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Research Questions

The absence of any literature on the relationship between accountability
procedures and the perceived legitimacy of the police and racial and ethnic relations in
particular raises the following research questions.

24. Do accountability mechanisms have a positive impact on police-
community relations and the perceived legitimacy of the police?

24a. Are citizens aware of the existence of specific accountability
procedures (e.g., a revised use of force policy, an EIS?),
and does that perception improve their attitudes toward the
police?

24b. Can citizen awareness of accountability procedures be
increased through outreach programs on the part of a police
department?

25. Are certain accountability mechanisms relatively more effective than
others in enhancing perceived legitimacy?

CONCLUSION

Holding individual police officers accountable for their conduct is an essential
element of policing. It is directly and indirectly related to achieving the basic goals of
policing: reducing crime and disorder, enhancing the quality of neighborhood life, and
providing fair, respectful and equal treatment for all people.

As this paper indicates, the state of our knowledge about both traditional and
new accountability mechanisms is very limited. In many instances we do not even have
basic descriptive data on current practices. With respect to effectiveness, in only a few
instances does the existing literature meet the standards of evidence-based policy
making. The research needs identified in this paper have direct implications for police

policy.









Problem 3.1. Given a set of distinct nodes X {x }\ ; c R® and
a set of function valuegfi }N ; R, find aninterpolants: R — R
such that
s(xi) = fi, 2

Note that we use the notation= (x,y, ) for pointsx € R3,

The interpolant will be chosen from B? (RR3), the Beppo-Levi
space of distributions oR3 with square integrable second deriva-
tives. This space is sufficiently large to have many solutions to

Problem3.1, and therefore we can define the affine space of inter-
polants:

i=1...N.

S={seBLOR?:sx)="f;, i=1,...,N}. (3)

The space B2 (R3) is equipped with the rotation invariant semi-
02s(x) 92s(x)

norm defined by
2 2 2
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This semi-norm is a measure of the energy or “smoothness” of func-
tions: functions with a small semi-norm are smoother than those
with a large semi-norm. Duchori?] showed that the smoothest
interpolant,.e.,

02s(x)
0x2

s =argmin|s|,
S

has the simple form

N
s*(X) = p(x) +.Zi>\i|X*Xi|, (5)

wherep s a linear polynomial, the coefficienks are real numbers
and| - | is the Euclidean norm cRS.

This function is a particular example ofradial basis function
(RBF). In general, an RBF is a function of the form

N
S(X) = p(x) +'Z?\i<P(|X*Xi\)7 (6)
i=

where p is a polynomial of low degree and thmasic functiong
is a real valued function o[, «), usually unbounded and of non-
compact support (see,g.,Cheney & Light [L1]). In this context
the pointsx; are referred to as theentersof the RBF.

Popular choices for the basic functigninclude the thin-plate
spline @(r) = r2log(r) (for fitting smooth functions of two vari-
ables), the Gaussiag(r) = exp(—cr?) (mainly for neural net-

works), and the multiquadrig(r) = v/r24-c2 (for various appli-
cations, in particular fitting to topographical data). For fitting
functions of three variables, good choices include the biharmonic
(9(r) =r, i.e., Equation £)) and triharmonic@(r) = r3) splines.

RBFs are popular for interpolating scattered data as the associ
ated system of linear equations is guaranteed to be invertible unde
very mild conditions on the locations of the data poirit§, [18].

For example, the biharmonic spline of Equati&) ¢nly requires
that the data points are not co-planar, while the Gaussian and mul
tiquadric place no restrictions on the locations of the points. In par-
ticular, RBFs do not require that the data lie on any sort of regular
grid.

An arbitrary choice of coefficients; in Equation ) will yield
a functions* that is not a member of BR)(R3). The requirement

thats* € BL(?(RR3) implies the orthogonality or side conditions

N N N N

More generally, if the polynomial in Equatio)(is of degreem
then the side conditions imposed on the coefficients are

N
ZAiq(xi) = 0, for all polynomialsq of degree at mosth.  (7)
i=

These side conditions along with the interpolation conditions of
Equation @) lead to a linear system to solve for the coefficients
that specify the RBF.

Let{p1,...,p¢} be a basis for polynomials of degree at mast
and letc = (cy,
basis. Then Equationg)and (7) may be written in matrix form as

A P\ /A A f
(PT 0) (c) - B(c) = (o) ; 8)
where
Aj = ol|x —Xj|), ij=1,...,N,
RP.i = pj(%), i=1,...,N, j=1,...,0

In the specific case of the biharmonic spline in 3D, if it is assumed

that the polynomial part of the RBF in Equatiof) has the form

p(X) = €1+ CoX+ C3y+ Cqz, then
Aj =X =Xl

P is the matrix withith row (1,%,¥i,7), .,An)T and
c=(c1,C,C3,Ca) .

Solving the linear systen8) determines\ andc, and hence(x).
However, the matrixB in Equation 8) typically has poor condi-
tioning as the number of data pointsgets larger. This means that
substantial errors will easily creep into any standard numerical so-
lution.

On initial inspection, the essentially local nature of the Gaus-
sian, inverse multiquadriop(r) = (r2+c2)~%/2) and compactly
supported basic functions appear to lead to more desirable prop-
erties in the RBF. For example, the matrix B now has special struc-
ture (sparsity) which can be exploited by well-known methods and
evaluation of Equatiorg) only requires that the sum be over nearby
centers instead of aN centers. However, non-compactly supported
basic functions are better suited to extrapolation and interpolation
of irregular, non-uniformly sampled data. Indeed, numerical exper-
iments using Gaussian and compactly supported piecewise polyno-
mials for fitting surfaces to point-clouds have shown that these basic
functions yield surfaces with many undesirable artifacts in addition
to the lack of extrapolation across holes.

The energy minimisation properties of biharmonic splines make
them well suited to the representation of 3D objects. Since the
corresponding basic functiop(r) = r is not compactly supported
and grows arbitrarily large astends to infinity, the correspond-
ing matrix B of Equation 8) is not sparse and, except for symme-
try, has no obvious structure that can be exploited in solving the
-system. Storing the lower triangle of matfrequires space for
'N(N+ 1)/2 real numbers. Solution via a symmetric solver will re-
quireN3/6+ O(N?) flops. For a problem with 2000 data points
this is a requirement for approximately6lx 10° bytes (1.5GB)

“of core memory, and 18 flops, which is impractical. Further-
more, ill-conditioning of the matriB is likely to make any solution
one gets from such a direct computation highly unreliable. Thus,
it is clear that direct methods are inappropriate for problems with
N > 2,000. Moreover, a single direct evaluation of Equatiéh (
requiresO(N) operations. These factors have led many authors to
conclude that, although RBFs are often the interpolant of choice,
they are only suitable for problems with at most a few thousand
points [L3, 14, 20]. The fast methods described in the following
section demonstrate that this is no longer the case.



Figure 6: A greedy algorithm iteratively fits an RBF to a point cloud resulting in fewer centers in the final function. In this case the 544,000
point cloud is represented by 80,000 centres to a relative accuracy b05* in the final frame.

give a brief outline of the method.

The FMM makes use of the simple fact that when computations
are performed, infinite precision is neither required nor expected.
Once this is realised, the use of approximations is allowed. For
the evaluation of an RBF, the approximations of choice are far- and
near-field expansions. With the centers clustered in a hierarchical
manner, far- and near-field expansions are used to generate an ap-
proximation to that part of the RBF due to the centers in a particular
cluster. A judicious use of approximate evaluation for clusters “far”
fitting accuracies from an evaluation point and direct evaluation for clusters “near” to
an evaluation point allows the RBF to be computed to any prede-
termined accuracy and with a significant decrease in computation
time compared with direct evaluation.

output surface These fast evaluation methods, when used together with fitting
methods particular to RBF2] 6], greatly reduce the storage and
Figure 5: lllustration of the fast fitting and evaluation parameters. computational costs of using RBFs. They reduce the cost of evalu-
atings(x) atM points fromO(MN) to O(M + NlogN) operations.

+ interpolation nodes ---- evaluation accuracy
* output evaluation points — fitted RBF

Direct methods Fast methods The cost of simultaneously computing the gradigsfx) with s(x)
Fitting is approximately twice that of computirggx) alone. Tablel sum-
storage required N(N+1)/2 O(N) marises the gains of fast methods over direct methods.
flops to solve system N3/6-+ O(N?) O(NlogN) Fig. 5 illustrates two parameters introduced by fast methods: a
Evaluation fitting accuracyand anevaluation accuracy The fitting accuracy
flops per evaluation O(N) 0(1) after specifies the maximum allowed deviation of the fitted RBF value
O(NlogN) setup from the specified value at the interpolation nodes. If desired, a dif-
ferent fitting accuracy may be specified at each data point, as illus-
Table 1: Comparison of direct and fast methods. trated by the varying error bars in Fig. The evaluation accuracy
specifies the precision with which the fitted RBF is then evaluated.
4 Fast methods Fig. 5 shows an RBF evaluated at regular intervals lying between

the dashed evaluation accuracy bands either side of the actual func-
Fast evaluation of RBF’s is performed via the Fast Multipole tion. Itis sensible to choose the evaluation accuracy to be numeri-
Method (FMM) of Greengard & Rokhlinl5]. The FMM was de- cally smaller than the fitting accuracy. The resulting dotted curve is
signed for the fast evaluation of potentials (harmonic RBF's) in two an approximation to the smooth and continuous RBF.
and three dimensions. However Beatsbial. [7] have adapted the
expansion and translation theory for the potential to higher order .
polyharmonic RBFs. Note that polyharmonic RBFs include the bi- 5 RBF center reduction
harmonic spline of Equatiorbf. The FMM may also be used with
polyharmonic splines in twdg] and four dimensions3]. Conventionally, an RBF approximation uses all the input data

A full description of the FMM is beyond the scope of this paper points (thex’s in Equation R)) as nodes of interpolation, and as

and the interested reader is directed towards the introductory shortcenters of the RBF. However, the same input data may be able to
course {l] for an expository treatment of the FMM. However, we be approximated to the desired accuracy using significantly fewer



reduced subset
of RBF centers

RBF centers

Figure 7: lllustration of center reduction.

centers, as illustrated in Fig. A greedy algorithm can therefore be
used to iteratively fit an RBF to within the desirBtfing accuracy
A simple greedy algorithm consists of the following steps:

1. Choose a subset from the interpolation nadeshd fit an RBF

only to these.
Evaluate the residuadj = fi —s(x;), at all nodes.
If max{|&i|} < fitting accuracythen stop.

4. Else append new centers wherés large.

5. Re-fit RBF and goto 2.
If a different accuracy; is specified at each point, then the condi-
tion in step 3 may be replaced bgy| < &;.

Center reduction is not essential when using the fast methods
described in Sectiod. For example, no reduction was used when
fitting to the LIDAR example of Fig8. However, reducing the

Equation B), but now the coefficient vectdA™,c")T is the solu-

fion to (A3 B ()= ()

PT
where the matriceA andP are as in Equatiorg8]. The parametep
can be thought of as the stiffness of the R8k). The system0)
can also be solved using fast methods.

In Fig. 8 we illustrate RBF approximation (also known as spline
smoothing) in the context of reconstructing a surface from 3D LlI-
DAR data. LIDAR data is often noisy and irregular due to limited
range resolution and misregistration between scans taken at differ-
ent scanner positions. Restricted physical viewing angles for the
scanner mean increased susceptibility to occlusion and therefore re-
gions of incomplete data. Elsewhere, due to overlapping scans, the
data may contain redundancy. Consequently, LIDAR scans repre-
sent one of the more difficult surface fitting problems. In this exam-
ple a smooth surface has been automatically fitted to LIDAR scans
of a fountain in Santa Barbara using an RBF approximation. The
statue is approximately 2rbm and was scanned using a CYRAX
2400 scanner. The data set consists of 350,000 points imaged from
several viewpoints in front of the statue. Three spheres apparent on
top of and beside the statue correspond to landmarks added to the
scene in order to align the scans. Rigp) is the point-cloud taken
from several scanner positions in front of the statue. Note the large
occluded regions where no data has been recorded8(Bipis the
automatically fitted RBF surface. Fi§(c) is a detailed view of the
fitted surface which illustrates how the smoothness constraint inher-
ent in the biharmonic RBF has correctly preserved the gap between
the arm and the rest of the statue, despite having no data in these
regions. Along the cut-away planes in this figure we show the mag-
nitude of the RBF. Lighter colored points have smaller magnitudes,
i.e.,they are “closer” to the zero-surface than darker points.

Fig. 9 illustrates the affect of varying on a detailed portion of

P
0

(10

number of RBF centers results in smaller memory requirements andthe surface in Figs. Fig. 9(a) is an exact fit to the raw datp £ 0),

faster evaluation times, without a loss in accuracy. Fifjustrates

Fig. 9(b) is the value op corresponding to Fig(b) and Fig.9(c)

the fitting process with center reduction. As more centers are addedillustrates increased smoothing with a larger valueptor

to the RBF, the zero-surface more closely approximates the entire
set of data points. In this case, a laser scan of a Buddha figurine,

consisting of 544,000 points, has been approximated by an RBF
with 80,000 centers to a relative accuracy of & 10~* (achieved
at all the data points).

The greedy algorithm often results in a net faster fitting time,
even with a moderate reduction in the number of centers. This
is due to the efficiencies associated with solving and evaluating a
similar system at each iteration and the fact that initial iterations
involve solving much smaller problems. The results presented in

In this example a global value fgr has been chosen, however,
by dividing Equation @) by p it is possible to specify a particular
smoothing parametey; for each data point or group of points.

7 Surface evaluation

An RBF fitted to a set of surface data formsalid model of an ob-

ject. The surface of the object is the locus of points where the RBF

is zero. This surface can be visualised directly using an implicit

Section8 are typical of our experience and show that dense laser ray-tracer 9], or an intermediate explicit representation, such as a

scan data can be represented by significantly fewer centers than th
total number of data points.

6 RBF approximation of noisy data

In Section3 we looked for an interpolant that minimized a measure
of smoothness. However, if there is noise in the data, the interpola-
tion conditions of Equatior?) are too strict and we would prefer to
place more emphasis on finding a smooth function, where smooth-
ness is measured by Equatiah).(Thus, consider the problem

min_plls|2+ < ) (s04) — fi)? 9)
seBL2 (k) N2, (S0 =)
wherep > 0 and || - || is defined in Equation4). The parame-

ter p balances smoothness against fidelity to the data. It can be
shown 4] that the solutiors* to this problem also has the form of

lg,nesh of polygons, can be extracted. In the latter case, well-known

iso-surfacing algorithms such as Marching Cubied gan be used
to polygonize the surface. However, conventional implementations
are optimised for visualising a complete volume of data sampled on
a regular voxel grid. The cost associated with evaluating an RBF
means that an efficient surface-following algorithm is desirable.

In this paper a marching tetrahedra variant, optimised for surface
following, has been used to polygonize surfaces. A mesh optimisa-
tion scheme adapted frord]] results in fewer triangles with better
aspect ratiosi,e., thin and elongated triangles are avoided. A typ-
ical output mesh from this algorithm is illustrated in FigXb).
Wavefronts of facets spread out from seed points across the surface
until they meet or intersect the bounding box. For clarity, a wave-
front from a single seed is shown in red in Fig{a) spreading over
the surface of the Buddha figurine during iso-surfacing. Surface-
following is initiated from seed points corresponding to RBF cen-
ters. By design, many centers will lie on, or very near, the surface.
In the case of off-surface centers, the RBF gradient is used to search
for the nearest zero-crossing. Convergence is rapid because the
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Figure 8: RBF approximation of noisy LIDAR data. (a) 350,000 point-cloud, (b) the smooth RBF surface approximates the original point-
cloud data, (c) cut-away view illustrating the RBF distance field and the preservation of the gap between the arm and the torso.

€Y (b) (©

Figure 9: (a) Exact fit, (b) medium amount of smoothing applied (the RBF approximates at data points), (c) increased smoothing.

gradient is approximately constant near the surface. Local minima ted. Two off-surface points were generated for every second point
have not been observed in our experience, but this is not surprisingin the original surface data, hence the number of interpolation nodes
since we deliberately constructed the function in Secfiém have to which an RBF is fitted is approximately twice the number of sur-
these properties. In any case, only a small subset of centers is reface points. Center reduction was used throughout, except in the
quired to seed the surface, one for each distinct surface section. TheLIDAR example, where the number of RBF centers consequently
surface-following strategy avoids the conventional requirement for equals the number of interpolation nodes. Fitting and evaluation
a 3D array of sample points and therefore minimises the number of was performed on a 550MHz PIII Pentium with 512MB RAM.
RBF evaluations. Consequently, the computational cost increasesFigs. 1(a), 3, 6, 12, 13 and 14 illustrate fitting surfaces to point-
with the square of the resolution, rather than the cube, as it would if clouds while Figs1(b) and11 illustrate fitting to partial meshes.
a complete volume were sampled. Memory overhead is also min- Fig. 8 demonstrates approximation with an RBF in the context of
imised since it is only necessary to retain the sample vertices as-fitting a smooth surface to noisy LIDAR data.
e et o e . T dfagon i Figa). th Buddha figune (Fg) and he
solved easily due to the ability to.analytically evaluate the gradient skeleton hand (Figl2) demonstrate the ability of fast methods to
of the RBF model large complicated data sets to high accuracy and the com-
: pact nature of the RBF representation. The dragon data was derived
from a mesh consisting of 438,000 vertices and 871,000 faces, the
Buddha from 544,000 vertices and 1,087,000 faces. Normals were
8 Results computed at vertices from the adjacent faces. Direct methods would
inevitably fail on these problems. For example, a direct approach
Table 2 quantifies the fitting and evaluation times for the figures to fitting the Buddha data would require 4,700GB of storage just
presented in this paper. In all cases the biharmonic spline was fit- to store the matrix of the interpolation systef).(The peak core
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Figure 10: Iso-surfacing an RBF. (a) Surface-following from a single seed, (b) example of an optimised mesh.

Figure Number of Number of inter-  Numberof Peak RAM  Fitting Surfacing Relative
surface points  -polation nodes  RBF centers (MB) time time accuracy

Face 14,806 29,074 3,564 29 68s 27s X104
Hand 13,348 26,696 4,299 29 97s 32s %1073
Dragon 437,645 872,487 72,461 306 2:51:09 0:04:40 xB*
Buddha 543,652 1,086,194 80,518 291 4:03:26  0:04:07 x4
Cherub statue 331,135 662,269 83,293 187 3:09:06 0:06:41 x¥4
Skeleton hand 327,323 654,645 85,468 188 3:08:44  0:04:04 xB4
LIDAR statue 345,910 518,864 518,864 390 3:08:21 0:25:39 x¥3

Table 2: Comparison of RBF fitting and evaluation times on a 550MHz PIIl with 512MB RAM.

memory requirements of the new fast methods in Tatéee par- data that an RBF representation offers. We have also listed the size
ticularly noteworthy in this respect. of the meshes derived from evaluating the RBF at a comparable
Fig. 1(b) and Fig.11 illustrate the application of RBFs to mesh resolution to the original data. It appears from initial results that a
repair. In Fig.1(b) an RBF is fitted to a partial mesh obtained froma promising application of RBFs is the remeshing of existing meshes.
laser scanner. This figure demonstrates the ability of the biharmonic Fitting an RBF not only fills holes, but a more uniform (and hence
spline to smoothly interpolate across large irregular holes, for ex- more compact) mesh can be derived from it.
ample under the chin, and smoothly extrapolate a surface far from
the data. In Figll an RBF has been fitted to a large statue data
set. Although carefully scanned, the statue contains many small
holes and larger holes corresponding to occluded regions between
the embracing figures. The fitted RBF has automatically filled all
the holes and generated a water-tight model of the statue without Finally, for the doubting reader, we demonstrate in Fiditthat
the user having to specify any parameters other than the desired fit-a single RBF can model an extremely complicated surface with a
ting accuracy. Note how the fragment of shoulder data on the right high genus. In this case 594,000 centers were required to model
figurine has been extrapolated to reconstruct the missing chest datathe turbine blade to 10" accuracy. The fast evaluation methods
Fig. 13 illustrates the reconstruction of the asteroid Eros from described in Sectios are essential for working with RBFs of this
scattered range data. This is a good example of non-uniformly size. The RBF has reproduced intricate internal structure along with
distributed data, often difficult to reconstruct using other methods. surface detail present in the original data. The point-cloud data
Furthermore, in this example the accuracy associated with the rangewere only available as a Marching Cubes (MC) mesh derived from
measurements varies at each point. X-ray CT data. However, if the CT data were available, then we
Table 3 compares the size of the original meshes in the dragon, would fit an RBF directly to the CT values. Specifically, we would
Buddha and skeletal hand data sets with the size of the equivalentfit to a subset of the data with values in the vicinity of the threshold
RBF representation. The uncompressed mesh sizes were derivedised by Marching Cubes to iso-surface the data. This would result
by assigning 3 floats (12 bytes) to each vertex and 3 integers (12in a smaller fitting problem since the MC mesh contains extraneous
bytes) to each triangular facet. The uncompressed RBF file sizevertices and the construction of a signed-distance function, which
corresponds to representing each center with 3 floats (12 bytes) andequires adding off-surface points, would be avoided. Smooth RBF
each coefficientX;) with a double precision number (8 bytes). Itis interpolation of the CT data would also be preferable to the linear
likely that single precision would be adequate, which would result interpolation used in the MC algorithm, particularly between CT
in more compression, but we have not yet quantified the effect of slices, which are usually spaced further apart relative to the pixel
coefficient precision on the evaluated surface. This table demon-resolution within a slice. An approximating spline could also be
strates the significant compression of both point-cloud and mesh used to reduce noise in the CT data.



	
	

	
	
	
	
	
	
	
	
	

