
Control Flow Analysis for Reverse Engineering of
Sequence Diagrams

Atanas Rountev Olga Volgin Miriam Reddoch
Department of Computer Science and Engineering

Ohio State University
{rountev,volgin,reddoch}@cis.ohio-state.edu

ABSTRACT
Reverse engineering of UML sequence diagrams plays an im-
portant role in iterative development and in software main-
tenance. In static analysis for such reverse engineering, an
open question is how to map control-flow graphs to the
control-flow primitives of the recently-introduced new gen-
eration of UML. Our work presents the first algorithm that
solves this problem. We also propose transformations of the
reverse-engineered diagrams in order to improve diagram
comprehension. Our extensive experiments show that these
techniques are efficient and effective. We also describe a test
coverage tool based on the sequence diagrams, and discuss
its use for the evaluation of a real-world test suite.

1. INTRODUCTION
Sequence diagrams are essential UML artifacts for mod-

eling the behavioral aspects of a system [22, 16]. The di-
agrams are particularly well-suited for object-oriented soft-
ware, where they represent the flow of control during object
interactions [9, 13]. A sequence diagram shows a set of in-
teracting objects and the sequence of messages exchanged
among them. The diagram may also contain additional in-
formation about the flow of control during the interaction,
such as if-then conditions (”if c send message m”) and itera-
tion (”send message m multiple times”) [22, 16]. An example
of a sequence diagram is shown in Figure 2b.

1.1 Reverse-Engineered Sequence Diagrams
Modern iterative development allows quick adaptation by

interleaving analysis, design, implementation, and testing
within each iteration. The design is not defined completely
in advance; rather, it evolves based on insights from the im-
plementation and the testing done in the current and the
previous iterations. In this context, it is often necessary to
perform reverse engineering of the design from existing code.
A typical scenario [13] is to perform design recovery in the
beginning of the current iteration, by applying reverse en-
gineering on the last iteration’s code. The resulting design
documents serve as the starting point for subsequent de-
sign work. Additional reverse engineering is also necessary
during an iteration. As pointed out in one popular book
on modern software development [13], in this context an
important item on the “wish-list” for UML tools is reverse-
engineering of sequence diagrams using current and correct
UML notation. At present, there do not exist general static
analysis techniques that achieve this goal.

Reverse engineering of sequence diagrams can also play an
important role in the maintenance of large object-oriented
systems. These systems are substantial investments that
will have to be maintained for many years into the future,
in the absence of the original designers and developers, and
often with incomplete or non-existent design information.
Reverse-engineered sequence diagrams provide essential in-
sights for software understanding and maintenance of such
systems, since object interactions are at the core of object-
oriented design and programming.

Sequence diagrams are the basis for several approaches for
testing of object-oriented software [3, 1, 4, 10, 28]. These ap-
proaches test the interactions among collaborating objects.
Sequence diagrams, or the semantically-equivalent UML col-
laboration diagrams [22, 9], are used to determine the inter-
actions that must be exercised. For example, it may be re-
quired to cover all relationships of the form “object X sends
message m to object Y”. Sequences of messages—for exam-
ple, all possible beginning-to-end message sequences in the
diagram—may also be considered for coverage. The use of
such testing techniques can be simplified greatly by cover-

age tools based on reverse-engineered sequence diagrams. A
coverage tool can use static analysis to extract one or more
sequence diagrams from the tested code; the resulting di-
agrams represent the coverage requirements. The tool can
then perform dynamic analysis during the execution of the
given tests in order to obtain run-time coverage results.

1.2 Mapping to UML Control-Flow Primitives
First-generation UML (versions 1.x) provides limited fea-

tures for representing the flow of control during an interac-
tion [9, 3]. These deficiencies have been addressed by the de-
signers of second-generation UML. The recently-introduced
specification of UML 2.0 [16] defines a richer set of control-
flow primitives to be used in sequence diagrams. For ex-
ample, it becomes possible to represent in a more general
manner alternative, repeating, and breaking behavior.

For reverse engineering of sequence diagrams, an impor-
tant problem is how to map intra-method flow of control
to the control-flow primitives of second-generation UML.
Because the new version of UML was introduced only re-
cently, no existing work addresses this problem. This means
that reverse engineering tools cannot take advantage of the
full expressive power of UML. This paper presents the first

static analysis algorithm that performs this mapping. Given
a control-flow graph for a method, our analysis builds a



data structure that represents this method’s flow of con-
trol using UML 2.0 primitives. This data structure can be
subsequently used as a building block in reverse-engineered
sequence diagrams. Furthermore, the data structure pro-
vides a starting point for subsequent run-time coverage anal-
ysis in coverage tools that support testing based on reverse-
engineered sequence diagrams.

The analysis was implemented as part of the Red toolkit
for reverse engineering of sequence diagrams. The goal of
the toolkit is to provide general, effective, and efficient re-
verse engineering of second-generation UML sequence dia-
grams for Java software. The control flow analysis com-
pletely solves one of the key challenges for the toolkit: the
problem of mapping control-flow graphs to the UML control-
flow primitives. The analysis implementation was evaluated
experimentally on a large number of components. Our re-
sults confirmed its practicality and provided important in-
sights into the structure of the reverse-engineered sequence
diagrams.

1.3 Diagram Transformations
Our experiments with the algorithm revealed that the

mapping from intra-method control flow to diagram ele-
ments sometimes may produce diagrams that are too ver-
bose. To address this problem, we have defined several
transformations of sequence diagrams. These transforma-
tions make the reverse-engineered diagrams easier to com-
prehend, while at the same time preserving their meaning.
As a result, tools that employ our analysis can produce more
compact diagrams which are more useful for tool users. Our
extensive experiments show that the proposed transforma-
tions are very effective in simplifying the diagrams.

1.4 Test Coverage Tool
Based on the control flow analysis, we have built a proto-

type coverage tool for testing based on reverse-engineered se-
quence diagrams. The tool supports a testing approach pro-
posed in [3] and also provides functionality needed for simi-
lar testing techniques [4, 28]. The Round-trip Scenario Test
approach from [3] requires coverage of all possible control-
flow decisions in sequence diagrams during testing of object
interactions. The output of our control flow analysis pro-
vides a natural basis for a coverage tool for such testing.
We present preliminary results from applying the tool to the
Mauve open-source test suite for the standard Java libraries.
Our study determined how well the Mauve tests cover differ-
ent control-flow aspects of object interactions, and provided
insights about potential weaknesses of the tests.

1.5 Contributions
The contributions of this work are:

• the first general algorithm for mapping intra-method
flow of control to second-generation UML

• several transformations for improving the structure of
the reverse-engineered sequence diagrams

• extensive experimental evaluation of the control flow
analysis and the diagram transformations

• a test coverage tool based on the diagrams and a pre-
liminary study on a real-world test suite

public abstract class NumberFormat {
public int maxDigits() { ... }
public int minDigits() { ... }

}
public class FormatSymbols {

public char sep() { ... } // separator
}
public class DecimalFormat extends NumberFormat {

...
public String toPattern(boolean local) { ... }
private String s1, s2;
private FormatSymbols sym;
private static final char SEP = ’,’;

}

Figure 1: Sample classes based on package java.text

2. BACKGROUND
In this section we discuss the control-flow primitives of

UML and describe the role of the control flow analysis in
the reverse-engineering toolkit.

2.1 Toolkit for Reverse Engineering
The control flow analysis is designed and implemented as

part of the ongoing work on the Red toolkit. Given a set
of Java classes, a Red user can choose any method m from
these classes and can generate a sequence diagram that rep-
resents the object interactions triggered by an invocation
of m. To solve this problem, the toolkit includes several
static analyses—for example, call graph construction [21],
call chain analysis [20], and the control flow analysis de-
scribed in this paper.

For each method that is shown in the sequence diagram,
the control flow analysis examines the control-flow graph
(CFG) of the method and creates a method-level data struc-
ture that encodes the relevant aspects of the method’s control-
flow behavior. Subsequent display of the reverse-engineered
diagram (currently being implemented) makes use of the
data structures created for the individual methods. The
analysis is specifically designed to operate on CFGs, which
makes it language-independent—the only requirements for
analyzing a method (or a procedure in a procedural lan-
guage) are certain CFG properties that are described later.
Furthermore, this approach allows reverse engineering even
when the source code is not available.

Example. Consider the Java classes in Figure 1. These
sample classes resemble several classes from the standard li-
brary package java.text. Suppose that the user provides
these classes to Red and wants a sequence diagram for the
interaction triggered by a call to method toPattern. Fig-
ure 2 shows the control-flow graph of the method and the
reverse-engineered sequence diagram. For this example we
assume that the user is not interested in the calls made by
the methods invoked by toPattern. The loop, opt, break,
and alt elements represent the flow of control during the ob-
ject interactions, as described shortly. These elements are
based on the data structure produced by our control flow
analysis of the CFG.

2.2 UML Sequence Diagrams
A sequence diagram contains objects and messages ex-

changed among these objects. In addition, the new gener-
ation of UML (version 2.0, to be finalized in April 2004)



Figure 2: (a) Control-flow graph for toPattern (b) Reverse-engineered sequence diagram for toPattern

defines interaction fragments as diagram entities that rep-
resent various aspects of the interaction [16]. For the pur-
poses of this work, four kinds of interaction fragments are of
particular importance: opt, alt, loop, and break fragments.
They provide the fundamental control-flow primitives that
are used in the reverse-engineered sequence diagrams. Ex-
amples of these fragments are shown in Figure 2. A fifth kind
of fragment—a message fragment—represents messages that
are sent and received by objects.1

An opt, loop, or break fragment encloses an ordered se-
quence of other fragments. In Figure 2, the loop fragment
encloses an ordered sequence containing four elements: an
opt fragment, a message fragment append(t), a break frag-
ment, and a message fragment append(s1). The opt frag-
ment encloses a sequence containing a message fragment
t=sep(), and the break fragment encloses a sequence con-
taining a message fragment append(s2). A message frag-
ment does not enclose any other fragments.

A sequence of fragments represents one or more sequences
(traces) of run-time events [16]. An opt fragment describes
optional behavior guarded by some condition. The sub-trace
represented by the fragments inside an opt fragment is exe-
cuted if the condition is true and skipped if the condition is
false. For example, the opt fragment in Figure 2 is guarded
by the condition !c2 corresponding to CFG node 4. The
enclosed message t=sep() is sent if and only if c2 is false.

An alt fragment describes two or more mutually-exclusive
alternatives in behavior. Each alternative is represented by
a separate ordered sequence of fragments and is guarded by
a particular condition. The set of traces defined by an alt

1Strictly speaking, [16] treats the two endpoints of a message as
separate fragments. This distinction is irrelevant for our work.

fragment is the union of the sets of traces for the alterna-
tives. For example, the alt fragment in Figure 2 has two
alternatives. The first one is guarded by condition c5 from
CFG node 12 and encloses the sequence containing message
fragment maxDigits(). The second one is guarded by !c5

and encloses the sequence containing minDigits().
The sequence of fragments enclosed in a loop fragment

is repeated until the guard condition becomes false. For
the loop in Figure 2, the sequence opt, append(t), break,
append(s1) is repeated until condition c1 at CFG node 3
becomes false. The loop can also exit through the break
fragment: if condition c3 &&!c4 associated with the break
fragment ever becomes true, append(s2) is executed, the
loop terminates, and the alt fragment is executed next. In
general, a break fragment represents a “breaking” scenario:
first the fragments inside the break are executed, and then
the execution of the fragment enclosing the break completes
immediately.

A break fragment, as defined by UML 2.0, breaks out
of the immediately surrounding fragment. This definition
is overly restrictive and makes it impossible for a reverse-
engineering analysis to express the semantics of real-world
code. We have adopted a generalized form of break fragment
that allows breaking out of multiple enclosing fragments.
Such a generalized break specifies the enclosing fragment out
of which it is breaking. For example, if a break fragment F3

is enclosed in F2 which in turn is enclosed in F1, F3 could
be of the form “break out of F1”. The UML notation can be
easily augmented to represent this extension by labeling the
corresponding enclosing fragment and using the label when
displaying the break fragment; the examples in this paper
use this approach.



Figure 3: Post-dominators, loops, and successors.

3. PHASE I: PREPROCESSING
The control flow analysis traverses the CFG of a method

and maps different subgraphs to the interaction fragments
described earlier. In Sections 3.3 and 3.4 we define the con-
cepts of branch successors and loop successors. Branch and
loop successors play a central role in the algorithm; they
are computed before the mapping is performed. Sections
3.1 and 3.2 provide some standard background information
needed to define these concepts.

3.1 Entry, Exit, and Post-Dominators
Consider a control-flow graph G. An entry node of G is

a node that does not have any predecessors, and an exit

node of G does not have any successors. We assume that
the analyzed CFG has exactly one entry node. In Java an
exit node corresponds to a return statement or a throw

statement. In general, a CFG may have multiple exit nodes.
The algorithm becomes more complicated in the presence of
multiple exit nodes—for example, it becomes necessary to
use information about control dependencies [8, 6] between
CFG branch nodes and exit nodes. For brevity we discuss
only the simpler case in which the CFG has a single exit
node, and that node corresponds to a return statement.
The general treatment of multiple exit nodes is described
in [27]; our implementation fully handles this general case.
We assume that each node in G is reachable from the entry
node and reaches the exit node.

Consider a control-flow graph G with a single exit node
that is reachable from all nodes. Node n2 post-dominates n1

if every path from n1 to the exit node contains n2. Node n2

immediately post-dominates n1 if n2 post-dominates n1 and
any other post-dominator of n1 is also a post-dominator of
n2. The immediate post-dominance relation can be repre-
sented by a post-dominance tree in which each parent node
is the immediate post-dominator of its children. The root
of the tree is the exit node. The post-dominance tree for
the CFG from Figure 2 is shown in Figure 3a. Our imple-
mentation uses one of the algorithms from [14] to compute
post-dominance trees.

3.2 Loops
In a reducible control-flow graph G, the edges can be par-

titioned into forward edges and back edges. The forward
edges form an acyclic graph. Edge (x, y) is a back edge iff y
is an ancestor of x in the depth-first spanning tree rooted at
the entry node. Intuitively, a reducible control-flow graph
has “normal” loop structure. A loop in a reducible CFG is
a strongly-connected subgraph L such that [2]:

• Exactly one node n ∈ L has an incoming edge (n′, n)

such that n′ /∈ L. Node n is the header node of L; we
will denote it by header (L).

• The set of nodes in L is exactly the set of CFG nodes
that are reachable from header (L) and reach some n′

which is the source of a back edge (n′, header (L)). We
will denote this set of nodes by body(L).

A node can be the header node for at most one loop. For
any two loops L1 and L2, sets body(L1) and body(L2) are
either disjoint or one is a proper subset of the other. The
loop structure of a reducible CFG can be determined using
Tarjan’s interval-finding algorithm [24]; our current imple-
mentation uses a somewhat simpler approach from [2]. The
control flow analysis determines all loops Li together with
header (Li) and body(Li), and computes some additional in-
formation related to these loops:

• Enclosing loop encl loop(Li): the smallest Lj 6= Li

such that body(Li) ⊂ body(Lj). If Li is a top-level
loop, encl loop(Li) = none.

• For each CFG node n: encl loop(n) is the smallest Li

such that n ∈ body(Li). In case n is not inside any
loop, encl loop(n) = none.

The control-flow features of Java ensure that the CFG of a
method is reducible. Even if irreducibility is possible (e.g.,
in C and C++ due to goto), in reality it is rarely observed.
Thus, we chose to design the control flow analysis under
the assumption of reducibility; our implementation verifies
this assumption for each input CFG. Various approaches
for defining and identifying loops in irreducible graphs [17]
could potentially be used to generalize our analysis; we plan
to investigate this problem in the future.

3.3 Branch Successors
A CFG node is a branch node if it has at least two out-

going edges. For some of these nodes the analysis creates
alt fragments. For this, it is necessary to determine which
fragment should follow the alt in the enclosing fragment se-
quence, and which CFG node should be the starting point
when constructing this next fragment. For example, for
node 4 in Figure 2, the analysis will create an alt fragment
which subsequently will be transformed into an opt frag-
ment. The fragment following the alt in the loop’s fragment
sequence will be constructed starting from node 7, which is
the “merge point” of the two branches coming out of 4. For
a branch node n, the branch successor of n is the node from
which the analysis must continue after completing the pro-
cessing of the fragment created for n. We denote this node
by branch succ(n). Figure 3d lists the branch successors for
branch nodes 4, 8, and 12 from Figure 2.



Consider a branch node n with outgoing edges (n, ni). If
encl loop(n) = none, the branch successor is defined to be
the lowest common ancestor of all ni in the post-dominator
tree for the CFG. For example, for node 12 in Figure 2,
the lowest common ancestor of 13 and 14 in the tree from
Figure 3a is 15; therefore 15 is the branch successor for 12.
In general, a common ancestor in the tree represents a merge
point for all branches coming out of n. The lowest common
ancestor is the merge point that is the “closest” to n, and it
corresponds to the rest of the enclosing fragment sequence.

If encl loop(n) 6= none, the notion of a branch successor
must be restricted to the flow of control that stays within
the loop. For example, for node 8 in Figure 2, the lowest
common ancestor of 9 and 10 in the tree from Figure 3a is
12, which is not even in the loop. Thus, the method-level
post-dominator tree cannot be used to compute the branch
successor.

To address this problem, we define the set exit edges(L)
of loop exit edges for a loop L as { (n1, n2) |n1 ∈ body(L) ∧
n2 /∈ body(L)}. Each such edge e is associated with the loop
out of which it is breaking; this is either L or some loop
in which L is nested. More precisely, breaks from(e) is the
largest loop L′ such that e is in exit edges(L′). For example,
in Java a loop exit edge that crosses several nested loops may
be due to a labeled break statement [11]. Figure 3b shows
the loop exit edges for the loop from Figure 2a.

Our algorithm creates break fragments for loop exit edges.
Thus, such edges must be ignored when determining branch
successors for nodes in loops. We formalize this intuition by
defining the notion of post-dominance inside a loop. Con-
sider two nodes n1, n2 ∈ body(L). Node n2 post-dominates
n1 inside loop L if every path from n1 to header (L) that
stays entirely inside L contains n2. The post-dominance
tree for a loop L can be defined as the post-dominance tree
for the subgraph with edge set {(n, m) |n, m∈ body(L)} in
which header (L) is designated as the subgraph’s exit node.
When n2 post-dominates n1 inside L, this means that if n1

is reached during some iteration of L and subsequently the
iteration completes successfully—that is, header (L) is even-
tually reached—then n2 is reached after n1 as part of that
same iteration. Figure 3c shows the post-dominance tree for
the loop from Figure 2a.

If encl loop(n) = L, we consider only edges (n, ni) that
do not belong to exit edges(L). If there are at least two
such edges, we define the branch successor of n to be lowest
common ancestor of all such ni in the post-dominator tree
for L. If less than two ni are in L, n is not a branch node
with respect to the loop-only control flow and there is no
branch successor. This definition ensures that the branch
successor of n represents a merge point that is in the same
loop as n and belongs to the same iteration of that loop.
For node 8 in Figure 2, we consider the post-dominator tree
in Figure 3c and define the branch successor of 8 to be the
lowest common ancestor of 9 and 10 in that tree—namely,
node 10.

3.4 Loop Successors
Whenever the analysis encounters the header node of a

loop, it creates a loop fragment. In this case, it is necessary
to determine which fragment should follow the loop frag-
ment in the enclosing fragment sequence, and from which

CFG node the construction of this next fragment should
start. For example, for node 3 in Figure 2, the analysis will
create a loop fragment. The fragment following the loop in
the top-level fragment sequence will be constructed starting
from node 12. This is the merge point for the two possible
ways to exit the loop, corresponding to the two loop exit
edges (3, 12) and (9, 11).

For each loop L we determine a loop successor, denoted
by loop succ(L). The definition is based on the loop exit
edges for L. Let jump(L) be the subset of exit edges e for
L such that breaks from(e) = L. If L is nested inside some
other loop, this set contains all and only exit edges for L
that “jump” to L’s surrounding loop but not any further.
Thus, we are interested only in exit edges that represent
flow of control that follows L in its surrounding loop. Any
other exit edge represents a continuation of an iteration of
some outer loop (not L’s surrounding loop), and therefore
should be ignored when determining the successor of L.

The definition considers two cases. When encl loop(L) =
none, the loop successor is the lowest common ancestor for
all targets of edges from jump(L) in the method-level post-
dominator tree. For example, for the loop in Figure 2, these
targets are nodes 11 and 12. In the tree from Figure 3a, their
lowest common ancestor is 12; therefore, the loop successor
is 12. Intuitively, this is the earliest common point for all
possible executions after the loop terminates.

If encl loop(L) = L′, we consider the post-dominator tree
for L′ and the lowest common ancestor in that tree for all
targets of edges from jump(L). As with branch succes-
sors, here we consider only flow of control that stays inside
L′. In this case the loop successor represents the earliest
merge point for all possible ways to exit L and to continue
with the current iteration of L′. If jump(L) = ∅, we define
loop succ(L) = none ; even though somewhat unusual, this
case is possible and is handled by our algorithm.

4. PHASE II: FRAGMENT CONSTRUCTION
After computing the information described in the previ-

ous section, our analysis uses the algorithm from Figures 4
and 5 to construct a set of interaction fragments. The al-
gorithm traverses the control-flow graph and creates frag-
ments that correspond to the structure of that graph. For
example, whenever the algorithm encounters an invocation
expression, it creates a new message fragment and adds it
to the fragment structure. Note that a polymorphic invo-
cation expression may represent several possible messages
that are being sent to different receiver objects. Since the
focus of our work in the intra-method flow of control, we are
not concerned with this issue and the algorithm maps the
invocation expression to a single message fragment. Future
analyses built on top of our analysis may represent the inter-
method flow of control due to polymorphism in a different
manner.

The algorithm is designed under two assumptions about
the input control-flow graph. First, the graph should be
reducible, as discussed in Section 3. Second, we assume
that (1) a graph node corresponds to at most one invoca-
tion expression, and (2) a branch node does not correspond
to an invocation expression. Conditions (1) and (2) can
be trivially satisfied by introducing auxiliary variables and
statements.



input Control-flow graph G and all info from Section 3
output Fragment sequence s constructed by main

proc main

[1] create empty fragment sequence s
[2] processSequence (s, G.entry , G.exit)
proc processSequence (seq , start , stop)
[3] L := encl loop(start )
[4] n := start

[5] while n 6= stop and n 6= none

[6] if encl loop(n) 6= L
[7] n must be the header node of some loop L′

[8] processLoop(seq , L′)
[9] n := loop succ(L′)
[10] if n = start then n := none

[11] continue with the next iteration for [5]

[12] if n contains a call
[13] append a new message fragment to seq

[14] breaks := ∅
[15] if L 6= none

[16] breaks := {m | (n, m)∈exit edges(L)}
[17] for each m∈breaks

[18] processBreak (seq , n, m)
[19] rest := {m | (n, m)∈G ∧ m /∈breaks}
[20] if rest = ∅ then next := none

[21] if rest = {m} then next := m
[22] if rest = {m1, . . . , mk} for k > 1
[23] processAlt (seq , n, rest )
[24] next := branch succ(n)
[25] n := next

[26] if n = start then n := none

Figure 4: Algorithm for fragment construction.

Consider our running example. Given the control-flow
graph for toPattern, the algorithm produces the fragments
in Figure 6. Note that the fragments contain redundant
information—for example, two of the alt fragments have
empty alternatives. After some “cleanup” post-processing
described later, we obtain the fragments shown in Figure 7.

Procedure processSequence in Figure 4 creates a sequence
of fragments starting from some CFG node start . The graph
is traversed until CFG node stop is encountered, or until
there are no more nodes to process. For example, consider
edge (4, 6) in Figure 2. This edge corresponds to one alter-
native inside an alt fragment. To construct the fragment se-
quence for this alternative, processSequence will be invoked
with start = 6 and stop = 7. In this case the construction
of the sequence must stop at node 7, which is the branch
successor of node 4.

As the algorithm encounters nodes during the traversal
(lines 5–26), it “populates” the current sequence with the
appropriate fragments. First, if the current node n is en-
closed in a loop L′ different from the enclosing loop L for
start (line 6), this means that n is the header of L′ and L′

is enclosed in L. In this case processLoop creates the cor-
responding loop fragment, adds it to the current fragment
sequence, and recursively builds the new fragment sequence
inside the new loop fragment. The traversal then continues
from the loop successor of L′.

For the CFG in Figure 2, processSequence will be invoked
with start = 1 and stop = 15 in order to create the top-level
fragment sequence. The traversal will first encounter the

proc processLoop(seq , L)
[27] append a new loop fragment f to seq

[28] create an empty internal sequence seq
2

inside f
[29] processSequence (seq

2
, header (L), none)

proc processBreak (seq , n, m)
[30] append a new break fragment f to seq

[31] create an empty internal sequence seq
2

inside f
[32] L := breaks from((n, m))
[33] processSequence (seq

2
, m, loop succ(L))

proc processAlt (seq , n, rest)
[34] append a new alt fragment to seq

[35] for each mi ∈ rest

[36] add a new alternative ai to the alt fragment
[37] create an empty internal sequence seq i inside ai

[38] processSequence (seq i, mi, branch succ(n))

Figure 5: Algorithm for fragment construction.

constructor call when n = 2 and will create the correspond-
ing message fragment (lines 12–13). For n = 3, encl loop(1)
is different from encl loop(3) at line 6, and therefore a new
loop fragment must be constructed and added to the top-
level sequence. The loop successor is node 12 and the traver-
sal will continue from that node. Due to nodes 12, 13, and
14, an alt fragment will be added to the top-level sequence
(lines 22–24).

The creation of a fragment sequence enclosed inside a loop
(line 29) does not use a stopping node. Rather, the traversal
stops whenever the loop header is reached again along back
edges. The checks at lines 10 and 26 are responsible for
ensuring this termination.

At lines 15–18, the algorithm identifies outgoing edges
from n that correspond to break fragments. For each loop
exit edge (n, m) for L, a separate break fragment is added
to the current sequence. For each one, a sequence is con-
structed recursively using as stopping node the loop succes-
sor of the loop from which (n, m) breaks. Intuitively, this
loop successor is the starting point of another fragment in
some upper-level fragment sequence.

For the loop in Figure 2, processSequence will be invoked
with start = 3 and stop = none to create the sequence
enclosed inside the loop fragment. Due to exit edge (3, 12),
a new break fragment is added as a first element of that
sequence. For this new fragment, processSequence is called
at line 33 with start = 12 and stop = loop succ(L) = 12; as a
result, the sequence remains empty. Later, exit edge (9, 11)
results in another break fragment for which processSequence

with start = 11 and stop = 12 adds a message fragment for
r.append(s2) to the sequence inside this break fragment.
In both cases the traversals stop at node 12, which is the
starting point for the alt fragment in the top-level sequence.

Lines 19–26 process the remaining outgoing edges for n.
If there are at least two such edges, an alt fragment is con-
structed by calling processAlt . For example, node 4 has two
outgoing edges neither of which is a loop exit edge. A corre-
sponding alt fragment is created and populated recursively.
The stopping node for both alternatives is 7, which is the
branch successor of 4. The traversals must stop at node 7
because it is the starting point for constructing the message
fragment for r.append(t).

Clearly, the algorithm may produce redundant informa-
tion. For example, the first opt fragment in Figure 6 con-



Figure 6: Fragments constructed by the algorithm.

tains an empty alternative corresponding to t = SEP. This
alternative does not represent any useful information about
messages and should be eliminated. Such redundancies are
removed during “cleanup” post-processing. Figure 7 shows
the cleaned-up version of the fragments from Figure 6. We
use the rules described below, and apply them repeatedly
until no more simplifications are possible. The rules are:

• If an alternative in an alt fragment A has an empty en-
closed fragment sequence, this alternative is removed.
If after the removal there is only one remaining alter-
native, A is replaced by an opt fragment.

• If an opt fragment O encloses an empty fragment se-
quence, O is removed.

• If a break fragment B encloses an empty fragment se-
quence, B is removed if (1) B is the first or last element
in the enclosed sequence of some loop fragment, and
(2) B crosses only one level of loop nesting.

• If a loop fragment L encloses an empty fragment se-
quence, L is removed.

The conditions for the third rule ensure that the removed
break fragment does no contain any useful information. For
example, if a break fragment has an empty sequence but
appears in between two messages inside a loop, it will not
be removed because it represents an “abrupt” exit from the
loop. If a break fragment satisfies the conditions in the
third rule, it need not be represented in the diagram because
it is implied by the “normal” exit of the surrounding loop
fragment.

5. PHASE III: TRANSFORMATIONS
The approach presented in the previous section can pro-

duce a set of fragments for an arbitrary reducible control-
flow graph. The structure of the resulting fragments can be
improved by using several fragment transformations. The
goal of these transformations is to simplify the fragment
structure without altering its meaning. The motivation for
employing such transformations is to make the reverse-engi-
neered sequence diagrams easier to comprehend. Our expe-
rience examining the output of the analysis indicates that
deep nesting makes it harder to understand and to display

Figure 7: Fragments after phase II.

the diagrams. Thus, we define transformations that reduce
nesting depth. Section 7 describes experimental results that
demonstrate the effectiveness of these transformations.

The basic idea of our techniques is to move a nested frag-
ment one level up in the fragment nesting structure. The
first category of such transformations can be applied to an
alternative in an alt fragment. Suppose that the fragment
sequence for an alternative contains a single opt fragment.
In this case the condition guarding the alternative and the
condition guarding the opt can be combined. The sequence
inside the opt fragment can be “lifted” one level up to be-
come the sequence for the alternative. This eliminates the
nested opt fragment. Consider the last alt fragment in Fig-
ure 7, with the corresponding condition c5 from Figure 2.
For the sake of illustration, suppose that the first alternative
contained only an opt fragment surrounding maxDigits(),
and this opt fragment corresponded to some condition c6.
We can eliminate the opt fragment by moving maxDigits()

into the alternative and by changing the condition associ-
ated with this alternative to become c5 && c6.

A similar transformation can be performed when an al-
ternative in an alt fragment contains only an alt fragment.
In this case each alternative of the inner alt can become an
individual alternative of the outer alt, and the inner alt can
be eliminated. Again, this requires combining of the con-
dition for the original alternative in the outer alt with the
individual conditions for the alternatives in the inner alt.

A second category of transformations considers an opt
fragment whose enclosed sequence contains only alt, opt,
and break fragments. Since each of the enclosed fragments
has a guarding condition, we can eliminate the outer opt
fragment and move the inner fragments one level up. Of
course, the guarding conditions of these inner fragments
have to be augmented with the condition of the removed
opt fragment. The second opt fragment in Figure 7 illus-
trates this case. We can eliminate this fragment and replace
it with the inner break fragment. The guarding condition
of the break fragment changes from !c4 to c3 &&!c4. After
this transformation, we obtain the final fragment structure
which is used in the sequence diagram from Figure 2.

This technique can be generalized for the case when the
opt’s sequence contains not only alt/opt/break fragments,
but also a single contiguous subsequence with only message
fragments and loop fragments in it. This subsequence can be
used as the internal sequence of a new opt fragment which
has the same condition as the old one. The rest of the el-



ements (alt, opt, and break) are moved one level up. For
example, suppose that the second opt fragment from Fig-
ure 7 contained inside it the same break fragment followed
by two message fragment m1 and m2. We can replace the
outer opt with two new fragments: a break fragment with
the appropriate modified condition, followed by a new opt
fragment containing m1 and m2. This allows us to elimi-
nate the nesting for the break fragment (but not for m1 and
m2). Note that this could be done even if there were mul-

tiple non-adjacent subsequences of message/loop fragments
inside the outer opt. However, in this case each such sub-
sequence needs its own new opt fragment, which increases
the total number of fragments and therefore may make the
diagrams harder to comprehend. If there is only a single
subsequence, the number of fragments does not change.

We are currently working on the design and implemen-
tation of several additional categories of transformations.
However, as indicated by the results in Section 7, the two
categories from above already have very beneficial effects.

6. TEST COVERAGE TOOL
Object-oriented software is heavily based on object inter-

actions and interaction testing is essential in this context.
Existing work [3, 1, 4, 10, 28] defines several techniques for
interaction testing based on sequence diagrams or collabo-
ration diagrams. These approaches can be applied naturally
to reverse-engineered sequence diagrams, and the required
coverage of different diagram elements can be measured au-
tomatically by instrumenting the code from which the dia-
grams were extracted.

Binder [3] considers testing of different beginning-to-end
scenarios within a sequence diagram. His Round-Trip Sce-
nario test pattern requires testing that exercises conditional
and iterative behavior in the diagram. These testing re-
quirements can be stated as coverage criteria for transitions

between fragments. For example, for an opt fragment, it is
necessary to exercise both the “true” behavior of entering
the fragment sequence inside the opt, and the “false” be-
havior of skipping that sequence and continuing with the
fragment that follows the opt. The behavior represented by
alt and break fragments can be treated similarly. Thus, if it
were possible to instrument the code and measure the cov-
erage of these transitions, this would enable tool support for
the Round-Trip Scenario approach. Furthermore, thorough
coverage of control-flow decisions during object interactions
is a necessary prerequisite for the approaches from [4, 28].

We have built a tool that allows coverage tracking for the
intra-method conditional behavior in a reverse-engineered
sequence diagram. The tool identifies a set of CFG edges
that correspond to conditions in the diagram. These edges
are instrumented and their coverage is observed at run time
during the execution of the given tests. Since we want to
distinguish the individual conditions that guard the frag-
ments, the coverage tool considers the sequence diagram
after phase II, before the transformations from phase III.
For example, the second opt fragment in Figure 7 corre-
sponds to CFG edges (8, 9) and (8, 10), and these two edges
are tracked at run time. Other conditional behavior in Fig-
ure 7 is treated similarly. We also take into account the
loop exit which was represented by a break fragment that
was removed during cleanup post-processing. In general,

Component Methods Time (s) (a) (b) (c)
collator 157 4.84 56.1% 17.8% 26.1%
date 136 5.43 82.4% 5.1% 12.5%
decimal 136 0.77 81.6% 6.6% 11.8%
message 176 1.33 77.3% 5.7% 17.0%
boundaries 74 0.54 81.1% 13.5% 5.4%
gzip 41 0.21 68.3% 17.1% 14.6%
zip 118 0.54 72.0% 21.2% 6.8%
math 241 0.96 50.6% 33.2% 16.2%
pdf 330 0.74 78.2% 7.9% 13.9%
mindbright 488 2.08 69.0% 19.7% 11.3%
sql 60 0.32 63.3% 16.7% 20.0%
html 298 1.42 62.4% 18.5% 19.1%
jess 627 2.83 69.9% 8.4% 21.7%
io 86 0.34 74.4% 10.5% 15.1%
jflex 313 14.65 52.7% 21.7% 25.6%
bytecode 625 6.65 60.2% 19.2% 20.6%

Table 1: Subject components.

each conditional behavior inside the reverse-engineered di-
agram is associated with CFG edges, and the coverage of
these edges is measured at run time. We plan to represent
the coverage information visually by displaying the sequence
diagram and highlighting the conditional behavior that was
not exercised. This will provide high-level view of those as-
pects of object interactions that may need additional testing.
More details about the tool are described in [18].

7. EMPIRICAL STUDY
This section summarizes some of the experimental results

from our evaluation of the control flow analysis; more details
about these and other results are available in [27]. We have
implemented the analysis as part of Red, using the Soot
framework [26]. The subject components used in the study
are listed in Table 1. The components come from a variety of
domains and typically represent parts of reusable libraries.
The second column in the table shows the total number of
non-abstract methods in each component.

The third column shows the running time of the analy-
sis, in seconds. This is the total time to run all phases for
all methods in a component, on a 900 MHz Sun Fire 280-
R machine. The results strongly suggest that the cost of
the analysis is practical. Certain aspects of our current im-
plementation are somewhat inefficient, and we anticipate to
achieve even lower running times in the near future.

For each method, we used phases I and II of the anal-
ysis to construct a set of fragments. We then considered
all non-message fragments: these are fragments that would
have to be represented by rectangles in a displayed sequence
diagram. Our experience with some of the components sug-
gests that when a diagram contains significant nesting of
non-message fragments, it becomes hard to read and under-
stand. For convenience, in the rest of this section we will
use “fragments” to refer to non-message fragments.

We classified each method into one of three disjoint cate-
gories: (a) methods for which no fragments are created, such
as simple get/set methods, (b) methods that do not have
fragment nesting, and (c) methods with fragment nesting.
The last three columns in Table 1 show the sizes of these
categories, relative to the total number of methods. The
majority of methods do not require any fragments, which
is not surprising given the typical object-oriented program-



0%

20%

40%

60%

80%

100%

co
lla

to
r

da
te

de
ci

m
al

m
es

sa
ge

bo
un

da
rie

s

gz
ip zi
p

m
at

h

pd
f

m
in

db
rig

ht sq
l

ht
m

l

je
ss io

jfl
ex

by
te

co
de

D(m) <= 1 1 < D(m) <= 2 D(m) > 2

Figure 8: Changes in average nesting depth.

ming style. Still, fragments exist for a substantial number
of methods: typically, at least 20% of the methods, and in
some cases as many as 50%. Furthermore, many of these
methods exhibit nesting of fragments. We will denote the
set of methods in the third category by Nested .

Using the techniques from phase III, we transformed all
methods in Nested . For each method m we computed the
average nesting depth D(m) of the fragments in this method.
The nesting depth of a fragment was defined as the number
of its enclosing fragments. The methods from Nested were
then separated into three sets: methods with D(m) ≤ 1,
methods with 1 < D(m) ≤ 2, and methods with D(m) > 2.
The larger values of D(m) indicate that the method’s frag-
ment structure is more complicated. For each component we
computed this partitioning before and after the transforma-
tions from phase III. Figure 8 shows these measurements:
for each component, there are two adjacent bars showing
the distribution before and after phase III. For example,
for collator, the first two bars in the figure show that the
number of methods from Nested with D(m) > 2 decreases to
less than 5%, while the number of methods with D(m) ≤ 1
increases to about 75%.

The results indicate that the techniques from Section 5
successfully reduce unnecessary nesting of fragments. For
example, from the 13 components in which there is room
for improvement in category D(m) ≤ 1, 10 components ex-
hibit increase for this category by more than 10 percentage
points. In two cases (date and message) this increase is as
large as 30 percentage points. Similarly, the category for
D(m) > 2 decreases in size, in several cases by more than
10 percentage points. The effect of these improvements on
the comprehension of the diagrams will have to be evalu-
ated eventually by users of Red. The anecdotal evidence
from our experience strongly suggests that the reduction in
nesting corresponds directly to the ease of understanding of
the diagrams. This is also confirmed by the reduction of
the total number of nested fragments (i.e., fragments with
positive nesting depth) in methods from Nested . This im-
provement can be summarized as follows: for 14 out of the
16 components, the number of nested fragments is reduced
by more than 10%; for 11 components the reduction is more
than 20%; for 7 components the reduction is more than 30%;
and for 3 components the reduction is more than 40%.

In addition to the evaluation of the static control flow
analysis, we also present preliminary results from the dy-

Component (a) Diagram-related (b) All branches
static covered static covered

collator 285 170 (59.6%) 375 204 (54.4%)
date 93 55 (59.1%) 217 114 (52.5%)

decimal 335 201 (60.0%) 551 327 (59.3%)
message 384 186 (48.4%) 587 284 (48.4%)

boundaries 26 24 (92.3%) 28 26 (92.9%)
gzip 44 30 (68.2%) 60 37 (61.7%)
zip 19 13 (68.4%) 35 19 (54.3%)

Table 2: Coverage achieved by the Mauve tests.

namic analysis of run-time coverage of fragment transitions.
Recall from Section 6 that the dynamic analysis is used in a
test coverage tool to determine the coverage of intra-method
control flow in the diagrams, based on Binder’s Round-Trip
Scenario testing approach [3]. We used the tool to evaluate
several tests from the Mauve open-source test suite for the
standard Java libraries (sources.redhat.com/mauve).

The experiments considered each method that was exe-
cuted at least once by the tests and for which there was
created at least one fragment. We then determined the set
of all CFG branches in such methods—that is, all edges
(n, m) such that n has at least two outgoing edges. Some
of these branches correspond to transitions in the sequence
diagrams. Part (a) of Table 2 shows the number of such
diagram-related branches and their run-time coverage. The
coverage results indicate potential weaknesses in some of the
Mauve tests, in particular for message, collator, date, and
decimal. We are currently investigating the reasons for this
low coverage. Furthermore, additional tests will be created
to achieve higher coverage, with the goal of contributing
them to the Mauve project. We are also considering ways
to incorporate this coverage information in visual displays
of the diagrams.

Part (b) of Table 2 shows the total number of all CFG
branches in the same set of methods, and their run-time
coverage. There appears to be a strong correlation between
the coverage of fragment-level flow of control and the tra-
ditional lower-level CFG branch coverage; additional results
presented in [18] also support this observation. We plan to
investigate this relationship in the near future. If in fact
there exists strong correlation between the two, this would
imply that testing of object interactions based on sequence
diagrams—which is a natural level of abstraction for object-
oriented software—also achieves high CFG branch coverage.

8. RELATED WORK
Several existing techniques employ dynamic analysis of

run-time program behavior to perform reverse engineering
of sequence diagrams or similar representations [23, 19, 7,
15, 5]. This approach has several drawbacks. First, the
quality of the results depends on the particular execution
that was observed, and on the input data for the execution.
In many cases such input data is not available, especially
for incomplete systems (e.g., reusable modules) that can-
not be executed in a stand-alone manner. Even if input
data is available, it is not possible to know how well the
execution covers all possible aspects of the interaction. For
example, it is not possible to have high confidence in the
consistency between design and code, if this consistency is
judged from sequence diagrams that were constructed from



execution traces. Similarly, for reengineering tasks, the in-
complete run-time information may mislead the programmer
into performing incorrect code modifications. For the same
reason, sequence diagrams produced with dynamic analysis
cannot be used for evaluating the adequacy of testing. Some
dynamic reverse-engineering analyses completely ignore con-
ditions and iterations [19, 7, 15]. Even for approaches that
attempt to take them into account [23, 5], the quality of the
results depends on pattern matching heuristics.

Reverse engineering of sequence diagrams through static
analysis avoids these problems. Unfortunately, there is little
existing work on this form of static analysis. The Together
ControlCenter modeling tool (borland.com/together) in-
cludes such functionality as an advanced feature. Kollman
and Gogolla [12] define a static analysis for reverse engineer-
ing of collaboration diagrams (conceptually similar to se-
quence diagrams). Tonella and Potrich [25] present a static
analysis for reverse engineering of sequence diagrams and
collaboration diagrams from C++ code. These approaches
do not perform any form of control flow analysis and do not
attempt to take advantage of the expressive power of the
new generation of UML.

9. CONCLUSIONS AND FUTURE WORK
This work describes the first algorithm for mapping re-

ducible control-flow graphs to UML interaction fragments,
together with effective techniques for fragment simplifica-
tion and a coverage tool for tracking the transitions between
fragments. As part of the Red toolkit, the analysis solves
one important problem for reverse engineering of sequence
diagrams. We are currently examining additional fragment
transformations to further simplify the diagrams. We also
plan to extend the test coverage tool with a dynamic analysis
that tracks the coverage of beginning-to-end paths in a se-
quence diagram, as proposed by several testing approaches.

10. REFERENCES
[1] A. Abdurazik and J. Offutt. Using UML collaboration

diagrams for static checking and test generation. In
International Conference on the Unified Modeling
Language, pages 383–395, 2000.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[3] R. Binder. Testing Object-Oriented Systems: Models,
Patterns, and Tools. Addison-Wesley, 1999.

[4] L. Briand and Y. Labiche. A UML-based approach to
system testing. Journal of Software and Systems Modeling,
1(1), 2002.

[5] L. Briand, Y. Labiche, and Y. Miao. Towards the reverse
engineering of UML sequence diagrams. In Working
Conference on Reverse Engineering, pages 57–66, 2003.

[6] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and
K. Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans.
Programming Languages and Systems, 13(4):451–490, Oct.
1991.

[7] W. DePauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. Vlissides, and J. Yang. Visualising the execution of Java
programs. In S. Diehl, editor, Software Visualization,
LNCS 2269, pages 151–162, 2002.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in optimization.
ACM Trans. Programming Languages and Systems,
9(3):319–349, 1987.

[9] M. Fowler. UML Distilled. 2nd edition, 2000.
[10] F. Fraikin and T. Leonhardt. SeDiTeC—testing based on

sequence diagrams. In International Conference on
Automated Software Engineering, pages 261–266, 2002.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2nd edition, 2000.

[12] R. Kollman and M. Gogolla. Capturing dynamic program
behavior with UML collaboration diagrams. In European
Conference on Software Maintenance and Reengineering,
pages 58–67, 2001.

[13] C. Larman. Applying UML and Patterns. 2nd edition, 2002.
[14] T. Lengauer and R. Tarjan. A fast algorithm for finding

dominators in a flow graph. ACM Trans. Programming
Languages and Systems, 1(1):121–141, July 1979.

[15] R. Oechsle and T. Schmitt. JAVAVIS: Automatic program
visualization with object and sequence diagrams using the
Java Debug Interface (JDI). In S. Diehl, editor, Software
Visualization, LNCS 2269, pages 176–190, 2002.

[16] OMG. UML 2.0 Infrastructure Specification. Object
Management Group, www.omg.org, Sept. 2003.

[17] G. Ramalingam. On loops, dominators, and dominance
frontiers. ACM Trans. Programming Languages and
Systems, 24(5):455–490, Sept. 2002.

[18] M. Reddoch. Intra-method test coverage for
reverse-engineered sequence diagrams. Master’s thesis, Ohio
State University, Mar. 2004.

[19] T. Richner and S. Ducasse. Using dynamic information for
the iterative recovery of collaborations and roles. In Int.
Conf. Software Maintenance, pages 34–43, 2002.

[20] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic
analysis of call chains in Java. In International Symposium
on Software Testing and Analysis, July 2004. To appear.

[21] A. Rountev, A. Milanova, and B. G. Ryder. Points-to
analysis for Java based on annotated constraints. In
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 43–55, Oct. 2001.

[22] J. Rumbaugh, I. Jacobson, and G. Booch. UML Reference
Manual. Addison-Wesley, 1999.

[23] T. Systä, K. Koskimies, and H. Muller. Shimba—an
environment for reverse engineering Java software systems.
Software–Practice and Experience, 31(4):371–394, Apr.
2001.

[24] R. Tarjan. Testing flow graph reducibility. Journal of
Computer and System Sciences, 9:355–365, 1974.

[25] P. Tonella and A. Potrich. Reverse engineering of the
interaction diagrams from C++ code. In Int. Conf.
Software Maintenance, pages 159–168, 2003.

[26] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction, LNCS
1781, pages 18–34, 2000.

[27] O. Volgin. Analysis of flow of control for reverse
engineering of sequence diagrams. Master’s thesis, Ohio
State University, June 2004.

[28] Y. Wu, M.-H. Chen, and J. Offutt. UML-based integration
testing for component-based software. In International
Conference on COTS-Based Software Systems, 2003.


