

 sendFile(obj.name, obj.path);
 });
 }
 });

 socket.on('disconnect', function(){
 watchers.forEach(function(obj) {
 fs.unwatchFile(obj.path);
 });
 });
});

http.listen(3000, function(){
 console.log('listening on 0.0.0.0:3000');
});

In the preceding code, we add a watchers array that contains all the current file
watchers. This makes it easy to clean up and unwatch all the files in the disconnect
handler via unwatchFile() once the connection is closed. In the connection handler,
we add the watchFile() function. This function pushes the content of a file to the
clients once it's changed.

Building a Real-time Visualization to Monitor Server Logs

[234]

These few lines are all the magic that we need to monitor files and push them to the
client when they are updated, pretty cool! Also, keep in mind that we completely
neglected proper error handling in this simple example.

Finally, we run the server via the node server.js command and open
http://localhost:3000/ for the client application.

Processing and visualizing logs on
the client
In the previous section, you learned how to push the server logs from the server
to the client; now, we need to organize these logs on the client, and then process and
display them.

Bootstrapping a template with AngularJS and
Socket.IO
Let's create a HTML page for our client application; we need to load the JavaScript
libraries (D3.js, AngularJS, Socket.IO, the CSS layout Bootstrap, and all application
files). Due to the usage of Socket.IO on the server side, it can be referenced on the
client side with the /socket.io/socket.io.js pseudo location; all other third-party
libraries are loaded from the bower_components directory.

We create the index.html page in the root directory of the project, add all libraries,
and set up a very simple Bootstrap layout:

<!-- index.html -->
<html ng-app="myApp">
 <head>
 <!-- Include 3rd party libraries -->
 <script src="bower_components/d3/d3.js" charset="UTF-
 8"></script>
 <script src="bower_components/angular/angular.js"
 charset="UTF-8"></script>

 <!-- Include Socket.io -->
 <script src="/socket.io/socket.io.js"></script>

 <!-- Include the application files -->
 <script src="src/app.js"></script>
 <link href="src/app.css" rel="stylesheet">

Chapter 9

[235]

 <!-- Include Bootstrap -->
 <link href="bower_components/bootstrap/dist/css/bootstrap.css"
 rel="stylesheet">

 <!-- Include the files of the chart component -->
 <script src="src/chart.js"></script>
 <link href="src/chart.css" rel="stylesheet">

 </head>
 <body ng-controller="MainCtrl">

 <div class="container">

 <nav class="navbar navbar-default">
 <!-- header goes here -->
 </nav>

 <div class="row">
 <!-- visualization goes here -->
 </div>
 </div>
 </body>
</html>

Using Socket.IO with AngularJS
As we did with D3.js, we want to integrate Socket.IO properly into the client
application. In other words, encapsulate it as a service and make it injectable.
Therefore, we create a new factory for Socket.IO in the app.js file:

/* src/app.js */
app.factory('socket', function () {
 var socketio = io.connect();
 return socketio;
});

In our example, we will use the .on() method to listen for events propagated from
the server and the .emit() method to propagate events to the server. To inform
AngularJS about changes on the scope (outside of the AngularJS application), we need
to call $scope.$apply() to trigger a digest circle that updates all scope variables.
Let's write a wrapper for the .on() and .emit() functions that automatically update
$rootScope. and thereby all scope variables of the application:

/* src/app.js */
angular.module('myApp', ['myChart'])
// Socket.IO Wrapper

Building a Real-time Visualization to Monitor Server Logs

[236]

.factory('socket', ["$rootScope",
 function($rootScope) {
 var socketio = io.connect();
 return {
 on: function (e, callback) {
 socketio.on(e, function() {
 var args = arguments;
 $rootScope.$apply(function() {
 callback.apply(socketio, args);
 });
 });
 },
 emit: function (e, data, callback) {
 socketio.emit(e, data, function() {
 var args = arguments;
 $rootScope.$apply(function() {
 if (callback) {
 callback.apply(socketio, args);
 }
 });
 });
 }
 };
 }
])

The preceding implementation checks and updates the state of $rootScope on every
callback of the .on() and .emit() function automatically.

Now, we can inject Socket.IO into the controller and send and receive data; let's
try it:

/* src/app.js */
...
.controller('MainCtrl', ["$scope", "socket",
 function ($scope, socket) {
 $scope.logs = [{
 name: 'apache.access',
 path: 'var/log/apache/access.log'
 }];

 angular.forEach($scope.logs, function(log){

 socket.emit('watch', {
 name: log.name,
 path: log.path

Chapter 9

[237]

 });

 socket.on(log.name, function(data){
 console.log("Received: " + data);

 // Now we can process the data
 });
 });
 }
]);

Although my browser has to struggle a little to display all the content from the
Apache access log, we see that it works. This means that we receive the string of the
correct data log from the server if Apache is running and the access log is updated;
also, the file is reloaded. Perfect. Now, we can already think of processing the
log file. Keep in mind that in a more advanced scenario, we will just transfer the
small changes of the log files instead of 5 MB, of logs. It's worth mentioning that
you should implement security mechanism for the HTTP connection and for the
WebSockets connection as well.

Processing log files
Before we can process and display all our log files, we need to organize them and the
parsing formats in the main controller of the application.

Let's create an array of logs in the controller of our application and add the processor
expressions to each log type. Don't worry if the parser and map attributes seem
unfamiliar to you; I will explain them right after this page:

/* src/app.js */
...
$scope.logs = [
{
 name: 'apache.access',
 path: 'var/log/apache/access.log',
 parser: {
 line: "\n",
 word: /[-"]/gi,
 rem: /["\[\]]/gi
 },
 map: function(d) {
 var format = d3.time.format("%d/%b/%Y:%H:%M:%S %Z");
 return {
 ip: d[0], time: +format.parse(d[2]), request: d[3], status:
 d[4], agent: d[8]

Building a Real-time Visualization to Monitor Server Logs

[238]

 }
 },
 data: []
},
{
 name: 'mysql.slow-queries',
 path: 'var/log/mysql/slow-queries.log',
 parser: {
 line: /# Time:/,
 word: /\n/gi,
 rem: /[#"\[\]]/gi
 },
 map: function(d) {
 var format = d3.time.format("%y%m%d %H:%M:%S");
 return {
 time: +format.parse(d[0]), host: d[1], query: d[2]
 }
 },
 data: []
}
...
];

In the preceding code, we see that this is a very clean way to structure our log files
and specify the format to parse them. The only thing missing is to actually fill the
data attributes with data and change them if the log data changes. However, this is
no problem with Socket.IO and our previously developed monitor server. We simply
have to add watchers for every log file:

/* src/app.js */
angular.forEach($scope.logs, function(log){

 socket.emit('watch', {
 name: log.name,
 path: log.path
 });

 socket.on(log.name, function(data){
 console.log("Received: " + log.name);

 // Now we can really process all the data
 });
});

Chapter 9

[239]

In the preceding code, we register every log file in the monitor server via the watch
event; therefore, we automatically receive real-time updated data. Thanks to the
watcher on the data attribute of the chart directive, the chart will be redrawn
automatically when the data is updated. Now, I want to show how to process these
files with the tools that we implemented in the previous chapters with two different
log files. The goal is to generate a grouped array of entry objects from a big string of
log entries. Let's recall the StringParser and the Classifier services that we wrote
in Chapter 5, Loading and Parsing Data, and apply them in this example to process the
log files:

/* src/app.js */
...
socket.on(log.name, function(data){

 // The data log as string
 var responseDataStr = data;

 // 1:
 // Parse string to an array of datum arrays
 var parsed = StringParser(responseDataStr, log.parser.line,
 log.parser.word, log.parser.rem);

 // 2:
 // Map each datum array to object
 var mapped = parsed.map(log.map);

 // 3:
 // Filter the data
 var filtered = mapped.filter(function(d){
 return !isNaN(d.time);
 });

 // 4:
 // Group the dataset by time
 var grouped = Classifier(filtered, function(d) {
 var coeff = 1000 * 60 * $scope.groupByMinutes;
 return Math.round(d.time / coeff) * coeff;
 });

 // Use the grouped data for the chart
 log.data = grouped;
});

Building a Real-time Visualization to Monitor Server Logs

[240]

Let's view the preceding code step by step:

1.	 We parse the log string into an array of lines where every line contains an
array of strings. This means that we need to find a separator that splits the
lines and a separator that splits a line into segments.

2.	 We map the array of segments from each line to an object. This helps us to
identify the different parts of the log message (such as date, error message,
ip address, and so on). We also convert the time string to a timestamp of a
JavaScript Date object.

3.	 We discard all rows that don't have a valid time attribute.
4.	 We group the data logs by an interval of minutes. From the preceding points,

point 1 is the most difficult point; therefore, I will explain it systematically
with two example logs.

First, we will use a MySQL slow query log from the var/log/mysql directory with
the following structure:

Time: 141129 17:24:37
User@Host: root[root] @ server.com [172.14.26.38]
Query_time: 2.240000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674
SET timestamp=1334841877;
SELECT ...;
Time: 141129 17:24:39
User@Host: root[root] @ server.com [172.14.26.38]
Query_time: 1.896000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674
SET timestamp=1334841879;
SELECT ...;

First, we can split the log string using the /# Time:/regular expression to generate
an array of log entries:

Array[
 '141129 17:24:37
 # User@Host: root[root] @ server.com [172.14.26.38]
 # Query_time: 2.240000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674
 SET timestamp=1334841877;
 SELECT ...;',
 '141129 17:24:39
 # User@Host: root[root] @ server.com [172.14.26.38]
 # Query_time: 1.896000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674
 SET timestamp=1334841879;
 SELECT ...;'
];

Chapter 9

[241]

Then, using the newline symbol, every single log entry can be split via the /\n/
regular expression into single segments:

Array[
 Array['141129 17:24:37',
 '# User@Host: root[root] @ server.com [172.14.26.38]',
 '# Query_time: 2.240000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674',
 'SET timestamp=1334841877;',
 'SELECT ...;'],
 Array['141129 17:24:39',
 '# User@Host: root[root] @ server.com [172.14.26.38]',
 '# Query_time: 1.896000 Lock_time: 0.000000 Rows_sent: 1
 Rows_examined: 2560674',
 'SET timestamp=1334841879;',
 'SELECT ...;']
];

To make the dataset more readable, we can also remove some characters (such as
from the log entries). As a last step, we need to convert the DateTime string to a
JavaScript Date Object. We can do this here by using the %y%m%d %H:%M:%S D3.js
formatter. Now, we have a beautiful dataset with valid JavaScript dates. We can
easily display it in a chart, for example, as a histogram.

Let's try it once more and parse a NginX error log with the following structure:

2014/11/29 11:13:53 [alert] 6976#8040: could not respawn worker
2014/11/29 11:14:24 [emerg] 6488#2952: unknown directive "concat"
 in /etc/nginx/conf/nginx.conf:76

Splitting the lines is very easy because every log entry starts on a new line; thus, we
can use the /\n/ regular expression to split them:

Array[
 '2014/11/29 11:13:53 [alert] 6976#8040: could not respawn
 worker',
 '2014/11/29 11:14:24 [emerg] 6488#2952: unknown directive
 "concat" in /etc/nginx/conf/nginx.conf:76'
];

Building a Real-time Visualization to Monitor Server Logs

[242]

In the next step, we will divide every line into segments by splitting it with the [and
] characters with the /\[|\]/ regular expression:

Array[
 Array['2014/11/29 11:13:53', 'alert', '6976#8040: could not
 respawn worker'],
 Array['2014/11/29 11:14:24', 'emerg', '6488#2952: unknown
 directive "concat" in /etc/nginx/conf/nginx.conf:76']
];

Again, as a last step, we need to convert the date string into a JavaScript Date object;
this can be done with the %Y/%m/%d %H:%M:%S formatter in this example.

The dashboard application
As we remember from the preceding configuration of the log files, we want to be
able to display multiple charts with the built-in ng-repeat directive. This means
that the chart directive template is just compiled once and linked multiple times.
Therefore, we need to adapt the chart directives and move the initialization code for
the charts from the compile phase to the link phase of the directive.

One last step needs to be done to finally see the charts of the log files, that is, to add
the chart directives to the index.html page:

<!-- index.html -->
<div class="col-lg-6" ng-repeat="log in logs">
 <h3>{{ log.name }}</h3>

 <bar-chart class="chart blue" data="log.data" start-
 date="time.startDateTime" end-date="time.endDateTime" cur-
 date="time.currentDateTime">
 </bar-chart>
</div>

To better understand the cursor position and current zooming level, we will output
the current value of the cursor and the first and last date from the current filter to the
navigation bar:

<nav class="navbar navbar-default">
 <div class="navbar-text">
 Date/Time Filter:
 {{ time.startDateTime | date : 'dd.MM.yyyy HH:mm'
 }} -
 {{ time.endDateTime | date : 'dd.MM.yyyy HH:mm'
 }}
 </div>

Chapter 9

[243]

 <div class="navbar-text">
 <i>Current Date/Time: {{ time.currentDateTime | date :
 'dd.MM.yyyy HH:mm' }}</i>
 </div>
</nav>

In the preceding code, we use the built-in AngularJS date filter to create a more
readable output of the DateTime object.

If we now run the server and open the application, we will see four charts that are
automatically updating in real time. We can see that zooming or panning in one
chart also affects the current zoom and panning level in other charts. The reason for
this is that all chart directives use the same reference for the startDate and endDate
filter attributes as well as the curDate attribute. Therefore, the cursor moves and
highlights in all charts simultaneously because of AngularJS' two-way-binding.
Pretty neat, isn't it?

We used Bootstrap not only for it's nice visual template, but also for the built-in grid
system. As a logical step, we want to make our charts responsive. This can be easily
achieved by watching the window size in the chart directive and redrawing each
chart when the window size changes:

/* src/chart.js → Chart Directive */
// Watch the window for resizing
angular.element($window).bind('resize', function(){

 // Set the width of the chart to the width of the parent element
 chart.width(element[0].parentElement.offsetWidth);
 // Redraw the chart
 chart.redraw();
});

Nice, now the charts adapt automatically according to the column size of the grid.

Building a Real-time Visualization to Monitor Server Logs

[244]

Let's open the application and take a look. The filters and cursors now play together
throughout the whole application. Thanks to AngularJS, a web designer with no
JavaScript knowledge can easily arrange the charts and write the HTML code for
this page:

Real-time server log monitor application

Summary
In this chapter, you learned how to implement a simple monitor server that pushes
data changes in real time to the client. We used Node.js because of its nonblocking
I/O behavior and because of the fact that we can write the server code in JavaScript.

After installing Node.js and creating a package.json file for the application,
we installed the express and serve-static web framework via the npm Node
package manager.

We used the serve-static package to serve all the static files in the root directory of
our application and added it as a middleware to express. This allows you to write a
simple file server in less than 10 lines of code.

Chapter 9

[245]

To implement real-time communication, we need a bidirectional connection rather
than the unidirectional HTTP protocol. Therefore, we added Socket.IO, a wrapper
and compatibility layer for the WebSockets protocol, a protocol for bidirectional TCP
connection for the Web. With Socket.IO, we can easily receive data from a client
or—the big advantage to HTTP—push data to a client.

Then, we used the watchFile() and readFile() native file system methods to
asynchronously watch files for changes, read files, and push the content of files to
the client.

In the end, we were able to start the server application by calling node server.js
and open http://localhost:3000/, the not yet functional client.

In the second half of the chapter, we implemented the web client to visualize the
server logs. To establish the bidirectional WebSockets connection, we needed to add
Socket.IO to the AngularJS application. The proper way to do so is to encapsulate
Socket.IO such that it can be used by the dependency injection system of AngularJS.
We achieved this by wrapping it in a service.

Then, we saw how to process log files that are loaded as huge strings for our web
application; we used the previously implemented StringParser service. The
hardest point is to figure out how to properly split the string into lines of log entries
and every entry into segments. In two real-world examples, we saw how to split the
logs into log entry arrays with regular expression.

Later, we saw how to format the DateTime string of the log entries with the D3.js
time formatter. Also, we organized the log file information in a configuration-like
style. This helped us to clearly see where and how log files are loaded and processed.

In the end, we were very excited to put the directives in the actual page of the web
client and open it in the browser. After reading all this, I am sure that you have many
ideas to improve the charts, add more chart types, and more application logs.

[247]

Index
Symbols
$http module 128
.exit() function 16
.nice() method 76
.remove() function 16
.text()method 15
.tickFormat() method 77
.ticks() method 76

A
accessor

array.concat(value[, value[, …]])
function 57

array.indexOf(value[, fromIndex])
function 57

array.join([separator]) function 57
array.lastIndexOf(value[, fromIndex])

function 57
array.slice([begin[, end]]) function 57

advanced filtering
implementing, with brushes 217

AJAX 119
AngularJS

about 1, 17
as data loading service 131
Socket.IO, using with 235-237
used, for bootstrapping template 234

AngularJS application
AngularJS, installing 90
controller, adding 92
directory, organizing 90
index file, bootstrapping 91
module, adding 92
setting up 90

Angular wrapper, XHR
about 128
data loading component, creating 129
data loading component, testing 130

animations
about 172
creating, for bar chart 187-191
interpolation, with D3.js 174-176
realistic animations 183
timer in D3.js, with d3.timer 172-174
with transitions 176, 177

arcs, generating
about 164, 165
bar charts, designing 168
different chart types 166
line charts, implementing 166-168

array.filter(callback) function 58
array manipulation, with D3.js

about 60
associatives 60
operators 60
statistics 60

array.map(callback) function 58
array.reduce(callback [, initialValue])

function 59
axes

about 80
adding, to scatter chart 83-87
drawing 81, 82

axis function 80
axis.orient([orientation]) method 80
axis.scale([scale]) method 80
axis.tickFormat([format]) method 81
axis.ticks([arguments…]) method 81
axis.tickValues([values]) method 81

[248]

B
bar chart

animation, creating for 187-191
Bézier curves

about 155
arcs, generating 164
ellipses, drawing 159
elliptical arcs, drawing 159, 160
using 156-158

brush
about 218
custom date filter directive,

building 222-225
simple brush, creating 218-222

built-in SVG shapes
URL 148

C
Canvas API 8
chart directive

about 95
advantages 102, 103
building 89
chart, drawing 99
custom compile function, implementing 98
e2e-testing 113, 114
for SVG 95-97
generalizing 103-105
testing 105
testing environment, setting up 106
unit testing 110-112

chart, drawing
about 99
axis 99, 100
data points, joining 101, 102
domain 99, 100
range 99, 100
scale 99, 100

classifier
testing 141

common SVG shapes
about 148
using 148-151

Content Delivery Network (CDN)
URL 29

cursors
about 198
cursor position, labeling 203-207
custom events 208
self-updating cursor values,

displaying 208-211
simple cursor 198-201
snappy cursors 201-203

curved lines
drawing, with SVG path 151-153

curveto command 158
custom date format

parsing, to JavaScript date 134
custom events

d3.dispatch(event) 208
dispatch.event(args) 208
dispatch.on(event, listener) 208
implementing 208

D
d3.entries(object) function 65
D3.js

about 1, 11
advantages 12
AngularJS, working with 17
API reference 11
as data loading service 128
compatibility 12
custom directives 18, 19
custom filters 19
custom loading 19
data joins 13
debugging 12
features 11, 12
maintainable component 18
parsing service 19
performance 13
reference link 11
resources, finding 17
testable component 18
Wiki pages 11

D3.js and AngularJS integration
about 93
D3.js, wrapping 94, 95
directory, organizing 93, 94

[249]

D3.js Loader scenario
test, adding to 126, 127

d3.keys(object) function 64
d3.max(array[, accessor]) function 61
d3.mean(array[, accessor]) function 62
d3.median(array[, accessor]) function 62
d3.merge(array) function 63
d3.min(array[, accessor]) function 61
d3.nest

elements, grouping with 65, 66
d3.pairs(array) function 64
d3.permute(array, indexes) function 63
d3.range([start,]stop[, step) function 63
d3.select(node) 39
d3.select(selector) 39
d3.shuffle(array) function 62
d3.sum(array[, accessor]) function 61
d3.values(object) function 65
d3.xhr

about 121, 122
data loading component, creating 123
wrappers, for common file types 122

d3.zip(array, array, ...) function 64
data binding 13
data binding, to DOM elements

about 41
dynamic properties, using in

Selections 43-45
selection.data(values[, key]) 41, 42
track changes, with data joins 45, 46
update pattern 48, 49

data-driven approach 12
data joins

about 13-17
enter set 13
exit set 13
new dataset 13
old dataset 13
update set 13

data loading component
testing 125, 126

data manipulation
axes 80
numbers and dates, formatting 67
scales, working with 72

data parsing service
testing 137, 138

datasets, manipulating in arrays
about 56
array manipulation, with D3.js 60
built-in JavaScript array methods 56
elements, grouping with d3.nest 65, 66

date and time formats
customizing 71

De Casteljau algorithm 158
DOM elements

data binding 41
finding, selectors used 38
modifying 30-32
selecting 30, 31

DOM events
URL 195

E
easing functions

URL 187
elements

grouping, with d3.nest 65, 66
ellipses

drawing 159
path generators, in D3.js 160
paths, generating for areas 162, 163
straight lines, generating 160-162

elliptical arcs
drawing 159

end-to-end (e2e) test 106
enter set 14, 45
enter transitions 180
event listeners 194
Event object

URL 197
events

about 194, 195
click 195
dblclick 195
event coordinates 197
mousedown 195
mouseenter 195
mouseleave 195
mousemove 195
mouseover 195
mouseup 195
types 195

[250]

events, for brush interactions
brush 221
brushend 221
brushstart 221

exit set 14, 46
exit transitions 180
external data

loading 118, 119, 124
log file, viewing in browserXHR 119-121

F
functions, for Selection

about 34
animation and interaction 35
content modification 34
data binding 34
flow control 35

H
HTML template, for D3.js

creating 29

I
interactive filters

about 214
implementing 214-216

interpolation
implementing, with tweens 181-183

iterator
about 57
array.every(callback) function 57
array.filter(callback) function 57
array.forEach(callback) function 57
array.map(callback) function 57
array.reduce(callback [, initialValue])

function 57
array.some(callback) function 57

J
Jasmine

URL 111
JavaScript

accessor 56

array mutator 56
iterator 56

JavaScript date
custom date format, parsing to 134

JavaScript objects
log files, parsing to 131

join_p() function 15
jQuery 1

K
Karma

about 106
installing 106-108
URL 111

L
log entries

grouping 139-141
log files

parsing, step by step 132-134
parsing, to JavaScript objects 131

logs displaying example, Karma
test runner 142-144

logs, on client
processing 234-241
Socket.IO, using with AngularJS 235-237
template, bootstrapping with

AngularJS 234
template, bootstrapping with Socket.IO 234
visualizing 234

M
MouseEvent

URL 197
moveto command 158
mutator

about 56
array.pop() function 56
array.push(value[, value[, …]]) function 56
array.reverse() function 56
array.shift() function 57
array.sort([comparator]) function 57
array.splice(array[, accessor]) function 57
array.unshift(value[, value[, …]])

function 57

[251]

N
Node.js application

setting up 228
URL 228

nodes 4
number format

align property 70, 71
currency symbol 70
fill option 71
precision 69
signs 70
specifying 68
thousands separator 69
types 68
width 69
zero padding 70

O
ordinal scales, for discrete data

about 77
predefined ordinal color scales 79
scale.rangeBand() 78
scale.rangeBands(interval [, padding

[, outerPadding]]) 78
scale.rangeExtent() 79
scale.rangePoints(interval [, padding]) 78

P
path element, SVG

used, for drawing curved lines 151-153
pixel graphic

about 8-11
rule of thumb 8

plausible transitions
creating 180

Protractor
about 108
installing 108, 109
URL 114

Q
quadratic curveto command 158
quadratic smooth curveto command 158
quantitative scales, for continuous data

about 74
scale.clamp([boolean]) 76
scale.domain([numbers]) 75
scale.nice([count]) 76
scale.range([numbers]) 75
scale.tickFormat(count [,specifier]) 77
scale.ticks([count]) 76

R
realistic animations

about 183
creating, with easing function 183-186

real-time dashboard, for visualizing
server logs

building 2, 3
real-time monitoring server

building 228
file watcher, adding 232, 233
final application 242-244
logs, pushing to client 231, 232
logs, reading 231, 232
Node.js application, setting up 228
server push, adding with

WebSockets 229, 230
regular expression

URL 126
resources

finding 17
reusable data parsing service 135

S
Scalable Vector Graphics (SVG) 5-8
scale.rangeBands(interval [, padding

[, outerPadding]]) method 78
scale.rangePoints(interval [, padding])

method 78
scales

ordinal scales, for discrete data 77
quantitative scales, for continuous data 74
time scales, for time data 79
working with 72, 73

Selection
about 30, 33
functions, applying 34

selection.append(name) function 37
selection.attr(name[, value]) function 35

[252]

selection.call(function[, arguments…]) 40
selection.data(dataSet) 14
selection.data(dataSet).enter() 14
selection.data(dataSet).exit() 14
selection.each(function) 40
selection.enter() 46
selection.exit() 47
selection.insert(name[, before]) function 37
selection.property(name[, value])

function 36
selection.remove() function 37
selection.style(name[, value[, priority]])

function 35
selection.text([value]) function 36
selectors

d3.select(node) 39
d3.select(selector) 39
selection.call(function[, arguments…]) 40
selection.each(function) 40
used, for finding DOM elements 38

server push
adding, with WebSockets 229-231

simple cursor 198-201
simple scatter plot application

building 28
simple scatter plot, creating 49-52

simple zoom
about 212
implementing 212

Sizzle
URL 38

smooth curveto command 158
snappy cursors 201-203
Socket.IO

used, for bootstrapping template 234
using, with AngularJS 235-237

software tests
integration tests 105
system tests 105
unit tests 105

specifiers 71, 72
staggered transitions 177, 178
straight lines

drawing, with SVG commands 154, 155
SVG commands, for drawing

A (elliptical arc) 153
C (curveto) 153

H (horizontal lineto) 153
L (lineto) 153
M (moveto) 153
Q (quadratic curveto) 153
S (smooth curveto) 153
T (smooth quadratic curveto) 153
V (vertical lineto) 153
Z (closepath) 153

T
terminology

about 4
Document Object Model (DOM) 4
pixel graphic 8
Scalable Vector Graphics (SVG) 5
vector graphic 5

test
adding, to D3.js Loader scenario 126, 127

testing environment, setting up
about 106
Karma 106-108
Protractor 108

Three.js 1
time scales, for time data 79
transitions

about 176, 177
chaining 178, 179
in bar chart 187-191
in charts 187
plausible transitions, creating 180
staggered transitions 177, 178

tween 181

U
update set 14, 46
update transitions 180

V
vector graphic

about 5
rule of thumb 5

Vector Markup Language (VML) 22
visualization tools, for Web

Canvas API (JavaScript - Canvas) 24
D3.js (JavaScript - HTML/SVG) 23

[253]

Flash 20, 21
Java 20, 21
overview 20
Protovis (JavaScript - SVG) 23
Raphaël (JavaScript - SVG/VML) 22
Three.js (JavaScript - WebGL) 25

W
WebGL 1
WebSockets

used, for adding server push 229, 230
web server for static files,

setting up 228, 229
World Wide Web Consortium (W3C) 4

X
x axis zoom

about 213
implementing 213

XMLHttpRequest (XHR) 119-121

Z
zoom

about 211
simple zoom 212
x axis zoom 213

Thank you for buying
Data Visualization with D3 and AngularJS

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1.	 Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real-life development tasks.

2.	 Effectively structure, write, test, and finally
deploy your application.

3.	 Add security and optimization features to your
AngularJS applications.

4.	 Harness the full power of AngularJS by
creating your own directives.

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1.	 Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2.	 Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3.	 Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

Please check www.PacktPub.com for information on our titles

Mastering D3.js
ISBN: 978-1-78328-627-0 Paperback: 352 pages

Bring your data to life by creating and deploying
complex data visualizations with D3.js

1.	 Create custom charts as reusable components to
be integrated with existing projects.

2.	 Design data-driven applications with several
charts interacting between them.

3.	 Create an analytics dashboard to display
real-time data using Node and D3 with
real world examples.

R Data Visualization Cookbook
ISBN: 978-1-78398-950-8 Paperback: 236 pages

Over 80 recipes to analyze data and create stunning
visualizations with R

1.	 Create animated and interactive plots to help
you communicate and explore data.

2.	 Utilize various R packages to generate
graphs, manipulate data, and create beautiful
presentations.

3.	 Learn to interpret data and tell a story using
this step-by-step guide to data visualization.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Magic of SVG, D3.js, and AngularJS
	Building a real-time dashboard to visualize server logs
	Terminology and definitions
	Document Object Model
	Vector graphics and Scalable Vector Graphics
	Pixel graphics

	Understanding Data-Driven Documents
	Why do we use D3.js?
	The killer feature – data joins
	Finding resources
	D3.js meets AngularJS
	Testable and maintainable components
	Custom directives
	Custom filters
	Custom loading and parsing service

	A brief overview of visualization tools for the Web
	Java and Flash
	Raphaël (JavaScript – SVG/VML)
	Protovis (JavaScript – SVG)
	D3.js (JavaScript – HTML/SVG)
	Canvas API (JavaScript – Canvas)
	Three.js (JavaScript – WebGL)

	Summary

	Chapter 2: Getting Started with D3.js
	Building a simple scatter plot application
	Creating an HTML template for D3.js
	Selecting and modifying DOM elements
	A closer look at Selections
	selection.attr(name[, value])
	selection.style(name[, value[, priority]])
	selection.property(name[, value])
	selection.text([value])
	selection.append(name)
	selection.insert(name[, before])
	selection.remove()

	Finding elements in the DOM with Selectors
	d3.select(selector)
	d3.select(node)
	selection.each(function)
	selection.call(function[, arguments…])

	Binding data to DOM elements
	selection.data(values[, key])
	Using dynamic properties in Selections
	Track changes of data with data joins
	selection.enter()
	selection.exit()

	The update pattern

	Creating a simple scatter plot
	Summary

	Chapter 3: Manipulating Data
	Manipulating datasets in arrays
	Built-in JavaScript array methods
	array.filter(callback)
	array.map(callback)
	array.reduce(callback [, initialValue])

	More array manipulation with D3.js
	d3.min(array[, accessor])
	d3.max(array[, accessor])
	d3.sum(array[, accessor])
	d3.mean(array[, accessor])
	d3.median(array[, accessor])
	d3.shuffle(array)
	d3.permute(array, indexes)
	d3.merge(array)
	d3.range([start,]stop[, step)
	d3.zip(array, array, ...)
	d3.pairs(array)
	d3.keys(object)
	d3.values(object)
	d3.entries(object)

	Grouping elements with d3.nest

	Formatting numbers and dates
	Specifying a number format
	Types of formatting
	Precision
	Thousands separator
	Width
	Zero padding
	Currency symbol
	Signs
	The align property
	The fill option

	Customizing date and time formats

	Working with scales
	Quantitative scales for continuous data (numbers)
	scale.domain([numbers])
	scale.range([numbers])
	scale.clamp([boolean])
	scale.nice([count])
	scale.ticks([count])
	scale.tickFormat(count [,specifier])

	Ordinal scales for discrete data (strings)
	scale.rangePoints(interval [, padding])
	scale.rangeBands(interval [, padding [, outerPadding]])
	scale.rangeBand()
	scale.rangeExtent()
	Predefined ordinal color scales

	Time scales for time data (date and time)

	All about axes
	Drawing the axis
	Adding axes to the scatter chart

	Summary

	Chapter 4: Building a Chart Directive
	Set up an AngularJS application
	Organizing the directory
	Installing AngularJS
	Bootstrapping the index file
	Adding a module and a controller

	Integrating D3.js into AngularJS
	Organizing the directory
	Wrapping D3.js

	A chart directive
	A directive for SVG
	Implementing a custom compile function
	Drawing the chart
	Axis, scale, range, and domain
	Joining the data points

	Advantages of directives
	Generalize the chart directive

	Testing the directive
	Setting up the testing environment
	Getting started with Karma
	Getting started with Protractor

	Unit testing the chart directive
	E2E-testing the chart directive

	Summary

	Chapter 5: Loading and Parsing Data
	Loading external data
	XHR – the native XMLHttpRequest
	d3.xhr – the XHR wrapper of D3.js
	Useful wrappers for common file types
	Creating a simple D3 data loading component

	Testing the simple D3 data loading component
	Summary of D3.js as a data loading service

	$http – the Angular wrapper for XHR
	Creating an AngularJS data loading component
	Testing the AngularJS data loading component
	Summary of AngularJS as a data loading service

	Parsing log files to JavaScript objects
	Parsing log files step by step
	Parsing the custom date format to a JavaScript date
	A reusable data parsing service
	Testing the data parsing service

	Grouping log entries
	Testing the classifier

	Displaying the logs
	Summary

	Chapter 6: Drawing Curves and Shapes
	Common shapes and primitives
	Curved lines with SVG path
	Drawing straight lines
	Bézier curves
	Drawing ellipses and elliptical arcs
	Generating arcs

	Summary

	Chapter 7: Controlling Transitions
and Animations
	Animations
	Timer in D3.js with d3.timer
	Interpolation with D3.js

	Easy animations with transitions
	Staggered transitions
	Chaining transitions
	Creating plausible transitions

	Interpolate anything with tweens
	Realistic animations with easing
	Transitions in charts
	Summary

	Chapter 8: Bringing the Chart to Life
with Interactions
	Listen for events
	Type of Events
	Getting event coordinates

	Cursors
	A simple cursor
	Snappy cursors
	Label the cursor position
	Custom events in D3.js
	Display self-updating cursor values

	Zooming and panning
	A simple zoom
	An x axis zoom

	Interactive filters
	Advanced filtering with brushes
	Creating a simple brush
	Building a custom date filter directive

	Summary

	Chapter 9: Building a Real-time Visualization to Monitor Server Logs
	Building a real-time monitoring server
	Set up a Node.js application
	Set up a web server that serves static files
	Adding server push with WebSockets
	Reading logs and pushing them to the client
	Watching files for changes

	Processing and visualizing the logs
on the client
	Bootstrapping a template with AngularJS and Socket.IO
	Using Socket.IO with AngularJS
	Processing the log files
	The dashboard application

	Summary

	Index

