
Chapter 4

Frequency Domain and
Fourier Transforms

Frequency domain analysis and Fourier transforms are a cornerstone of signal
and system analysis. These ideas are also one of the conceptual pillars within
electrical engineering. Among all of the mathematical tools utilized in electrical
engineering, frequency domain analysis is arguably the most far-reaching. In
fact, these ideas are so important that they are widely used in many fields – not
just in electrical engineering, but in practically all branches of engineering and
science, and several areas of mathematics.

4.1 Frequency Content: Combining Sinusoids

The most common and familiar example of frequency content in signals is prob-
ably audio signals, and music in particular. We are all familiar with “high”
musical notes and “low” musical notes. The high notes do in fact have higher
frequency content than the low notes, but what exactly does this mean?

The place to start to answer this question is to consider sinusoids. Recall
that the general expression for a sinusoid at frequency ω (or frequency f in
Hertz) is

x(t) = a sin(ωt + φ) = a sin(2πft + φ)

When considered as an audio signal, x(t) indicates the changes in air pressure
on our ears as a function of time. What is important here is the time variation
of the air pressure from some ambient value rather than the ambient value of
the pressure itself. A negative value refers to that amount below the baseline
(ambient) pressure, while a positive amount refers to a pressure higher than the
baseline.
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So, x(t) being a sinusoid means that the air pressure on our ears varies pe-
riodically about some ambient pressure in a manner indicated by the sinusoid.
The sound we hear in this case is called a pure tone. Pure tones often sound
artificial (or electronic) rather than musical. The frequency of the sinusoid de-
termines the “pitch” of the tone, while the amplitude determines the “loudness”.
It turns out that the phase of the sinusoid does not affect our perception of the
tone, which may not be surprising for a pure tone, but is somewhat surprising
when we start combining sinusoids.

We can combine two sinusoids by adding the signals in the usual way. For
example,

x(t) = sin(2πt) + sin(4πt)

is a combination of a sinusoid with frequency 1 Hz and a sinusoid with frequency
2 Hz. Here the amplitude of each sinusoid is 1 and the phase of each is 0. A plot
of x(t) is shown in Figure 4.1. The “sound” created by x(t) is the combination
of the two pure tones that make x(t). Unfortunately, as we’ll discuss in more
detail in Chapter XX, humans can’t hear the pure tones that comprise the signal
x(t) above since the frequencies are too low.

However, we can make a similar combination with signals at frequencies
humans can hear. For example, consider the signal

d(t) = sin(2π × 350× t) + sin(2π × 440× t)

Each of the two sinusoids (at frequencies 350 Hz and 440 Hz) alone corresponds
to a pure tone that can be heard by the normal human ear. Their combination,
i.e., the signal d(t), makes a very familiar sound, namely the dial tone on a
standard U.S. telephone line. A plot of d(t) is shown in Figure 4.2. Note that
in this figure only 2 hundredths of a second are shown. Because the frequencies
are high, if we showed even a whole second, the signal would oscillate so many
times (350 and 440 for the constituent sinusoids) that not much useful detail
would be seen.
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Figure 4.1: Combining sinusoids.

Although the dial tone is a simple example of a sound that still sounds
artificial, by combining more sinusoids at different frequencies we can get many
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Figure 4.2: Graph of a dial tone.

other sounds. Musical notes that we find pleasing largely consist of pure tones
near the pitch of the musical note, but also contain other frequencies that give
each instrument its particular qualities. Voice and other natural sounds are also
comprised of a number of pure tones.

Amazingly, all sounds can be built up out of pure tones, and likewise all time
signals can be constructed by combining sinusoids. Similarly, starting with a
general time signal, one can break this signal down into its constituent sinusoids.
How to do this and the consequences of such constructions/decompositions is
the subject of frequency domain analysis and Fourier transforms. First, we
briefly discuss two other different motivating examples.

4.2 Some Motivating Examples

Hierarchical Image Representation
If you have spent any time on the internet, at some point you have probably

experienced delays in downloading web pages. This is due to various factors
including traffic on the network and the amount of data on the page requested.
Images, as we will see in Chapter XX, require a substantial amount of data, and
as a result, downloading images can be slow.

Suppose we are browsing through a large database/archive of images and
wish to find a collection of images of a particular type. Downloading each
image completely and then deciding that the bulk of the images are not what
we are after can be time-consuming. Of course, we may be able to make this
determination (i.e., whether or not the image suits our purposes) with much
less quality than the full image possesses. Certainly we may be able to reject
most of the images with only a very rough idea of their content. Wouldn’t it be
nice to be able to make this decision with only 1/10 of the data? That way we
could download and rifle through the database much faster to find what we’re
after.

The problem is that if we take the standard representation of images (8 bit
gray level for each pixel) and send the first 1/10 of the pixels, we will simply
get a portion (namely, 1/10) of the original image, albeit at high resolution.
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On the other hand if we had a way to represent the “coarse” (or low frequency)
information separately from the “fine” (or high frequency) information, we could
request the coarse information first and only request the additional detail if
desired.

Figure 4.3 shows an example of an original image, together with xx% of the
pixels in the usual format and xx% of the information at the lowest frequencies.
For many purposes, the low frequency version may be adequate to make deci-
sions, and it certainly seems more valuable than if we had only the first xx%
of the pixels. This notion of a “hierarchical” representation can be formalized
using ideas from frequency domain analysis.

It turns out that frequency domain ideas can help with this browsing problem
in a different way as well. In addition to creating hierarchical representations
that allow sending the most important information first, one might consider
reducing the total amount of data in the first place. As we will see, one of the
standard methods for image compression known as JPEG is based on frequency
domain ideas. This is the subject of data compression, which will be discussed
in Chapters XX and XX.

Radio and TV Transmission
Radio, television, and some other forms of communication (e.g., cell phones)

transmit information via electromagnetic waves. The various sources in these
applications can be transmitting simultaneously and in the same geographic
region. But how is it that we can “tune in” to a specific radio station, television
program, or individual with whom we’re communicating, rather than hearing
the jumble of all the various transmissions put together?

The answer is that different transmissions agree to use different frequencies.
Thus, even though all the signals are “jumbled” together in the time domain,
they are distinct in the frequency domain. With some basic frequency domain
processing, it is straightforward to separate the signals and “tune in” to the
frequency we’re interested in.

4.3 A Trivial Frequency Decomposition

Before discussing frequency representations for general signals, we consider an
example that is trivial but is still somewhat illustrative. Consider a situation in
which we are interested in the values of a signal x[0] and x[1] at only two times
n = 0 and n = 1.

Suppose we have access to the two values of the signal, and wish to con-
vey these values to a friend. We could simply convey the values x[0] and x[1]
themselves and we’re done.

However, consider the the following alternative scheme. Define a new signal
X[0] and X[1] by

X[0] = x[0] + x[1]
X[1] = x[0]− x[1]
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Figure 4.3: Sending image data in usual format vs. sending only low frequency
data. a) 25% of data in usual format. b) 6.25% of data in usual format. c) 25%
of lowest frequency data. d) 6.25% of lowest frequency data.
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We can then convey the values X[0] and X[1] to our friend, and using these
values the friend can recover the original signal x[0] and x[1]. Namely, given
X[0] and X[1], we get x[0] and x[1] by

x[0] =
1
2
(X[0] + X[1])

x[1] =
1
2
(X[0]−X[1])

This example seems trivial, but even this simple case illustrates some inter-
esting properties. For example, in the new scheme, information on both values
of x[0] and x[1] are being sent simultaneously – partially in X[0] and partially
in X[1]. If we receive only X[0] then we don’t know either of the original signal
values, but we know something about both.

Roughly, X[0] is the “low frequency” content of the signal x[0], x[1], This is
the part of the signal that doesn’t change, or that’s common to both x[0] and
x[1]. It is a sort of an average between x[0] and x[1] (in fact, it’s exactly twice
the average). X[1] is the “high frequency” content of the signal – the part that
changes between x[0] and x[1]. In fact, the equation shows that it is simply the
difference between x[0] and x[1].

We can think of the signal X[·] as just a different representation for the signal
x[·] since we can easily go back and forth between the two representations (using
the equations above). X[·] will be called the frequency domain representation,
while the original signal x[·] will be called the time domain representation. The
term “time domain” refers to the fact that when describing the values of x[·]
directly, we simply give the values of x[n] where n = 0, 1 denotes time. On the
other hand, the “frequency domain” description gives the values of X[k] where
k also happens to take on the values 0 and 1, but k really denotes frequency.
That is, X[0] is not the value of the original signal at time 0, but is rather the
frequency content of the original signal at the low frequency (frequency 0).

As we will see, this alternate representation can be immensely useful in ana-
lyzing signals and the effects of systems on signals. Something very complicated
in time domain can turn out to be very simple in frequency domain. Obviously,
to be useful we need to extend this notion of frequency representations to longer
signals. Fourier transforms and frequency domain analysis do just that.

4.4 Summary of the Four Cases

The details of how to formulate and extend the ideas in the sections above
depend on whether the underlying signal is continuous-time or discrete-time,
and whether it is periodic/finite-duration or aperiodic/infinite-duration. This
results in four distinct cases, although there are many similarities and connec-
tions between these four cases.

The names of the transform in the four cases are summarized in Figure
4.4. The nomenclature is unfortunately somewhat confusing, but is rather en-
trenched, and so we will use the standard terminology.
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Figure 4.4: The four Fourier transforms broken down by time domain properties.

Figure 4.5 gives the definitions of the transforms in each of the four cases.
First, we’ll make some general remarks about all the transforms, and then
we’ll discuss a little more of the details for the case of the Fourier transforms
(continuous-time, infinite duration) and the DFT (discrete-time, finite dura-
tion). For now it’s enough to get just a rough idea of the transforms.

Notation, Frequency Variable
In each case, the original (time-domain) signal is represented by lower case

x – in particular, x(t) in continuous-time and x[n] in discrete-time. The appro-
priate Fourier transform in each case is represented by upper case X.

Just as different symbols are used to denote time in the continuous-time
and discrete-time cases, different symbols are used for the frequency variable
depending on whether there are a continuous range of frequencies or a discrete
set of frequencies. For a continuous range of frequencies, the variable ω is used.
As before, ω denotes frequency in radians/sec. For the DFT and Fourier series,
only a discrete set of frequencies are used. The discrete frequencies are all a
multiple of a specific frequency, denoted ω0, called the fundamental frequency.
The variable k is used to specify the particular multiple of the fundamental
frequency. Of course, the actual frequency of the complex exponential is kω0,
again in units of radians/sec.

Forward and Inverse Transform
Note that there are two equations in each case. The first equation has the

transform X on the left-hand-side and either a sum or integral involving the
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Figure 4.5: Definitions of the forward and inverse Fourier transforms in each of
the four cases.
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original signal x on the right-hand-side. This equation gives the expression for
the transform in terms of the original signal. For each frequency, the expression
tells how much of this frequency is contained in the original signal x.

The second equation in each case has the original signal x on the left-hand-
side, and either a sum or integral involving the transform X on the right-hand-
side. This equation tells how to recover a signal if we know the frequency content
of the signal. This equation is often referred to as the inverse transform, since
it “un-does” the transform. Sometimes to emphasize the distinction with the
inverse, the term forward transform is used to refer to the first equation where
X is obtained from knowledge of the original signal x.

Complex Values
Because of the complex exponential in the equations for X, it is possible (in

fact, it is typical), that the transform X will take on complex values. This is
not a problem. With a little thought this should be expected.

Recall we can write a complex number in terms of its magnitude and phase
(i.e., its polar representation). These quantities determine the magnitude and
phase of the underlying complex exponential. X(ω) tells how much content
the original signal has at frequency ω. More precisely, X(ω) tells both the
magnitude and phase to use for the complex exponential ejωt at frequency ω.
If X(ω) = Aejφ in polar form, then X(ω)ejωt = Aej(ωt+φ) so that A and φ are
the magnitude and phase, respectively, of the complex sinusoid.

If X can be complex-valued, it is natural to wonder why x isn’t also complex-
valued (since the forward and inverse transform equations look so similar). The
simple answer is that we started with a real-valued signal x. Applying the
forward transform then the inverse transform just gives us back the original
signal. So, we have to end up with a real-valued signal, since that’s what we
started with! Of course, it also means that the transform X probably has some
special structure (reflecting the special structure that the original signal is real).
This is in fact the case and is listed as one of the properties in Table 4.2 later
in this chapter.

This discussion also suggests that we could allow the original signal to be
complex-valued. This can be done and it is sometimes useful, although in most
applications the original signal, representing a physical variable of interest, is
real-valued.

Interpretation as Frequency Representation
The equation for the inverse transform is natural once we accept that X[k]

(or X(ω)) indicates the “amount” of frequency kω0 (or frequency ω, respec-
tively) contained in the original signal. For example, consider the case of Fourier
series. In this case, the expression for x(t) is just a sum of sinusoids where the
amplitude of the sinusoid of frequency kω0 is X[k]. The case of the DFT is
similar. In the cases where there is a continuous range of frequencies (Fourier
transform and DTFT), rather than a sum of terms of different frequencies, we
have an integral. All of these equations show that the transform X really does
give a frequency representation of x by expressing the original signal in terms
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of constituent sinusoids, where the amplitude and phase of the sinusoid at fre-
quency kω0 (or, frequency ω) is given by X[k] (or, X(ω)).

The fact that we have a forward and inverse transform justifies the inter-
pretation that the transform X is really just a different representation, the
frequency domain representation, of the signal x. If we know the transform
then we can recover the signal using the inverse transform. Likewise, if we know
the signal then we can obtain the frequency domain representation by using the
forward transform. Specifying the signal in either time domain or frequency
domain completely determines the signal.

Duality
The similarity in the equations for the forward and inverse transforms sug-

gest that there may be some duality. This is indeed the case. Here, we make
note only of the two attributes: whether the time/frequency variable is continu-
ous or discrete, and whether the signal in time/frequency domain is finite-extent
or infinite extent.

It turns out that being finite extent in one domain means the variable in the
other domain is discrete. So, a finite extent in time (the case of Fourier Series
and DFT) means the frequency variable in these cases is discrete. Likewise, infi-
nite extent in one domain means the variable in the other domain is continuous
(the case of the DTFT and FT).

Discrete Fourier 

Transform 

(DFT)

Fourier Transform 

(FT)

Fourier Series

(FS)

Discrete-Time 

Fourier Transform 

(DTFT)

Continuous

Discrete

Finite extent Infinite extent
Time-domain

Properties

Frequency-domain

Properties
ContinuousDiscrete

Finite extent

Infinite extent

Figure 4.6: Time and frequency domain properties for the four cases.

This relationship is shown in Figure 4.6, which repeats much of Figure 4.4 but
with additional labeling showing the frequency domain properties in each case.
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The two cases we will discuss in more detail are either continuous and infinite
extent in both domains (FT), or discrete and finite extent in both domains
(DFT). For the other two cases these properties toggle as we switch domains.
That is, for Fourier series, the signal is continuous and finite duration in time,
but in frequency it is discrete and infinite duration. For the DTFT, the signal is
discrete and infinite extent in time, but continuous and finite extent in frequency.

There are further duality properties as well, which we will discuss in the
context of the FT and DFT.

4.5 FT and DFT

In this and the next two sections, we consider in more detail the continuous-
time Fourier transform, or simply the Fourier transform (FT), and the discrete
Fourier transform (DFT). These are the transform for continuous-time, infinite-
duration signals (FT), and for discrete-time, finite-duration signals (DFT). The
FT is most amenable to analytical insights and manipulations, and is used
in analyzing analog systems. The DFT the workhorse that is widely used in
digital computations, because of a fast algorithm called the FFT (fast Fourier
transform) for computing the DFT.

For convenience, we repeat the definitions of the forward and inverse trans-
forms here. For the FT, both the time variable t and frequency variable ω are
continuous-valued and vary from −∞ to ∞. The transform equations are

X(ω) =
∫ ∞

−∞
x(t)e−jωt dt forward transform (4.1)

x(t) =
1
2π

∫ ∞

−∞
X(ω)ejωt dω inverse transform (4.2)

The DFT is used in the case of a finite-duration, discrete-time signal, x[0], x[1], . . . , x[N−
1]. The DFT X[0], X[1], . . . , X[N − 1] is also finite-duration and discrete-
frequency. The definitions of the forward and inverse DFT are:

X[k] =
N−1∑
n=0

x[n]e−jkω0n k = 0, 1, . . . , N − 1 (4.3)

x[n] =
1
N

N−1∑

k=0

X[k]ejkω0n n = 0, 1, . . . , N − 1 (4.4)

where

ω0 =
2π

N
(4.5)

Before considering some examples and properties of Fourier transforms, we
introduce some notation and discuss duality a bit further. If X(ω) is the Fourier
transform of a signal x(t) (and so x(t) is the inverse transform of X(ω)), then
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we say that X(ω) and x(t) are a Fourier transform pair. If X(ω) and x(t) are
a Fourier transform pair, we may write

x(t) ←→ X(ω)

Or, to emphasize that one is dealing with Fourier transforms (as opposed to
some other transforms, of which there are many), this is sometimes written

x(t) FT←→ X(ω)

We also may use the notation F{·} to denote the Fourier transform operator,
and F−1{·} to denote the inverse transform operator. That is,

X(ω) = F{x(t)}

and
x(t) = F−1{X(ω)}

Similar notation applies in the discrete case for DFT’s, with the obvious
changes of x[n] and X[k] instead of x(t) and X(ω), respectively.

Regarding duality, notice again the similarity between the forward and in-
verse transform equations. Aside from the constants and time and frequency
being interchanged, the only difference is the sign in the exponent of the com-
plex exponential. This suggests that whenever we have a transform pair, there
is a dual pair with the time and frequency variables interchanged. For example,
we will see in Section XX below that the FT of a rect function in time is a sinc
function in frequency. From duality, this means that the FT of a sinc function
in time will be a rect function in frequency. In general, one should be a little
careful making sure all the constants are worked out properly.

Duality also suggests that whenever we have a property of the FT, then
there will be a dual property with the roles of time and frequency interchanged.
For example, we will see in Section XX below that multiplying a signal in the
time domain by a complex exponential corresponds to a shift in the frequency
domain. Duality then suggests that a shift in the time domain corresponds to
multiplication by a complex exponential in the frequency domain.

4.6 Some Examples of Transform Pairs

Some Fourier transform pairs can be computed quite easily directly from the
definition. Given x(t), we can substitute directly into the integral defining X(ω)
and carry out the integration.

Example 4.1 (Fourier transform of the rect(·) function)
Consider x(t) = rect(t) shown in Figure 4.7. From the definition of X(ω)
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Figure 4.7: Rect function.

we have

X(ω) = F{x(t)} =
∫ ∞

−∞
x(t)e−jωt dt

=
∫ 1

2

− 1
2

e−jωt dt

=
e−jωt

−jω

∣∣∣∣
1
2

t=− 1
2

=
ej ω

2 − e−j ω
2

jω

=
2 sin(ω

2 )
ω

= sinc(
ω

2π
)

Therefore,

F{rect(t)} =
2 sin(ω

2 )
ω

= sinc(
ω

2π
)

A plot of X(ω) is shown in Figure 4.8.

Example 4.2 (FT of the delta function)
One Fourier transform that is particularly easy to compute directly from

the definition is that of the Dirac delta function introduced in Chapter XX.
Using the defining property of δ(t), we get

F{δ(t)} =
∫ ∞

−∞
δ(t)e−jωt dt = 1
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Figure 4.8:

Sometimes a Fourier transform pair can more easily be established by con-
sidering the inverse transform. Remember that since a function is uniquely
determined in either time or frequency domain, considering the inverse trans-
form is a perfectly valid way to obtain transform pairs. Also, because of the
similarity between the definitions of the forward and inverse transforms, there
is often a duality that can be exploited to obtain transform pairs.

For example, by considering the delta function δ(ω) in frequency domain
and using the inverse transform definition, we can see (similar to Example XX)
that

1
2π

←→ δ(ω)

or, equivalently

1 ←→ 2πδ(ω)

This could also be guessed (except perhaps for the exact constants) by the
duality between forward and inverse transforms.

For another example of duality, consider the rect(·) and sinc(·) functions.
We saw in Example XX that the Fourier transform of the rect function in
time-domain is a sinc function in frequency domain. One might guess that the
Fourier transform of a sinc function in the time domain is a rect function in
frequency domain. This turns out to be correct, as could be easily established
by considering a rect in frequency domain and working through a calculation as
in Example XX. Of course, one needs to be careful of the exact constants, but
the underlying integrals are almost identical.

Table 4.1 shows several other Fourier transform pairs. Extensive tables of
Fourier transforms have been developed and the pairs shown in Table 4.1 are a
very small subset of known transform pairs.

Direct computation through the definition is not the only way to derive
transform pairs. Once we have some transform pairs, many others can be ob-
tained using general properties of the Fourier transform discussed in the next
section.
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Some Fourier Transform Pairs

Signal Fourier Transform

δ(t) 1

ejω0t 2πδ(ω − ω0)

sin(ω0t) π
j [δ(ω − ω0)− δ(ω + ω0)]

cos(ω0t) π[δ(ω − ω0) + δ(ω + ω0)]

x(t) = 1 2πδ(ω)

sin(Wt)
πt X(ω) =

{
1, |ω| < W
0, |ω| > W

step(t) 1
jω + πδ(ω)

tri(t) sinc2(ω/(2π))

Table 4.1:

4.7 Some Transform Properties

Fourier transforms satisfy a number of general and quite useful properties. These
properties give some nice insights on the behavior of Fourier transforms. They
are often handy when doing analysis using Fourier transforms, and can also be
helpful in using known transform pairs to compute new ones. The properties
tell us how the Fourier transform changes when the original signal undergoes
certain changes. They are generally derived by going back to the definitions and
manipulating the equations appropriately.

Example 4.3 (Linearity)
One of the simplest but most useful property is that the Fourier transform is

linear. That is, if X(ω) and Y (ω) are the Fourier transforms of two signals x(t)
and y(t), respectively, then the Fourier transform of ax(t) + by(t) is aX(ω) +
bY (ω). This is often written using the notation described earlier as

ax(t) + by(t) ←→ aX(ω) + bY (ω)

where it is assumed as given that x(t) ←→ X(ω) and y(t) ←→ Y (ω).
To show linearity, we can substitute directly in the definition and use the

fact that integration is linear. Namely,

F{ax(t) + by(t)} =
∫ ∞

−∞
[ax(t) + by(t)]e−jωt dt
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= a

∫ ∞

−∞
x(t)e−jωt dt + b

∫ ∞

−∞
y(t)e−jωt dt

= aF{x(t)}+ bF{y(t)}

Example 4.4 (Frequency shift property)
The so-called frequency shift property states that

ejω0tx(t) ←→ X(ω − ω0)

This states that if a signal is multiplied by a complex exponential at some
frequency ω0, all that happens to the Fourier transform is that it gets shifted
by the same frequency ω0.

With a little thought, this result should be expected. If the complex ex-
ponential ejωt is multiplied by ejω0t, then we simply get ej(ω+ω0)t. That is,
we still have a complex exponential, but at the new frequency ω + ω0. So, to
determine how much content the signal ejω0tx(t) has at a given frequency ω, we
need only check what content x(t) has at the frequency ω−ω0. This result is at
the heart of certain techniques in communication known as modulation, which
will be described in Chapter XX.

The frequency shift property can be obtained by simply combining the com-
plex exponentials in the integral and then noticing that the resulting expression
is precisely the definition of X(·) evaluated at the frequency ω − ω0. Namely,

F{ejω0tx(t)} =
∫ ∞

−∞

(
ejω0tx(t)

)
e−jωt dt

=
∫ ∞

−∞
x(t)e−j(ω−ω0)t dt

= X(ω − ω0)

X(w) X(w-g)

g
"

w w" "" "

Figure 4.9: Frequency shift due to multiplication by complex exponential
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Example 4.5 (Time shift property)
The time shift property states that

x(t− t0) ←→ e−jωt0X(ω)

In words, shifting a signal in the time domain causes the Fourier transform
to be multiplied by a complex exponential. Incidentally, this shows that if we
view the Fourier transform as a mapping from input signals (the time-domain
representation) to output signals (the frequency domain representation) then
this mapping is not time-invariant, although as we saw above it is linear.

Because of duality, we might have guessed this result once we saw the fre-
quency shift property above. One could prove the time shift property in a
manner very similar to the way we proved the frequency shift property, but by
manipulating the inverse transform equation instead of the forward transform
equation.

However, a more direct method is to work with the forward transform and
use a simple change of variables in the defining equation. Namely,

F{x(t− t0)} =
∫ ∞

−∞
x(t− t0)e−jωt dt

=
∫ ∞

−∞
x(u)e−jω(u+t0) du letting u = t− t0

= e−jωt0

∫ ∞

−∞
x(u)e−jωu du

= e−jωt0X(ω)

The general method used above (of writing the definition and using a change
of variable and rearranging expressions) can be a very useful method for proving
other properties as well. It may be reminiscent of how we proved some properties
of the delta function.

A number of other properties of the Fourier transform are known, some
of which are summarized in Table 4.2. We will discuss one more extremely
important property in the next section.

4.8 Convolution Property and Another Look at
Impulse and Frequency Response

The convolution property is so important that it deserves a separate section. Al-
though it is not difficult to derive, it is a little more involved than the properties
from the previous section.

The convolution property states that

x(t) ∗ y(t) ←→ X(ω)Y (ω)
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Fourier Transform Properties

Linearity
ax(t) + by(t) ←→ aX(ω) + bY (ω)
Frequency Shift
ejω0tx(t) ←→ X(ω − ω0)
Time Shift
x(t− t0) ←→ e−jωt0X(ω)
Time Reversal
x(−t) ←→ X(−ω)
Time Scaling
x(at) ←→ 1

|a|X(ω
a )

Differentiation in T ime
d
dtx(t) ←→ jωX(ω)
Convolution in T ime
x(t) ∗ y(t) ←→ X(ω)Y (ω)
Multiplication in T ime

x(t)y(t) ←→ 1
2π

∫ ∞

γ=−∞
X(γ) Y (ω − γ) dγ

Table 4.2: Some Fourier Transform properties

That is, if two signals are convolved in the time domain then the Fourier trans-
form of the convolution is just the product of the two original Fourier transforms.
In other words, convolving signals in time domain is equivalent to multiplying
their Fourier transforms in frequency domain. Thus, what appears to be a
complicated operation in time, is simple if viewed in terms of frequency.

As with some others, this property is derived by using the definition of the
Fourier transform and manipulating the expression. But, now we will have two
integrals – one for the transform and one for the convolution.

F{x(t) ∗ h(t)} = F
{∫ ∞

−∞
x(τ)h(t− τ) dτ

}

=
∫ ∞

−∞

(∫ ∞

−∞
x(τ)h(t− τ) dτ

)
e−jωt dt

=
∫ ∞

−∞
x(τ)

(∫ ∞

−∞
h(t− τ)e−jωt dt

)
dτ

by changing the order of integration

=
∫ ∞

−∞
x(τ)

(∫ ∞

−∞
h(u)e−jω(u+τ) du

)
dτ

by a change of variables to u = t− τ
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=
(∫ ∞

−∞
x(τ)e−jωτ dτ

)(∫ ∞

−∞
h(u)e−jωu du

)

= X(ω)H(ω)

Once we have the convolution property, duality suggests that multiplica-
tion in the time domain corresponds to convolution in the frequency domain.
Specifically, this dual property is

x(t)y(t) ←→ 1
2π

X(ω) ∗ Y (ω) =
1
2π

∫ ∞

−∞
X(η)Y (ω − η) dη

This property is called the multiplication property or the modulation property.
Recall that for an LTI system with impulse response h(t), if we apply the

input x(t) then the ouput y(t) is

y(t) = x(t) ∗ h(t).

We can now ask what this output looks like in frequency domain. From the
convolution property, we immediately see that

Y (ω) = X(ω)H(ω).

Thus, the output of an LTI system can be viewed in either time domain
or in frequency domain. In time domain, the output is the convolution of the
input with the impulse response. In frequency domain, the LTI system does
something particularly simple. It simply multiplies the FT of the input with
the function H(ω), which is the FT of the impulse response.

But this is precisely how we described the frequency response of an LTI
system in Chapter XX. We now see that the frequency response of an LTI
system is just the Fourier transform of its impulse response. Compare Equation
(XX) with the definition of the FT in Equation XX.

Although all of the properties in Table 4.2 are useful, the convolution result
is the property to remember and is at the heart of much of signal processing and
systems theory. We will further discuss and use the result throughout Chapter
XX.

4.9 2-D Transforms∗

So far, our discussion of Fourier transforms has focused on the case of 1-D signals
– that is, signals as a function of time. Of course, nothing changes if the variable
t were to represent a spatial variable instead of time. The crucial thing so far
is that the signals were a function of just one independent variable.

To be able to apply the powerful tools of frequency domain analysis to
images, mentioned in Section XX, we need to extend the Fourier transform
to two dimensions.

In 2-D, the signal x is a function of two spatial arguments, which we will
denote u and v. As discussed in Chapter XX, x(u, v) denotes the value of the
signal at the point (u, v).
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We already saw in Section XX the notion of a sinusoid in two dimensions.
For example,

x(u, v) = sin(ω1u) sin(ω2v)

is a 2-D sinusoid with frequency ω1 in the u direction and frequency ω2 in the
v direction. This looks like an egg carton, or an array of hills and valleys. A
surface plot and an image of this x(u, v) are shown in Figure 4.10. In the image,
the dark regions correspond to valleys while the bright regions correspond to
hills.

Figure 4.10: 2-d sinusoid surface plot (left) and image (right)

As in 1-D, it is more convenient to work with complex exponentials rather
than the sinusoids above. Thus, the basic signals we will work with are of the
form

ejω1uejω2v = ej(ω1u+ω2v)

This is a separable signal as defined in Chapter XX, in that it can be written
as a product of a function of only u and a function of only v, with frequency ω1

in the u direction and frequency ω2 in the v direction.
One would expect that the frequency domain representation of a general

signal x(u, v) would be a function of two frequency variables, one for u and
one for v. That is, the Fourier transform should be a function X(ω1, ω2). The
definitions of the forward and inverse transform in 2-D are

X(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
x(u, v)e−j(ω1u+ω2v) du dv forward (4.6)

x(u, v) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
X(ω1, ω2)ej(ω1u+ω2v) dω1 dω2 inverse (4.7)

The definition of the DFT can be extended to 2-D in the natural way as
well (as can Fourier series and the discrete-time Fourier transform). As in 1-D,
specific transform pairs can be computed and most of the properties in 1-D have
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natural extensions to 2-D. When the original signal x(u, v) is separable (i.e., can
be written as x(u, v) = x1(u)x2(v)) then the 2-D transform is particularly simple
since it reduces to two separate 1-D transforms – one in the variable u, and one
in the variable v.

An example of a natural image and its FT is shown in Figure 4.12. As usual,
only the magnitude of the transform is shown, where lighter areas denote higher
magnitude for the corresponding frequencies, and darker areas denote smaller
magnitude. Actually, since the variation in magnitude is so large, what is shown
for the Fourier transform is the log of the magnitude. This allows seeing more
detail in the transform as opposed to one extremely bright spot in the center and
almost black everywhere else. Displaying the log of the magnitude is typical.

2-D FT of Sinusoid Image

Figure 4.11: 2-D sine and its Fourier Transform

Natural Image 2-D FT of Image

Figure 4.12: A natural image and its Fourier Transform


