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in particular symplectomorphism groups. This brought
her to symplectic geometry, which was revolutionized
around 1985 by Gromov’s introduction of 𝐽-holomorphic
curves.

In this short text I will describe some of McDuff’s won-
derful contributions to symplectic geometry. After review-
ing what is meant by “symplectic” I will mostly focus on
her work on symplectic embedding problems. Some of
her other results in symplectic geometry are discussed at
the end. More personal texts about Dusa can be found
in [11b]. Parts of this text overlap with the “Perspective”
in [11b] written jointly with Leonid Polterovich.

1. Symplectic
There are many strands to and from symplectic geometry.
The most important ones are classical mechanics and al-
gebraic geometry. I do not list these strands but refer you
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to [17b] and to my 2018 survey in the Bulletin. Here, I
simply give the definition.

Definition 1. Let 𝑀 be a smooth manifold. A symplectic
form on 𝑀 is a nondegenerate closed 2-form 𝜔. A diffeo-
morphism 𝜑 of 𝑀 is symplectic (or a symplectomorphism) if
𝜑∗𝜔 = 𝜔.

The nondegeneracy condition implies that symplectic
manifolds are even-dimensional. An example is ℝ2𝑛 with
the constant differential 2-form

𝜔0 =
𝑛
∑
𝑖=1

𝑑𝑥𝑖 ∧ 𝑑𝑦𝑖.

Other examples are surfaces endowed with an area form,
their products, and Kähler manifolds.

If you begin your first lecture on symplectic geometry
like this, you may very well find yourself alone the follow-
ing week. You may thus prefer to start in a more elemen-
tary way. Let 𝛾 be a closed oriented piecewise smooth curve
in ℝ2. If 𝛾 is embedded, assign to 𝛾 the signed area of the
disc 𝐷 bounded by 𝛾, namely area(𝐷) or −area(𝐷), as in
Figure 1.1.

Figure 1.1. The sign of the signed area of an embedded closed
curve in ℝ2.

If 𝛾 is not embedded, successively decompose 𝛾 into
closed embedded pieces as illustrated in Figure 1.2, and
define 𝐴(𝛾) as the sum of the signed areas of these pieces.

Figure 1.2. Splitting a closed curve into embedded pieces.

Definition 2. The standard symplectic structure of ℝ2𝑛 is
the map

𝐴(𝛾) =
𝑛
∑
𝑖=1

𝐴(𝛾𝑖), 𝛾 = (𝛾1, … , 𝛾𝑛) ⊂ ℝ2𝑛.

A symplectomorphism 𝜑 of ℝ2𝑛 is a diffeomorphism that
preserves the signed area of closed curves:

𝐴(𝜑(𝛾)) = 𝐴(𝛾) for all closed curves 𝛾 ⊂ ℝ2𝑛.
A symplectic structure on a manifold 𝑀 is an atlas whose
transition functions are (local) symplectomorphisms, and

a symplectomorphism of𝑀 is then a diffeomorphism that
preserves this local structure.

The standard symplectic structure of ℝ2𝑛 is thus given
by assigning to a closed curve the sum of the signed areas
of the 𝑛 curves obtained by projecting to the coordinate
planesℝ2(𝑥𝑖, 𝑦𝑖). And a symplectic structure on amanifold
is a coherent way of assigning a signed area to sufficiently
local closed curves. The equivalence of the two definitions
follows from

Darboux’s Theorem. Around every point of a symplectic
manifold (𝑀, 𝜔) there exists a coordinate chart 𝜑 such that
𝜑∗𝜔0 = 𝜔.

The group of symplectomorphisms of a symplectic
manifold is very large. Indeed, for every compactly sup-
ported smooth function 𝐻∶ 𝑀 × [0, 1] → ℝ each time-𝑡
map 𝜙𝑡𝐻 of its Hamiltonian flow is a symplectomorphism.
Symplectomorphisms of this form are called Hamiltonian
diffeomorphisms. The Hamiltonian flow is the flow gen-
erated by the vector field 𝑋𝐻 implicitly defined by

𝜔(𝑋𝐻 , ⋅) = −𝑑𝐻(⋅).
For (ℝ2𝑛, 𝜔0) one has 𝑋𝐻 = 𝐽0 ∇𝐻, where 𝐽0 is the usual
complex structure on ⨁𝑖 ℝ2(𝑥𝑖, 𝑦𝑖).

2. Symplectic Embedding Problems
By Darboux’s Theorem, symplectic manifolds have no lo-
cal invariants beyond the dimension. But there are several
ways to associate global numerical invariants to symplectic
manifolds. One of them is by looking at embedding prob-
lems. Take a compact subset 𝐾 of (ℝ2𝑛, 𝜔0). By a symplec-
tic embedding 𝐾 → 𝑀 we mean the restriction to 𝐾 of a
smooth embedding 𝜑∶ 𝑈 → 𝑀 of an open neighborhood
of 𝐾 that is symplectic, 𝜑∗𝜔 = 𝜔0. In this case we write
𝐾 𝑠

↪−→ (𝑀,𝜔). For every 𝐾, the largest number 𝜆 such that
the dilate 𝜆𝐾 symplectically embeds into (𝑀, 𝜔) is then a
symplectic invariant of (𝑀, 𝜔). Seven further reasons to
study symplectic embedding problems can be found inmy
Bulletin article.
2.1. The Nonsqueezing Theorem. Now take the closed
ball B2𝑛(𝑎) of radius √𝑎/𝜋 centered at the origin of ℝ2𝑛.
(The notation reflects that symplectic measurements are 2-
dimensional.) By what we said above, there are very many
symplectic embeddings B2𝑛(𝑎) 𝑠

↪−→ ℝ2𝑛. However, none of
them can make the ball thinner, as Gromov proved in his
pioneering 1985 paper.

Nonsqueezing Theorem. B2𝑛(𝑎) 𝑠
↪−→ B2(𝐴) ×ℝ2𝑛−2 only if

𝑎 ≤ 𝐴.

The identity embedding thus already provides the
largest ball that symplectically fits into the cylinder B2(𝐴)×
ℝ2𝑛−2 of infinite volume. While there are many forms
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of symplectic rigidity, this theorem is its most fundamen-
tal manifestation. The theorem shows that some volume-
preserving mappings cannot be approximated by symplec-
tic mappings in the 𝐶0-topology.

In [95a], Lalonde and McDuff generalized the Non-
squeezing Theorem to all symplectic manifolds.

General Nonsqueezing Theorem. For any symplectic mani-
fold (𝑀, 𝜔) of dimension 2𝑛 − 2,

B2𝑛(𝑎) 𝑠
↪−→ (B2(𝐴) × 𝑀,𝜔0 ⊕𝜔) only if 𝑎 ≤ 𝐴.

Every good tool in symplectic geometry can be used
to prove the Nonsqueezing Theorem. However, the tech-
nique of 𝐽-holomorphic curves used by Gromov is the
most influential one, and also the most important tool in
McDuff’s work.

An almost complex structure 𝐽 on a manifold 𝑃 is a
smooth collection {𝐽𝑝}𝑝∈𝑃 , where 𝐽𝑝 is a linear endomor-
phism of 𝑇𝑝𝑃 such that 𝐽2𝑝 = −id. The “almost” indicates
that such a structure does not need to be a complex struc-
ture, i.e., does not need to come from a holomorphic at-
las. Not all symplectic manifolds admit complex struc-
tures, but they all admit almost complex structures. A 𝐽-
holomorphic curve in an almost complex manifold (𝑃, 𝐽)
is a map 𝑢 from a Riemann surface (Σ, 𝑗) to (𝑃, 𝐽) such that

𝑑𝑢 ∘ 𝑗 = 𝐽 ∘ 𝑑𝑢.
This equation generalizes the Cauchy–Riemann equation
defining holomorphic maps ℂ → ℂ𝑛. In this text, the do-
main of a 𝐽-holomorphic curve will always be the usual
Riemann sphere, namely the round sphere 𝑆2 ⊂ ℝ3 whose
complex structure 𝑗 rotates a vector 𝑣 ∈ 𝑇𝑝𝑆2 by

𝜋
2
. Even

in this case, it is usually impossible to write down a 𝐽-
holomorphic curve for a given 𝐽. But this is not a problem,
since one usually just wants to know that such a curve ex-
ists.

Now assume that 𝜑∶ B2𝑛(𝑎) 𝑠
↪−→ B2(𝐴) ×ℝ2𝑛−2. Choose

𝑘 so large that after a translation the image of 𝜑 is con-
tained in B2(𝐴) × (0, 𝑘)2𝑛−2. Compactifying the disc to the
sphere 𝑆2(𝐴′) with its usual area form of area 𝐴′ > 𝐴 and
taking the quotient to the torus 𝑇2𝑛−2 = ℝ2𝑛−2/𝑘ℤ2𝑛−2, we
then obtain a symplectic embedding

Φ∶ B2𝑛(𝑎) 𝑠
↪−→ 𝑆2(𝐴′) × 𝑇2𝑛−2 =∶ (𝑃, 𝜔),

where 𝜔 is the split symplectic structure on the product 𝑃.
We will see that 𝑎 ≤ 𝐴′. Since 𝐴′ > 𝐴 was arbitrary, Gro-
mov’s theorem then follows.

Denote by 𝐽0 the usual complex structure on B2𝑛(𝑎) ⊂
ℂ𝑛, and let 𝐽 be an almost complex structure on 𝑃 that re-
stricts to Φ∗𝐽0 on Φ(B2𝑛(𝑎)) and that is 𝜔-tame, meaning
that 𝜔(𝑣, 𝐽𝑣) > 0 for all nonzero 𝑣 ∈ 𝑇𝑃. Such an exten-
sion exists, since 𝜔-tame almost complex structures can be
viewed as sections of a bundle over 𝑃 whose fibers are con-
tractible.

Lemma. There exists a 𝐽-holomorphic sphere 𝑢(𝑆2) through
Φ(0) that represents the homology class of 𝑆2(𝐴′).

This existence result follows from Gromov’s compact-
ness theorem for 𝐽-holomorphic curves in symplectic
manifolds. The key point for the proof of the compactness
theorem is that 𝐽 is 𝜔-tame, implying that 𝐽-holomorphic
curves cannot behave too wildly. The compactness theo-
rem implies the lemma because the class of 𝑆2(𝐴′) is prim-
itive in 𝐻2(𝑃; ℤ).

Figure 2.1. The geometric idea of the proof.

The Nonsqueezing Theorem readily follows from the
lemma: the set

𝑆 = Φ−1 (Φ(B2𝑛(𝑎)) ∩ 𝑢(𝑆2))

is a proper 2-dimensional complex surface in B2𝑛(𝑎)
through 0. By the Lelong inequality from complex analysis,
the area of 𝑆 with respect to the Euclidean inner product
is at least 𝑎. Using also that Φ is symplectic we can now
estimate

𝑎 ≤ area(𝑆) = ∫
𝑆
𝜔0 = ∫

𝑆
Φ∗𝜔 = ∫

Φ(𝑆)
𝜔 ≤ ∫

ᵆ(𝑆2)
𝜔 = 𝐴′.

This proof of the Nonsqueezing Theorem also works,
for instance, for closed symplectic manifolds (𝑀, 𝜔) for
which the integral of 𝜔 over spheres vanishes. In the gen-
eral case, however, there was trouble with holomorphic
spheres of negative Chern number. By now, this trouble
has been overcome thanks to the definition of Gromov–
Witten invariants for general closed symplectic manifolds
by the work of several (teams of) authors. McDuff helped
to clarify the approach of Fukaya–Oh–Ono–Ohta in her
joint work with Wehrheim; see [17c, 19]. In [95a], how-
ever, Lalonde and McDuff circumvented all technical is-
sues by using a chain of beautiful geometric constructions
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that reduced the General Nonsqueezing Theorem essen-
tially to the case proved by Gromov. The most important
and influential of these is a multiple folding construction.
Its simple version was used in [95a] to show how the Gen-
eral Nonsqueezing Theorem implies that for all symplec-
tic manifolds Hofer’s metric on the group of compactly
supported Hamiltonian diffeomorphisms is nondegener-
ate and hence indeed a metric; see §3.3. These two the-
orems were the first deep results in symplectic geometry
proven for all symplectic manifolds.
2.2. Ball packings. We next try to pack a symplectic mani-
fold by balls as densely as possible. Taking the open ball
B̊4(1) as target, let

𝑝𝑘 = sup {𝑘 Vol(B
4(𝑎))

Vol(B4(1))
||| ∐

𝑘
B4(𝑎) 𝑠

↪−→ B̊4(1)}

be the percentage of the volume of B̊4(1) that can be filled
by 𝑘 symplectically embedded equal balls. Then:

𝑘 1 2 3 4 5 6 7 8 ⩾ 9

𝑝𝑘 1 1
2

3
4

1 20
25

24
25

63
64

288
289

1

𝑐𝑘 1 2 2 2 5
2

5
2

8
3

17
6

√𝑘

(2.1)

The lower line gives the capacities

𝑐𝑘 = inf {𝐴 ||| ∐
𝑘
B4(1) 𝑠

↪−→ B̊4(𝐴)}

that are related to the packing numbers𝑝𝑘 by 𝑐2𝑘 =
𝑘
𝑝𝑘

. This

table was obtained for 𝑘 ⩽ 5 by Gromov, for 𝑘 = 6, 7, 8 and
𝑘 a square by McDuff and Polterovich [94b], and for all 𝑘
by Biran. This result is a special case of the following alge-
braic reformulation of the general ball packing problem

𝑘
∐
𝑖=1

B4(𝑎𝑖)
𝑠
↪−→ B̊4(𝐴). (2.2)

Ball Packing Theorem. An embedding (2.2) exists if and
only if

(i) (Volume constraint) 𝐴2 > ∑𝑘
𝑖=1 𝑎2𝑖

(ii) (Constraint from exceptional spheres)

𝐴 > 1
𝑑
∑𝑘

𝑖=1 𝑎𝑖𝑚𝑖 for every vector of nonnegative inte-

gers (𝑑;𝑚1, … ,𝑚𝑘) that solves the Diophantine system
∑
𝑖
𝑚𝑖 = 3𝑑 − 1, ∑

𝑖
𝑚2
𝑖 = 𝑑2 + 1 (DE)

and can be reduced to (0; −1, 0, … , 0) by repeated Cre-
mona moves.

Here, a Cremona move takes a vector (𝑑;𝑚1, … ,𝑚𝑘) with
𝑚1 ⩾ ⋯ ⩾ 𝑚𝑘 to the vector

(𝑑′;𝐦′) = (𝑑 + 𝛿;𝑚1 + 𝛿,𝑚2 + 𝛿,𝑚3 + 𝛿,𝑚4, … ,𝑚𝑘),
where 𝛿 = 𝑑 − (𝑚1 +𝑚2 +𝑚3), and then reorders 𝐦′.

Before discussing the proof, we use the theorem to ob-
tain table (2.1). If (𝑑;𝑚1, … ,𝑚𝑘) is a solution of (DE), then

(3𝑑 − 1)2 = (
𝑘
∑
𝑖=1

𝑚𝑖)
2

≤ 𝑘
𝑘
∑
𝑖=1

𝑚2
𝑖 = 𝑘(𝑑2 + 1),

that is,
(9 − 𝑘)𝑑2 − 6𝑑 + (1 − 𝑘) ≤ 0.

For 𝑘 ≤ 8, this equation has finitely many solutions 𝑑, and
so (DE) has finitely many solutions for 𝑘 ≤ 8. They are
readily computed:

(1; 1,1), (2; 1×5), (3; 2,1×6), (4; 2×3,1×5), (5; 2×6,1,1), (6; 3,2×7),
and all these vectors reduce to (0; −1) by Cremona moves.
For instance, for the problem ∐8 B

4(1) 𝑠
↪−→ B̊4(𝐴) the

strongest constraint comes from the solution (6; 3, 2×7),
that gives 𝐴 > 17

6
.

On the other hand, if (𝑑;𝑚1, … ,𝑚𝑘) is a solution
of (DE) with 𝑘 ≥ 9, then

𝑎
𝑑

𝑘
∑
𝑖=1

𝑚𝑖 =
𝑎
𝑑 (3𝑑 − 1) < 𝑎

𝑑 3𝑑 ≤ 𝑎
𝑑
√𝑘𝑑 = 𝑎√𝑘.

Hence the constraint 𝐴 > 𝑎
𝑑
∑𝑘

𝑖=1𝑚𝑖 is weaker than the

volume constraint 𝐴2 > 𝑘𝑎2, and so 𝑝𝑘 = 1.
The proof of the Ball Packing Theorem is a beautiful

story in three chapters, each of which contains an impor-
tant idea of McDuff. The original symplectic embedding
problem is converted to an increasingly algebraic problem
in three steps.

The starting point is the symplectic blow-up construc-
tion, that goes back to Gromov and Guillemin–Sternberg,
and was first used by McDuff [91a] to study symplectic em-
beddings of balls. Recall that the complex blow-up Bl(ℂ2)
of ℂ2 at the origin 0 is obtained by replacing 0 by all com-
plex lines in ℂ2 through 0. At the topological level, this
operation can be done as follows. First remove from ℂ2 an
open ball B̊4. The boundary 𝑆3 of ℂ2 ⧵ B̊4 is foliated by the
Hopf circles {(𝛼𝑧1, 𝛼𝑧2) ∣ 𝛼 ∈ 𝑆1}, namely the intersections
of 𝑆3 with complex lines. NowBl(ℂ2) is obtained by replac-
ing each such circle by a point. The boundary sphere 𝑆3
becomes a 2-sphereℂP1 in Bl(ℂ2) of self-intersection num-
ber−1, called the exceptional divisor. Themanifold Bl(ℂ2)
is diffeomorphic to the connected sum ℂ2#ℂP

2
.

This construction can be done in the symplectic setting.
If one removes B̊4(𝑎) from ℝ4, then there exists a symplec-
tic form 𝜔𝑎 on Bl(ℝ4) such that 𝜔𝑎 = 𝜔0 outside a tubu-
lar neighborhood of the exceptional divisor ℂP1 and such
that 𝜔𝑎 is symplectic on ℂP1 with ∫ℂP1 𝜔𝑎 = 𝑎. Given

a symplectic embedding 𝜑∶ B4(𝑎) → (𝑀,𝜔) into a sym-
plectic 4-manifold, we can apply the same construction to
𝜑(B4(𝑎)) in 𝑀 to obtain the symplectic blow-up of (𝑀, 𝜔)
by weight 𝑎.
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There is also an inverse construction. Given a sym-
plectically embedded −1-sphere Σ in a symplectic 4-
manifold (𝑀, 𝜔) of area ∫Σ 𝜔 = 𝑎, one can cut out a tubu-
lar neighborhood of Σ and glue back B4(𝑎), to obtain the
“symplectic blow-down” of 𝑀.

Now let𝑀𝑘 be the smooth manifold obtained by blow-
ing up the complex projective plane ℂP2 in 𝑘 points. Its
homology 𝐻2(𝑀𝑘; ℤ) is generated by the class 𝐿 of a com-
plex line and by the classes 𝐸1, … , 𝐸𝑘 of the exceptional di-
visors. Let ℓ, 𝑒𝑖 ∈ 𝐻2(𝑀𝑘; ℤ) be their Poincaré duals. Every
symplectic form 𝜔 on 𝑀𝑘 defines a first Chern class 𝑐1(𝜔),
namely the first Chern class of any 𝜔-tame almost com-
plex structure. If we take a symplectic form 𝜔 on 𝑀𝑘 con-
structed as above via 𝑘 symplectic ball embeddings (that
always exist if the balls are small enough), then −𝑐1(𝜔)
is Poincaré dual to the class 𝐾 ∶= −3𝐿 + ∑𝑖 𝐸𝑖. Define
𝒞𝐾(𝑀𝑘) ⊂ 𝐻2(𝑀𝑘; ℝ) to be the set of classes represented
by symplectic forms with −𝑐1(𝜔) = PD(𝐾).

Compactifying B̊4(𝐴) to ℂP2(𝐴) with its usual Kähler
form integrating to 𝐴 over a complex line, and using that
the classes 𝐸𝑖 can be represented by symplectic −1-spheres,
McDuff and Polterovich [94b] obtained

Step 1. There exists an embedding∐𝑘
𝑖=1 B

4(𝑎𝑖)
𝑠
↪−→ B̊4(𝐴) if

and only if the class 𝛼 ∶= 𝐴ℓ −∑𝑘
𝑖=1 𝑎𝑖𝑒𝑖 ∈ 𝐻2(𝑀𝑘; ℝ) lies

in 𝒞𝐾(𝑀𝑘).
Our symplectic embedding problem is thus translated

into a problem on the symplectic cone 𝒞𝐾(𝑀𝑘). In Käh-
ler geometry, the problem of deciding which cohomology
classes can be represented by a Kähler form has a long his-
tory and is quite well understood. The solution of our sym-
plectic analogue, however, needs different ideas and tools:
call a class 𝐸 ∈ 𝐻2(𝑀𝑘; ℤ) exceptional if 𝐾 ⋅ 𝐸 = 1 and
𝐸2 = −1, and if 𝐸 can be represented by a smoothly em-
bedded −1-sphere.

If 𝜔 is a symplectic form on 𝑀𝑘 with −𝑐1(𝜔) = PD(𝐾),
then any 𝜔-symplectic embedded −1-sphere represents an
exceptional class. Seiberg–Witten–Taubes theory implies
that the converse is also true: every exceptional class 𝐸 can
be represented by an 𝜔-symplectic embedded −1-sphere.
This implies one direction of

Step 2. 𝛼 = 𝐴ℓ−∑𝑖 𝑎𝑖𝑒𝑖 ∈ 𝐻2(𝑀𝑘; ℝ) lies in 𝒞𝐾(𝑀𝑘) if and
only if 𝛼2 > 0 and 𝛼(𝐸) > 0 for all exceptional classes.

This equivalence is remarkable. Of course, a necessary
condition for a class 𝛼 with positive square to have a sym-
plectic representative is that 𝛼 evaluates positively on all
classes that can be represented by closed symplectically em-
bedded surfaces (and in particular on spheres). But the
equivalence says that this is also a sufficient condition, and
that it is actually enough to check positivity on spheres.

To prove the other direction in Step 2, one starts with an
embedding of 𝑘 tiny balls of size 𝜀𝑎𝑖 and then changes the

symplectic form on𝑀𝑘 in class 𝐴ℓ−𝜀∑𝑖 𝑎𝑖𝑒𝑖 in such a way
that these balls look large. This can be done with the help
of the inflation method of Lalonde–McDuff [94a,96a].

Inflation Lemma. Let (𝑀, 𝜔) be a closed symplectic 4-
manifold, and assume that the class 𝐶 ∈ 𝐻2(𝑀; ℤ) with
𝐶2 ⩾ 0 can be represented by a closed connected embedded
𝐽-holomorphic curve Σ for some 𝜔-tame 𝐽. Then the class
[𝜔] + 𝑠 PD(𝐶) has a symplectic representative for all 𝑠 ⩾ 0.

Figure 2.2. The ray in the symplectic cone provided by the
Inflation Lemma.

I explain the proof for the case 𝐶2 = 0. In this case,
the normal bundle of Σ is trivial, and we can identify a
tubular neighborhood of Σ with Σ × 𝐷, where 𝐷 ⊂ ℝ2 is a
disc. Pick a radial function 𝑓(𝑟) with support in 𝐷 that is
non-negative and has ∫𝐷 𝑓 = 1. Let 𝛽 be the closed 2-form
on 𝑀 that equals 𝛽(𝑧, 𝑥, 𝑦) = 𝑓(𝑟) 𝑑𝑥 ∧ 𝑑𝑦 on Σ × 𝐷 and
vanishes outside of Σ × 𝐷. Then [𝛽] = PD([Σ]) and the
forms 𝜔 + 𝑠𝛽 are symplectic for all 𝑠 ≥ 0. Indeed,

(𝜔 + 𝑠𝛽)2 = 𝜔2⏟
>0

+2𝑠𝜔 ∧ 𝛽⏟
≥0

+ 𝑠2 𝛽2⏟
=0

> 0,

where for the middle term we used that 𝜔|Σ is symplectic.

Now take an embedding ∐𝑘
𝑖=1 B

4(𝜀𝑎𝑖)
𝑠
↪−→ B̊4(𝐴) of tiny

balls. By Step 1 we know that the class 𝛼𝜀 ∶= 𝐴ℓ−𝜀∑𝑖 𝑎𝑖𝑒𝑖
has a symplectic representative 𝜔𝜀. We wish to inflate this
form to a symplectic form in class 𝛼. A first try could be to
inflate 𝜔𝜀 directly in the direction 𝛼−𝛼𝜀 to get up to 𝛼. But
this does not work, because

(𝛼 − 𝛼𝜀)2 = (−∑𝑖(1 − 𝜀)𝑎𝑖 𝑒𝑖)
2 = −(1 − 𝜀)2∑𝑖 𝑎2𝑖 < 0.

However, assuming for simplicity that 𝐴 and the 𝑎𝑖 are ra-
tional, Seiberg–Witten–Taubes theory implies that there
exists an integer 𝑛 such that the Poincaré dual of 𝑛𝛼 ∈
𝐻2(𝑀𝑘; ℤ) can be represented by a connected embedded
𝐽-holomorphic curve for a generic 𝜔-tame 𝐽. We can thus
inflate 𝜔 in the direction of 𝑛𝛼 and obtain that the classes
𝛼𝜀 + 𝑠𝑛𝛼 have symplectic representatives for all 𝑠 ≥ 0.
Rescaling these forms by

1
𝑠𝑛+1

, we obtain symplectic forms

in classes 𝐴ℓ− 𝑠𝑛+𝜀
𝑠𝑛+1

∑𝑖 𝑎𝑖𝑒𝑖 that are as close to 𝛼 as we like.
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Figure 2.3. Inflating 𝛼𝜀 = [𝜔𝜀] to 𝛼.

Usually, 𝐽-holomorphic curves are used to obstruct cer-
tain symplectic embeddings, like in theNonsqueezing The-
orem. In the Inflation Lemma and Step 2, however, other
𝐽-holomorphic curves are used to construct symplectic em-
beddings.

Step 3. 𝛼2 > 0 and 𝛼(𝐸) > 0 for all exceptional classes if
and only if (i) and (ii) in the theorem hold.

Much of this step is rewriting: the inequality 𝛼2 > 0
translates to the volume constraint (i), and the inequality
𝛼(𝐸) > 0 for an exceptional class translates to (ii) if we

write 𝐸 in the natural basis, 𝐸 = 𝑑𝐿 − ∑𝑘
𝑖=1𝑚𝑖𝐸𝑖. We are

thus left with showing that a class 𝐸 = (𝑑;𝑚1, … ,𝑚𝑘) that
satisfies (DE) is exceptional exactly if it reduces to (0; −1)
under Cremonamoves. This follows from a combinatorial
argument of Li and Li; see [12b].
2.3. Ellipsoids. We now look at embeddings of 4-
dimensional ellipsoids

E(𝑎, 𝑏) = {(𝑧1, 𝑧2) ∈ ℂ2 ∣ 𝜋|𝑧1|
2

𝑎 + 𝜋|𝑧2|2
𝑏 ≤ 1}.

This is the ellipsoid in ℂ2 whose projections to the coordi-
nate planes are closed discs of area 𝑎 and 𝑏. Again we take
as target a ball, and after rescaling study the function

𝑐(𝑎) = inf {𝐴 ∣ E(1, 𝑎) 𝑠
↪−→ B̊4(𝐴)} , 𝑎 ⩾ 1.

Since this function is continuous, we can assume that 𝑎
is rational. Then each leaf of the characteristic foliation
on the boundary of E(1, 𝑎) is closed. Proceeding as be-
fore, we compactify B̊4(𝐴) to ℂP2(𝐴) and, given an embed-
ding E(1, 𝑎) 𝑠

↪−→ B̊4(𝐴) ⊂ ℂP2(𝐴), remove the image and
collapse the remaining boundary along the characteristic
foliation. But now this yields a symplectic orbifold with
one or two cyclic quotient singularities, coming from the
special leaves in the two coordinate planes. It may be dif-
ficult to reprove the results from Seiberg–Witten–Taubes

theory used in the last section in such a space. McDuff
in [09] simply circumvented the singularities by using a
version of the Hirzebruch–Jung resolution of singularities.
She removed a bit more than the ellipsoid by successively
blowing up finitely many balls, thereby producing a chain
of 𝐽-spheres. Inflating this chain she reduced the problem
E(1, 𝑎) 𝑠

↪−→ B̊4(𝐴) to the ball packing problem (2.2):

E(1, 𝑎) 𝑠
↪−→ B̊4(𝐴) ⟺

𝑘
∐
𝑖=1

B4(𝑎𝑖)
𝑠
↪−→ B̊4(𝐴), (2.3)

where the 𝑎𝑖 are given by

(𝑎1, … , 𝑎𝑘) =∶ 𝒘(𝑎) = (1, … , 1⏟⏟⏟
ℓ0

, 𝑤1, … , 𝑤1⏟⎵⎵⏟⎵⎵⏟
ℓ1

, … , 𝑤𝑁 , … , 𝑤𝑁⏟⎵⎵⏟⎵⎵⏟
ℓ𝑁

)

with the weights 𝑤𝑖 > 0 such that 𝑤1 = 𝑎 − ℓ0 < 1, 𝑤2 =
1−ℓ1𝑤1 < 𝑤1, and so on. For instance,𝒘(3) = (1, 1, 1) and
𝒘( 11

4
) = (1, 1, 3

4
, 1
4
, 1
4
, 1
4
). The multiplicities ℓ𝑖 of 𝒘(𝑎) give

the continued fraction expansion of 𝑎. For 𝑎 ∈ ℕ, (2.3)
specializes to

E(1, 𝑘) 𝑠
↪−→ B̊4(𝐴) ⟺ ∐

𝑘
B4(1) 𝑠

↪−→ B̊4(𝐴). (2.4)

The ball packing problem ∐𝑘 B
4(1) → B̊4(𝐴) is thus in-

cluded in the 1-parameter problem E(1, 𝑎) 𝑠
↪−→ B̊4(𝐴).

The function 𝑐(𝑎) was computed in [12b] with the help
of (2.3). The volume constraint is now 𝑐(𝑎) ⩾ √𝑎. Re-
call that the Fibonacci numbers are recursively defined
by 𝑓−1 = 1, 𝑓0 = 0, 𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1. Denote by
𝑔𝑛 ∶= 𝑓2𝑛−1 the odd-index Fibonacci numbers, hence
(𝑔0, 𝑔1, 𝑔2, 𝑔3, 𝑔4, … ) = (1, 1, 2, 5, 13, … ). The sequence
𝛾𝑛 ∶=

𝑔𝑛+1
𝑔𝑛

,

(𝛾0, 𝛾1, 𝛾2, 𝛾3, … ) = (1, 2, 52 ,
13
5 , … ) ,

converges to 𝜏2, where 𝜏 ∶= 1+√5
2

is the Golden Ratio.

Define the Fibonacci stairs as the graph on [1, 𝜏4] made
from the infinitely many steps shown in Figure 2.5, where

𝑎𝑛 = 𝛾2𝑛 = (𝑔𝑛+1
𝑔𝑛

)2 and 𝑏𝑛 =
𝑔𝑛+2
𝑔𝑛

. The slanted edge starts

on the volume constraint√𝑎 and extends to a line through
the origin.

Ellipsoid Embedding Theorem.

(i) On the interval [1, 𝜏4] the function 𝑐(𝑎) is given by
the Fibonacci stairs.

(ii) On the interval [𝜏4, ( 17
6
)2] we have 𝑐(𝑎) = √𝑎 except

on nine disjoint intervals where 𝑐 is a step made from
two segments. The first of these steps has the vertex
at (7, 8

3
) and the last at (8, 17

6
).

(iii) 𝑐(𝑎) = √𝑎 for all 𝑎 ⩾ ( 17
6
)2.
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Figure 2.4. The Fibonacci stairs: the graph of 𝑐(𝑎) on [1, 𝜏4].

Figure 2.5. The 𝑛th step of the Fibonacci stairs.

Thus the graph of 𝑐(𝑎) starts with an infinite completely
regular staircase, then has a few more steps, but for 𝑎 ⩾
( 17
6
)2 = 8 1

36
is given by the volume constraint.

The theorem better explains the packing numbers 𝑐𝑘 in
table (2.1) in view of the equivalence (2.4); cf. the blue
dots in Figure 2.4. The embedding constraint at 𝑏𝑛 comes
from a really exceptional exceptional sphere, namely one
in an exceptional class 𝐸 = (𝑑;𝐦) such that 𝐦 is parallel
to the weight expansion 𝒘(𝑏𝑛).

When McDuff first looked at ellipsoid embeddings
in [09], it was not clear at all that this would unveil an in-
teresting fine structure of symplectic rigidity. Many more
infinite staircases have been found by now, and results of
Usher show that a simple-looking problem, such as for
which 𝐴 does the ellipsoid E(1, 𝑎) embed into the poly-
disc B2(𝐴) × B2(𝑏𝐴), is already so intricate that we shall

probably never know the answer for all 𝑏. McDuff in [11a]
and independently Hutchings proved that

E(𝑎, 𝑏) 𝑠
↪−→ E(𝑐, 𝑑) ⟺ 𝑁𝑘(𝑎, 𝑏) ⩽ 𝑁𝑘(𝑐, 𝑑) for all 𝑘,

(2.5)
where (𝑁𝑘(𝑎, 𝑏)) is the nonincreasing sequence obtained
by ordering the set {𝑚𝑎 + 𝑛𝑏 ∣ 𝑚, 𝑛 ∈ ℤ≥0}. Using his
embedded contact homology (ECH), Hutchings had asso-
ciated with every starshaped subset 𝐾 ⊂ ℝ4 a sequence
of numbers 𝑐𝑘(𝐾) that are monotone with respect to sym-
plectic embeddings, and for an ellipsoid these ECH ca-
pacities equal the above sequence, 𝑐𝑘(E(𝑎, 𝑏)) = 𝑁𝑘(𝑎, 𝑏).
The McDuff–Hutchings theorem (2.5) therefore implied
that ECH-capacities are a complete set of invariants for the
problem of embedding one 4-dimensional ellipsoid into
another.

These results are all in dimension four, and until re-
cently, not much was known about higher-dimensional
symplectic embedding problems beyond the Nonsqueez-
ing Theorem. The reason is that in dimension four, 𝐽-
holomorphic curves are a much more powerful tool, be-
cause of positivity of intersections of such curves, and
because one usually finds them with the help of the 4-
dimensional Seiberg–Witten–Taubes theory. However, 4-
dimensional ellipsoid embeddings also opened the door
for understanding certain symplectic embedding prob-
lems in higher dimensions. I describe how they led to
packing stability in all dimensions. Given a connected
symplectic manifold (𝑀, 𝜔) of finite volume, let 𝑝(𝑀,𝜔)
be the smallest number (or infinity) such that for every
𝑘 ≥ 𝑝(𝑀,𝜔) an arbitrarily large percentage of the volume
of (𝑀, 𝜔) can be covered by 𝑘 equal symplectically embed-
ded balls. Table (2.1) shows that 𝑝(B4) = 9. The finiteness
of 𝑝 is now known for many symplectic manifolds, and
in particular for balls in all dimensions. In this case, the
ingredients of the proof are:

(1) McDuff’s observation from [09] that the ellipsoid
E(1, … , 1, 𝑘) can be cut into 𝑘 equal balls.

(2) The Ellipsoid Embedding Theorem for E(1, 𝑎) 𝑠
↪−→

B̊4(𝐴) and the McDuff–Hutchings theorem (2.5).
(3) Ellipsoids admit a suspension construction: for

any vectors 𝒂, 𝒃, 𝒄,
E(𝒂) 𝑠

↪−→ E(𝒃) ⟹ E(𝒂, 𝒄) 𝑠
↪−→ E(𝒃, 𝒄).

For instance, (2) yields that

E(1, 𝑘) 𝑠
↪−→E(𝑘1/3, 𝑘2/3) and E(1, 𝑘2/3) 𝑠

↪−→B4(𝑘1/3)
for all 𝑘⩾21.

Together with (1) and (3) we thus obtain that for these 𝑘
∐
𝑘
B6(1) 𝑠

↪−→ E(1, 1, 𝑘) 𝑠
↪−→ E(1, 𝑘1/3, 𝑘2/3) 𝑠

↪−→ B6(𝑘1/3)

and hence 𝑝(B6) ≤ 21. Already Gromov had proved that
𝑝(B6) ≥ 8. Is it true that 𝑝(B6) = 8?
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A symplectic manifold (𝑀, 𝜔) is rational if a multiple of
[𝜔] takes rational values on all integral 2-cycles. All closed
rational symplectic manifolds have packing stability. The
additional ingredient in the proof is that every such mani-
fold can be completely filled by an ellipsoid.
2.4. Connectivity. For a compact set 𝐾 ⊂ ℝ2𝑛 and a 2𝑛-
dimensional symplectic manifold (𝑀, 𝜔) let Emb𝜔(𝐾,𝑀)
be the space of symplectic embeddings 𝐾 → (𝑀,𝜔), with
the 𝐶∞-topology. The results discussed above tell us for
some 𝐾 and (𝑀, 𝜔) whether this space is empty or not. In
the latter case one may study its topology. The first task is
to see whether Emb𝜔(𝐾,𝑀) is connected or not.

We first take 𝐾 to be a ball B2𝑛(𝑎). Then
Emb𝜔(B2𝑛(𝑎),𝑀) need not be connected. The first counter-
example was Gromov’s camel theorem: for 2𝑛 ≥ 4 the
camel space in ℝ2𝑛 with eye of width 1 is the set

𝒞2𝑛 = {𝑥1 < 0} ∪ {𝑥1 > 0} ∪
∘
B2𝑛(1).

Now take 𝑎 > 1 and define the two embeddings
𝜑± ∶ B2𝑛(𝑎) → 𝒞2𝑛 by 𝜑±(𝑧) = 𝑧± 𝑣, where 𝑣 is a multiple

of
𝜕
𝜕𝑥1

such that 𝜑+ takes B2𝑛(𝑎) to the right half space and

𝜑− takes B2𝑛(𝑎) to the left half space; see Figure 2.6. Then
𝜑+ and 𝜑− are not isotopic.

Figure 2.6. Nonequivalent balls in the camel space.

On the other hand, McDuff showed in [91a] that
Emb𝜔(B4(1), B̊4(𝐴)) is connected for all 𝐴 > 1 and ex-
tended this result in [98,09] to embeddings of any collec-
tion of 4-ellipsoids into a 4-ellipsoid.

The key to these results is, again, symplectic inflation. I
give the idea of the proof for embeddings of one ball B4(1).
So assume we have two embeddings

𝜑1, 𝜑2 ∶ B4(1) 𝑠
↪−→ B̊4(𝐴).

Since 𝜑1 and 𝜑2 are close to linear maps near the origin,
we can find 𝜀 > 0 and a compactly supported symplectic
isotopy 𝜓 of B̊4(𝐴) such that 𝜑1 = 𝜓 ∘𝜑2 on B4(𝜀). We may
thus assume from the start that 𝜑1 = 𝜑2 on B4(𝜀).

Now consider the two paths of symplectic embeddings
𝜑𝑡𝑗 ∶ B4(𝑡) → B̊4(𝐴), 𝜀 ≤ 𝑡 ≤ 1, defined by restricting the
embeddings𝜑𝑗. Reparametrizing the inverse of the path𝜑𝑡1
on 𝑠 ∈ [0, 1] and the path 𝜑𝑡2 on 𝑠 ∈ [1, 2] we obtain a
path of symplectic embeddings into B̊4(𝐴) that connects
𝜑1 and 𝜑2. After compactifying B̊4(𝐴) to ℂP2(𝐴) by adding
the line ℂP1 and by symplectically blowing up the images,
this path of embeddings gives rise to a path of symplectic
forms𝜔𝑠 onBl(ℂP2) in class [𝜔𝑠] as shown in Figure 2.7. As
in §2.2 apply symplectic inflation to each form 𝜔𝑠, deform-
ing 𝜔𝑠 to a form 𝜔̃𝑠 in class [𝜔0] = [𝜔2] = 𝐴ℓ − 𝑒. Finally
blow down the exceptional divisor for each 𝑠 to get a path
of embeddings 𝜙𝑠 ∶ B4(1) 𝑠

↪−→ ℂP2(𝐴). Since each excep-
tional divisor is disjoint from ℂP1, each ball 𝜙𝑠(B4(1)) lies
inℂP2(𝐴)⧵ℂP1, and by a theoremofMcDuff from [90] this
set with the symplectic form obtained after blow-down is
indeed symplectomorphic to B̊4(𝐴); cf. §3.2 below. Fur-
thermore, 𝜙𝑠 connects 𝜑1 with 𝜑2.

Figure 2.7. Inflating 𝜔𝑠 to 𝜔̃𝑠.

McDuff’s theorem that Emb𝜔(B4(1), B̊4(𝐴)) is con-
nected is sharp in the following sense. There are con-
vex subsets 𝐾 of ℝ4 with smooth boundary that are

arbitrarily close to a ball and such that Emb𝜔(𝐾, 𝜆
∘
𝐾) has

at least two components, for some 𝜆 > 1. For the cube
C4(1) = B2(1) × B2(1) the space Emb𝜔( C4(1), B̊4(3)) even
has infinitely many connected components.

3. Other Contributions to Symplectic Geometry
3.1. Construction of (counter)examples. McDuff again
and again has given explicit constructions that are both el-
ementary and profound. You can grasp them quickly, yet
they can be used to do many other things. We already en-
countered some of them in the previous section, and I now
mention three more.
A simply connected symplectic manifold that is not Käh-
ler. While Kähler manifolds are symplectic, the converse
is not true. For instance, the odd-index Betti numbers
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of compact Kähler manifolds are even. The first exam-
ple of a compact symplectic manifold that is not Kähler
was found by Thurston; his example (𝑀, 𝜔) is a 𝑇2-bundle
over 𝑇2 with 𝑏1(𝑀) = 3. In [84], McDuff constructed sim-
ply connected examples. She symplectically embedded the
Thurston manifold 𝑀 into ℂP5 and showed that the sym-
plectic blow-up of ℂP5 along 𝑀 is simply connected and
has 𝑏3 = 𝑏1(𝑀) = 3.
Cohomologous symplectic forms that are not diffeo-
morphic. Consider two symplectic forms 𝜔0 and 𝜔1 on
a closed symplectic manifold that are cohomologous. If
these two forms can be connected by a smooth path 𝜔𝑡 of
cohomologous symplectic forms, then there exists an iso-
topy of𝑀 deforming 𝜔0 to 𝜔1, by Moser’s trick. This is the
case, for instance, for any two area forms on a closed sur-
face. In general, however, there may be no such path, as
McDuff showed in [87].

Take𝑀 = 𝑆2×𝑆2×𝑇2 with the standard split symplectic
form 𝜔 giving all factors area one. Define

Ψ(𝑧,𝑤, (𝑠, 𝑡)) = (𝑧, 𝑅𝑧,𝑡(𝑤), 𝑠, 𝑡),
where 𝑅𝑧,𝑡 is the rotation by angle 2𝜋𝑡 of the round sphere
about the axis through 𝑧, −𝑧. Then the symplectic forms
𝜔𝑘 = (Ψ𝑘)∗𝜔, 𝑘 ∈ ℤ≥0, are all cohomologous, and they can
be joined by a path of symplectic forms, but by no such path
in the same cohomology class. The last part of the statement
was McDuff’s first result obtained by using 𝐽-holomorphic
curves. She studied the space of 𝜔𝑘-tame 𝐽-holomorphic
spheres in the class of the first 𝑆2-factor, and showed that
such spheres wrap 𝑘-times around the second factor. Since
a diffeomorphism isotopic to the identity acts trivially on
homology, an isotopy deforming 𝜔𝑘 to 𝜔ℓ can therefore
only exist if 𝑘 = ℓ.

Also in [87] McDuff improved this construction
to obtain cohomologous symplectic forms on an 8-
dimensional symplectic manifold that are not even diffeo-
morphic.
Disconnected contact boundaries. The natural bound-
aries of symplectic manifolds are those of contact type,
meaning that there exists a vector field 𝑋 defined near 𝜕𝑀
that is transverse to 𝜕𝑀, pointing outwards, and is confor-
mally symplectic: ℒ𝑋𝜔 = 𝑑𝜄𝑋𝜔 = 𝜔. Symplectic mani-
folds with boundary of contact type are analogous inmany
ways to complex manifolds with pseudoconvex bound-
aries, as was shown by Eliashberg and Gromov in 1989.
In the latter situation, the boundary is always connected.
However, McDuff [91b] explicitly constructed a compact
symplectic 4-manifold whose boundary is of contact type
and disconnected.

She starts with the cotangent bundle 𝑇∗Σ over a closed
orientable surface of genus ≥ 2, endowed with its canon-
ical symplectic form 𝑑𝜆, where 𝜆 = ∑𝑖 𝑝𝑖𝑑𝑞𝑖. Also
take a Riemannian metric of constant curvature on Σ. It

induces the connection 1-form 𝛽 of the Levi-Civita connec-
tion on 𝑇∗Σ and the radial coordinate 𝑟 on the fibers. Then
one finds smooth functions 𝑓, 𝑔 on [0,∞) such that on the
annulus bundle {𝑥 ∈ 𝑇∗Σ ∣ 1

2
≤ 𝑟(𝑥) ≤ 1} the 2-form

𝜔 = 𝑑(𝑓(𝑟)𝛽 + 𝑔(𝑟)𝜆)
is symplectic and makes the boundary of contact type.
3.2. The structure of rational and ruled symplectic 4-
manifolds. The classification of compact complex sur-
faces is an old and beautiful topic in complex and Käh-
ler geometry. Before 1990, the only result on symplectic 4-
manifolds in this direction was a theorem of Gromov for
the complex projective plane. In [90], McDuff proved the
following generalization. If a closed symplectic 4-manifold
contains a symplectically embedded sphere with nonnegative
self-intersection number, then it is symplectomorphic to either
ℂP2 with its standard Kähler structure, to a ruled symplectic
manifold, or to a symplectic blow-up of one of these manifolds.
Here, a ruled symplectic 4-manifold is the total space of
an 𝑆2-fibration over a closed oriented surface with a sym-
plectic structure that is nondegenerate on the fibers.

In later work with Lalonde [96a], McDuff classified
ruled symplectic surfaces. If (𝑀, 𝜔) is a ruled symplectic 4-
manifold, then 𝜔 is determined up to symplectomorphism by
its cohomology class and is isotopic to a standard Kähler form
on 𝑀. Li–Liu complemented this result by showing that
if (𝑀, 𝜔) is the total space of an 𝑆2-fibration over a closed
surface, then there is a ruling of 𝑀 by symplectic spheres,
i.e., (𝑀, 𝜔) is a ruled symplectic manifold. See [96b] for a
survey on this classification.

An elementary but important point in the proofs is that
two cohomologous symplectic forms 𝜔0 and 𝜔1 are diffeo-
morphic if they tame the same almost complex structure 𝐽.
Indeed, all the cohomologous forms 𝜔𝑡 = (1 − 𝑡)𝜔0 + 𝑡𝜔1,
𝑡 ∈ [0, 1], then tame 𝐽 and hence are symplectic, and there-
fore 𝜔0 and 𝜔1 are diffeomorphic by Moser’s argument.

These works showed that symplectic geometry has
something to say about 4-manifolds, and they helped es-
tablish symplectic geometry as one of the core geometries.

McDuff has also done much interesting work on the
topology of the group of symplectomorphisms for several
classes of symplectic manifolds. For 𝑆2-fibrations over 𝑆2
with any symplectic form she has in particular shown in
joint work with Abreu [00] that two symplectomorphisms
are isotopic through symplectomorphisms whenever they
are isotopic through diffeomorphisms.
3.3. Hofer geometry. Recall that any symplectic mani-
fold (𝑀, 𝜔) locally looks like the standard symplectic vec-
tor space of the same dimension. Our dear geometric in-
tuition from everyday life, so useful in Riemannian geo-
metry to see distances and curvatures, is thus useless in
symplectic geometry. However, on the automorphism
group Hamc(𝑀, 𝜔) of Hamiltonian diffeomorphisms that
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are generated by compactly supported functions, there is a
bi-invariant Finsler metric, that to some extent serves as
a substitute for the absence of local geometry in (𝑀, 𝜔).
Given a time-dependent Hamiltonian function 𝐻∶ 𝑀 ×
[0, 1] → ℝ with compact support, take the integrated oscil-
lation

‖𝐻‖ ∶= ∫
1

0
(max
𝑥∈𝑀

𝐻(𝑥, 𝑡) − min
𝑥∈𝑀

𝐻(𝑥, 𝑡)) 𝑑𝑡.

For 𝜑 ∈ Hamc(𝑀, 𝜔) now define

𝑑(𝜑, id) = inf
𝐻
‖𝐻‖,

where 𝐻 runs over all compactly supported Hamiltonian
functions whose time-1 flow map is 𝜑. Then 𝑑(𝜑, 𝜓) =
𝑑(𝜑𝜓−1, id) defines a bi-invariant metric on Hamc(𝑀, 𝜔).
The only difficult point to check is nondegeneracy. This
was done by Hofer for ℝ2𝑛 by variational methods, by
Polterovich for tame rational symplectic manifolds by us-
ing a rigidity property of Lagrangian submanifolds, and
for all symplectic manifolds by Lalonde–McDuff [95a]
who used their General Nonsqueezing Theorem discussed
in §2.1 and the following symplectic folding construction.

Figure 3.1. The symplectic folding construction, schematically.

Assume that 𝜑 ≠ id. Then we find a symplectically em-
bedded ball B2𝑛(𝑎) in 𝑀 such that 𝜑(B2𝑛(𝑎)) ∩ B2𝑛(𝑎) = ∅.
Now consider the ball

B2𝑛+2(𝑎) ⊂ B2(𝑎) × B2𝑛(𝑎) ⊂ ℝ2 ×𝑀,
and assume that 𝜑 is generated in time 1 by 𝐻. In three
steps, the small green ball B2𝑛+2(𝑎

2
) ⊂ B2𝑛+2(𝑎) is folded

on top of its complement, as illustrated in Figure 3.1. First,
one views B2𝑛+2(𝑎) as a B2𝑛-fibration over the disc B2(𝑎)

and separates the small fibers from the large ones. In the
key step, one then uses the flow 𝜙𝑡𝐻 , 𝑡 ∈ [0, 1], to lift the
small green ball. The projection of the red band in the
image of 𝜆 to ℝ2 has area ‖𝐻‖. Since 𝜑(B2𝑛(𝑎

2
)) is disjoint

from B2𝑛(𝑎), one can thus turn the green ball over the blue
part to obtain an embedding

B2𝑛+2(𝑎) 𝑠
↪−→ B2(𝑎

2
+ ‖𝐻‖) × 𝑀.

Hence ‖𝐻‖ ≥ 𝑎
2

by the General Nonsqueezing Theorem.
You can readily grasp the construction from the three fig-
ures on pages 473, 474, 475 of [17b]. Symplectic folding
found many other applications to symplectic geometry.

In [95b], Lalonde and McDuff made a deep study of
geodesics in this Finsler geometry on Hamc(𝑀, 𝜔), that
lead to completely new geometric intuitions on this group.
It then became possible to think about Hamiltonian dy-
namics in geometric terms such as geodesic, conjugate
point, cut-locus, etc. See Polterovich’s book from 2001 for
more on this.
The books. While in her papers Dusa shows herself to be
an impressive and creative problem solver, the two books
she wrote with Dietmar Salamon were (and remain) cru-
cial for the foundation of symplectic geometry and its dis-
semination. Introduction to symplectic topology [17b] ex-
plains the methods and results of the field in clear and
modern geometric language. A key for the success of this
book is that it discusses the main results in the most im-
portant and typical cases, without striving for generality. I
was very lucky that this book came out (in 1995) just when
I wanted to learn the subject. It is one of the main reasons
for the transformation of the then small community of
symplectic geometers into a large family. In the third edi-
tion from 2017, the authors added a chapter with 54 open
problems, proving that symplectic geometry is not a closed
chapter but rather remains an exploding field.

The second book [12a] provides a rigorous foundation
of the theory of 𝐽-holomorphic curves and explains their
applications to symplectic topology. The exposition is so
precise and to the point that one can often just cite the re-
sult one needs. This book transformed the formerly some-
what romantic theory of 𝐽-holomorphic curves into a well-
established tool of enormous impact.

In addition to her incredible mathematical legacy,
Dusa’s extraordinary generosity to young (and not so
young) researchers, her enthusiasm and her (sometimes
overwhelming) energy, and her heartfelt commitment in
scientific, political, and social issues should be recognized.

ACKNOWLEDGMENTS. I am grateful to the two refer-
ees for the improvements, and to Jesse Litman for her
patient help with the English.
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