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1 Introduction

1.1 Crisp Graph

The theory of graphs plays a vital role in the area of applications of mathematics.

It finds its applications in social network analysis, Birth-CPM analysis, internet

networks etc. A graph can be modeled to represent any abstract problem in a

simple way by means of diagrams. The theory of graphs obtained its significance

from the famous Konigsberg Bridge problem which was settled by Euler, the four-

colour conjecture, Knight’s tour etc.

In the literature, there are four major categories of graph products

1. Cartesian Product

2. Strong Product

3. Categorical Product

4. Lexicographic Product

Weichsel [38], observed that the direct product of two graphs G and H is connected

if and only if G and H are connected and not both are bipartite graphs. Since

then many different properties of direct product of graphs have been studied, which

include structural results, Hamiltonian properties and the well-Known Hedetniemi’s

conjecture [16] on chromatic number of direct product of two graphs. For a product

graph, solving the problems of determining the independence number and the

matching number is economical, since the problem size is much smaller in the

factors than in the product so that it can be used as a model for concurrency

in multiprocessor system.
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The lexicographic product is one such type of product which was introduced as

the composition of graphs by Harary [5]. The lexicographic product is also known

as graph substitution as, G◦H can be obtained from G by substituting a copy Hg

of H for every vertex g of G and then joining all vertices of Hg with all vertices

of Hg′ if gg′ ∈ E(G).

1.2 Theory of Semiring

The term semiring was explicitly introduced by H.S. Vandiver [29] in the year 1934.

However, the term was implicitly used by many mathematicians such as, Dedekind

[4], Krull [12], Macaulay[13], while studying the structure of the collection of ideals

in a ring and the arithmetic theory on the set of positive rationals.

On the one hand, the theory of semirings will be studied to understand the

algebraic and structural properties- An abstraction of the theory of rings. On

the other hand, the theory of semirings have wider applications in various fields

of mathematics such as social network analysis, Automata theory, Cryptography,

Optimization problem, Graph theory and so on. A complete survey on the theory

of semirings was given by Jonathan Golan [9] in his monograph. It contains various

illustration in different branches of mathematics. One such illustration is the concept

of R− valued relations on a non-empty set V, whose elements are called vertices or

points. The R− relation g on V × V to R is defined to be g(v1, v2) 6= 0 for all

pairs v1, v2 ∈ V. This relation describes a R− valued graph where R is a semiring,

in which edges are assigned a non zero value from the semiring R.

1.3 Semiring Valued Graphs

Motivated by the theory of graphs and the theory of semiring and also by Golan’s

illustration of R− valued graphs, Chandramouleeswaran and others [21], initiated

the study of semiring valued graphs (in short, S− valued graphs). Unlike the

definition by Golan, the authors assigned S− values to every vertex of a graph.

It is well known that every semiring possesses a canonical pre-order. The authors

used this canonical pre-order to compare the S− values of the vertices which are

connected by an edge. The minimum among the S− values of the end vertices of

an edge is assigned as the S− value of the edge under study. One can observe that
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given a crisp graph G and a semiring (S,+, ·) the S− valued graph GS is not

unique. Since then many research works have been carried out such as domination

[8], [11] in S− valued graphs and colouring of S− valued graphs [26], [27].

1.4 The Problem Of Study

Motivated by the theory of product of graphs and the theory of semiring valued

graphs, we study in our work, the two particular products of S− valued graphs,

namely categorical product and lexicographic product. We investigate the notion

of isomorphism on S− valued graphs, connectivity on S− valued graphs and the

algebraic structure of the collection of all finite simple S− valued graphs with the

disjoint union and the categorical (Lexicographic) product of S− valued graphs. In

particular, we have proved that the collection of all S− valued graphs under the

disjoint union and the categorical product forms a commutative semiring while they

forms a near semiring under the lexicographic product.

The study has been generalized into S− valued graphs where the edges are assign

S− values by adding (multiplying) the S− values of the end vertices of the given

edge, such graphs are represented as S+− valued graphs (S•− valued graphs).

Further, we extend the categorical product of two S− valued graphs by considering

their S− values from different semirings S1 and S2, represented by, GS1
1 × GS2

2 .

Such product is known as the generalized categorical product of S− valued graphs.

1.5 Outlay Of the Thesis

Our main work is divided into seven chapters.

The first chapter Preliminaries recalls the basic definitions and fundamental

results that are needed for our sequel. This chapter is divided into three sections.

The first section discusses the basic definitions of the theory of graphs and the

definitions of graph products and other basic definitions. In the second section, we

give the definition of semiring and other basic definitions for our work. The third

section discusses the the concept of S− valued graphs and the fundamental results.

The chapter Connectivity of S−valued Graphs discusses the notion of

connectivity in the S− valued graphs. This chapter is divided into two sections.
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In the first section, we discuss the concept of S− vertex connectivity of S− valued

graphs and the second section discusses the notion of S− edge connectivity of

S− valued graphs.

In the chapter Categorical Product of S−valued graphs, we introduce the

notion of categorical product of S− valued graphs. This chapter is divided into

three sections. In the first section, we discuss the concept of categorical product

of S− valued graphs and its properties. The second section discusses the regularity

conditions on categorical product of S− valued graphs and in the third section we

discuss the irregularity conditions on categorical product of S− valued graphs.

The chapter Colouring on Categorical product of S−valued graphs is

divided into two sections. The first section, discusses the notion of S− vertex

colouring on categorical product of S− valued graphs and in the second section,

we discuss the concept of S− edge colouring on categorical product of S− valued

graphs.

The chapter Algebraic structures on Categorical Product of S−valued

graphs is divided into two sections. In the first section, we discuss the notion

of Isomorphism of S− valued graphs. The second section, discusses the Algebraic

structures of collection of all S− valued graphs under the disjoint union and the

categorical product of S− valued graphs.

The chapter Lexicographic Product of S−valued Graphs is divided into

two sections. In the first section, we introduce the notion of lexicographic product

of S− valued graphs and the second section, discusses the algebraic structures of

collection of S− valued graphs under disjoint union and the lexicographic product

of S− valued graphs.

The chapter A Generalization of S−valued graphs is divided into three

sections. The first section discusses the generalized categorical product of S− valued

graphs and in the second section, we discuss the notion of S+− valued graphs. The

third section, discusses the concept of S•− valued graphs.

Our thesis ends with a detailed Bibliography
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2 Preliminaries

In this chapter, we recall basic definitions and fundamental results that are required

for our work.

• A graph G is an ordered triple (V (G), E(G), ψG) consisting of a non empty

set V (G) of vertices, a set E(G), disjoint from V (G), of edges, and an

incidence function ψG that associates with each edge of G an unordered pair

of (not necessarily distinct) vertices of G. If e is an edge and u and v are

vertices such that ψG(e) = uv, then e is said to join u and v; the vertices

u and v are called the ends of e.

• A graph G = (V,E, ψG) is said to be finite if both its vertex set V and edge

set E are finite. Empty graph can be defined as a graph in which V = φ and

E = φ . A graph without any edges is called a Null graph. Every vertex in a

null graph is an isolated vertex.

• The Categorical product of two graphs G = (V (G), E(G)) and H =

(V (H), E(H)) is the graph denoted as G × H, whose vertex set is V (G) ×
V (H), and for which vertices (g, h) and (g′, h′) are adjacent precisely if

gg′ ∈ E(G) and hh′ ∈ E(H).

Thus V (G×H) = {(g, h) | g ∈ V (G) and h ∈ V (H)} ,

E(G×H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)} .

• The Lexicographic product of the graphs G and H is the graph, G ◦ H,
whose vertex set is V (G) × V (H), and for which (g, h)(g′, h′) is an edge of

G ◦H if gg′ ∈ E(G) or g = g′ and hh′ ∈ E(H).

• A semiring (S,+, ·) is an algebraic system with a non-empty set S together

with two binary operations + and · such that

1. (S,+, 0) is a monoid.

2. (S, ·) is a semigroup.

3. For all a, b, c ∈ S , a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c .

4. 0 · x = x · 0 = 0 ∀ x ∈ S.
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• Let (S,+, ·) be a semiring. A relation � is said to be a Canonical pre-order

if for a, b ∈ S , a � b if and only if, there exists c ∈ S such that a+ c = b.

• To compare the elements of S×N, we define � as follows: For all s1, s2 ∈ S
and n,m ∈ N

1. (s1, n) � (s2,m) ⇔ s1 � s2 and n ≤ m.

2. if s1 � s2 and n ≥ m, the comparision is with respect to the S− values.

• Let (S,+, ·) and (S ′,+, ·) be two given semirings. A map β : S → S ′

is said to be a semiring homomorphism if β(a + b) = β(a) + β(b) and

β(a · b) = β(a) · β(b) for all a, b ∈ S. If (S,+) and (S ′,+) are monoids, then

the homomorphism β : S → S ′ satisfies β(0S) = 0S′ . If (S, ·) and (S ′, ·) are

also monoids then the homomorphism β : S → S ′ satisfies β(1S) = 1S′ .

• An algebraic structure (S,+, ·) is said to be right near-semiring with a

constant 0 if it satisfies the following axioms:

1. (S,+, 0) is a monoid.

2. (S, ·) is a semigroup.

3. (a+ b) · c = a · c+ b · c for all a, b, c ∈ S.

4. 0 · a = 0 for all a ∈ S.

• Let G = (V,E ⊂ V × V ) be a given graph with V,E 6= φ. For any semiring

(S,+, ·), a semiring valued graph (or a S-valued graph ) GS is defined to be

the graph GS = (V,E, σ, ψ) where σ : V → S and ψ : E → S is defined to

be ψ(x, y) =

{
min {σ(x), σ(y)} if σ(x) � σ(y) (or) σ(y) � σ(x)

0 otherwise

for every unordered pair (x, y) of E ⊂ V × V. we call σ, a S− vertex set and

ψ a S− edge set of S− valued graph GS.

• A S− valued graph GS is said to be

1. vertex regular if σ(v) = a ∀ v ∈ V and for some a ∈ S

2. Edge regular if ψ(u, v) = a ∀(u, v) ∈ E and for some a ∈ S.

3. S− regular if it is both vertex as well as edge regular.
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• A S− valued graph GS is said to be degree regular S− valued graph

( dS− regulargraph) if degS(v) = (a, n) ∀ v ∈ V and some a ∈ S and n ∈ Z+.

• Any S− valued grpah GS which is not S− regular is called a S− valued

irregular (simply S− irregular graph).

• A S− valued graph GS is said to be a weight S− vertex irregular if for every

vertex v ∈ V, σ(v) 6= σ(u), u ∈ NS(v).

• Let GS = (V,E, σ, ψ) be a given graph. Let v ∈ V. Consider the open

neighbourhood NS(v) of v. Let u1, u2 ∈ NS(v) such that σ(u1) 6= σ(v) and

σ(u2) 6= σ(v). If σ(u1) 6= σ(u2) then, GS is said to be neighbourly weight

S− irregular at v. If GS is neighbourly weight S− irregular at every vertex

v, then GS is called a neighbourly weight S− irregular graph.

• Consider a S− valued graph GS = (V,E, σ, ψ). Let eji denotes the edge

(vi, vj) ∈ E. Then the S− edge imbalance of eji is denoted by ImbS(eji ) and

is defined as ImbS(eji ) =
(
ψ(eji ), |dG(vi)−dG(vj)|

)
, where dG(vi) denotes the

degree of a vertex vi in crisp graph G.

• Let GS = (V,E, σ, ψ) be a S− valued graph. Then, the S− irregularity of

GS is defined by IrrS(GS) =
∑

eji∈E(GS)

ImbS(eji ).

• The total S− irregularity of a S− valued graph GS = (V,E, σ, ψ) is defined

for all pairs of vertices (vi, vj), i < j ∈ V (GS), such that

TirrS(GS) =
∑

(vi,vj)∈V (GS)
i<j

(
min {σ(vi, σ(vj)} , |dG(vi)− dG(vj)|

)
.

• Consider the S− valued graph GS = (V,E, σ, ψ). Let C = {c1, c2, · · · } be a

set of colours . A colouring of GS is given by a function f : V × V → S × C
such that for all v ∈ V, f(u, v) = (σ(v), (̧v)), c(v) ∈ C.

• Let GS = (V,E, σ, ψ) be a S− valued graph. The vertex chromatic number

of GS denoted by χS(GS), is defined to be χS(GS) =
(
min
v∈V

σ(v),min|C|
)
.
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Throughout our work we are considering only finite and simple

S−valued graphs.

3 Connectivity of S−Valued Graphs

In this chapter, we introduce the notion of connectivity of S− valued graphs. The

theory of connectivity in graphs plays a crucial role in the study of network problems.

It discusses the minimum number of links, whose removal collapses the entire system.

In this chapter, analogous to the theory of crisp graphs, we introduce the two types

of connectivity, namely, the vertex S− connectivity and the edge S− connectivity.

This chapter is divided into two sections. While the first section discusses the

notion of vertex S− connectivity, the second section discusses the notion edge

S− connectivity.

In this chapter, we have defined the following terms.

• Consider the S− valued graph GS = (V,E, σ, ψ). Let BGS =

{Bi | i = 1, · · · , k} be the collection of S− connected components of GS.

Then Bi = (Pi, Fi), Pi ⊆ V, Fi ⊆ E, i = 1, · · · , k. Therefore |BGS | = k

and the graph GS is said to have k connected components. If k = 1, then

GS is said to be a S− connected graph in which every pair of vertices have a

S− path.

• Let GS = (V,E, σ, ψ) be a S− valued graph with vertex set V =

{vi | i = 1, · · · , n} and edge set E =
{

(vivj) = eji | i, j = 1, · · · , n
}
. Then

the vertex strength of the S− valued graph GS is the sum of the S− values

of vertices of GS. That is, StV (GS) = Σ
vi∈V

σ(vi) =| V |S .

• A vertex separating set of a given S− valued graph GS is a subset P ⊆ V

whose removal from GS reduces the vertex strength of the graph GS and

splits the graph into components. That is StV (GS − P ) � StV (GS) and

|BGS−P | > |BGS |. In other words, |V − P |S � |V |S and |BGS−P | > |BGS |.

• The vertex S− connectivity of GS denoted by κSV (GS) is defined as κSV =

min
P⊆V
{(|P |S, |P |)} , where P ⊆ V such that StV (GS − P ) � StV (GS), and

|BGS−P | > |BGS |.

8



• Let GS = (V, , E, σ, ψ) be a S− valued graph with vertex set V =

{vi, | 1 ≤ i ≤ n} and edge set E =
{

(vivj) = eji | 1 ≤ i, j ≤ n
}
. Then the

edge strength of the S− valued graph GS is the sum of the S− values of

edges of GS. That is, StE(GS) = Σ
eji∈E

ψ(eji ) =| E |S .

• An edge separating set of a given S− valued graph GS is a subset F ⊆ E

whose removal from GS reduces the edge strength of the graph GS and

increases the number of components in GS. That is StE(GS −F ) � StE(GS)

and |BGS−F | > |BGS |. In other words, |E−F |S � |E|S and |BGS−F | > |BGS |.

• The edge S− connectivity of GS, denoted by κSE(GS), is defined as κSE =

min
F⊆E
{(|F |S, |F |)} , where F ⊆ E such that StE(GS − F ) � StE(GS), and

|BGS−F | > |BGS |.

We have proved the following results in this chapter.

• κSV � pS, where pS is the order of the graph GS.

• Consider a S− valued graph GS = (V,E, σ, ψ). Let HS = (P, F, σP , ψF ) be

a subgraph of GS obtained by deleting a vertex v in V.

Then StV (HS) � StV (GS).

• κSV (HS) � κSV (GS).

• Let GS = (V,E, σ, ψ) be a S− valued graph and HS = (P, F, σP , ψF ) be a

subgraph of GS such that P ⊆ V and F ⊆ E. Then StV (HS) � StV (GS).

• Let HS = (P, F, σP , ψF ) be a subgraph of GS. Then, κSV (HS) � κSV (GS)

• Let GS = (V,E, σ, ψ) be a given S− valued graph. If CS is a clique of GS,

then StV (CS) � StV (GS)

• If κSV (GS) = (min
vi∈V

σ(vi), 0), then GS is either KS
1 or disconnected.

• If GS is a complete S− valued graph with n− vertices, then

κSV (GS) = min
P⊆V

(
Σ

vi∈P
σ(vi), n−1

)
where P is the vertex separating set of GS.
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• If GS is a S-path, then κSV (GS) = min
vi∈V

(
σ(vi), 1

)
.

• If GS is a S− cycle, then κSV (GS) = min
p⊆V

(
Σ

vi∈P
σ(vi), 2

)
.

• If KS
m,n is a complete bipartite S− valued graph with two bipartition sets V1

and V2 such that |V1| = m; |V2| = n.

Then κSV (GS) = min

{
( Σ
vi∈V1

σ(vi),m), ( Σ
vi∈V2

σ(vi), n)

}
• For a S− star KS

1,n with pole v, κSV (KS
1,n) = (σ(v), 1).

• Consider a S− valued graph GS = (V,E, σ, ψ). Let HS = (P, F, σP , ψF ) be

a subgraph of GS such that HS = (P, F = (E − {e}) for some e ∈ E. Then

StE(HS) � StE(GS).

• κSE(HS) � κSE(GS)

• Let GS = (V,E, σ, ψ) be a S− valued graph and HS = (P, F, σP , ψF ) be a

subgraph of GS such that P ⊆ V and F ⊆ E. Then StE(HS) � StE(GS).

• Let HS = (P, F, σP , ψF ) be a subgraph of GS. Then, κSE(HS) � κSE(GS).

• Let GS = (V,E, σ, ψ) be a given S− valued graph. If CS is a clique of GS,

then StE(CS) � StE(GS).

• Let GS 6= KS
1 be a disconnected S− valued graph. Then

κSE(GS) =
(
min
eji∈E

ψ(eji ), 0
)
.

• For any vertex S− regular graph GS = (VS, ES), the inequality

κSV (GS) � κSE(GS) � δS(GS)

holds.

• Homomorphic image of a S− path in GS
1 is a S− path in GS

2 . That is

S− valued homomorphism preserves S− paths.

• Homomorphic image of a S− cycle in GS
1 is a S− cycle in GS

2 .
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4 Categorical Product of S−valued Graphs

In this chapter, we introduce the notion of Categorical product of S− valued graphs

also study the connectedness properties of S− valued graphs. This chapter is divided

into three sections. The first section deals with the definition of Categorical product

of S− valued graphs, illustraed with examples also discusses the connectedness

properties of categorical product. The second section discusses the regularity

conditions on categorical product of S− valed graphs. The third section discusses

the irregularity conditions on categorical product of S− valued graphs.

In this chapter, we have defined the following terms.

• Let GS
1 = (V1, E1, σ1, ψ1) where V1 = {vi | 1 ≤ i ≤ p1} , E1 ⊆ V1 × V1 and

GS
2 = (V2, E2, σ2, ψ2) where V2 = {uj | 1 ≤ j ≤ p2} , E2 ⊆ V2 × V2 be two

given S− valued graphs.

Let V1 × V2 = {wij = (vi, uj) | 1 ≤ i ≤ p1; 1 ≤ j ≤ p2} ; and

E = E1 × E2 ⊆ V1 × V2.

The Categorical product of two S− valued graphs GS
1 and GS

2 is defined by

GS
× = GS

1 ×GS
2 = (V,E, σ, ψ)

where V = V1 × V2 = {wij = (vi, uj) | vi ∈ V1 and uj ∈ V2} .

The two vertices wij = (vi, uj), wkl = (vk, ul) are adjacent if vivk ∈ E1 and

ujul ∈ E2

Then E =
{
eklij = (wij, wkl) | eki = vivk ∈ E1 and e

l
j = ujul ∈ E2

}
The S− valued function σ : V → S is defined by

σ(vi, uj) = min {σ1(vi), σ2(uj)}

and the S− valued function ψ : E → S is defined by

ψ(wij) = min
{
ψ1(e

k
i ), ψ2(e

l
j)
}

• Let GS
× = GS

1 ×GS
2 be the Categorical product of GS

1 and GS
2 .

We define the projections π1 : GS
× → GS

1 by

π1((vi, uj), σ(vi, uj)) = (vi, σ1(vi))
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and π2 : GS
× → GS

2 by π1((vi, uj), σ(vi, uj)) = (uj, σ2(uj))

Clearly, the projections π1 and π2 are S− valued homomorphisms.

In this chapter, we have proved the following results.

• Suppose (v, u) and (v′, u′) are vertices of a Categorical product GS
× =

GS
1 × GS

2 , and n is an integer for which GS
1 has a S− path P S(vv′) of

length n and GS
2 has a S− path P S(uu′) of length n. Then GS

× = GS
1 ×GS

2

has a S− path of length n from (v, u) to (v′, u′).

• Suppose there is a S− path of length n from (v, u) to (v′, u′) in GS
× =

GS
1 × GS

2 . Then, each factor GS
1 and GS

2 of GS
× has a S− path of length n

from v to v′ and u to u′ respectively.

• Consider the Categorical product GS
× = GS

1 × GS
2 . If GS

× = GS
1 × GS

2 is

S− connected then the factors GS
1 and GS

2 of GS
× are alsoS− connected.

• The Categorical product of two S− regular graphs is again a S− regular

graph

• The Categorical product of two S− valued graphs is S− regular if the

S− value corresponding to the S− regular graph is minimum among the

S− values.

• The Categorical product of two edge regular S− valued graphs is an edge

regular S− valued graph.

• In the categorical product of S− valued graphs, every vertex regular

S− valued graphs is edge regular S− valued graph.

But the converse need not be true, in general.

• The Categorical product of two degree regular S− valued graphs ( dS -regular)

is again a degree regular S− valued graph.

• Let (S,+, ·) be a semiring and a, b ∈ S. If GS
1 is (a,m)− regular graph and

GS
2 is (b, n)− regular graph then the Categorical product GS

× = GS
1 × GS

2 is

either (a,mn)− regular or (b,mn)− regular graph, depending on a � b or

b � a respectively.

12



• The Categorical product of two S− irregular graphs is again a S− irregular

graph.

• The categorical product of two neighbourly weight S− irregular graphs need

not be a neighbourly weight S− irregular graph.

• Consider the two S− valued graphs GS
1 and GS

2 , then

IrrS(GS
×) � IrrS(GS

1 ) + IrrS(GS
2 ), where GS

× = GS
1 ×GS

2 .

• IrrS(GS
×) �M(GS

1 )IrrS(GS
1 ) +M(GS

2 )IrrS(GS
2 ),

where M(GS
1 ) =

∑
vi∈V1

degS(vi) and M(GS
2 ) =

∑
uj∈V2

degS(uj).

• TirrS(GS
×) � 2pS(GS

1 )qS(GS
1 )TirrS(GS

1 ) + 2pS(GS
2 )qs(G

S
2 )TirrS(GS

2 )

5 Colouring On Categorical Product of

S−Valued Graphs

In [26], the authors introduced the notion of vertex colouring on S− valued graphs.

In [27], they have discussed the notion of edge colouring on S− valued graphs. In this

chapter, we discuss the colouring on categorical product of two S− valued graphs.

We reformulate the definition for vertex colouring given in [26] and the definition of

edge colouring in [27]. This chapter is divided into two sections. The first section

discusses the S− vertex colouring of categorical product of S− valued graphs and

prove some simple results. In the second section we discuss the S− edge colouring

of S− valued graphs and study the categorical product of class-1 and class-2 type

of S− valued graphs.

In this chapter, we have defined the following terms.

• Let GS = (VS, ES) be a given S− valued graph. Let C = {c1, c2, · · · } be

a given collection of colours. A S− vertex colouring of GS is defined as

a mapping f : VS → S × C given by f(v, σ(v)) =
(
σ(v), C(v)

)
, where

C : V → C.

• A S− vertex colouring f is said to be an equi-weight proper vertex colouring

if σ(u) = σ(v) and C(u) 6= C(v) for all uv ∈ E(GS).

13



• A S− vertex colouring f is said to be a total proper colouring if σ(u) 6= σ(v)

and C(u) 6= C(v) for all uv ∈ E(GS).

• Let GS be a S− valued graph. The S− vertex chromatic number of GS

denoted by χS(GS), is defined to be χS(GS) =
(
min
vi∈V
|NS[vi]|S, χ(G)

)
, where

χ(G) is a vertex chromatic number of the underlying crisp graph G.

• A S− valued graph GS is said to be (a, k)− colourable for some a ∈ S, if for

all vi ∈ V, σ(vi) = a and χ(G) ≤ k.

• Let GS
× = (V,E, σ, ψ) = (VS, ES) be the categorical product of two S− valued

graphs GS
1 = (V1, E1, σ1, ψ1) = (V1S , E1S) and GS

2 = (V2, E2, σ2, ψ2) =

(V2S , E2S). Consider f1 : V1S → S × C by f1(vi, σ1(vi)) = (σ1(vi), C(vi)) and

f2 : V2S → S × C given by f2(uj, σ2(uj)) =
(
σ2(uj), C(uj)

)
are S− vertex

colourings of GS
1 and GS

2 respectively. Then, the S− vertex colouring on GS
×

is a function f : VS → S × C defined by f
(
wij, σ(wij)

)
=
(
σ(wij), C(wij)

)
where C(wij) = C(vi) is a vertex colouring of a graph GS

1 .

• Let GS = (VS, ES) be a S− valued graph. Let C = {c1, c2, · · · } be a collection

of different colours. A S− edge colouring of GS is a function z : ES → S×C
such that z

(
eki , ψ(eki )

)
=
(
ψ(eki ), C(eki )

)
, where C : E → C.

• A S− edge colouring of GS is said to be equi weight proper S− edge colouring,

if ψ(eki ) = ψ(elj) and C(eki ) 6= C(elj) for all adjacent edges eki , e
l
j ∈ E(GS).

• A S− edge colouring of GS is said to be a total proper S− edge colouring, if

ψ(eki ) 6= ψ(elj) and C(eki ) 6= C(elj) for all adjacent edges eki , e
l
j ∈ E(GS).

• Let GS be a S− valued graph. The S− edge chromatic number of GS,

denoted by χ′S(GS), is defined to be χ′S(GS) =
(
max
eki ∈E
|NS[eki ]|S, χ′(G)

)
, where

χ′(G) is the edge chromatic number of the underlying crisp graph G.

• Consider the categorical product GS
× = (VS, ES) of two S− valued graphs

GS
1 = (V1S , E1S) and GS

2 = (V2S , E2S). A S− edge colouring of GS
× is a

function z : VS → S × C defined by z
(
eklij , ψ(eklij )

)
=
(
ψ(eklij ), C(eklij )

)
, where

C is a function C : E → C such that no two adjacent edges have the same

colour.

14



• A S− valued graph GS is said to be of class-1, if χ′S(GS) = ∆S(GS). And it

is said to be of class-2 if χ′S(GS) = ∆S(GS) + (ψ(eki ), 1).

We have proved the following results in this chapter.

• Every equi-weight proper vertex colouring of a S− valued graph GS is a

(a, k)− colourable graph for some a ∈ S.

• For any S− valued graph GS, if χS(GS) � (a, k), where a 6= 0 ∈ S is the

minimum among the S− values. Then GS is a (a, k)− colourable graph with

χ(G) ≤ k.

• The categorical product of two equi-weight proper vertex colouring S− valued

graphs is again a equi-weight proper vertex colouring S− valued graph.

• The categorical product of two total proper S− vertex colouring S− valued

graphs is again a total proper S− vertex colouring S− valued graph.

• For any two S− valued graphs GS
1 and GS

2 ,

χS(GS
1 ×GS

2 ) � min{χS(GS
1 ), χS(GS

2 )}

• The categorical product of two equi weight proper S− edge colouring

S− valued graphs is again a equi weight proper S− edge colouring S− valued

graph.

• The categorical product of two total proper S− edge colouring S− valued

graphs is again a total proper S− edge colouring S− valued graph.

• Let GS
1 and GS

2 be two S− valued graphs such that atleast one of them is of

class-1, then the categorical product GS
× = GS

1 ×GS
2 is of class-1.

• The categorical product of two class-2 S− valued graphs need not be a class-2

S− valued graph, which is illustrated with an example.
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6 Algebraic Structure On Categorical Product of

S−valued Graphs

In this chapter, we discuss the isomorphism on S− valued graphs. We have proved

that, the collection of all S− valued graphs ΓS under the categorical product forms a

commutative semigroup. This chapter is divided into two sections, the first section

discusses the isomorphism of S− valued graphs. In the second section, we have

proved that the collection of all S− valued graphs forms a commutative semiring

under the disjoint union and the categorical product of S− valued graphs.

In this chapter, we have defined the following terms.

• Let GS1
1 = (V1, E1, σ1, ψ1) and GS2

2 = (V2, E2, σ2, ψ2) be two given S1− valued

and S2− valued graphs. A homomorphism f = (α, β) : GS1
1 → GS2

2 of

S-valued graphs is a pair of homomorphisms α : V1 → V2 which is a

bijection and β : S1 → S2 such that β(σ1(vi)) � σ2(α(vi)) and β(ψ1(vivj) �
ψ2(α(vi)α(vj)) ∀vi, vj ∈ V1.

• A weak isomorphism f = (α, β) : GS1
1 → GS2

2 is a pair of homomorphisms

α : V1 → V2 which is a bijection and β : S1 → S2 such that β(σ1(vi)) =

σ2(α(vi))∀vi ∈ V1. A Co-weak isomorphism f = (α, β) : GS1
1 → GS2

2 is a pair

of homomorphisms α : V1 → V2 which is a bijection and β : S1 → S2 such

that β(ψ1(vivj) = ψ2(α(vi)α(vj))∀vi, vj ∈ V1.

• An isomorphism f = (α, β) : GS1
1 → GS2

2 is a pair of isomomorphisms

α : V1 → V2, β : S1 → S2 are such that β(σ1(vi)) = σ2(α(vi))∀vi ∈
V1 and β(ψ1(vivj) = ψ2(α(vi)α(vj))∀vi, vj ∈ V1.
If such an isomorphism from GS1

1 toGS2
2 exists and if both α and β are onto,

then GS1
1 is said to be S− valued isomorphic to GS2

2 and we write it as

GS1
1
∼=S G

S2
2 .

We have proved the following results in this chapter.

• Every weak isomorphism is a Co-weak isomorphism between S− valued

graphs.

• Every Co-weak isomorphism need not be a weak isomorphism.
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• Weak isomorphism preserves the order of the S− valued graphs.

• Co-weak isomorphism preserves the size of the S− valued graphs.

• If f : GS1
1 → GS2

2 is an isomorphism of S− valued graphs, then it preserves

both the order and the size of the S− valued graphs.

• The Categorical product of two S− valued graphs is commutative upto

S− isomorphism. That is, GS
1 ×GS

2
∼=S G

S
2 ×GS

1 .

• The Categorical product of S− valued graphs satisfies the associativity upto

S− isomorphism. That is, GS
1 × (GS

2 ×GS
3 ) ∼=S (GS

1 ×GS
2 )×GS

3 .

• Let ΓS be the set of all finite simple S− valued graphs. Then (ΓS,×) is a

commutative semigroup.

• The set of all finite simple S− valued graphs forms a commutative monoid

under the union of S− valued graphs. That is, (ΓS,∪) is a commutative

monoid.

• The collection ΓS is a commutative semiring under the union and Categorical

product of S− valued graphs. That is, (ΓS,∪,×) is a commutative semiring.

7 Lexicographic Product of S−valued Graphs

In crisp graph theory there are four types of graph products. Lexicographic product

is one such type of product which was introduced as the composition of graphs by

Harary [5]. The lexicographic product is also known as graph subsititution as, G◦H
can be obtained from G by subsitituting a copy Hg of H for every vertex g of G

and then joining all vertices of Hg with all vertices of Hg′ if gg′ ∈ E(G).

Motivated by this, in this chapter, we introduce the notion of Lexicographic

product of two S− valued graphs. We verify some algebraic properties satisfied

by the collection of S− valued graphs under lexicographic product. This chapter

is divided into two sections. The first section discusses the notion of Lexicographic

product of S− valued graphs and its properties. In the second section, we prove

that the set of all finite simple S− valued graphs forms a right near-semiring under

lexicographic product and disjoint union of graphs.

17



In this chapter, we have defined the following terms.

• Let GS
1 = (V1, E1, σ1, ψ1) and GS

2 = (V2, E2, σ2, ψ2) be two S− valued graphs

with V1 = {vi | i = 1, 2, · · · , n} and V2 = {uj | j = 1, 2, · · · ,m} . Then the

Lexicographic product of GS
1 and GS

2 is defined as the S− valued graph

GS
◦ = GS

1 ◦GS
2 = (V,E, σ, ψ)

where V = V1 × V2 = {wij = (vi, uj) | vi ∈ V1, uj ∈ V2} and the two vertices

wij and wkl are adjacent if vivk ∈ E1 or vi = vk and ujul ∈ E2.

Then E =
{
eklij | vivk ∈ E1 or vi = vk and ujul ∈ E2

}
⊆ E1 × E2.

The S− valued function σ : V → S is defined by

σ(wij) = (σ1 ◦ σ2)(wij) = min {σ1(vi), σ2(uj)} and ψ : E → S is defined by

ψ(eklij ) = (ψ1◦ψ2)(e
kl
ij ) =

{
min {ψ1(vivk),min {σ2(uj), σ2(ul)}} if vivk ∈ E1

min {min {σ1(vi), σ1(vk)} , ψ2(ujul)} if vi = vk and ujul ∈ E2

This chapter we have proved the following results.

• The lexicographic product of two S− regular graph is again a S− regular

graph.

• The lexicographic product of two edge regular S− valued graphs is need not

be a edge regular S− valued graph.

• The lexicographic product of S− valued graphs satisfies the associativity upto

isomorphism. That is, GS
1 ◦ (GS

2 ◦GS
3 ) ∼=S (GS

1 ◦GS
2 ) ◦GS

3 .

• The lexicographic product of S− valued graphs satisfies the right distributive

law over the union of S− valued graphs.

That is (GS
1 ∪GS

2 ) ◦GS
3 = GS

1 ◦GS
3 ∪GS

2 ◦GS
3 .

• The lexicographic product of S− valued graphs does not satisfy the left

distributive law over the union of S− valued graphs.

• The set of all S− valued graphs ΓS forms a near semiring with respect to the

operation ∪ and ◦. That is, (ΓS,∪, ◦) is a near semiring.
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8 A Generalization of S−Valued Graphs

In the previous chapter, we have studied the categorical product of two S− valued

graphs GS
1 and GS

2 for a given semiring S. In this chapter, we consider two

S− valued graphs GS1
1 and GS2

2 , where S1 and S2 are two different semirings and

we study the categorical product of GS1
1 and GS2

2 , called the generalized categorical

product of S− valued graphs denoted by GS1×S2
× . This chapter is divided into three

sections. The first section discusses the notion of generalized categorical product

and prove simple results on regularity conditions of GS1
1 ×GS2

2 . The second section

discusses the categorical product of S+− valued graphs and in the third section, we

discuss the categorical product of S•− graphs.

In this chapter, we have defined the following terms.

• Let GS1
1 = (V1, E1, σ1, ψ1) where V1 = {vi | i = 1, · · · , p1} , E1 ⊆ V1 × V1 and

GS2
2 = (V2, E2, σ2, ψ2) where V2 = {uj | j = 1, · · · , p2} , E2 ⊆ V2 × V2 be two

different S-valued graphs, S1 and S2 are different semirings.

The Generalized Categorical product of two semiring valued graphs GS1
1 and

GS2
2 is defined by

GS1×S2
× = GS1

1 ×GS2
2 = (V,E, σ, ψ)

where V = V1 × V2
= {wij = (vi, uj) | vi ∈ V1 and uj ∈ V2, i = 1, · · · , p1; j = 1, · · · , p2} .

The two vertices wij = (vi, uj), wkl = (vk, ul) are adjacent if vivk ∈ E1 and

ujul ∈ E2

Then E = E1 × E2

=
{
eklij = (wij, wkl) | eki = vivk ∈ E1 and e

l
j = ujul ∈ E2

}
⊆ V × V.

The function σ : V → S1 × S2 is defined by

σ
(
wij = (vi, uj)

)
=
(
σ1(vi), σ2(uj)

)
and the function ψ : E → S1 × S2 is defined by

ψ
(
wijwkl = eklij

)
=
(
min {σ1(vi), σ1(vk)} ,min {σ2(uj), σ2(ul)}

)
=
(
ψ1(vivk), ψ2(ujul)

)
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• Let GS+

1 = (V1, E1, σ1, ψ1) where V1 = {vi | i = 1, 2, · · · ,m} and GS+

2 =

(V2, E2, σ2, ψ2) where V2 = {uj | j = 1, 2, · · · , n} be two given S+− valued

graphs.

The Categorical product of S+− valued graphs GS+

1 and GS+

2 is defined by

GS+

× = GS+

1 ×GS+

2 = (V,E, σ, ψ)

where V = V1 × V2 = {wij = (vi, uj) | vi ∈ V1, uj ∈ V2}

the two vertices (vi, uj) and (vk, ul) are adjacent if vivk ∈ E1 and ujul ∈ E2.

Then, the edge set

E =
{
eklij = (wij, wkl) | eki = vivk ∈ E1 and e

j
i = ujul ∈ E2

}
.

Define the S− valued functions, σ : V → S by

σ(wij) = σ
(
(vi, uj)

)
=
(
σ1(vi) + σ2(uj)

)
and ψ : E → S by ψ

(
eklij
)

=
(
ψ1(e

k
i ) + ψ2(e

l
j)
)
.

• Let GS•
1 = (V1, E1, σ1, ψ1) where V1 = {vi | i = 1, 2, · · · ,m} and GS•

2 =

(V2, E2, σ2, ψ2) where V2 = {uj | j = 1, 2, · · · , n} be two given S•− valued

graphs.

The Categorical product of S•− valued graphs GS•
1 and GS•

2 is defined by

GS•

× = GS•

1 ×GS•

2 = (V,E, σ, ψ)

where V = V1 × V2 = {wij = (vi, uj) | vi ∈ V1, uj ∈ V2}

the two vertices (vi, uj) and (vk, ul) are adjacent if vivk ∈ E1 and ujul ∈ E2.

Then, the edge set

E =
{
eklij = (wij, wkl) | eki = vivk ∈ E1 and e

j
i = ujul ∈ E2

}
.

Define the S− valued functions, σ : V → S by

σ(wij) = σ
(
(vi, uj)

)
=
(
σ1(vi) · σ2(uj)

)
and ψ : E → S by ψ

(
eklij
)

=
(
ψ1(e

k
i ) · ψ2(e

l
j)
)
.

We have proved the following results in this chapter.
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• The generalized categorical product of two S− regular graphs is again a S−
regular graph.

• The generalized categorical product of two S− edge regular S− valued graphs

is again a S− edge regular S− valued graph.

• The generalized categorical product of two degree regular S− valued graphs

( dS− regular) is again a degree regular S− valued graph.

• If GS1
1 is (a,m)− regular graph and GS2

2 is (b, n)− regular graph, then the

generalized categorical product GS1×S2
× = GS1

1 ×GS2
2 is

(
(a, b),mn

)
− regular

S− valued graph where a ∈ S1 and b ∈ S2.

• The Categorical product of two S+− vertex regular graphs is again a

S+− vertex regular graph.

• The Categorical product of two S+− edge regular valued graphs is a S+− edge

regular graph.

• The Categorical product of two degree regular S+− valued graph ( dS -regular)

is again a degree regular S+− valued graph.

• The Categorical product of (a,m)− regular and (b, n)− regular S+− valued

graphs is (a+b,mn)− regular S+− valued graph for some a, b ∈ S,m, n ∈ Z+.

• The Categorical product of two S•− vertex regular graphs is again S•− vertex

regular.

• The categorical product of two S•− edge regular graphs is again a S•− edge

regular graph.

• The categorical product of two degree regular S•− valued graphs is a degree

regular S•− valued graph.

• The categorical product of (a,m)− regular S•− valued graph and

(b, n)− regular S•− valued graph is a (ab,mn)− regular S•− valued graph for

some a, b ∈ S and m,n ∈ Z+.
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