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Abstract

The field of Distributed Constraint Optimization Problems (DCOPs) has gained momentum,
thanks to its suitability in capturing complex problems (e.g., multi-agent coordination and re-
source allocation problems) that are naturally distributed and cannot be realistically addressed
in a centralized manner. The state of the art in solving DCOPs relies on the use of ad-hoc infras-
tructures and ad-hoc constraint solving procedures. This paper investigates an infrastructure
for solving DCOPs that is completely built on logic programming technologies. In particular,
the paper explores the use of a general constraint solver (a constraint logic programming sys-
tem in this context) to handle the agent-level constraint solving. The preliminary experiments
show that logic programming provides benefits over a state-of-the-art DCOP system, in terms
of performance and scalability, opening the doors to the use of more advanced technology (e.g.,
search strategies and complex constraints) for solving DCOPs.
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are descriptions of constraint

optimization problems where variables and constraints are distributed among a group

of agents, and where each agent can only interact with agents that share a common

constraint (Modi et al. 2005; Petcu and Faltings 2005; Yeoh and Yokoo 2012). Researchers

have realized the importance of DCOPs, as they naturally capture real-world scenarios,

where a collective tries to achieve optimal decisions, but without the ability to collect all

information about resources and limitations into a central solver. For example, DCOPs

have been successfully used to model domains like resource management and scheduling

(Maheswaran et al. 2004; Farinelli et al. 2008; Léauté and Faltings 2011), sensor networks

(Fitzpatrick and Meertens 2003; Jain and Ranade 2009; Zhang et al. 2005; Zivan et al.

2009; Stranders et al. 2009), and smart grids (Kumar et al. 2009; Gupta et al. 2013).

The DCOP field has grown at a fast pace in recent years. Several popular implementa-

tions of DCOP solvers have been created (Léauté et al. 2009; Sultanik et al. 2007; Ezzahir

et al. 2007). The majority of the existing DCOP algorithms can be placed in one of three

classes. Search-based algorithms perform a distributed search over the space of solutions

to determine the optimum (Modi et al. 2005; Gershman et al. 2009; Zhang et al. 2005;

Yeoh et al. 2010). Inference-based algorithms, on the other hand, make use of techniques
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from dynamic programming to propagate aggregate information among agents (Petcu

and Faltings 2005; Farinelli et al. 2008; Vinyals et al. 2009); these two classes provide a

different balance between memory requirements and number of messages exchanged. An-

other class of methods includes approximated algorithms that rely on sampling (Ottens

et al. 2012; Nguyen et al. 2013) applied to the overall search space.

The driving objective of the investigation discussed in this paper is to understand the

role that logic programming can play in solving DCOPs. In particular, existing popular

DCOP solvers (e.g., the frequently used FRODO platform (Léauté et al. 2009)) are

ad-hoc systems, with a relatively closed structure, and making use of ad-hoc dedicated

solvers for constraint handling within each agent. Thus, a question we intend to address

with this paper is whether the use of a general infrastructure for constraint solving

within each agent of a DCOP would bring benefits compared to the ad-hoc solutions of

the existing implementations. We propose a general infrastructure (based on distributed

dynamic programming) for the communication among agents, guaranteeing completeness

of the system. The platform enables the use of a generic logic programming solver (e.g.,

a Constraint Logic Programming system) to handle the local constraints within each

agent; the generality of the platform will also allow the use of distinct logic programming

paradigms within each agent (e.g., Answer Set Programming).

The paper discusses the overall logic programming infrastructure, along with the de-

tails of the modeling of each agent using constraint logic programming. We provide some

preliminary experimental results, validating the viability and effectiveness of this research

direction for DCOPs. The results also highlight the potential offered by logic program-

ming to provide an implicit representation of hard constraints in DCOPs, enabling a

more effective pruning of the search space and reducing memory requirements.

2 Background

In this section, we provide a brief review of basic concepts from DCOPs. We assume that

the readers have familiarity with logic and constraint logic programming; in particular,

we will refer to the syntax of the clpfd library of SICStus Prolog (Carlsson et al. 2012).

2.1 Distributed Constraint Optimization Problems (DCOPs)

A DCOP (Modi et al. 2005; Petcu and Faltings 2005; Yeoh and Yokoo 2012) is described

by a tuple P = (X,D,F,A, α) where: (i) X = {x1, . . . , xn} is a set of variables; (ii)

D = {Dx1
, . . . , Dxn

} is a set of finite domains, where each Dxi
is the domain of variable

xi; (iii) F = {f1, . . . , fm} is a set of utility functions (a.k.a. constraints), where each

fj : Dxj1
×Dxj2

× . . .×Dxjk
7→ N∪ {−∞, 0} specifies the utility of each combination of

values of variables in its scope scp(fj) = {xj1, . . . , xjk} ⊆ X; (iv) A = {a1, . . . , ap} is a

set of agents; and (v) α : X → A maps each variable to an agent.

We assume the domains Dx to be finite intervals of integer numbers. A substitution θ

of a DCOP P is a value assignment for the variables in X s.t. θ(x) ∈ Dx for each x ∈ X.

Its utility is utP(θ) =
∑m

i=1 fi(scp(fi)θ), i.e., the evaluation of all utility functions on

it. A solution θ is a substitution such that utP(θ) is maximal, i.e., there is no other

substitution σ such that utP(θ) < utP(σ). SolnP denotes the set of solutions of P.

Each DCOP P is associated with a constraint graph, denoted with GP = (X,EP),
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x1

x2

x3 x4

xi xj utility

0 0 5
0 1 8
1 0 20
1 1 2

x2 x1 utility

0 0 5+20+20=45
0 1 8+20+20=48
1 0 20+8+8=36
1 1 2+8+8=18

Fig. 1. DCOP Example

where X is a set of nodes which correspond to DCOP variables, and EP is a set of edges

which connect pairs of variables in the scope of the same utility function.

2.2 Distributed Pseudo-tree Optimization Procedure (DPOP)

DPOP (Petcu and Faltings 2005) is one of the most popular complete algorithms for

the distribution resolution of DCOPs; as discussed in several works, it has several nice

properties (e.g., it requires only a linear number of messages), and it has been used as the

foundations for several more advanced algorithms (Petcu et al. 2006; Petcu and Faltings

2007; Petcu et al. 2007).

The premise of DPOP is the generation of a DFS-Pseudo-tree—composed of a subgraph

of the constraint graph of a DCOP. The pseudo-tree has a node for each agent in the

DCOP; edges meet the following conditions: (a) If an edge (a1, a2) is present in the

pseudo-tree, then there are two variables x1, x2 s.t. α(x1) = a1, α(x2) = a2, and (x1, x2) ∈
EP ; (b) The set of edges describes a rooted tree; (c) For each pair of variables xi, xj s.t.

α(xi) 6= α(xj) and (xi, xj) ∈ EP , we have that α(xi) and α(xj) appear in the same branch

of the pseudo-tree. α(xi) and α(xj) are also called the pseudo-parent and pseudo-child

of each other.

Algorithms exist (e.g., (Hamadi et al. 1998)) to support the distributed construction

of a DFS-Pseudo-tree. Given a DCOP P, we will refer to a DFS-Pseudo-tree of P by

TP = (A,ETP). We will also denote with a 7→P b if there exists a sequence of edges

(a1, a2), (a2, a3), . . . , (ar−1, ar) in ETP such that a = a1 and b = ar; in this case, we say

that b is reachable from a in TP . Given an agent a, we denote with SP(a) the set of

agents in TP in the subtree rooted at a (including a itself).

The DPOP algorithm operates in two phases:

• UTIL Propagation: During this phase, messages flow bottom-up in the tree,

from the leaves towards the root. Given a node N , the UTIL message sent by N

summarizes the maximum utility achievable within the subtree rooted at N for each

combination of values of variables belonging to the separator set (Dechter 2003) of

N . The agent does so by summing the utilities in the UTIL messages received from

its children agents, and then projecting out its own variables by optimizing over

them.

• VALUE Propagation: During this phase, messages flow top-down in the tree.

Node N determines an assignment to its own variables that produces the maximum

utility based on the assignments given by the ancestor nodes; this assignment is

then propagated as VALUE messages to the children.

Let us consider a DCOP with X = {x1, x2, x3, x4}, each with Dxi
= {0, 1} and with

binary constraints described by the graph (and pseudo-tree) and utility table (assuming
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i > j) in Fig. 1 (left and middle). For simplicity, we assume a single variable per agent.

Node x2 will receive two UTIL messages from its children; for example, the message from

x3 will indicate that the best utilities are 20 (for x2 = 0) and 8 (for x2 = 1). In turn,

x2 will compose the UTIL messages with its own constraint, to generate a new utility

table, shown in Fig. 1 (right). This will lead to a UTIL meassage sent to x1 indicating

utilities of 45 for x1 = 0 and 48 for x1 = 1. In the VALUE phase, node x1 will generate

an assignment of x1 = 1, which will be sent as a VALUE message to x2; in turn, x2 will

trigger the assignment x2 = 0 as a VALUE message to its children.

3 Logic-Programing-based DPOP (LP-DPOP)

In this section, we illustrate the LP-DPOP framework, designed to map DCOPs into

logic programs that can be solved in a distributed manner using the DPOP algorithm.

Agent a

Agent b

DFS-Pseudo-tree Parent

DFS-Pseudo-tree Children

table_max_b
table_info_b

table_max_a
table_info_a solution_c

solution_a

Agent c

Fig. 2. Overall Communication Needs

Agent 
Description
(FRODO)

variables
domains

utilities

!a

LP variables/domains

Utility Facts

Pseudo-tree

Algorithm

DFS
Pseudo

Tree
Computation

Fig. 3. Components of an Agent in
LP-DPOPfacts

3.1 Overall Structure

The overall structure of LP-DPOP is summarized in Fig. 2. Intuitively, each agent a of

a DCOP P is mapped to a logic program Πa. Agents exchange information according to

the communication protocol of DPOP. These exchanges are represented by collections of

facts that are communicated between agents. In particular,

• UTIL messages from agent b to agent a are encoded as facts table max b(L), where

L is a list of [u, v1, . . . , vk]. Each one is a row of the UTIL message, where u

is the maximum utility for the combination of values v1, . . . , vk. It is also neces-

sary to transmit an additional message describing the variables being communi-

cated: table info b([v(x1, low1, high1), . . . , v(xk, lowk, highk)]). This message identifies

the names of the variables being communicated and their respective domains. It

should be mentioned that the UTIL message from b to a can contain variables

belonging to some ancestors of a.

• VALUE messages from agent c to agent a are encoded as facts solution c(Var ,Val),

where Var is the name of a variable and Val is the value assigned to it.

3.2 LP-DPOP Execution Model

Computing DFS-PseudoTree: One can use existing off-the-shelf distributed algo-

rithms to construct pseudo-trees. A commonly used algorithm is the distributed DFS
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protocol (Hamadi et al. 1998), that creates a DFS tree with the max-degree heuristic

as the variable-ordering heuristic. The max-degree heuristic favors variables with larger

numbers of constraints to be higher up in the pseudo-tree.

Solving a DCOP: The actual agent a is implemented by a logic program Πa. In the

context of this paper, the logic program is a CLP program, whose entry point is a

predicate called agent:

agent :- agent(ID),

(\+is_leaf(ID) -> get_utils; true),

(\+is_root(ID) -> compute_utils, send_utils, get_value; true),

(\+is_leaf(ID) -> compute_value, send_value; compute_value).

The logic program implements the compute utils and the compute value predicates.

They are described in the next section.

3.3 Modeling LP-DPOP as CLP

In this section, we illustrate the structure of the logic program that encodes each individ-

ual agent. We propose two alternative models. The first one follows the model illustrated

in Fig 3: the input DCOP is described using the standardized format introduced by the

FRODO DCOP platform (Léauté et al. 2009).

In the first model, referred to as LP-DPOPfacts, the FRODO model is literally trans-

lated into collections of logic programming facts. The second model, referred to as LP-

DPOPrules, follows the more “realistic” option of capturing the hard constraints present

in the DCOP model explicitly as logical constraints, instead of forcing their mapping to

explicit utility tables (as automatically done by FRODO).

3.3.1 LP-DPOPfacts

The logic program Πa modeling an agent is composed of four primary modules, as illus-

trated in Fig. 3:

1. Agent, Variables and Domains: the core components of the agent variables and

domains are encoded in Πa by facts of the form:

◦ A single fact agent(a) describing the identity of the agent;

◦ For each variable xi with domain Dxi , such that α(xi) = a or

α(xj) = a for some variable xj such that (xi, xj) ∈ EP : a fact

variable(xi,min(Dxi),max(Dxi)) and a fact owner(α(xi), xi).

2. DFS-Pseudo-Tree: the local position of a in the DFS-Pseudo-tree is described by:

− facts of the form child(b) where b is agent s.t. (a, b) ∈ ETP ;

− a fact parent(c) where c is the (only) agent s.t. (c, a) ∈ ETP ; and

− a fact ancestor(c) where c is any non-parent ancestor of a in the pseudo-tree,

i.e., any agent c s.t. (c, a) 6∈ ETP and c 7→P a.

3. Utilities/Constraints: the constraints are obtained as direct translation of the utility

tables in the FRODO representation: for each constraint fj , there is a fact of the

form constraint fj(L), where L is a list containing lists [fj(v1, . . . vr), v1, . . . , vr]

for each assignement {x1/v1, . . . , xr/vr} to the variables of scp(fj) = {x1, . . . , xr}
where fj(v1, . . . , vr) 6= −∞. Each constraint is further described by the facts: (i) a

fact constraint(fj), identifying the name of each constraint, (ii) a fact scope(fj , xi)



6 Tiep Le et al.

for each xi ∈ scp(fj), identifying the variables contributing to the scope of the

constraint, and (iii) facts of the form constraint agent(fj , ar), identifying agents

that has variables in the scope of the constraint.

4. Resolution Engine: a collection of rules that implement the compute utils and

compute value—these are described below.
The core of the computation of the UTIL message is implemented within the

compute utils predicate. Intuitively, the construction of the UTIL message is mapped
to a CLP problem. Its construction and resolution can be summarized as follows:

... define_variables(L,Low,High),

define_constraints(L,Util),

generate_utils(Low,High,UTILITIES), ...

The steps can be summarized as follows:

• The define variables predicate is used to collect the variables that belong to

the agent and its ancestors (returned in the list Low and High, respectively), and

for each variable generates a corresponding CLP domain variable. The collecting

variables phase is based on the variable facts (describing all variables owned by

the agent) and the variables indicated in the table info b messages received from

the children; these may contain variables that belong to pseudo-parents in the tree

and unknown to the agent a. To enable interpretation of the CLP variables, two

facts low vars(Low) and high vars(High) are created in this phase. In the latter

phase, for each Xi in the collection of variables collected from the former phase

calls Xi in `..m where ` and m are the minimum and maximum value of Xi’s

domain which are either known to the agent or given in received the table info b

message.

• The predicate define constraints creates CLP constraints capturing the util-

ities the agent has to deal with—these include the utilities described by each

table max b message received from a child b and the utilities fj of the agent a

s.t. scp(fj) does not contain any variables in
⋃

(a,b)∈ETP
{x ∈ X | α(x) = b}.

For each utility fi of these utilities (described by a list of lists), the predicate

define constraints introduces a constraint of the form:

table([[Ui, X1, .., Xr]] , L, [order(id3), consistency(domain)])

where:

◦ X1, . . . , Xr are the CLP variables which were created by define variables

and correspond to the scope of this utility.

◦ L is the list of lists given in constraint fi(L);

◦ Ui is a new variable introduced for each utility fi.

The final step of the define constraints is to introduce the additional CLP con-

straint Util#= U1+U2+. . . +Us where Ui are the variables introduced in the table

constraints and Util is a brand new variable.

• The generate utils predicate has the following general structure:

generate_utils(Lo, Hi, UTILITIES) :-

findall([Util|Hi], (labeling([],Hi),find_max_util(Lo,Hi,Util)),UTILITIES).

find_max_util(Lo, Hi, Util) :-

maximize(labeling([ff],Lo), Util), assert(agent_a_table_max(Lo,Hi)).

The core of the computation of the VALUE message takes advantage of the fact

that the combination of variables producing the maximum values are asserted as
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agent a table max facts during the UTILs phase, enabling a simple lookup to compute

the solution. This can be summarized as follows:

... high_vars(H),

findall(Value,(member(Name,H),solution(Name,Value)), Sols),

agent_a_table_max(Low,Sols),

low_vars(Lo), length(Lo,Len), I in 1..Len,

findall(solution(Name,Value),

(indomain(I), nth1(I,Lo,Name), nth1(I,Low,Value)), VALUES), ...

3.3.2 LP-DPOPrules

An alternative encoding takes advantage of the fact that the utilities provided in the

utility table of a FRODO encoding are the results of enumerating the solutions of hard

constraints. A hard constraint captures a relation fj(x1, . . . , xr)⊕u where ⊕ is a relational

operator, and u is an integer. This is typically captured in FRODO as a table, containing

all tuples of values from Dx1
× · · · ×Dxr

that satisfy the relation (with a utility value of

0), and the default utility value of −∞ assigned to the remaining tuples.

This utility can be directly captured in CLP, thus avoiding the transition through the

creation of an explicit table of solutions:

hard constraint fj(X1, . . . , Xr) : −f̂j(X1, . . . , Xr)⊕̂u

where f̂j and ⊕̂ are the CLP operators corresponding to fj and ⊕. For example, the

smart grid problems used in the experimental section uses hard constraints encoded as

hard constraint eq0(X1,2, X2,1) :− X1,2 + X2,1# = 0

The resulting encoding of the UTIL value computation will modify the encoding of LP-

DPOPfacts as shown below

constraint_f(L),

table([[U,X_1,...,X_r]],L,_)
⇒ hard_constraint_f(X_1,...,X_r)

3.4 Some Implementation Details

The current implementation of LP-DPOP makes use of the Linda (Carriero et al. 1994)

infrastructure of SICStus Prolog (Carlsson et al. 2012) to handle all the communication.

Independent agents can be launched on different machines and connect to a Linda

server started on a dedicated host. Each agent has a main clause of the type

run agent :- prolog flag(argv, [Host,Port]),linda client(Host:Port),agent.

The operations of sending a UTIL message from b to the parent a is simply realized

by a code fragment of the type

send util(Vars,Utils,To):- out(msg to(To),[table info b(Vars),table max b(Utils)]).

The corresponding reception of UTIL message by a will use a predicate of the form

get util(Vars,Utils,Me):- in(msg to(Me), [table info b(Vars),table max b(Utils)]).

The communication of VALUE messages is analogous. get value and send value are

simple wrappers of the predicates discussed above.

3.5 Some Theoretical Considerations

The soundness and completeness of the LP-DPOP system is a natural consequence of the

soundness and completeness properties of the DPOP algorithm, along with the soundness
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and completeness of the CLP(FD) solver of SICStus Prolog. Since LP-DPOP emulates

the computation and communication operations of DPOP, each Πa program is a correct

and complete implementation of the corresponding agent a.

In the worst case, each agent in LP-DPOP, like DPOP, needs to compute, store,

and send a utility for each combination of values of the variables in the separator set

of the agent. Therefore, like DPOP, LP-DPOP also suffers from an exponential memory

requirement, i.e., the memory requirement per agent isO(maxDomw), wheremaxDom =

argmaxi |Di| and w is the induced width of the pseudo-tree.

4 Experimental Results

We compare two implementations of the LP-DPOP framework, LP-DPOPfacts and LP-

DPOPrules with a publicly-available implementation of DPOP, which is available on the

FRODO framework (Léauté et al. 2009). All experiments are conducted on a Quadcore

3.4GHz machine with 16GB of memory. The runtime of the algorithms are measured using

the simulated runtime metric (Sultanik et al. 2007). The timeout is set to 10 minutes.

Two domains, randomized graphs and smart grids, were used in the experiments.

Randomized Graphs: A randomized graph generated using the model in (Erdös and

Rényi 1959) with the input parameters n (number of nodes) and M (number of binary

edges) will be used as the constraint graph of a DCOP instance P.

Each instance P = (X,D,F,A, α) is generated using five parameters: |X|, |A|, the

domain size d of all variables, the constraint density p1 (defined as the ratio between

the number of binary edges M and the maximum number of binary edges among |X|
nodes), and the constraint tightness p2 (defined as the ratio between the number of

infeasible value combinations, that is, their utility equals −∞, and the total number of

value combinations).

We conduct experiments, where we vary one parameter in each experiment. The “de-

fault” value for each experiment is |A| = 5, |X| = 15, d = 6, p1 = 0.6, and p2 = 0.6. As

the utility tables of instances of this domain are randomly generated, the programs for

LP-DPOPrules and LP-DPOPfacts are very similar. Thus, we only compare FRODO with

LP-DPOPfacts. Table 1 shows the percentage of instances solved and the average simulated

runtime (in ms) for the solved instances; each data point is an average over 50 randomly

generated instances. If an algorithm fails to solve more than 85% of instances in a specific

configuration, then we consider that it fails to solve problems with that configuration.

The results show that LP-DPOPfacts is able to solve more problems and is faster than

DPOP when the problem becomes more complex (i.e., increasing |X|, d, p1, or p2). The

reason is that at a specific percentage of hard constraints (i.e., p2 = 0.6), LP-DPOPfacts is

able to prune a significant portion of the search space. Unlike DPOP, LP-DPOPfacts does

not need to explicitly represent the rows in the UTIL table that are infeasible, resulting

in lower memory usage and runtime needed to search through search space. The size of

the search space pruned increases as the complexity of the instance grows, making the

difference between the runtimes of LP-DPOPfacts and DPOP significant.

Smart Grids: A customer-driven microgrid (CDMG), one possible instantiation of the

smart grid problem, has recently been shown to subsume several classical power system

sub-problems (e.g., load shedding, demand response, restoration) (Jain et al. 2012). In

this domain, each agent represents a node with consumption, generation, and transmis-
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Table 1. Experimental Results on Random Graphs (%: Solved; Time: Runtime)

|X| DPOP LP-DPOPfacts

d DPOP LP-DPOPfacts

% Time % Time % Time % Time

5 100% 35 100% 30 4 100% 782 100% 74
10 100% 204 100% 264 6 90% 28,363 100% 539
15 86% 39,701 100% 1,008 8 14% - 98% 22,441
20 0% - 100% 1,263 10 0% - 94% 85,017
25 0% - 100% 723 12 0% - 60% -
30 0% - 100% 255
35 0% - 100% 256

p1
DPOP LP-DPOPfacts

p2
DPOP LP-DPOPfacts

% Time % Time % Time % Time

0.3 100% 286 100% 2,629 0.4 86% 48,632 92% 155,089
0.4 100% 1,856 100% 2,038 0.5 94% 38,043 100% 23,219
0.5 100% 13,519 100% 938 0.6 90% 31,513 100% 844
0.6 94% 42,010 100% 706 0.7 90% 39,352 100% 84
0.7 56% - 100% 203 0.8 92% 40,525 100% 61
0.8 20% - 100% 176 0.9 96% 27,416 100% 60

sion preference, and a global cost function. Constraints include the power balance and

no power loss principles, the generation and consumption limits, and the capacity of the

power line between nodes. The objective is to minimize a global cost function. CDMG op-

timization problems are well-suited to be modeled with DCOPs due to their distributed

nature. Moreover, as some of the constraints in CDMGs (e.g., the power balance prin-

ciple) can be described in functional form, they can be exploited by LP-DPOPrules. For

this reason, both LP-DPOPfacts and LP-DPOPrules were used in this domain.

We conduct experiments on a range of CDMG problem instances generated using the

four network topologies following the IEEE standards and varying the domain of the

variables.1 Fig. 4(a) displays the topology of the IEEE 13 Bus network, where rectangles

represent nodes/agents, filled circles represent variables, and links between variables rep-

resent constraints. The initial configuration of the CDMG and the precise equations used

in the generation of the problems can be found in (Jain et al. 2012). The experimental

results for the four largest standards, the 13, 34, 37, and 123 Bus Topology,2 are shown

in Fig. 4(b), 4(c), 4(d), and 4(e), respectively. We make the following observations:

• LP-DPOPrules is the best among the three systems both in terms of runtime and

scalability in all experiments. LP-DPOPrules’s memory requirement during its exe-

cution is significant smaller and increases at a much slower pace than other systems.

This indicates that the rules used in expressing the constraints help the constraint

solver to more effectively prune the search space resulting in a better performance.

• LP-DPOPfacts is slower than DPOP in all experiments in this domain. It is because

LP-DPOPfacts often needs to backtrack while computing the UTIL message, and

each backtracking step requires the look up of several related utility tables—some

1 www.ewh.ieee.org/soc/pes/dsacom/
2 In 123 Bus Topology’s experiments, a multi-server version of LP-DPOPfacts and LP-DPOPrules was
used because of the limit on the number of concurrent streams supported by Linda and SICStus.
FRODO cannot be run on multiple machines.



10 Tiep Le et al.

A6

A1 A2 A3 A4 A5

A7 A8 A9 A10 A11

A12 A13

(a) IEEE Standard 13 Bus Topology

 101

 102

 103

 104

 105

 106

 107

 108

 5  7  9  11  13  15  17  19  21  23  25  27  29  31

S
im

ul
at

ed
 R

un
tim

e 
(m

s)

Domain Size

|A| = 13, |X| = 74, |F| = 51

DPOP
LP-DPOPfacts

LP-DPOPrules

(b) 13 Bus Topology

 101

 102

 103

 104

 105

 106

 107

 5  7  9  11  13  15  17  19  21  23  25  27  29  31

S
im

ul
at

ed
 R

un
tim

e 
(m

s)

Domain Size

|A| = 34, |X| = 200, |F| = 135

DPOP
LP-DPOPfacts

LP-DPOPrules

(c) 34 Bus Topology
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(d) 37 Bus Topology
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Fig. 4. Experiment Results on Smart Grids

tables can contain many tuples (e.g., one agent in the 13 Bus problem with domain

size of 23 could have 3, 543, 173 facts). We believe that this is the source of the

weak performance of LP-DPOPfacts.

5 Conclusion and Future Work

In this paper, we presented a generic infrastructure built on logic programming to ad-

dress problems in the area of DCOP. The use of a generic CLP solver to implement the

individual agents proved to be a winning option, largely outperforming existing DCOP

technology in terms of speed and scalability. The paper also makes the preliminary case

for a different encoding of DCOPs w.r.t. existing technologies; the ability to explicitly

model hard constraints provides agents with additional knowledge that can be used to

prune the search space, further enhancing performance.

This is, in many regards, a preliminary effort that will be expanded in several directions.

First, we believe that different types of DCOP problems may benefit from different types

of local solvers within each agent; we currently explore the use of ASP as an alternative

for the encoding the agents. The preliminary results are competitive and superior to those

produced by DPOP. Classifying DCOP problems in such a way to enable the automated

selection of what type of LP-based solver to use is an open research question to be

addressed. The strong results observed in the use of implicit encodings of hard constraints

also suggest the need of developing DCOP description languages that separate hard and

soft constraints and do not require the explicit representation for all constraints.

On the other direction, we view this work as a feasibility study towards the develop-

ment of distributed LP models (e.g., Distributed ASP). Paradigms like ASP are highly

suitable to capture the description of individual agents operating in multi-agent environ-

ments; yet, ASP does not inherently provide the capability of handling a distributed ASP

computation with properties analogous to those found in DCOP. We believe the models

and infrastructure described in this paper could represent the first step in the direction

of creating the foundations of DASP and other distributed logic programming models.
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