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Abstract

This paper considers identification and estimation of the effect of a mismeasured binary regressor in
a nonparametric or semiparametric regression, or the conditional average effect of a binary treatment or
policy on some outcome where treatment may be misclassified. Failure to account for misclassification
is shown to result in attenuation bias in the estimated treatment effect. An identifying assumption that
overcomes this bias is existence of an instrument for the binary regressor that is conditionally indepen-
dent of the treatment effect. A discrete instrument suffices for nonparametric identification.
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1 Introduction

This paper provides conditions for identification and estimation of the average effect, conditioned on covari-
ates, of a binary treatment, program, or policy on a scalar outcome when treatment may be misclassified.
More generally, what is provided is an estimator of the effect of a binary regressor in a conditional mean
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regression (which may also include other regressors), when the binary regressor is observed with error. This
equals the conditional average treatment effect given a weak unconfoundedness assumption.
Misclassification occurs when a binary variable (the treatment indicator) is measured with error, that is,

some units are reported to have received treatment when they actually have not, and vice versa. For example,
in a returns to schooling analysis the outcome could be wages, the binary variable could be attaining a
college degree, and misclassification could arise from school transcript reporting errors. See, e.g., Kane and
Rouse (1995) and Kane, Rouse, and Staiger (1999). Bollinger (1996) considers misclassification of union
status in wage equations. If treatment is a job training program, misclassification may arise if individuals
assigned to the program fail to attend, or if those not assigned obtain training elsewhere. Similarly, for
medical treatment individuals assigned a drug might fail to take it, and those assigned a placebo might
obtain treatment from another source. More generally, misclassification describes any binary variable that
is sometimes mismeasured.
This paper first shows that misclassification causes attenuation bias in estimated treatment effects, anal-

ogous to the attenuation bias of classically mismeasured variables in linear regression models. Additional
assumptions on existence of an instrument are then provided that identify misclassification probabilities
and the true probability of treatment (conditional on covariates), in addition to identifying the conditional
average treatment effect. Corresponding estimators are variants of Hansen’s (1982) Generalized Method of
Moments (GMM).
Let Y be an outcome, let X be a vector of covariates, and let T ∗ be an unobserved true treatment

indicator, or more generally T ∗ is any unobserved binary variable that affects Y and can only equal zero or
one. Define

h∗(X, T ∗) = E(Y | X, T ∗) (1)

So h∗(X, T ∗) is the conditional mean outcome, given X and treatment T ∗. Since T ∗ is binary we may
without loss of generality rewrite the conditional mean outcome as

h∗(X, T ∗) = h∗0(X)+ τ∗(x)T ∗ (2)

where h∗0(X) = h∗(X, 0) and
τ∗(x) = h∗(x, 1)− h∗(x, 0) (3)

Assume we observe draws of Y , X , and T but not of T ∗. The binary variable T is a proxy for T ∗ that
is subject to measurement error. Misclassification occurs when T /= T ∗. If T ∗ were observed instead of T ,
then h∗(X, T ∗) and hence τ∗(x) would be identified, and could be estimated by nonparametric regression.
Das (2004) identifies and estimates h(X, T ) = h0(X) + τ(x)T in the model Y = h(X, T ) + e where

E(e | X) = 0. Estimation is then based on E(Y | X) = h0(X)+ τ(x)E(T | X). The Das model allows T
to be correlated with e. Similar estimators of models with endogenous binary regressors include Newey and
Powell (2003) and Florens andMalavolti (2003). The Das estimator cannot be applied in the present context,
because here E(Y | X) = h∗0(X) + τ ∗(x)E(T ∗ | X) and, unlike the case with classically mismeasured
variables, (see, e.g., Aigner 1973), with a mismeasure T of a binary regressor T ∗, E(T | X) /= E(T ∗ | X).
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Let X = (Z, V ). Mahajan (2005) obtains identification of h∗(x, t) assuming that E(Y | Z, V, T ∗) =
E(Y | Z , T ∗) and that E(T ∗ | Z, V ) /= E(T ∗ | Z), so V is essentially an instrument that correlates with
the true probability of treatment but is conditionally mean independent of the outcome. Hu (2004) obtains
identification of h∗(x, t) under similar assumptions for multiple valued discrete treatments t , and weakens
some of Mahajan’s side conditions.
The present paper focuses on identifying and estimating τ∗(x), the effect on Y of changing T ∗. I will

refer to τ∗(x) as the conditional outcome treatment effect, or just the treatment effect, though formally it
is just the change in the conditional mean of Y that results in changing the binary variable t∗ from zero to
one holding x fixed, and only equals a true treatment effect when an unconfoundedness condition holds, as
discussed later.
Define the mismeasured (treatment) effect τ(x) = h(x, 1) − h(x, 0) where h(X, T ) = E(Y | X, T ).

Theorem 1 shows that under some general conditions τ(x) = m(x)τ∗(x) where 0 ≤ m(x) ≤ 1, so mismea-
surement of the treatment indicator results in attenuation bias, that is, the mismeasured estimate τ(x) of the
true treatment effect τ∗(x) is biased toward zero. Related results include Klepper (1988), Manski (1990),
Bollinger (1996), and Hotz, Mullin, and Sanders (1997).
Theorem 2 then provides sufficient conditions for identifying and estimating the function m(x), and

hence the true treatment effect τ ∗(x). As in Mahajan (2005), again let X = (Z, V ) and assume E(T ∗ |
Z , V ) /= E(T ∗ | Z), but replace Mahajan’s assumption that E(Y | Z , V, T ∗) = E(Y | Z, T ∗) with the
weaker assumption that E(Y | Z , V, T ∗ = 1) − E(Y | Z , V, T ∗ = 0) = E(Y | Z, T ∗ = 1) − E(Y |
Z , T ∗ = 0). Equivalently, rewriting equation (2) as h∗(X, T ∗) = h∗0(Z, V ) + τ ∗(Z, V )T ∗, Mahajan
assumes that both h∗0(Z , V ) and τ∗(Z , V ) do not depend on V , while this paper assumes only that τ ∗(Z, V )
does not depend on V . For example, a standard regression model where h∗(x, t) is linear in its arguments
with nonzero coefficients will satisfy this paper’s assumption but violate Mahajan’s assumption. Another
example is relating wages Y to schooling T ∗ using a Card (1995, 1996) type distance to school instrument
V . The present paper would only require that V be conditionally independent of the increase in wages
associated with schooling, rather than conditionally independent of the level of wages. The latter, Mahajan
requirement could be violated if, e.g., access to schooling is correlated with access to higher paying jobs on
average (this example assumes other possible problems associated with distance to schooling such as those
described by Carneiro and Heckman 2002 can be ignored).
Nonparametric identification will not require a continuous instrument, so V can be discrete, but it will

be required that V take on at least three values. In contrast, Mahajan (2005) only requires a binary valued
instrument. Some intuition for this result is that V affects the true probability of treatment, and under
Mahajan’s assumptions a change in V affects Y only through this effect on T ∗. In contrast, this paper allows
V to affect Y both through T ∗ and through h∗0(Z, V ), so two different changes in V must be observable to
separate these effects.
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2 Relating True and Mismeasured Effects of Treatment

Let Y (t) denote the outcome from treatment T ∗ = t for t equal zero or one. If

E[Y (t) | T ∗, X ] = E[Y (t) | X] (4)

then τ∗(x) = E[Y (1) − Y (0) | X = x], which is the conditional average treatment effect. Equation (4) is
a weak version of the Rubin (1978) or Rosenbaum and Rubin (1984) unconfoundedness assumption with
respect to the true treatment T ∗. See, e.g., Heckman, Ichimura, and Todd (1998) for a discussion of this
and similar results. In what follows, equation (4) is not imposed. If it does hold where T ∗ is a treatment
indicator, then τ ∗(x) is the conditional average treatment effect, otherwise τ ∗(x) is just the effect on the
mean of Y of changing a binary T ∗ while holding X fixed.
If T ∗ were observed without error, then equations (1) and (3) would provide an estimator for τ∗(x),

by replacing expectations with nonparametric regressions. Other existing estimators, e.g. those based on
matching or conditional propensity scores could also be used in that case.

ASSUMPTION A1: E(Y | X, T ∗, T ) = E(Y | X, T ∗).

Equivalently, Assumption A1 says that Y is mean independent of T − T ∗, conditional on X, T ∗, so
misclassification does not affect the true expected outcome. This is analogous to the classical assumption
of independent measurement errors. This can be a substantive assumption if misclassification is due to
misperception or deceit on the part of the subject, for example, if T indicates treatment that a respondent
believes he or she has received, then Assumption A1 rules out placebo effects. This assumption could
also be violated if an individual’s propensity to lie about T ∗ is related to outcomes, e.g., individuals who
erroneously claim to have a college degree might also be more aggressive job or wage seekers in general.
Define r∗(x), b0(x), b1(x) and τ(x) as

r∗(x) = E(T ∗ | X = x) = Pr(T ∗ = 1 | X = x)

bt(x) = Pr(T = 1− t | X = x, T ∗ = t).
τ (x) = h(x, 1)− h(x, 0)

The function r∗(x) is the conditional (on X = x) probability of receiving treatment, while b1(x) and b0(x)
are the conditional probabilities of misclassifying the treated and the untreated, respectively.

ASSUMPTION A2: b0(x)+ b1(x) < 1 and 0 < r∗(x) < 1 for all x ∈ supp(X).

Assumption A2 says first that the sum of misclassification probabilities is less than one, meaning that,
on average, observations of T are more accurate than pure guesses (see, e.g., Bollinger 1996). In a binomial
response model with misclassification, this assumption is what Hausman, Abrevaya, and Scott-Morton
(1998) call the monotonicity condition. Without an assumption like this, by symmetry one could never
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tell if the roles of t = 0 and t = 1 were reversed, and so for example one could not distinguish whether
any estimate of τ ∗(x) corresponded to the effect of changing T ∗ from zero to one or the negative of this
effect. This assumption can be relaxed to b0(x)+ b1(x) /= 1 if we only wish to identify the magnitude but
not the sign of τ∗(x), which may be useful in applications where the sign of the effect is not in doubt and
large misclassification probabilities cannot be ruled out. See Hu (2004) for other possible ways to relax this
assumption.
Assumption A2 also requires that for any value x we may condition on, there is a nonzero probability

of treatment and a nonzero probability of nontreatment, which is needed because a conditional treatment
effect cannot be identified if everyone is treated or if no one is treated. If this condition is violated, then we
will only obtain identification for values of x where r∗(x) is not zero or one.
Define the following functions

r(x) = E(T | X = x)
h(x, t) = E(Y | X = x, T = t)
τ(x) = h(x, 1)− h(x, 0)

Note that r(x) and τ(x) are the same as r∗(x) and τ∗(x), except defined in terms of the observed treatment
mismeasure T instead of the true treatment T ∗, so if treatment were observed without error, then r(x)would
be the conditional probability of treatment and τ(x) would equal the conditional average treatment effect.

THEOREM 1: If Assumptions A1 is satisfied then there exists a function m(x) with |m(x)| ≤ 1 such
that τ(x) = τ∗(x)m(x). If in addition Assumption A2 is satisfied then m(x) > 0.

Proofs are in the Appendix. Three expressions for m(x) are provided there. First, m(x) = Pr(T ∗ =
1 | X, T = 1) − Pr(T ∗ = 1 | X, T = 0), which shows that |m(x)| ≤ 1 because m is a difference of
probabilities. Second is [(1− r(x)]r(x)m(x) = [1− r∗(x)]r∗(x)[1− b0(x)− b1(x)], which signs m, and
third is m(x) = M[b0(x), b1(x), r(x)] where M is defined by

m = M(b0, b1, r) = 1
1− b1 − b0 1− (1− b1)b0

r
− (1− b0)b1

1− r . (5)

which is used later for point identification and estimation.
Theorem 1 shows that, given just Assumption A1, the magnitude of the mismeasured treatment effect

τ(x) provides a lower bound on the true treatment effect τ∗(x), and with the addition of Assumption A2,
the sign of the mismeasured effect τ(x) equals the sign of the true effect τ∗(x). This is like the attenuation
bias property of a classically mismeasured regressor coefficient in a linear bivariate regression, even though
here the measurement (misclassification) error is nonclassical and the model is not parameterized.
Theorem 1 also shows that if one is only interested in testing whether τ∗(x) = 0 then misclassification

can be ignored, since given Assumptions A1 and A2, τ ∗(x) = 0 if and only if τ(x) = 0.
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3 Identification

ASSUMPTION A3: Assume r(x) and τ(x) are identified.

Assumption A3 holds given any data set that permits consistent estimation of conditional expectations
of observable data. Identification of the conditional outcome function h(x, t) is not required, though an
obvious estimator for τ(x) would be to difference estimates of h(x, t). Identification of τ(x) provides
identification of a lower bound on τ ∗(x) by Theorem 1. Also, if the misclassification probabilities b0(x)
and b1(x) can be identified, then given Assumptions A1, A2, and A3, the true treatment effect τ∗(x) can
be identified using τ ∗(x) = τ(x)/m(x) and equation (5). Additional assumptions will now be made that
suffice for this identification.
Partition X into two subvectors V and Z , so X = (V, Z).

ASSUMPTION A4: For some set P ⊂ supp(V ), for each z ∈ supp(Z) there exists a set Pz ⊂ P

such that for all v ∈ Pz and v ) ∈ Pz , we have bt(v, z) = bt(v ), z), τ∗(v, z) = τ∗(v ), z), and for v /= v ),
r∗(v, z) /= r∗(v ), z).

In a small abuse of notation, let bt(z) and τ ∗(z) denote bt(v, z) and τ∗(v, z), respectively, for v ∈ Pz .
The distribution of V can be discrete, e.g., V could be a scalar that only takes on a few different values.
Assumption A4 says that there exists a variable V that affects the true treatment probabilities r∗, but after
conditioning on other covariates does not affect the measurement errors bt and does not affect τ∗ (at least
for some values that V might take on). If T ∗ is a treatment and unconfoundedness holds, then Assumption
A4 says that after conditioning on other covariates, V does not affect the conditional average treatment
effect but is correlated with eligibility or selection for treatment.
Having a V that doesn’t affect misclassification probabilities is sometimes used for identification in

binomial response models with misclassification. See, e.g., Hausman, Abrevaya, and Scott-Morton (1998),
Abrevaya and Hausman (1999), and Lewbel (2000). A typical assumption in misclassified binomial re-
sponse is that b0 and b1 are constants, which would imply that any elements of X could serve as V for that
part of Assumption A4.
Having V affect r∗ but not τ ∗ is a weaker version of the type of exclusion assumption that is commonly

used in the identification of selection models. See e.g., Heckman (1990) for a discussion. Close variants
of this assumption are used by Manski (1990) to sharpen bounds on treatment effects and by Imbens and
Angrist (1994) to identify local average treatment effects. The τ∗ condition is satisfied if E(Y | Z = z, V =
v, T ∗ = t) = s1(z, t)+ s2(z, v) for some functions s1 and s2.
Assumptions A1, A2, A3, and A4 are all equivalent to (or are implied by) assumptions made byMahajan

(2005), but as discussed in the introduction, Mahajan also requires that h∗(v, z, t) = h∗(v ), z, t) for v and
v ) as defined in Assumption A4. However, Mahajan only requires that P contain two elements, so V can
be binary, while the next assumption here requires that P contain at least three elements.
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ASSUMPTION A5: Each set Pz ⊂ P contains three elements vk ∈ Pz, k = 0, 1, 2, such that
τ(v0, z)
r(v1, z)

− τ(v1, z)
r(v0, z)

τ(v0, z)
1− r(v2, z) −

τ(v2, z)
1− r(v0, z) /= τ(v0, z)

r(v2, z)
− τ(v2, z)
r(v0, z)

τ(v0, z)
1− r(v1, z) −

τ(v1, z)
1− r(v0, z)

The main content of Assumption A5 is that V can take on at least three values. Assumption A5 is
expressed in a form that can be empirically tested, because the τ(v, z) and r(v, z) functions are conditional
expectations of observable data, and so can be directly estimated (they are identified by Assumption A3).
Assumption A5 can alternatively be written as requiring that τ∗(z) /= 0, b0(z) + b1(z) /= 1, and a certain
inequality holds among just the r and r∗ functions (see the Appendix for details). Assumption A5 will
therefore fail to hold only if the true treatment effect τ∗(z) is zero or if a complicated nonlinear equality re-
lationship holds amongst the true and mismeasured conditional treatment probabilities. This would require
a perfect coincidence regarding the levels of these probabilities across all the values V can take on.
If P has more than three elements, then Assumption A5 will hold as long as, for each value of z, there

exists any one triplet v0, v1, v2 of V values in Pz that satisfy the necessary inequality. Note that the triplets
v0, v1, v2 are permitted to vary by (i.e., depend upon) z.

THEOREM 2: Let Assumptions A1, A2, A3, A4, and A5 hold. Then the conditional misclassification
probabilities b0(x) and b1(x), the conditional probability of treatment r∗(x), and the effect τ ∗(x) are all
identified. Also, if the condition in Assumption A2 that b0(x)+b1(x) < 1 is replaced by b0(x)+b1(x) /= 1,
then τ ∗(x) is identified up to sign.

A key component of Theorem 2 is that data on outcomes helps to identify misclassification probabilities.
In particular, suppressing z for clarity, it follows from Theorem 1 and Assumption A4 that

τ(vk)M[b0, b1, r(v0)] = τ(v0)M[b0, b1, r(vk)]. (6)

Equation (6) depends only on the identified functions τ and r and on the unknowns b0 and b1. For each z,
evaluating this expression at k = 1 and k = 2 gives two equations in the two unknowns b0 and b1. These
equations are nonlinear, but the proof of Theorem 2 shows that these equations have a unique solution and
thereby identify b0 and b1. Identification of the true treatment effect τ∗(x) then follows from equation (5).
Equation (6) also shows why identification requires V to take on three values. This equation depends on

v0 and vk , so evaluating it at k = 1 and k = 2 requires existence of a v0, v1, and v2. Each additional value
that V can take on provides another equation that b0 and b1 must satisfy, so the larger is the set of values
Pz , the greater will be the number of overidentifying restrictions determining b0 and b1 at that z.
A binary V would suffice for identification if we had some additional equality restriction on the misclas-

sification probabilities b0 and b1. For example, in some applications it may be known that one or the other
of these probabilities is zero, such as when T ∗ is a job training program where we directly observe everyone
who takes the offered program, but we do not always observe when someone who turns down the program
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gets alternative training elsewhere. An example of a binary V might be a second mismeasured treatment
indicator. Theorem 2 could be applied without additional information if we observed three mismeasured
treatment indicators, by taking one of them as T and the other two (which together can take on a total of
four values) as V .

4 Semiparametric and Nonparametric Estimation

To construct estimators, the previous identification conditions will now be expressed in the form of con-
ditional moments. Assume the distribution of V is discrete, define P = supp(V ) = {v0, ..., vK }, for
simplicity assume Pz = P, and let r∗k (z) = r∗(vk, z). Let W = (Y, T, V ).
Define the vector valued function q0(z) as the vector of K + 4 elements

q0(z) = b0(z), b1(z), r∗0 (z), ...r∗K (z), τ∗(z) (7)

and define g as the vector valued function g[q0(z),w] consisting of the following 2K + 2 elements

[b0(z)+ (1− b0(z)− b1(z))r∗k (z)− T ]I (V = vk), k = 0, ..., K (8)

τ∗(z)I (V = vk)+ YT − (1− b1(z))r
∗
k (z)τ

∗(z)I (V = vk)
b0(z)+ (1− b0(z)− b1(z))r∗k (z)

− Y (1− T )+ (1− b0(z))(1− r
∗
k (z))τ

∗(z)I (V = vk)
1− [b0(z)+ (1− b0(z)− b1(z))r∗k (z)]

, k = 0, ..., K (9)

COROLLARY 1: Define the function q0 by equation (7) and the function g as the vector of functions
(8) and (9). For any value of z in its support, if Assumptions A1, A2, A3, A4, and A5 hold then the only
function q(z) that satisfies E[g(q(Z),W ) | Z = z)] = 0 and has first two elements that are nonnegative
and sum to less than one, is q(z) = q0(z).

The objects we wish to estimate are elements of q0(z). Corollary 1 shows that the identification based
on Theorem 3 can be expressed as the statement that the unknown functions q0(z) are the solutions to the
vector of conditional moments E[g(q(Z),W ) | Z = z)] = 0.
Based on Corollary 1, the functions of interest q0(z) can be nonparametrically estimated using non-

parametric conditional moment GMM based estimators such as Carrasco and Florens (2000), Newey and
Powell (2003), or Ai and Chen (2003). In particular, estimation can take the form of parametric conditional
moment GMM, replacing the unknown functions with sieve approximations. Empirical likelihood based
conditional moment estimation such as Otsu (2003) could also be used. Lewbel (2006a) provides a simple
local GMM estimator for this q0(z).
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To construct semiparametric estimators based on Corollary 1, assume we can write q0(z) = s(z, β0)
where s is a known function and β0 is a finite vector of unknown parameters. In this case the conditional
moments E[g(q(Z),W ) | Z = z)] = 0 imply unconditional moments

E[η j(Z)g(s(Z , β0),W )] = 0, j = 1, ..., J (10)

for bounded functions η j(Z) chosen by the econometrician. Given the unconditional moments of equation
(10) for j = 1, ..., J , we may estimate β0 using Hansen’s (1982) GeneralizedMethod ofMoments (GMM).
Asymptotic efficiency can be obtained by using estimated optimal η j(Z) functions as in Newey (1993),
Donald, Imbens, and Newey (2003), or Dominguez and Lobato (2004).
With this semiparametric estimator only the dependence of probabilities and treatment effects on z is

parameterized. The dependence of probabilities and treatment effects on v and on unobservables remains
nonparametric. Identification of β0 will depend on the specification of the function s and η j(Z), but as
long as β0 is identified from q0(z) = s(z, β0), we can choose η j (Z) functions as above to identify β0. This
identification requires that 2K + 2 (the dimension of s) times J be greater than or equal to the dimension
of β0.
If Z is discrete with a finite number of support points, then nonparametric estimation of all the functions

q0(z) can be written as a special case of this semiparametric estimator by defining β0 as the vector of
elements β j0 = q0(z j ) and letting η j(Z) = I (Z = z j) where j indexes every value of z j = z in the
support of Z .
It may be of interest to directly estimate the misclassified treatment effect τ k(z) = τ(vk, z) and misclas-

sified treatment parameters rk(z) = r(vk, z). By Theorem 1, τ∗ is zero if and only if τ is zero, so estimates
of misclassified treatment effects could be used to test if the true treatment effects are zero. Estimates of τ
and r could also be used in the bounds calculation of Theorem 1 when validity of V as an instrument is in
doubt, and they can be used to test Assumption A5. To express the misclassified functions as conditional
moments, define Q0(z) as the 2K + 2 vector

Q0(z) = (r0(z), ...rK (z), τ 0(z), ...τ K (z)) (11)

and define G[Q0(z),w] as the vector valued function consisting of the 2K + 2 elements
[rk(z)− T ]I (V = vk), k = 0, ..., K (12)

YT
rk(z)

− Y (1− T )
1− rk(z) − τ k(z) I (V = vk), k = 0, ..., K (13)

COROLLARY 2: Define the function Q0 by equation (11) and the function G as the vector of functions
(12) and (13). For any value of z in its support, if Assumptions A1 and A2 hold then the only function Q(z)
that satisfies the equations E[G(Q(Z),W ) | Z = z)] = 0 is Q(z) = Q0(z).
Nonparametric or semiparametric estimation based on Corollary 2 proceeds exactly like estimation

based on Corollary 1 as described above, replacing q and g with Q and G.
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5 Conclusions

This paper provides bounds and conditions for nonparametric point identification of the effect on an out-
come of changing a possibly mismeasured binary variable. Given a weak form of the unconfounding as-
sumption, this provides identification of conditional average treatment effects when the treatment indicator
may be mismeasured. Estimators that employ these identification conditions are provided, based on direct
estimation of relevant conditional expections.
Lewbel (2006a) and an addendum to this paper, Lewbel (2006b), describe both semiparametric and local

GMMnonparametric estimation of a vector of functions q(Z) based onmoments of the form E[g(q(Z),W ) |
Z = z)] = 0, (Corollaries 1 and 2 are examples of such functions and moments), and provides both a small
Monte Carlo and an empirical application of Theorem 2 and Corollaries 1 and 2, relating wages to attain-
ment of an undergraduate degree, allowing for misclassification errors in transcript reports.
It would useful to explore how other binary covariate effect estimators such as matching and propen-

sity score based methods might be adapted to the present application where the binary covariate such as
treatment is mismeasured.
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7 Appendix

Define pt(X) = E(T ∗ | X, T = t) = Pr(T ∗ = 1 | X, T = t). Suppressing the X argument for clarity,
some relationships to be used later are, by Bayes theorem

p0 = b1r∗

(1− r) and p1 = (1− b1) r
∗

r
. (14)

Also,
r = E(T ) = E(T | T ∗ = 1)Pr(T ∗ = 1)+ E(T | T ∗ = 0)Pr(T ∗ = 0)

r = (1− b1)r∗ + b0(1− r∗) (15)

which gives r = b0 when b0 + b1 = 1, otherwise

r∗ = r − b0
1− b0 − b1 and 1− r∗ = 1− b1 − r

1− b0 − b1 . (16)

PROOF OF THEOREM 1: Continuing to suppress the X argument, we have by equations (1) and
(2) and Assumption A1 that E(Y | T ∗, T ) = h∗0 + τ∗T ∗. By the law of iterated expectations this gives
E(Y | T = t) = h∗0 + τ ∗ pt . Then since τ = E(Y | T = 1)− E(Y | T = 0) we obtain τ = (p1 − p0)τ ∗,
so m in Theorem 1 equals p1 − p0, and −1 ≤ m ≤ 1 follows from m equalling the difference between two
probabilities.
Using equation (14)
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m = p1 − p0 = (1− b1) r
∗

r
− b1r∗

(1− r) (17)

m = r∗

(1− r)r (1− b1 − r)
and using equation (16) for 1− r∗,

(1− r)rm = (1− r∗)r∗ (1− b0 − b1) . (18)

Since probabilities r and r∗ lie between zero and one, this shows that m > 0 when Assumption A2 holds,
m = 0 when b0 + b1 = 1, and that m < 0 when the sum of the misclassification probabilities b0 + b1
is greater than one. Also, substituting equation (16) for r∗ into equation (17) yields, after some algebraic
simplification, equation (5).

PROOF OF THEOREM 2: For clarity suppress z, and for the functions r and τ denote rk = r(vk) and
τ k = τ(vk). For any given z, we have for all v0 ∈ Pz and vk ∈ Pz that, by Theorem 1 and equation (5),

0 = M(b0, b1, rk)τ 0 − M(b0, b1, r0)τ k

0 = 1+ (b1 − 1)b0
rk

+ (b0 − 1)b1
1− rk τ 0 − 1+ (b1 − 1)b0

r0
+ (b0 − 1)b1

1− r0 τ k (19)

0 = (1− b1)b0 τ 0

rk
− τ k
r0

+ (1− b0)b1 τ 0

1− rk −
τ k

1− r0 + τ k − τ 0 (20)

Write this equation as
0 = B0w0k + B1w1k +w2k

where Bt = (1− b1−t)bt and each w jk is a function of r0, rk , τ 0, and τ k . Given that Pz ∈ P contains three
elements v0, v1, and v2, we have two equations 0 = B0w0k+ B1w1k+w2k for k = 1, 2 that are linear in the
two unknowns B0 and B1, and so can be uniquely solved as long as the matrix of elements w jk , j = 0, 1,
k = 1, 2, is nonsingular. The determinant of this matrix is

τ 0

r1
− τ 1
r0

τ 0

1− r2 −
τ 2

1− r0 − τ 0

r2
− τ 2
r0

τ 0

1− r1 −
τ 1

1− r0 (21)

and the inequality in Assumption A5 makes this determinant nonzero, as required.
Now let s = 1−b1−b0. It follows from Bt = (1−b1−t)bt that (s+b0)b0 = B0 and 2b0 = B0−B1+1−s.

Substituting the second of these equations into the first and solving for s gives

1− b1 − b0 = s = ± (B0 − B1 + 1)2 − 4B0
1/2

if the assumption regarding s is s /= 0, then we have that s is identified up to sign. By Theorem 1 τ∗ =
τ(v)/M[b0, b1, r(v)] and
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M[b0, b1, r(v)] = 1
s

1− B0
r(v)

− B1
1− r(v)

so it follows that τ∗ is identified up to sign. Making the stronger assumption that s > 0, we have s is
identified, so b0 and b1 are now identified by b0 = (B0 − B1 + 1− s)/2 and b1 = −(B0 − B1 + 1+ s)/2,
and by equations (16), (5) and Theorem 1, identification of these misclassification probabilities means that
r∗ and τ∗ are also identified.

Define Rk = (1− r∗k )r∗k / [(1− rk)rk]. Using equation τ = mτ ∗ and equation (17), the determinant
(21) can be rewritten as

R0
r1
− R1
r0

R0
1− r2 −

R2
1− r0 − R0

r2
− R2
r0

R0
1− r1 −

R1
1− r0 (1− b0 − b1) τ∗

So the nonzero determinant condition can equivalently be written as requiring that τ∗ /= 0, b0 + b1 /= 1,
and the above described function of r∗k and rk for k = 0, 1, 2 not equal zero.

PROOF OF COROLLARY 1: To ease notation, drop the argument z everywhere and let all expectations
below be conditional on Z = z. Let Ik = I (V = vk). Having the mean of equation (8) equal zero makes
b0 + (1− b0 − b1)r∗k = E(IkT )/E(Ik), which equals the true rk by definition of rk . Solving the resulting
equation b0 + (1− b0 − b1)r∗k = rk for r∗k and substituting the result into equation (9) gives

YT
rk
− (1− b1)τ

∗

rk
rk − b0

(1− b0 − b1) −
Y (1− T )
1− rk − (1− b0)τ

∗

1− rk
1− b1 − rk
(1− b0 − b1) + τ

∗ Ik

Setting the mean of this result to zero and dividing by E(Ik) gives

E(YT Ik)
rk E(Ik)

− (1− b1)τ
∗

rk
rk − b0

(1− b0 − b1) −
E[Y (1− T )Ik]
(1− rk)E(Ik) −

(1− b0)τ∗
1− rk

1− b1 − rk
(1− b0 − b1) + τ

∗ = 0

which, using rk = E(T Ik)/E(Ik) simplifies to
E(YT Ik)
E(T Ik)

− (1− b1)τ
∗

rk
rk − b0

(1− b0 − b1) −
E[Y (1− T )Ik]
E[(1− T )Ik] −

(1− b0)τ∗
1− rk

1− b1 − rk
(1− b0 − b1) + τ

∗ = 0.

which, after rearranging terms and using E(T Ik) = prob(T = 1, V = vk) gives

E(Y | T = 1, V = vk)− E(Y | T = 0, V = vk)
= (1− b1)

rk
rk − b0

(1− b0 − b1) +
(1− b0)
1− rk

1− b1 − rk
(1− b0 − b1) − 1 τ ∗

which, by the definitions of the function τ and m reduces to τ(vk) = M(b0, b1, rk)τ∗. It has now been
shown that the conditional mean of g equalling zero is equivalent to r(vk) = b0 + (1 − b0 − b1)r∗k and
τ(vk) = M[b0, b1, r(vk)]τ∗ with the true functions r(vk) and τ(vk), and by Theorem 2 the only solutions
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to these equations for k = 0, ..., K that also satisfy b0 ≥ 0, b1 ≥ 0, and b0 + b1 < 1 are the true values of
r∗0 , ..., r∗K , b0, b1, and τ∗.

PROOF OF COROLLARY 2: Setting the conditional mean of equation (12) equal to zero and solving
for rk(z) yields the definition of rk(z), and setting the conditional mean of equation (13) equal to zero and
solving for τ k(z) yields the definition of τ k(z).
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Misclassification - Addendum

Arthur Lewbel∗
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This addendum provides additional material regarding the paper, "Estimation of Average Treatment
Effects With Misclassification." This additional material consists of
1. Generic parametric, semiparametric, and nonparametric estimators for vectors of functions q0(z)

based on the conditional moment restriction E[g(q0(Z),W ) | Z = z)] = 0. The treatment effects paper
provides one example of conditional moment restrictions of this form.
2. A small Monte Carlo study.
3. An empirical application attempting to estimate the effect on wages of attaining a college degree,

where completion of this undergraduate degree may be misreported.
See also Lewbel (2006), "A Local Generalized Method of Moments Estimator."

1 Estimation

This section describes general estimators for vectors of functions q0(z) based on the conditional moment
restriction E[g(q0(Z),W ) | Z = z)] = 0. While the application in this paper is to treatment effect
estimation using the Corollaries in the previous section, many other econometric models can also be cast
as conditional moment restrictions of this type. For example, consider the nonparametric probit model
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W = I [q0(z)+ e ≥ 0], where q0(z) is an unknown function and e is a standard normal independent of Z ,
or has some other known distribution. Then g(q0(Z),W ) = W − Fe[q0(Z)] where Fe is the known CDF
of −e. Nonparametric censored or truncated regression would have a similar form. The estimators could
also be used for Euler equations, which are mean zero conditional on information in a given time period,
and may have parameters q0(z), such as preference parameters, that are unknown functions of observables.
Three estimators for conditional moment restrictions are considered. The first is standard GMM, for

use when q0(z) can be finitely parameterized. The second and third are for nonparametric estimation of
q0(z) when Z is discretely or continuously distributed. For these estimators it is assumed that we have data
consisting of Zi ,Wi for i = 1, ..., n. Limiting distributions are provided assuming these observations are
independent and identically distributed.

1.1 Parameterized Estimation

Suppose we can write q0(z) = s(z, β0) where s is a known function and β0 is finite vector of unknown
parameters. In this case the conditional moments E[g(q(Z),W ) | Z = z)] = 0 imply unconditional
moments

E[η j(Z)g(s(Z , β0),W )] = 0, j = 1, ..., J (1)

for any J bounded functions η j (Z) chosen by the econometrician. Given the unconditional moments of
equation (1) for j = 1, ..., J , we may estimate β0 using Hansen’s (1982) Generalized Method of Moments
(GMM). Asymptotic efficiency can be obtained by using estimated optimal η j (Z) functions as in Newey
(1993), Donald, Imbens, and Newey (2003), or Dominguez and Lobato (2004).
When applying this estimator to Corollary 1, only the dependence of probabilities and treatment effects

on z is parameterized. The dependence of probabilities and treatment effects on v and on unobservables
remains nonparametric. Identification of β0 will depend on the specification of the function s and η j (Z),
but Corollary 1 implies that as long as β0 is identified from q0(z) = s(z, β0), it should be possible to choose
η j(Z) functions to identify β0. This identification requires that 2K + 2 (the dimension of s) times J be
greater than or equal to the dimension of β0.

1.2 Estimation With Discrete Covariates

Now assume we do not have a parameterization for q0(z), but Z is discretely distributed, or more specifi-
cally, that Z has one or more mass points and we only wish to estimate q0(z) at those points.
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Let θ z0 = q0(z). If the distribution of Z has a mass point with positive probability at z, then

E[g(θ z,W ) | Z = z] = E[g(θ z,W )I (Z = z)]
E[I (Z = z)]

so E[g(q0(z),W ) | Z = z] = 0 if and only if E[g(θ z0,W )I (Z = z)] = 0. It therefore follows from
Corollary 1 that θ z0 is identified from these moment conditions, and we may estimate parameters θ z0 by the
ordinary GMM estimator

θ z = argmin
θ z

n

i=1
g(θ z,Wi)) I (Zi = z)Pn

n

i=1
g(θ z,Wi)) I (Zi = z) (2)

for some sequence of positive definitePn. IfPn is a consistent estimator ofPz0 = E[g(θ z0,W )g(θ z0,W )) I (Z =
z)]−1, then efficient GMM gives

√
n(θ z − θ z0)→d N 0, E

∂g(θ z0,W )I (Z = z)
∂θ z )

Pz0E
∂g(θ z0,W )I (Z = z)

∂θ z )
) −1

Now consider applying this to the moments in Corollary 1. Standard GMM assumes parameters have
compact support. This could be imposed, consistent with Assumptions A2 and A5 by assuming that δ ≤
r∗k (z) ≤ 1− δ, 0 ≤ bt(z), b0(z)+ b1(z) ≤ 1− δ, and δ ≤ |τ ∗(z)| ≤ 1/δ for some small δ > 0.
Let τ ∗z denote the element of θ z that corresponds to the marginal effect τ∗(z). This τ∗z is a consistent

estimator of τ ∗(z) provided that this effect is nonzero. However, τ ∗(z) = 0 violates Assumption A5, so one
cannot use an ordinary Wald t-statistic to test for a zero treatment effect (the ordinary t statistic will be valid
for testing other values, such as whether τ∗(z) equals a given small, nonzero value). But, by Theorem 1,
τ∗(z) = 0 if and only if τ(vk, z) = 0, so we may estimate τ(vk, z) by applying the above GMM estimator
with q and g as defined by Corollary 2, and then perform an ordinary Wald test of the hypothesis that
τ(vk, z) is zero for k = 0, ..., K .
More generally, the moments in Corollary 2 may be estimated either separately, or (if τ∗(z) is nonzero)

together with those of Corollary 1 to test differences between true and misclassified treatment probabilities
or effects.
If K > 3 using Corollary 2 then θ z0 is overidentified and standard tests of moment validity such as

Hansen’s J test may be applied. Additional moments for estimating θ z could also be constructed given more
information about the misclassification probabilities b0(z) and b1(z). For example, in some applications it
may be known that one or the other of these probabilities is zero, or that these probabilities are equal to each
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other. Given either of these constraints, only a binary V would be required for identification and estimation
based on Theorem 3.
GMM based on Corollary 1 or 2 provides estimates conditional on a given z ∈ supp(Z). The un-

conditional marginal effect, corresponding to the unconditional treatment effect given the weak form of
unconfounding, is

E(Y | T ∗ = 1)− E(Y | T ∗ = 0) =
z∈supp(Z)

τ∗z E[I (Z = z)]

which could be estimated by the sample average n
i=1 z∈supp(Z) τ ∗z I (Zi = z)/n. Note that cov(τ∗z , τ∗z ) =

0 for z /= z because τ∗z and τ∗z are estimated using different subsets of data.
If constraints are known to exist on the parameters across values of z, then the GMM estimates for each

z can be stacked into one large GMM to improve efficiency. For example, if misclassification probabilities
bt are known to be constant, or more generally independent of some elements of z, then that restriction
could be imposed in the collection of moments E[g(θ z0,W )I (Z = z)] = 0 for all z ∈ supp(Z).

1.3 Local GMM Estimation For Continuous Covariates

Continue to assume that E[g(q0(Z),W ) | Z = z] = 0, where g is known, q0 is unknown and not parame-
terized, and now Z is continuously distributed. A local GMM estimator is proposed. The idea is to apply
equation (2) to the case of continuous Z by replacing averaging over just observations Zi = z with local
averaging over observations Zi in the neighborhood of z.

Assumption C1. Let Zi ,Wi , i = 1, ..., n, be an iid random sample of observations of the random
vectors Z , W . The d vector Z is continuously distributed with density function f (Z). For given point z
in the interior of supp(Z) having f (z) > 0 and a given vector valued function g(q, w) where g(q(z),w)
is twice differentiable in the vector q(z) for all q(z) in some compact set �(z), there exists a unique
q0(z) ∈ �(z) such that E[g(q0(z),W ) | Z = z] = 0. Let Pn be a finite positive definite matrix for all n, as
is P = plimn→∞Pn.

Assumption C1 provides the required moment condition structure for the model, and Assumption C2
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below provides conditions for local averaging. Define ε[q(z),W ], V (z), and R(z) by

ε[q(z),W ] = g(q(z),W ) f (z)− E[g(q(z),W ) f (Z) | Z = z]
V (z) = E ε(q0(z),W )ε(q0(z),W )T | Z = z
R(z) = E

∂g[q0(z),W ]
∂q0(z)T

f (Z) | Z = z

Assumption C2. Let η be some constant greater than 2. Let K be a nonnegative symmetric kernel func-
tion satisfying K (u)du = 1 and ||K (u)||ηdu is finite. For all q(z) ∈ �(z), E[||g(q(z),W ) f (Z)||η |
Z = z], V (z), R(z), and Var[[∂g(q(z),W )/∂q(z)] f (Z) | Z = z] are finite and continuous at z and
E[g(q(z),W ) f (Z) | Z = z] is finite and twice continuously differentiable in z.

Define

Sn(q(z)) = 1
nbd

n

i=1
g[q(z),Wi ]K

z − Zi
b

where b = b(n) is a bandwidth parameter. The proposed local GMM estimator is

q(z) = arg inf
q(z)∈�(z) Sn(q(z))

TPnSn(q(z))

THEOREM 3: Given Assumptions C1 and C2, if the bandwidth b satisfies nbd+4→ 0 and nbd →∞,
then q(z) is a consistent estimator of q0(z) with limiting distribution

(nb)1/2[q(z)− q0(z)]→d N 0, (R(z)TPR(z))−1R(z)TPV (z)PR(z)(R(z)TPR(z))−1 K (u)2du]

Theorem 3 assumes a bandwidth rate that makes bias shrink faster variance, and so is not mean square
optimal. One could instead choose the mean square optimal rate where nbd+4 goes to a constant, but the
resulting bias term would then have a complicated form that depends on the kernel regression biases in both
Sn(q0(z)) and its derivative with respect to q0(z), among other terms.
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Applying the standard two step GMMprocedure, wemay first estimate q(z) = arg infq(z)∈�(z) Sn(q(z))T Sn(q(z)),
then let Pn be the inverse of the sample variance of Sn(q(z)) to get P = V (z)−1, making

(nb)1/2[q(z)− q0(z)]→d N 0, (R(z)TPR(z))−1 K (u)2du]

and R(z) can be estimated using

Rn(z) = 1
nbd

n

i=1

∂g[q(z),Wi ]
∂q(z)T

K
z − Zi
b

This local GMM is closely related to the local nonlinear least squares estimator of Gozalo and Linton
(2000). Alternative nonparametric conditional moment GMM based estimators include Carrasco and Flo-
rens (2000), Newey and Powell (2003), and Ai and Chen (2003). Empirical likelihood based estimators
might also be used. Advantages of Theorem 3 are that it is relatively simple, and in the present context is
a natural extension of the discrete Z estimator. In particular, the two estimators could be combined by re-
placing the kernel function in Sn with the product of a kernel over the continuous elements and an indicator
function for the discrete elements.

2 Monte Carlo

For each simulated observation, a V is drawn with prob(V = vk) = 1/3 from P = {0, 1, 2}. Next a
T ∗ is drawn from {0, 1} with prob(T ∗ = 1 | V = vk) = r∗(vk) with r∗(0) = 3/4, r∗(1) = 1/2, and
r∗(2) = 1/4. Next an outcome Y is drawn from a normal N(T ∗, 1) distribution, which makes the average
treatment effect be τ∗ = 1, and finally T is randomly drawn from {0, 1} with prob(T = T ∗) = .8, so
the misclassification probabilities are b0 = b1 = .2. This model is exactly identified using Theorem 2 and
Corollary 1, so the GMM weighting matrix is taken to be the identity matrix. The sample size is n = 1000
and the number of simulations is 10, 000.
This design makes τ(0) = τ(2) = .4945 and τ(1) = .6 so the limiting value of the estimated average

treatment that would be obtained if one did not correct for misclassification error is E[τ(V )] = .530, that
is, a bias of 47% of the true effect τ∗ = 1.
Estimation was done using constrained GMM, with the constraints being that the estimated probabilities

of treatment r∗ lie between .01 and .99, and that the misclassification probabilities b0 and b1 be nonnegative
with b0 + b1 ≤ .99.
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Table 1 reports the results. Estimation of the treatment effect τ ∗ shows a 5% mean bias and 1% median
bias, compared to the 47% bias that would result from failure to account for misclassification. The estimates
of treatment and misclassification probabilities display similar levels of accuracy.

3 Wages and Schooling

This section uses Theorem 2 to identify and estimate the effect on wages of attaining a college degree, where
completion of this undergraduate degree may be misreported. The data, from Kane and Rouse (1995), is
constructed using the National Longitudinal Survey of the High School Class of 1972 (NLS-72). The
outcome Y is logged hourly wage, collected 14 years after the respondents graduated from high school. As
in Kane and Rouse (1995), respondents with Y < $1.67 (half the minimum wage at the time) or Y > $60
are excluded.
The true T ∗ is a the binary indicator of obtaining an undergraduate degree. The reported indicator

T is constructed using the Post-secondary Education Transcript Survey (PETS), which contains transcript
information on all post-secondary schools reported by the respondents through 1979. Following Card (1995,
1996) and others, the instrument V is distance of the respondent’s high school to the nearest 4-year college
(as reported by high school counselors in the NLS-72) in quintiles, so V = 1 for the 20% of respondents
that lived closest to a college, V = 2 for those in the second quintile of distance, etc.,.
Serious objections to the use of schooling distance have been raised in the literature (see, e.g., Carneiro

and Heckman 2002), though as noted in the introduction, distance may satisfy this paper’s assumptions
even if it is not valid as an ordinary instrument. Also, even if the effect τ∗ is estimated consistently, it may
not equal a true average treatment effect because of possible confoundedness.
The vector of covariates Z , from the NLS-72, consists of an indicator of whether the respondent is

African American (black), the log of the family income of the respondent in 1972 (income), the respondent’s
high school class rank (phsrank) expressed as a percentage, an index of the respondent’s standarized test
scores (stotal), the respondent’s total number of years of work experience (totexp), an indicator of whether
the respondent is female (female), an indicator of whether the respondent lived in a large city in 1972 (large
city), and an indicator of whether the respondent worked part time (parttime).
This set of covariates, a subset of those considered by Kane and Rouse (1995), is selected because these

variables appear to have the largest effects on Y . Less influential variables are omitted to facilitate model
estimation or, in some cases, because their inclusion resulted in a failure to converge. The total sample size
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is 6,763 respondents who were working as of 1986, of which 2,073 have T = 1, that is, a transcript reported
undergraduate degree.
Nonparametric estimation is not practical given the number of relevant covariates, so semiparametric

estimation is used. Let � denote the cumulative standard normal density and let k index values V can take
on, with vk = k + 1 for k = 0, ..., 4. The functions comprising s(z, β), where q0 (z) = s(z, β0), are
parameterized as

b0 (z) = 0, b1 (z) = � γ 1 + z )β1 , τ∗ (z) = δ + z)β3, (3)

r∗k (z) = � αk + z)β2 , k = 0, ..., 4 (4)

and β denotes the set of all the parameters α j , βk , γ 1, etc.,. Note that only the dependence of probabilities
and the marginal effect on Z is parameterized here. Conditional outcomes h∗(x, t) are not parameterized,
and conditional on Z , the effects of the instrument V and the roles of errors or unobservables are nonpara-
metric
The assumption that b0 (z) = 0 was made after first specifiying this conditional probability either as

b0(z) = � γ 0 + z)β0 or as b0(z) = γ 0, and finding both that b0(z) was not significantly different
from zero in the estimated models, and that its inclusion resulted in difficulties in obtaining numerical
convergence. This assumption implies a zero probability of transcript reported education indicating that a
respondent did not receive a college degree when, in fact, he or she did receive a degree.
The unconditional moments of equation (1) used for GMMestimation are E g s(z, β0),W ⊗ Z = 0.

For comparative purposes, the misclassified treatment effect τ (z) and the misclassified treatment parame-
ters rk (z) for k = 0, ..., 4, are also estimated based on the moments used in Corollary 2 with the above
described Z parameterizations. These naive results are then compared to the estimates that allow for mis-
classification.
Tables 2 and 3 report estimation results. The columns labeled "True Effect" display results from the

models that allow for misclassification, while the columns labeled "Mismeasured Effect" report the com-
parative naive estimates that ignore possible misclassification. Table 2 reports coefficient estimates, specif-
ically, the first two columns of this table are estimates of β20, that is, the covariate coefficients in the true
and mismeasured treatment probability functions r∗k (z) and rk (z) respectively. The third column is β10,
the coefficients in the misclassification probability function b1 (z), and the last two columns are β30, the
coefficients in the true and mismeasured marginal effect functions τ∗ (z) and τ (z), respectively. To sim-
plify the presentation, estimates of the constant terms γ 10, δ0, ζ 0, and αk0 for k = 0, ..., 4 are not reported.
Instead, more interpretable summary statistics are provided in Table 3. These tables report the mean and
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standard deviation across the sample of estimated treatment probabilities for each value of V , estimated
misclassification probabilities, and the estimated marginal wage effects.
For the model estimated under Theorem 2, the Hansen J statistic is 68 with 58 degrees of freedom, while

the corresponding naive model (assuming no misclassification) has a J statistic of 369 with 83 degrees of
freedom, so by this measure allowing for misclassification greatly improves fit. However, the parameter-
izations of equations (3) and (4) are rather simplistic, and all of the models are rejected by the J statistic,
so caution is advised in interpreting the results. Ideally, one would like to include more of the covariates
considered by Kane and Rouse (1995), and use the nonparametric estimators, but that would only be prac-
tical with a far larger data set. The interpretation of the estimated marginal effect may not equal a treatment
effect due to confounding, and one may also question the validity of V , though see the discussions above.
With these caveats, it appears that allowing for misclassification has a substantial impact on the estimates

of treatment probabilities and marginal effects. For example, in Table 3 the estimated average increase in
wages associated with having an undergraduate degree, E τ ∗ (z) , is 38% while the corresponding naive
estimate that does not allow for misclassification is only 11%. The estimated average probability of mis-
classification from Table 3 is 31% which is implausibly high, however, the estimated effect on wages of
getting a degree is more consistent with the findings of other researchers than the low naive estimator that
ignores misclassification. For example, after combining transcript and self report data, Kane, Rouse, and
Staiger (1999) report a marginal wage effect of an undergraduate education of approximately 25%.

PROOF OF THEOREM 3: Define

S)n(q(z)) = ∂Sn(q(z))
∂q(z)T

= 1
nbd

n

i=1

∂g[q(z),Wi ]
∂q(z)T

K
z − Zi
b

Qn(q(z)) = Sn(q(z))TPnSn(q(z))

Let S0(q(z)) = plimn→∞Sn(q(z)) and similarly for S)n and Qn. Assumptions C1 and C2 give sufficient
conditions for consistency of these kernel estimators, so these probability limits exist and

S0(q(z)) = E[g(q(z),W ) f (z) | Z = z]
Q0(q(z)) = S0(q(z))TPS0(q(z)).

Now consider consistency. We have pointwise convergence of Sn(q(z)) to S0(q(z))and compactness
of �(z). It is also the case that |S)n(q(z))| = Op(1), since |S)n(q(z))| is a kernel estimator, and standard
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conditions have been provided for its consistency, that is, plim|S)n(q(z))| = E[|∂g(q(z),W )/∂q(z)| f (Z) |
Z = z]. This suffices for stochastic equicontinuity, and therefore we have the uniform convergence

plim sup
q(z)∈�(z)

|Sn(q(z))− S0(q(z))| = 0.

It follows that Qn(q(z)) also converges uniformly to Q0(q(z)). The assumptions provide compactness of
�(z) and imply continuity of Q0(q). The quadratic form of Q0 is uniquely maximized at S0(q0(z)) = 0
and hence at q(z) = q0(z), so the standard conditions for consistency plimq(z) = q0(z) are satisfied.
For the limiting distribution, Taylor expanding the first order conditions as in standard GMM gives

S)n(q(z))TPn Sn(q0(z))+ S)n(q(z))(q(z)− q0(z)) = 0

where q(z) lies between q(z) and q0(z). By consistency of q, the uniform convergence of Sn, and using
R(z) = S)0(q0(z)), this simplifies to

R(z)TP Sn(q0(z))+ R(z)(q(z)− q0(z)) = op(1)

Solving for q(z)− q0(z) and multiplying by (nb)1/2 gives

(nb)1/2(q(z)− q0(z)) = (R(z)TPR(z))−1R(z)TP(nb)1/2Sn(q0(z))+ op((nb)1/2).

Now S0(q0(z)) = 0 and standard kernel regression limiting distribution theory gives

(nb)1/2Sn(q0(z))→d N [0, V (z) K (u)2du]

and the theorem follows.
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Table 1. Simulation Results

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
r∗(0) .750 .722 .105 .662 .734 .797 .109 .083 .067
r∗(1) .500 .481 .100 .414 .484 .553 .102 .083 .071
r∗(2) .250 .243 .115 .157 .231 .323 .115 .095 .085
b0 .200 .193 .097 .133 .213 .268 .097 .077 .068
b1 .200 .180 .074 .124 .190 .237 .076 .061 .053
τ∗ 1.00 1.05 .298 .825 1.01 1.24 .302 .239 .203

Notes: The reported statistics are as follows. TRUE is the true value of the parameter, MEAN and SD are
the mean and standard deviation of the estimates across the simulations. LQ, MED, and UQ are the 25%
(lower) 50% (median) and 75% (upper) quartiles. RMSE, MAE, and MDAE are the root mean squared
error, mean absolute error and median absolute error of the estimates.
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Table 2. Coefficient Estimates
β2 β1 β3

True Effect Mismeasured Effect True Effect Mismeasured Effect
black 0.0448948 −0.1207730 −1.0353728 −0.1833281 −0.7087732

(0.20746339) (0.06393301) (0.41059487) (0.37992196) (0.14792043)
income 0.4724051 0.1426148 0.5633254 −0.1159633 −0.0836258

(0.12498693) (0.03283066) (0.18986917) (0.26671178) (0.05702173)
phsrank 0.0155228 0.0112585 −0.0082122 0.0032316 0.0086985

(0.00296229) (0.00084848) (0.00612383) (0.00687502) (0.00140828)
stotal 0.1424727 0.3153344 −0.9172876 0.3225476 0.3162301

(0.11269463) (0.02600598) (0.1838158) (0.24166599) (0.04188189)
totexp −0.0099431 −0.0052219 −0.0051576 −0.0146081 −0.0126890

(0.00226798) (0.00050814) (0.00282731) (0.00752229) (0.00090517)
female 0.5196376 −0.4260637 2.7281916 0.4472213 −0.4118640

(0.28698793) (0.03898326) (1.3915567) (0.45181952) (0.06482936)
large city −0.1663922 0.1084376 −0.6641598 −0.5281193 −0.4202254

(0.17369701) (0.05448494) (0.40283449) (0.23284787) (0.08174698)
parttime 0.9767346 0.5343357 0.6336924 2.4864880 1.8791449

(0.34799942) (0.05293099) (0.24031441) (1.7755474) (0.09464261)

Table 3. Function Estimates
Mean Standard Deviation

True Effect Mismeasured Effect True Effect Mismeasured Effect
r∗0 (z) 0.4406517 0.3409593 0.2701055 0.1867520
r∗1 (z) 0.4182481 0.3263341 0.2687167 0.1838969
r∗2 (z) 0.3881061 0.2727147 0.2656879 0.1709973
r∗3 (z) 0.3796998 0.2820059 0.2646002 0.1735172
r∗4 (z) 0.4071389 0.3064211 0.2677571 0.1795623
b1 (z) 0.3136727 0.3392644
τ∗ (z) 0.3787436 0.1108377 1.215702 0.9542675
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