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ABSTRACT
The popularity of 360◦ videos has grown rapidly due to the im-
mersive user experience. 360◦ videos are displayed as a panorama
and the view automatically adapts with the head movement. Exist-
ing systems stream 360◦ videos in a similar way as regular videos,
where all data of the panoramic view is transmitted. This is wasteful
since a user only views a small portion of the 360◦ view. To save
bandwidth, recent works propose the tile-based streaming, which di-
vides the panoramic view to multiple smaller sized tiles and streams
only the tiles within a user’s field of view (FoV) predicted based
on the recent head position. Interestingly, the tile-based stream-
ing has only been simulated or implemented on desktops. We find
that it cannot run in real-time even on the latest smartphone (e.g.,
Samsung S7, Samsung S8 and Huawei Mate 9) due to hardware and
software limitations. Moreover, it results in significant video qual-
ity degradation due to head movement prediction error, which is
hard to avoid. Motivated by these observations, we develop a novel
tile-based layered approach to stream 360◦ content on smartphones
to avoid bandwidth wastage while maintaining high video qual-
ity. Through real system experiments, we show our approach can
achieve up to 69% improvement in user QoE and 49% in bandwidth
savings over existing approaches. To the best of our knowledge,
this is the first 360◦ streaming framework that takes into account
the practical limitations of Android based smartphones.
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1 INTRODUCTION
Motivation: Video traffic has increased at an unprecedented rate
due to the popularity of video sharing websites and social media
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channels like YouTube and Facebook. For example, Cisco [6] es-
timates video traffic will constitute 82% of all consumer Internet
traffic by 2021. A significant recent advance in video technology is
Virtual Reality (VR) or 360◦ videos. It provides panoramic views to
gives an immersive experience. VR content can be viewed through
dedicated headsets, such as Oculus [16] and HTC Vive [13]. Users
can also experience VR by placing smartphones in headsets like
Google Cardboard [8] and Samsung Gear VR [17]. This is called mo-
bile VR. Mobile VR is expected to dominate the VR market, which
is expected to grow up to 25 billion USD by 2021 [19].

To watch a 360◦ video, a user wears a headset that blocks out-
side view so the user focuses only on what is being displayed on
the smartphone or VR headset. 360◦ videos are shot using omni-
directional cameras or multiple cameras where the collected images
are stitched together. The resulting effect of either approach is a
video consisting of spherical images. While watching a 360◦ video,
a user views a defined portion of the whole image, usually it is
110◦ along the X-axis and 90◦ along the Y-axis. This user’s view is
termed as Field-of-View (FoV). The view automatically adapts with
the user’s head movement. As user moves his head along any of
the X, Y, or Z axis, the video player automatically updates the FoV.

Challenges: 360◦ videos are streamed in a similar way as regular
videos. A short duration of data, typically 1-2 seconds, is requested
by the client. However, 360◦ videos have much higher bit rates
because spherical images of 360◦ videos contain more pixels and
higher fidelity in order to provide a good viewing experience when
being watched from a close distance. Typical resolution is 4K - 8K.
Streaming all pixels in 360◦ videos is wasteful since the user only
views a small portion of the video due to the limited FoV. Moreover,
streaming all pixels also create significant burden for a smartphone,
which has limited storage, computation resources and power.

One recent approach [39] tailored for 360◦ videos is the tile-based
streaming. In this approach, each 360◦ frame is divided into smaller
sized non-overlapping rectangular regions called tiles. Each tile can
be decoded independently. The client requests those tiles that are
expected to be in FoV using head movement prediction techniques.
This reduces the decoding and bandwidth usage at the receiver.
However, whenever there is a prediction error, the user either sees
some portion of the screen to be blank or experiences rebuffering
due to missing data. This can severely degrade the user QoE. More-
over, these works explore tile-based streaming either in simulation
or in desktop implementation but not on smartphones. We observed
in our experiments that 8K 360◦ videos (which are widely available
on video websites like YouTube) streamed using either regular or
tile-based streaming technique cannot be decoded and displayed
to user in time due to resource constraints in smartphones. This
limitation primarily stems from how the video data is encoded.
Encoding produces independently decodable data segments that
are very rich in data, so decoding them takes long time.
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Our approach:Wefirst investigate the limitations of Android hard-
ware in decoding and displaying high resolution videos like 8K. We
are interested in knowing how many concurrent threads for decod-
ing can be instantiated. We then look into popular media codecs
available on Android to understand why certain media codecs are
better than others for tile-based streaming. We observe that H.264,
which is the most widely used media codec nowadays is ill-suited
for streaming 360◦ video content. So we use HEVC to implement
tile-based streaming since it already has a built-in tiling scheme to
encode video data.

Based on our observations, we design a novel tile-based layered
encoding framework Rubiks for 360◦ videos. We exploit spatial and
temporal characteristics of 360◦ videos for encoding. Our approach
splits the 360◦ video spatially into tiles and temporally into layers.
The client runs an optimization routine to determine the video
data that needs to be fetched to optimize user QoE. Using this
encoding approach, we can send the video portions that have a high
probability of viewing at a higher quality and the portion that has
a lower probability of viewing at a lower quality. By controlling the
amount of data sent, the data can be decoded without rebuffering.
Rubiks can save significant bandwidth while maximizing the user’s
QoE and decoding the video in a timely manner. To the best of our
knowledge, this is the first work that develops a practical streaming
framework for 360◦ videos to explicitly account for the resource
limitations in smartphones and head movement prediction error.

We implement our framework as an Android application. We
use this app and a simple server to test our implementation. Our
contributions can be summarized as follows.
• Using real measurements, we identify hardware and software
constraints in supporting the tile-based streaming for high
resolution 360◦ videos on smartphones.
• We develop a novel tile-based layered coding that exploits
spatial and temporal characteristics of 360◦ videos to re-
duce the decoding overhead while saving bandwidth and
accommodating head movement prediction error.
• We implement our idea as an app and show it can improve
user QoE by 69% and save bandwidth by 35% over existing
approaches for 4K videos. It provides 36% improvement in
QoE and 49% in bandwidth savings for 8K videos.

Paper outline:We first provide background on 360 videos in Sec. 2.
In Sec. 3, we use our measurements to identify the limitations of
the existing tile-based video coding. We describe our approach in
Sec. 4, and present system design in Sec. 5. We evaluate our system
in Sec. 6. We review related work in Sec. 7 and conclude in Sec. 8.

2 BACKGROUND
2.1 Existing Streaming Framework
DASH [42] is widely used for video streaming over the Internet due
to its simplicity and compatibility with the existing CDN servers.
In this framework, a video is divided into multiple chunks with
an equal play duration (e.g., a few seconds). A 360◦ video chunk is
spatially divided into equal size portions, called tiles, generally 15-40
tiles [26]. Each tile is encoded independently with a few bitrates.

In tile based streaming frameworks, the client only requests
for a subset of tiles according to head prediction and throughput
estimation. Due to independent encoding, the client can still decode
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Figure 1: Architecture of Existing 360◦ Streaming Systems

that tile subset successfully. The client constructs the 360◦ frame
based on decoded the tiles and displays the FoV on the screen.

Fig. 1 shows the architecture of existing 360◦ video streaming
systems like YouTube and Facebook. The user sends video requests
to the video server. In the request, the user has to specify which
video segment and which bitrate to request. In tile based streaming
frameworks, the user also needs to specify the tiles to request.
The video server transmits the 360◦ video data to the user that is
connected to the Internet via WiFi access points. The user uses a
mobile VR headset to watch 360◦ videos. After receiving the 360◦
video data, the smartphone displays the video content within the
FoV, which is determined by the head orientation. The performance
of existing 360◦ streaming systems can be affected by multiple
factors, including smartphone computational resources, network
throughput, user head movement prediction.

2.2 H.264 and HEVC Codecs
H.264 [9] is an industry standard for video compression. Frames
are encoded at the macroblock level. A typical macroblock size is
16 × 16 pixels. H.264 uses motion prediction to reduce the size of
encoded data. As frames within a chunk of a few seconds are highly
correlated in temporal domain, this greatly reduces the data size.
HEVC [10] is an advanced extension of H.264. It divides a video
frame into independent rectangular regions. Each region can be
encoded independently. A region is essentially a tile used in tile
based streaming framework. Each region is encoded at a 64 × 64
Coding Tree Unit (CTU) level. Due to the larger block size in HEVC,
it achieves higher compression than H.264.

HEVC is more suitable for tile based streaming approaches. All
tiles in HEVC are contained in a single encoded video file and can
be decoded in parallel using one decoder instance. The video file is
still decodable even if we remove some tiles. However, H.264 has
to encode tiles into separate video files. If user requests multiple
tiles, H.264 needs to decode multiple video files. The smartphone
only allows a small number concurrent video decoders (e.g., 4 de-
coders on Samsung S7 and Huawei Mate 9), which is explained in
Sec. 3. When the number of video files is greater than the number
of concurrent hardware decoders, some video files will have to be
decoded one after another, which results in longer decoding delay.
Therefore, H.264 is not scalable for tile based streaming. Even for
HEVC, our measurement results in Sec. 3 show that HEVC can not
decode all video tiles in real time for 8K videos. Thus, it is neces-
sary to explore how we can avoid sending all video tiles without
significant video quality degradation.

2.3 Scalable Video Coding
Scalable Video Coding (SVC) [24] is an extension of H.264. It is a
layered scheme where a high quality video bit stream is composed
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of lower quality subset bit streams. A subset bit stream is obtained
by removing some data from higher quality bit stream such that it
can be played albeit at a lower spatial and/or temporal resolution.
SVC can potentially save bandwidth for tile based streaming by
adapting the video quality for each tile based on the likelihood of
viewing these tiles. However, currently Android does not support
this extension [5].

3 MOTIVATION
In this section, we perform extensive measurements to understand
the performance of existing 360◦ video streaming approaches on
Samsung S7. We identify several significant limitations of the exist-
ing approaches and leverage these insights to develop a practical
tile based streaming tailored for smartphones. First, we introduce
media codecs available in Android.

3.1 Real-Time Media Codecs
There are twomain options for decoding videos onAndroid:ffmpeg-
android andMediaCodec.
ffmpeg-android: This version of ffmpeg is tailored for Android
and is completely based on software. While ffmpeg supports an
unlimited number of threads, they cannot decode videos in real
time on smartphones because ffmpeg cannot perform hardware
decoding [18]. Instead, it decodes everything in software, which
is very slow. For example, decoding a 1-second video chunk with
resolution 3840 × 1920 and 4 tiles takes more than 3 sec, which
causes long rebuffering time.
MediaCodec: Android provides MediaCodec class for developers
to encode/decode video data. It can access low-level multimedia in-
frastructure like hardware decoders, which decode the video much
faster than ffmpeg-android. First, the decoder is set up based on
the video format, such as H.264 or HEVC. Setting up the decoder
enables access to the input and output buffers for the correspond-
ing codec. The data that needs to be decoded is pushed into the
input buffers and the decoded data is collected from the output
buffers. MediaCodec is the best option for video decoding on An-
droid as it uses dedicated hardware resources. For HEVC decoder
of MediaCodec, decoding a 1-second video chunk with resolution
3840 × 1920 and 36 tiles takes around 0.5 sec.
Observation: Only hardware-accelerated media codec can support
real-time decoding.

3.2 Limitations of Existing Approaches
We focus on MediaCodec as ffmpeg-android is infeasible for real-
time decoding. We use the following baselines in our analysis: (i)
YouTube [48], which streams all data belonging to the whole 360◦
frames to the client, (ii) Naive Tile-Based, which divides 360◦ frames
into 4 tiles and streams all tiles to the client, (iii) FoV-only [39], which
divides the video into 36 tiles and only streams the tiles predicted
to be in user’s FoV. (iv) FoV+ [23], which divides the video into
36 tiles and streams data in both FoV and the surrounding region,
where the surrounding region is selected based on the estimated
prediction error of FoV: if the estimated head movement prediction
error is ϵ along X axis, it extends the FoV width at both sides of the
X axis by ϵ ; similarly for the Y axis. We quantify the performance
using three metrics: (i) Decoding Time, (ii) Bandwidth Savings, and
(iii) Video Quality.

In our experiments, we useHEVC as the decoder. Recentmeasure-
ment [48] finds that existing 360◦ streaming systems (e.g.YouTube
and Oculus) stream the entire 360◦ frames. H.264 can only decode
one tile from an input video file, while HEVC can include multiple
video tiles in the input file and decode them in parallel. Due to
limited number of concurrent hardware decoders on smartphones,
H.264 has to decode some tiles serially when decoding multiple
video tiles. HEVC has faster decoding speed in tile based stream-
ing frameworks than H.264 since it can decode all requested video
tiles in parallel. Our baseline YouTube follows the existing 360◦
streaming systems to stream the entire 360◦ frames and uses a faster
decoder available on smartphones.

3.2.1 Decoding Time. The feasibility of current approaches in
streaming high quality 360◦ videos depends on whether they can
decode the data and display it in time. To answer this question,
we decode 4K and 8K videos for both YouTube and Naive Tile-
Based approaches on smartphone. The input videos have frame rate
of 30fps and 30 chunks each, where each video chunk contains 1
second video. We run our experiments 5 times for the same video.
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Figure 2: Decoding time and bandwidth savings.

The YouTube approach directly encodes the entire 360◦ chunk
into a single tile. The Naive Tile-Based approach divides each 360◦
frame into 4 video tiles, and encodes them into independent video
files. We run 4 video decoders simultaneously to decode video
tiles in parallel. We only show the results of the Naive Tile-Based
approach for 4 tiles, since this gives the best performance and
further increasing the number of tiles can only be slower since only
up to 4 decoding threads can run in parallel.

We first measure the decoding time of 4K 360◦ videos. The res-
olution of the test video is 3840 × 1920. Fig. 2(a) shows that both
YouTube and Naive Tile-Based approaches can decode a 4K video
chunk in 0.55 seconds on average. So 4K videos can be decoded
and displayed in time.

Next, we measure the decoding time of 8K 360◦ videos. The
resolution of the test video is 7680 × 3840. Fig. 2(a) shows the
average decoding time of each chunk. YouTube needs 1.4 sec on
average to decode one chunk, which results in rebuffering since
decoding speed cannot catch up with the playback speed. The Naive
Tile-Based approach needs 1.3 sec on average to decode one chunk.
It speeds up decoding by utilizing parallel threads. However, it is
still insufficient to support real-time decoding for 8K videos. Using
parallel threads cannot reduce the amount of data to read from the
video decoder output buffers, which limits the performance gain
from parallel threads.
Observation: Traditional decoding and existing tile-based decoding
cannot support 8K or higher video resolution.
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3.2.2 Bandwidth Savings. YouTube wastes lots of bandwidth
because it streams the entire frames while a user views only a
small portion. FoV-only and FoV+ can save bandwidth. Fig. 2(b)
shows the bandwidth savings of FoV-only and FoV+ compared with
YouTube. We test the bandwidth savings of the same video and 10
different head movement traces. For FoV-only, we use the oracle
head movement, calculated from gyroscope readings, to estimate
the maximum possible bandwidth savings. The video bitrate is set
to a constant value for all chunks and approaches. The tiles with
high motion have larger size than those with smaller motion. If a
user views the tiles with larger motion, bandwidth saving is less.
Since users have different viewing behaviors, we observe different
bandwidth savings across headmovement traces. FoV-only approach
can save bandwidth by up to 80% but may incur significantly video
quality degradation due to prediction error. FoV+ approach saves
18% less bandwidth than FoV-only approach, but incurs smaller
degradation in video quality.
Observation: Due to the limited FoV, significant amount of band-
width can be saved.

3.2.3 Video Quality. To save bandwidth, the tiles outside the
predicted FoV are not streamed in the FoV-only approach. We use
linear regression to predict head movement. As explained in Sec. 6,
our predictor uses the head movement in the past 1-second window
to predict head movement for the future 2-second window. When
the head prediction has large error, the user sees blank areas. This
results in a very poor viewing experience. In the FoV+ approach, ad-
ditional tiles are streamed to account for head movement prediction
error, but this error estimation itself can be inaccurate.
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Figure 3: Video quality of existing approaches

We quantify the video quality using SSIM [45], defined as the
structural difference between streamed and original user’s FoV.
Fig. 3(a) shows the SSIM for 10 different head movement traces
and an example 4K video. The video bitrate is set to the highest
value in our experiments. YouTube can always achieve SSIM close
to 1, while the average SSIM of FoV-only and FoV+ are only 0.77 and
0.87, respectively. The average prediction error along the X axis
and Y axis for the test head movement traces is 30 and 9 degrees,
respectively. On average, our headmovement traces have prediction
error larger than 50◦ (or 10◦) along theX axis (or Y axis) for around

20% of time. In the FoV-only approach, we observe that 20% chunks
have 23% blank areas on average along the X axis and 18% along
the Y axis. By including extra tiles, the FoV+ approach can reduce
blank areas along the X axis to 14% and along the Y axis to 11% on
average. Thus, sending extra data can still not avoid blank areas
since the head movement prediction error is unpredictable, as well.
Fig. 3(c) and Fig. 3(d) show one example head movement trace
and its corresponding prediction error. We can observe that when
head moves quickly, the prediction error goes up significantly. For
example, the prediction error for the X axis increases to 100 degrees
at time 22 sec and that for Y axis increases to 40 degrees at time 12
sec. We find that fast head movement mainly happens when the
user randomly explores different scenes in the video or follows an
interesting fast-moving object.
Observation: Streaming a few extra tiles is not robust enough to
head movement prediction error.

3.3 Insights From Existing Approaches
Video 
Quality

Bandwidth 
Savings

Decoding 
Speed

YouTube

FoV only

FoV+

Optimal

Rubiks

Figure 4: Design Space of Streaming Algorithms
Figure 4 summarizes the existing algorithms. YouTube achieves

the highest video quality but at the expense of bandwidth and
decoding speed. FoV-only and FoV+ save bandwidth and increase
decoding speed, but suffer from degraded video quality. A desir-
able algorithm should simultaneously optimize all three metrics:
bandwidth saving, decoding speed, and video quality.

An important design decision is how to encode 360◦ videos to
optimize these three metrics. Such a scheme should (i) adapt the
data to stream based on the FoV to save bandwidth, (ii) support fast
decoding using a limited number of threads, and (iii) tolerate signif-
icant head movement prediction error. (i) suggests tile-like scheme
is desirable. (ii) suggests we do not have the luxury to allocate a tile
to each decoding thread, but should have a different task-to-thread
assignment. (iii) suggests we should still stream entire video frames
albeit at a lower resolution in case of unpredictable head movement.

4 OUR APPROACH
We propose a novel encoding framework for 360◦ videos to simul-
taneously optimize bandwidth saving, decoding time, and video
quality. Each video chunk is divided spatially into tiles and tempo-
rally into layers. The two dimensional splitting allows us to achieve
the following two major benefits.
• We can stream different video portions at different bitrates
and with different numbers of layers. The video portions
with a high probability of viewing are streamed at a higher
quality. The ones with a lower chance of viewing are sent at
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a lower quality instead of not sending them at all. This allows
us to save network bandwidth while improving robustness
against head movement prediction error.
• Bymanaging the amount of data sent for tiles, we can control
the decoding time. In 8K videos, we can not decode all tiles
in time due to hardware constraints, so we can selectively
send tiles with less viewing chance to improve efficiency.

The performance of 360◦ video streaming is determined by video
coding and video rate adaptation. Below we examine them in turn.

4.1 Video Encoding
We propose a tile-based layered video encoding scheme. A 360◦
video chunk is spatially divided into tiles, which are further tem-
porally split into layers. We utilize redundant I-Frames to remove
encoding overhead due to layering.
Spatial Splitting: As shown in Fig. 5, in spatial domain, each 360◦
frame can be divided into multiple equal-size regions, called tiles.
These tiles are encoded independently so that each tile can be
decoded individually. Each tile is encoded at several bitrates for a
client to control the quality of the tiles.
Temporal Splitting: Each tile consists of N frames distributed
acrossM layers. The base layer includes the first of everyM frames,
the second layer includes the second of every M frames, and so
on. For example, for a video chunk consisting of 16 frames, frames
1, 5, 9, 13 form the base layer; frames 2, 6, 10, 14 form the second
layer; frames 3, 7, 11, 15 form the third layer; and frames 4, 8, 12,
16 form the fourth layer. Fig. 5 shows how temporal splitting is
applied to each tile. We consider the highlighted tile. Each tile can
be decomposed intoM layers by distributing N frames as described
above. nt l denotes t-th tile at the l-th layer. This is the granularity
at which we encode video data.

Figure 5: Spatial and temporal splitting of 360◦ chunk

Reducing Encoding Overhead: In an encoded video file, the first
frame is encoded as an I-frame, which is decoded independently
and is large in size. The subsequent frames are encoded as B-frames
or P-frames, which reference neighboring frames to significantly
reduce the frame size. We generate M independently decodable
video files corresponding to M layers of each chunk, and each
layer has a separate I-frame. In comparison, the YouTube approach
generates a single I-frame since it encodes all data in a single file.

To eliminate this coding overhead, we remove the I-frames from
the enhancement layers as follow. We insert the first frame from the
base layer to the beginning of each enhancement layer. After encod-
ing, the I-frame from each enhancement layer can be removed since
it is the same as the first frame in the base layer. When decoding
video, we just need to copy the I-frame from the base layer to the

beginning of each encoded enhancement layer, thereby reducing
video size by removing the redundant I-frames.

4.2 360◦ Video Rate Adaptation
Despite significant work on rate adaptation, the 360◦ video rate
adaptation is a new and under-explored topic. Unlike the traditional
rate adaptation, where the user views the entire frame, a user only
views a small portion of 360◦ videos. Therefore, the high-level
problem is to select which portion to stream and at what rate to
maximize the user QoE. This is challenging because of unpredictable
head movement. We use an Model Predictive Control (MPC) based
framework [47] which is efficient to optimize the user QoE even if
network throughput fluctuation is unpredictable. Our optimization
takes the following inputs: predicted FoV center, estimated FoV
center prediction error, predicted throughput and buffer occupancy.
It outputs the number of tiles in each layer and the bitrate of each
tile. We first introduce our MPC framework, and then describe how
to compute each term in the optimization objective.

4.2.1 MPC-based Optimization Framework. To handle random
throughput fluctuation, our optimization framework optimizes the
QoE of multiple chunks in a future time window. Given the pre-
dicted network throughput during the next w video chunks, it
optimizes the QoE of thesew video chunks. The QoE is a function
of the bitrate, the number of tiles to download for each layer, and
the FoV. This function can be formulated as follow:

max
(ri ,ei ),i ∈[t,t+w−1]

i=t+w−1∑
i=t

QoEi (ri ,ei ,ci ) (1)

where QoEi denotes the QoE of chunk i ,w denotes the optimization
window size, ri denotes the bitrate of tiles to download for chunk
i , ei is a tuple whose element e ji denotes the number of tiles to
download for the j-th layer in the i-th chunk. Since a user’s FoV
varies across frames in a chunk, we explicitly take that into account
by computing the QoE based on cki = (xki ,y

k
i ), which denotes the

X and Y coordinates of the FoV center of frame k in chunk i . We
search (ri ,ei ) that maximizes the objective within the optimization
window, and then request the data for chunk t according to the
optimal solution. In the next interval, we move the optimization
window forward to [t + 1, t +w] to optimize the next chunk t + 1.

4.2.2 User QoE. Next, we define the user QoEmetric. It is widely
recognized that the user perceived QoE for a video chunk is deter-
mined by the following factors: video quality, quality changes, and
rebuffering time [36, 43, 47].

Video quality: Each video chunk has K frames. The quality of
frame k in chunk i is a function of bitrate ri , number of tiles to
download ei , and the FoV center cki , We let h(ri ,ei , cki ) denote the
video quality. By averaging quality across all frames in the current
chunk, we get the quality of chunk i as follow:

f1 (ri ,ei ,ci ) =
1
K

K∑
k=1

h(ri ,ei , c
k
i ) (2)

Note that different frames may have different FoV, so their quality
is determined by their corresponding FoV center cki .
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Quality changes: The video quality changes between two consec-
utive chunks is defined as

f2 (ri , ri−1,ei ,ei−1,ci ,ci−1) =

| f1 (ri ,ei ,ci ) − f1 (ri−1,ei−1,ci−1) | (3)

where (ri ,ei ) and (ri−1,ei−1) represent the bitrates and numbers
of tiles to download for chunk i and chunk i − 1, respectively.

Rebuffering: To compute the rebuffering time, we observe that the
chunk size depends on the bitrate and the set of tiles downloaded.
Let vi (ri ,ei ) denote the chunk size. We start requesting the next
chunk after the previous chunk has been completely downloaded.
The buffer occupancy has a unit of second. Let Bi denotes the
buffer occupancy at the time of requesting chunk i . Each chunk
contains L-second video data. LetWi denote the predicted network
throughput of downloading chunk i . Then, the buffer occupancy
when requesting chunk i + 1 can be calculated as:

Bi+1 = max(Bi −
vi (ri ,ei )

Wi
, 0) + L (4)

The first term indicates that we play vi (ri ,ei )
Wi

sec video data while
downloading chunk i . Afterwards, L-sec video data will be added
to the buffer. The rebuffering time of chunk i is

f3 (ri ,ei ) = max(
vi (ri ,ei )

Wi
− Bi , 0) +max(τi − L, 0) (5)

where τi denotes the decoding time of chunk i and is derived from
our measurement. The first term denotes the rebuffering time in-
curred due to slow downloading and the second term denotes the
rebuffering time incurred due to slow decoding. The expression
considers the fact that the chunk i’s decoding starts after finishing
playing out everything ahead of the chunk. Note that we can start
playing a chunk even if it is only partially decoded.

Putting them together, we compute the QoE of chunk i as follow:

QoEi (ri ,ei ,ci ) = α f1 (ri ,ei ,ci )

−β f2 (ri , ri−1,ei ,ei−1,ci ,ci−1) − γ f3 (ri ,ei ) (6)

where α , β and γ are weights of video quality, quality changes and
rebuffering, respectively. The latter two terms are negative since
we want to minimize them.

4.2.3 Estimate Video Quality. The first and second terms in the
user QoE are determined by the video quality. To support efficient
optimization, we need to quickly compute the video quality for
a given streaming strategy. That is, for a given FoV, we need to
determine the video quality of streaming a selected set of tiles in
all layers and bitrates.
VideoQualityMetric Approximation: In our optimization prob-
lem, we need to estimate the video quality of the predicted FoV.
Exactly computing video quality metrics for all paths in the op-
timization problem is too expensive. Moreover, since user head
movement is not known in advance, computing video quality of-
fline requires computing for all possible FoV, which is also too
expensive. We develop an efficient scheme to approximate video
quality metric.

Before we introduce our algorithm, first we describe how video
is constructed from various layers. For each tile, we extract the data
from all layers associated with the tile. As described in Section 4.1,
we divide videos temporally into layers and a layer j corresponds

to the j-th frame in every 4 frames. Therefore, given a tile that
has k layers, we put the downloaded tiles for these k layers at the
corresponding positions and add the missing frame by duplicating
the last received layer. For example, if a tile only has a base layer,
we duplicate the base layer 3 times for every group of 4 frames. If a
tile has the first 3 layers, we use the data from the layers 1, 2 and 3
to form the first three frames and duplicate the third frame to form
the frame 4 every group. According to the above video construction,
we derive the following metric based on the observation that there
exists a strong correlation between video quality and bitrate. This
indicates an opportunity of using video bitrate for optimization.
Quantization parameter (QP) [11] is used by HEVC to control video
bitrate. A larger quantization indicates a lower bitrate. The quality
of frame k in chunk i , denoted as h(ri ,ei , cki ), is defined as follow:

h(ri ,ei , c
k
i ) =

1
|FoV (cki ,ei ) |

∑
l ∈FoV (cki ,ei )

q(r li ,ei ) (7)

where FoV (cki ,ei ) denotes the set of tiles within the FoV cen-
tered at cki and q(r li ,ei ) represents the quality of tile l in the FoV.
h(ri ,ei , c

k
i ) averages the quality over all tiles in the FoV and the

quality of each tile is determined by the number of layers streamed
for the tile and the data rate it is streamed at.
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Figure 6: Correlation between video quality and bitrate.
For the tiles in the predicted FoV, they have the highest proba-

bilities of being viewed. Therefore, we stream all layers of the tiles
in the predicted FoV, and evaluate q(r li ,ei ) assuming 4 layers.

We study the correlation between r li and SSIM. We set r li to
different QP values and the number of layers is set to 4. The input
video is divided into 36 tiles. We set the FoV center to the center
of video tiles to calculate the video quality under 36 different FoVs.
FoV quality is the average SSIM of the same FoV across all video
chunks. Fig. 6 shows the correlation between average FoV qual-
ity and QP for both 4K and 8K videos. We observe that average
FoV quality decreases linearly with the normalized video QP. The
average correlation coefficient among all test videos is 0.98. We
approximate FoV quality using −0.004 × QP + b. From Fig. 6, we
can see that the value of b varies across different videos. However,
b remains constant for all chunks of the same video. We set b to
0 since removing a constant in object function does not affect the
optimization solution.

4.2.4 Decoding Time. The third term in the user QoE is the
rebuffering time, which is affected by both the downloading time
and decoding time. Existing rate adaptation scheme ignores the
decoding time and only uses the downloading time to determine the
rebuffering time. This is acceptable for regular videos with much
fewer pixels and fast desktops. But decoding time for 360◦ videos
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on smartphones can be significant and sometimes exceed the down-
loading time. Therefore it is important to estimate the decoding
time for different streaming strategies to support optimization.

Decoding time depends on the number of tiles in each layer.
Moreover, there is also variation in decoding time even when de-
coding the same tile configuration due to other competing apps on
a smartphone. We model this decoding time and take into account
the variation.

To model the decoding time, we measure the decoding time for 8
videos by varying the bitrate and the number of tiles in each layer.
We decode each configuration 3 times and record the results. As we
have 4 threads, so each measurement has 4 decoding time values
and the overall decoding time is dictated by the thread that takes
the longest time. Each thread decodes one layer. An underlying
assumption here is that all decoding threads start at the same time.
We observe that there is not a significant variation in the start time
of these threads, so this assumption works well in practice.

We implement a simple table lookup for decoding time based
on measurement, where the table is indexed by (# tiles layer-2, #
tiles layer-3, # tiles layer-4). We do not consider the number of tiles
in the base layer as it always contains all tiles. Moreover, we also
do not consider the video bitrate because we observe that it does
not impact the decoding time significantly. This is because the bit
rate only affects the quantization level, while the video decoding
complexity mainly depends on the resolution of the input video.
The decoding time entries in the table are populated by averaging
the maximum decoding time of each instance for all measurement
sets. We use a simple table lookup for decoding time because the
variation in decoding time for decoding the same configuration is
not large (e.g., within 7% and 6% on average for Samsung S7 and
Huawei Mate9, respectively).

4.2.5 Improving Efficiency. The large search space poses a sig-
nificant challenge for real-time optimization. To support efficient
optimization, we identify the following important constraints that
can be used to prune the search space.
Constraints on the numbers of tiles: e ji ≥ e

j′
i for any layer

j < j ′. This is intuitive as the lower layer tiles should cover no
smaller area to tolerate prediction errors.
Constraints on the bitrates: r li ≥ r l

′

i for any tiles l ∈ FoV (cki ,ei )

and l ′ < FoV (cki ,ei ), where r
l
i denotes the bitrate of tile l for chunk

i . This means that tiles which outside the predicted FoV should
have no higher bitrate since they are less likely to be viewed.
Temporal constraints: When the throughput is stable over the
optimization window (i.e., no significant increasing or decreasing
trend), all future chunks have the same streaming strategy (i.e.,
(ri ,ei ) = (ri ′ ,ei ′ ), where i and i ′ are any of the futurew chunks.

5 SYSTEM DESIGN
5.1 System Architecture
Fig. 7 shows two major components of our system. (i) the Client
side estimates the predicted FoV and network throughput, runs the
optimization, and generates requests accordingly, and (ii) the Server
side handles the video encoding (i.e., including spatially partitioning
into tiles and temporally splitting into layers) and stream data
according to the client requests.

The Client side runs the optimization, which takes the headmove-
ment prediction of the user, prediction error, playback buffer and
network throughput as the input and outputs the data that needs
to be requested next. The objective is to maximize the user QoE
while taking into account the network throughput and decoding
time of incoming data.

The red arrows in Fig. 7 indicate the complete process from video
chunk request generation to chunk playback.
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Figure 7: System Architecture

5.2 Server Side
Fig. 7 shows different modules of our server. We use the standard
equirectangular projection to store raw 360◦ frames, which is used
by YouTube [20]. There are other ways to store raw 360◦ frames
like cubemap [7] proposed by Facebook. The cubemap projection
tries to reduce the size of raw 360◦ video without degrading video
quality. Rubiks focuses on how to transmit tiles in the projected
360◦ frames. Projection methods can not speed up video decoding
since it does not reduce the video resolution which determines
decoding speed.

Video Layer Extractor and Video Tile Extractor divide the video
data spatially and temporally as described in Sec. 4. We use 36 tiles
and 4 layers in our implementation. We use an open-source HEVC
encoder kvazaar [14] for encoding. We let kvazaar restrict motion
compensation within video tiles such that each tile can be decoded
independently. Encoded video data is stored in a video database.

When the video request handler receives a request, it queries the
video database to find the requested tiles. The video database sends
the requested tiles to the tile merger to generate a merged chunk
for each layer. We spatially merge the independently decodable
tiles from the same layer into a video chunk file. The client can
decode the portion of 360◦ view covered by the tiles contained in
the merged video chunk. Since the client needs the size of video
tiles to optimize video requests, the video request handler sends
tile size as the meta-data before sending the encoded video data.

5.3 Client Side
As shown in Fig. 7, the client first predicts head movement, and uses
this information along with the network throughput to perform
360◦ video rate adaptation. Then it requests the corresponding
video from the server, decodes each layer, merges all layers, and
finally plays the resulting video. Next we describe each module.
Tracking and predicting head position: We need head move-
ment prediction to determine which part of the video the user is
going to view in the next few seconds. When watching a 360◦ video,
the user head position can be tracked using gyroscope, which is
widely available on smartphones. Note that, the head position esti-
mated from gyroscope readings is considered as the ground-truth



MobiSys ’18, June 10–15, 2018, Munich, Germany Jian He et al.

head position in our system. We can then use this head position to
get the center of FoV. X-axis can go from -180◦ to 180◦, Y-axis and
Z-axis can go from -90◦ to 90◦. Head movement exhibits strong
auto-correlation on small time scales [23]. So we use past head
motion to predict future head motion.

We collect head movement traces from 20 users for 10 videos,
each lasting around 30 seconds. We randomly select half of the
head movement traces as the training data and use the other half
for testing. Sampling interval of gyroscope measurements is set to
0.1 sec. We use least square to solve Y = AX , where X is the past
head movement and Y is the future movement. We learn A using
the training data X and Y . We apply the learned A and past head
movement X to predict the future movement Y . Moreover, we also
estimate the error of our head movement prediction using the least
square and use the error to determine additional tiles to request for
robustness. We train a separate model for each of the three axes. In
our evaluation, we use the past 1-second head movement to predict
the future 2-second movement. In our system, the time to predict
the head position and error is only 2ms.
Network throughput predictor: The client continuously mon-
itors the network throughput when downloading video data. It
records the network throughput in the previous 10-sec window,
and uses the harmonic-mean predictor [32] to predict the network
throughput in the next optimization window.
Video request optimizer : Given the predicted head position and
throughput, the optimization searches for the optimal decision.
The decision specifies the set of tiles to download from each layer
and their corresponding bitrates. We implement the optimization
routine using Android JNI since it is much faster than general Java.
The optimization window sizew is set to 3. Due to the small search
space, it can finish the optimization within 12ms on average.
Video downloader : It maintains HTTP connections with the
server to download video. The optimization results are used to
construct HTTP requests.
Video decoder : We exploit hardware-accelerated Android me-
dia codec to decode video data. Four parallel video decoders are
initialized before we start playing video. Note that four threads
are the maximum number of concurrent decoders we can run due
to limited hardware resource. Each video layer has one merged
video chunk file. So each decoder decodes all the requested tiles of
one layer. When decoding a video chunk file, the corresponding
video decoder will run decoding as a background thread, which is
implemented using Android AsyncTask. Decoding has to run in
the background to avoid blocking video playback in the UI thread.
Frame constructor : 360◦ frames are reconstructed based on down-
loaded tiles from each layer.
Video Player : 360◦ video frames constructed from the frame con-
structor are rendered through Android OPENGL ES, which uses
GPU to render video frames. The headmonitor tells the video player
which portion of the 360◦ should be displayed.

6 EVALUATION
We implement Rubiks as an Android app and run our experiments
on Samsung Galaxy S7 and Huawei Mate9. We show that Rubiks
can not only support 8K videos on smartphones, which is infeasible
for the existing tile based streaming approaches, but also enhances
user experience and saves bandwidth for both 4K and 8K videos.

6.1 Evaluation Methodology
In this section, we first introduce the experiment setup. Then, we
explain the experiment configuration.

6.1.1 Experiment Setup. We run our video server on a laptop
equipped with a wireless NIC Intel AC-8260. The client runs on
Samsung Galaxy S7 and Huawei Mate 9. We configure the laptop
as an access point such that the smartphone can have wireless
connections to the video server through WiFi. The smartphone
remains close (e.g. <1m) to the laptop such that it always has stable
wireless connections to the laptop. We use tc [15] to control the
throughput between the smartphone and laptop. For trace-driven
experiments, video player renders the video according to the user
FoV in the head movement traces. For user study, both head move-
ment prediction and FoV rendering are based on actual gyroscope
readings. We quantify the performance of Rubiks using the user
QoE as we vary the videos, head movement traces and network
throughput traces. We also examine individual terms in the QoE
metric, including video quality, video quality changes, rebuffering
and bandwidth savings.

6.1.2 Experiment Settings.

Video traces : We test the performance of our system for both 4K
and 8K videos. We download 16 videos from YouTube: eight 4K
videos and eight 8K videos. The resolution of 4K video is 3840×1920,
while the 8K resolution is 7680 × 3840. Each video is divided into
30 video chunks, where each chuck has 32 frames. For 4K videos, 4
of them have fast motion (e.g., videos of football games [1], roller
coaster [2], etc.), while the other 4 have slow motion (e.g., videos
of underwater scene [4], sailing [3], etc.). 8K videos have similar
motion characteristics.

A video chunk is further divided into 4 layers. Each layer divides
a 360◦ frame into 6×6 uniform tiles. For 4K videos, the resolution of
a video tile is 640 × 320. A video tile from 8K videos has resolution
1280 × 640. We use Quantization Parameter(QP) to specify the
encoding bitrate of videos. The QP value has options: 22, 27, 32, 37
and 42, recommended from the recent work [26].

Throughput traces : We select 10 throughput traces from the
dataset HSDPA [12] with varying throughput patterns. To ensure
sufficient throughput to support 4K and 8K videos, we scale up
the traces according to the bitrate of test videos. For 4K videos, we
scale the traces to have average throughput in the range 0.15MBps-
2.1MBps. For 8K, we scale to the range 3MBps-27MBps.

Head movement traces : We collect real head movement traces
when users watch our test 360◦ videos via a headset Samsung
Gear VR. For each video, we collect 20 head movement traces. We
randomly select half of the traces to learn the weights of the linear
predictor. The trained linear predictor is used by the head predictor
module to estimate head movement of users when watching a
360◦ video. We use the other half of traces as practical user head
movement behaviors to evaluate the performance of Rubiks.

Video quality metric : In our experiment results, we show actual
video quality via SSIM [45] since it has high correlation with actual
user QoE. It is defined as structural difference between the streamed
and actual FoV. A higher SSIM indicates higher user QoE.
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QoE weights : We set the weights in QoE definition as follows,
α = 1, β = 0.5 and γ = 1, which is a commonly used setting in the
existing works [36, 43, 47].

6.2 Micro Benchmarks
In this section, we quantify the head movement prediction error
and decoding time modeling error.

6.2.1 Head Movement Prediction Error. We want to understand
how head movement prediction error changes when we vary (i) the
future window in which to predict head movement, which is called
as prediction window, (ii) the algorithm used for prediction, and
(iii) the amount of historical information used for prediction. We
compare two algorithms: Neural Networks and Linear Regression.
In our analysis, we use 100 head movement traces, collected from 10
users by showing them 10 videos.We train themodel using 30% data
and test on 70% data. Only X and Y axis movement is considered
because most of the head movement is along these dimensions.

Figure 8(a) shows how the prediction error changes along the X
and Y axes when we vary the prediction window size. As expected,
the prediction error increases with the prediction window size.
For a 2-sec prediction window that we use, the average prediction
errors along the X and Y axes are 25◦ and 8◦, respectively, and
the 99th percentile errors are 60◦ and 20◦, respectively. Traditional
tile based streaming suffers from poor viewer quality experience
when the prediction error is very large, because the user sees either
black screen or waits for fetching of absent data, which incurs
rebuffering. In our traces, the maximum error along X-axis is 170◦
and along Y-axis is 69◦. However, using Rubiks, user can still see
the content outside the predicted FoV, so it is more robust to large
head movement prediction errors.
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Figure 8: Head Movement Prediction Analysis

We compare the linear regression with a non-linear modeling
tool: Neural Networks. We train a neural network with 3 hidden
layers and each layer contains 30 neurons. As shown in Figure 8(b),
there is no performance difference between Neural Networks and
Linear Regression. So we opt for linear regression for its simplicity.
We also vary the historical window size while fixing the prediction
window to 1 sec. We observe that past 0.5 seconds are enough to
predict the future head movement because head movements in
distant past are not highly correlated with future movement. The
distant head position variables are given low weights so we use
past 1 sec historical information.

6.2.2 Decoding Time Modeling. We evaluate how decoding time
is affected when we use different tile configurations. This helps
estimate the maximum number of tiles that can be decoded in time.
Moreover, we also quantify the accuracy of our model. We measure
the decoding time of eight 8K videos. It is not necessary to model
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decoding time for 4K videos, since all of our testing algorithms can
decode them in real time. For tile configurations, we decode all tiles
for the base layer. The number of tiles for each enhancement layer
can take any value from the list {9, 12, 16, 20, 25, 30}. The test videos
have 5 different bitrates. For a specific bitrate and tile configuration,
we run the decoding time experiments 3 tiles. We avoid measuring
the decoding time of tile configurations whose lower layers have
fewer tiles than higher layers since that is not practical.

Table 1 shows a few example entries in the decoding time lookup
table trained on Samsung S7 and Huawei Mate9. Note that, the tile
configuration tuple indicates the number of tiles from layer 2, 3 and
4, respectively. The number of tiles from layer 1 is fixed at 36. There
are 56 entries in the lookup table. We populate the lookup table by
averaging the decoding time across videos with the same bitrate
and tile configuration. We observe that the maximum number of
tiles which can be decoded in real time is (25, 20, 20). To evaluate
the impacts of new hardware on decoding time, we also include
the decoding time of Samsung S8 which is equipped more recent
hardware. We find that S8 has very similar decoding time as Mate9.
In Sec. 6.4, we will discuss that Rubiks has significant improvement
in video quality and bandwidth savings, compared with existing
state-of-the-art algorithms, in addition to speeding up decoding.

Tile Conf. 16,12,9 20,12,9 25,16,9 25,16,12 25,20,20
S7 0.71s 0.79s 0.91s 0.95s 1.05s

Mate9 0.68s 0.75s 0.87s 0.90s 1.03s
S8 0.66s 0.74s 0.85s 0.89s 1.02s

Table 1: Decoding Time Lookup Table

Fig. 9 shows the CDF of decoding time modeling error for the
configuration (25, 16, 12) in following cases: (1) applying the model
to the same video at the same bitrate, (2) applying the model to
the same video with a different bitrate, (3) applying the model to
a different video at the same bitrate, (4) applying the model to a
different video at a different bitrate. We build the lookup table from
one video to test the modeling accuracy across different videos. We
can see that 90th percentile error for all cases is less than 0.1sec.
To handle this modeling error, we inflate the decoding time by
0.1 sec when the optimization routine estimates rebuffering time
based on decoding time for a given strategy. Since cross-video and
cross-bitrate cases do not increase modeling error, we can populate
the lookup table with similar modeling error as shown in Fig. 9 by
measuring decoding time for a single bitrate and one 30-sec video.
Thus, it is easy to generate a lookup table for a new phone within
half an hour. We can generate decoding tables for different phones
and store them in app database. A user downloads all these tables
alongside the app, the app can then choose appropriate table based
on the user’s smartphone model.
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Figure 10: Performance of 4K videos(8 videos, 10 throughput traces, 80 head movement traces)
6.3 System Results
In this section, we evaluate our system. We compare it against the
following three baseline schemes: (i) YouTube [48]: Streaming the
360◦ as a single-tile video. (ii) FoV-only [39]: The video is divided
into 6×6 uniform tiles.We only stream tiles in the predicted FoV. (iii)
FoV+ [23]: We enlarge the predicted FoV to include the surrounding
parts according to the prediction error and stream the content in
the enlarged FoV.

6.3.1 Rubiks for 4K videos.

UserQoE: Fig. 10(a) shows on average Rubiks out-performs YouTube,
FoV-only and FoV+ by 14%, 69%, and 26%, respectively. All schemes
can decode 4K videos in real-time. Rubiks improves QoE over
YouTube because it reduces the amount of data to send and leads
to less rebuffering. Rubiks improves over FoV-only and FoV+ due to
its robustness to head movement prediction errors.

We test the performance of Rubiks on both Samsung S7 and
Huawei Mate 9. Because both phones can support real-time decod-
ing for 4K videos, the difference between QoE achieved by two
phones is within 1%, as shown in Fig. 10(a).
Rebuffering: Rubiks incurs less rebuffering time since it sends
much less data than YouTube. Fig. 10(d) shows that the average
rebuffering time of Rubiks and YouTube is 1.2 sec and 4.1 sec, re-
spectively. The reduction in rebuffering time accounts for most of
the QoE improvement in Rubiks.
Video Quality: Fig. 10(b) shows that the average video quality of
Rubiks, YouTube, FoV-only, and FoV+ are 0.97, 0.98, 0.7 and 0.84,
respectively. FoV-only is very vulnerable to prediction error because
only predicted FoV content is streamed. Even though FoV+ includes
extra data to improve robustness against prediction error, it is still
insufficient under large prediction error. In comparison, Rubiks does
not incur noticeable video quality degradation: its difference from
YouTube is only 0.01. This is because it streams the entire video
frames albeit at a lower quality for tiles outside predicted FoV.
VideoQualityChanges: Fig. 10(c) shows the video quality changes
is 0.15 and 0.28 for FoV-only and FoV+. The average quality changes
is around 0.01 for both Rubiks and YouTube. FoV-only and FoV+
have higher video quality changes whenever the prediction error
becomes large (e.g., the user looks at video portions that lie outside
the streamed content which leads to a large drop in viewing quality).
Sending tiles not included in predicted FoV at lower quality allows
Rubiks to avoid such a large drop in video quality.
Bandwidth Savings: Fig. 10(e) shows that for 4K videos Rubiks
saves 35% bandwidth compared with YouTube. Among them, 19%
bandwidth saving comes from Rubiks not sending all layers for
all tiles, 11% saving comes from Rubiks sending tiles outside the
predicted FoV at a lower rate, and 5% bandwidth saving comes from
our removal of I-frame in the other layers introduced in Section 4.1.

FoV-only and FoV+ save 56% and 41% bandwidth compared with
YouTube, respectively. The bandwidth saving of Rubiks is significant,
but lower than FoV and FoV+ since it streams entire video frames to
improve robustness to movement prediction error. We believe this
is a reasonable trade-off.
Low Throughput: Fig. 11 shows the benefits of Rubiks when
throughput is lower than the lowest video bitrate. All approaches
tend to select the lowest bitrate. YouTube has to send entire 360◦
frames, which results in larger rebuffering. The average QoE is
0.39, −0.52, 0.31 and 0.29 for Rubiks, YouTube, FoV-only and FoV+,
respectively. Compared with YouTube, Rubiks improves QoE by 0.9
due to significant reduction in rebuffering time. Even if YouTube
can support real-time decoding for 4K videos, reducing the amount
of data sent provides significant benefits for Rubiks when network
throughput is low. The average bandwidth savings of Rubiks, FoV,
and FoV+ are 39%, 61% and 48%, respectively.
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Figure 11: Performance of Rubiks under low throughput.

High-Motion Videos: Fig. 12 shows the benefits of Rubiks for high
motion videos, which are encoded with larger size. When the user
views high-motion tiles, there will be less chance to save bandwidth.
The average bandwidth savings of Rubiks is 24%. Rubiks improves
QoE by 16% on average over YouTube.
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Figure 12: Performance of Rubiks for high motion videos.

6.3.2 Rubiks for 8K Videos.
Next, we evaluate Rubiks for 8K videos. YouTube can not decode

8K video chunks timely. For Rubiks and FoV+, we use an upper
bound, derived from our decoding time model, to limit the number
of tiles sent to the client such that video chunks can be decoded
before the playback deadline.
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Figure 13: Performance of 8K videos(8 videos, 10 throughput
traces, 80 head movement traces)

QoE : Fig. 13(a) shows that Rubiks always achieves the best user
QoE. Rubiks out-performs YouTube, FoV-only and FoV+ by 36%, 40%
and 20% in QoE, respectively. Compared with 4K videos, Rubiks
achieves less QoE improvement over FoV-only for 8K videos due to
different video content and user head movement. Because YouTube
can not decode 8K video data in time, Rubiks achieves more QoE
improvement over YouTube for 8K videos than that for 4K videos.

The QoE of Rubiks on Huawei Mate9 is 2% higher than that
on Samsung S7. From the decoding time model, we can see that
Mate9 has slightly faster decoding speed than S7. Thus, Mate9 can
decode more tiles to provide higher robustness to head movement
prediction error, which results in slightly higher QoE for Mate9.
Rebuffering: Fig. 13(c) shows the rebuffering time. Overall average
rebuffering time of YouTube is 8.0 sec. Slow video decoding in
the YouTube approach results in 7.1 sec average rebuffering time.
The rest comes from throughput fluctuation during downloading.
This leads to large QoE degradation. Rubiks, FoV and FoV+ incur
average rebuffering time in range 0.2-0.3 sec, which is very small
when compared to YouTube. About 0.01 sec of average rebuffering
time for Rubiks comes from inaccurate decoding time modeling.
Compared with 4K videos, speeding up video decoding helps Rubiks
achieve a larger reduction in rebuffering, which translates to a
higher QoE improvement over YouTube.
Quality and Quality Changes: We observe similar video quality
and video quality changes patterns as 4K videos. The average video
quality is 0.96, 0.98, 0.79 and 0.87 for Rubiks, YouTube, FoV-only and
FoV+, respectively. Compared with 4K videos, FoV-only achieves
higher video quality due to slightly better head movement pre-
diction. Nevertheless, Rubiks still significantly out-performs both
FoV-only and FoV+. Moreover, FoV-only and FoV+ experience 0.21
and 0.13 quality changes, which is larger than the other approaches
due to movement prediction error, whereas, for Rubiks, it is 0.02.
Bandwidth Savings: Fig. 13(d) shows that Rubiks, FoV-only and
FoV+ save 49%, 66%, and 54% bandwidth, respectively, compared
with YouTube. The encoded file size difference between two con-
secutive bitrates for 8K videos is larger than that in 4K videos. This
means when we switch between bitrates in 8K videos, there is a

larger difference in the amount of data when compared to 4K. So
Rubiks yields larger bandwidth savings for 8K videos.
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Figure 14: User Rating.

6.3.3 User Study. To evaluate whether our QoE metric can cap-
ture actual user experience, we conduct extensive user study. In
our experiments, we let users view videos when running different
algorithms and ask them to rate the quality with scores in range 1-5,
where 1 corresponds to worst quality and 5 for best. We compare
algorithms YouTube, FoV+ and Rubiks but omit FoV-only due to its
low QoE. We randomly shuffle the order of algorithms shown to
the user for each experiment. We select two 4K videos and two 8K
videos, one with fast motion and one with slow. For each video and
algorithm, we run each experiment 3 times. 30 students participate
in our user study, including 12 females and 18 males. Their ages
range from 20 to 35. User watches the video in a standing position
while wearing a mobile VR headset. Video data is transmitted to a
smartphone through WiFi. We select one throughput trace whose
average value is close to the median video bitrate.

Fig. 14 shows the average user rating for each video category.
For 4K videos, the average rating is 4.6 and 4.5 for Rubiks and
YouTube, respectively. Both algorithms achieve an average video
SSIM of 0.98. Rubiks has no rebuffering, but YouTube has 0.2 sec
rebuffering on average, which results in slightly lower rating. For
8K videos, Rubiks gets an average rating of 4.5, while YouTube gets
1.8, much lower than Rubiks, due to large rebuffering resulting from
slow decoding. The average rebuffering for Rubiks and YouTube
is 0.1 sec and 7.3 sec, respectively. The average rating of FoV+ is
3.0 due to blank areas resulting from head movement prediction
error. The average video SSIM for FoV+ is 0.80, while that for other
algorithms is 0.97. These results demonstrate that Rubiks achieves
similar video quality for all video categories and significant QoE
improvement for 8K videos compared with YouTube. Moreover,
Rubiks has obvious QoE improvement from FoV+ due to robustness
to head movement prediction error.

6.3.4 Energy Consumption. We use the Google battery historian
tool [21] to monitor the energy consumption of our system. We
stream multiple 4K and 8K videos using various algorithms and
record the energy consumption in each experiment, where each
video lasts for 5 minutes. Table 2 shows the average total energy
consumption across videos for each algorithm. Both FoV-only and
FoV+ consume up to 33% less energy than YouTube and Rubiks since
they decode fewer tiles at the expense of much worse video quality.
On average, Rubiks consumes 9% and 19% less energy than YouTube
for 4K and 8K videos, respectively. This is because Rubiks does not
decode all video tiles and takes shorter time to finish decoding than
YouTube. When the decoder finishes decoding one chunk, it will
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go to the idle state before the next chunk is ready to decode. As we
would expect, all algorithms consume more energy in decoding the
8K video than the 4K video.

YouTube Rubiks FoV-only FoV+

4K(S7) 43.4mAh 39.8mAh 30.3mAh 34.5mAh
4K(Mate9) 41.9mAh 37.6mAh 29.2mAh 32.1mAh
8K(S7) 93.7mAh 76.2mAh 62.4mAh 68.6mAh

8K(Mate9) 91.8mAh 75.5mAh 61.7mAh 65.2mAh
Table 2: Energy Consumption.

6.4 Summary and Discussion of Results
Our main findings can be summarized as follow:
• Rubiks achieves significant QoE improvement due to reduc-
tion in rebuffering time and enhanced robustness against
head movement prediction error.
• Rubiks saves substantial bandwidth by sending video tiles
with a lower viewing probability at a lower quality.
• Users give higher ratings to Rubiks due to smaller rebuffering
or higher video quality.

Though we evaluate Rubiks’s performance over a few smart-
phones, techniques employed in Rubiks can improve the perfor-
mance of streaming 360◦ videos on any smartphone hardware
platform. In addition to speeding up the decoding process, it gives
the following benefits:
• Rubiks is more robust to head movement prediction errors
even if decoding is fast. Compared with the existing state-
of-art tile based streaming approaches FoV-only and FoV+,
Rubiks improves video quality by 38% and 15% for 4K videos.
The improvement is 22% and 10% for 8K videos. Note that,
both FoV-only and FoV+ can decode all 4K and 8K videos
in real time. Thus, even if decoding is fast, the current tile
based streaming approaches are not robust enough to head
movement prediction errors.
• Rubiks needs much less bandwidth to achieve high video
quality. Compared with YouTube, Rubiks saves 35% band-
width for 4K videos, while achieving similar average video
quality (0.97 in Rubiks and 0.98 in YouTube).

7 RELATEDWORK
Video Streaming: There has been lots of recent works on video
streaming under limited and fluctuating network throughput [22,
30, 32, 33, 36, 37, 47]. These works try to maximize the user QoE,
which can be defined using multiple metrics: video bitrate, bitrate
changes between successive chunks and rebuffering. Yin et al. [47]
propose an MPC-based optimization framework for video stream-
ing. It casts the problem as an utility optimization, where the utility
is defined as the weighted sum of the above metrics for the fu-
ture K video chunks. FESTIVE [32] balances both stability and
efficiency, and provides fairness among video players by perform-
ing randomized chunk scheduling and bitrate selection of future
chunks. Pensieve [36] trains a neural network that selects the bi-
trate of future chunks based on the performance data collected from
video players. However, none of these works consider 360◦ video
content streaming.
360◦ video Streaming: Recently, there have been some works tar-
geting 360◦ video content streaming. In 360◦ videos, a user looks

at only some portion of the video at any given time so there is an
opportunity to save bandwidth without sacrificing quality. Qian
et al. [39] propose a scheme that divides an entire 360◦ frame into
several smaller rectangular tiles and only streams the tiles that
overlap with predicted FoV. This approach can lead to rebuffering
or blank screen in case of inaccurate head movement prediction.
Hosseini et al. [29] propose an approach where the video is divided
into multiple tiles and the tiles that are more likely to be viewed are
streamed earlier. Bao et al. [23] propose an optimization framework
that takes into account the head movement prediction error and
requests some additional tiles to account for the prediction error.
However, none of these approaches were implemented on smart-
phones. So it is not clear about the feasibility and performance of
these existing approaches on smartphones. POI360 [46] proposes
adapting compression ratio of video tiles according to network
throughput, but it still suffers from slow decoding since the en-
coded rate of tiles does not affect decoding time. Moreover, POI360
is not implemented using video codecs available on commercial
smartphones. Recently, Liu et al. [34] propose using SVC for 360◦
videos. However, SVC is currently not supported on smartphones,
so they do not have a real implementation.

Video Encoding Schemes: There have been many works (e.g., [25,
28, 31, 35, 41, 44]) on video encoding where some parts of the video
are encoded at a higher bitrate, commonly referred to as Region of
Interest (ROI) while other parts are encoded at a lower bitrate. This
is only done for regular videos to account for the fact that some
regions of the video contain more critical or useful information
and should be encoded at a higher bitrate. This encoding is not
suitable for 360◦ since the user can change FoV. So this does not
scale because one has to handle large number of possible ROIs. Some
works [27, 38, 40] try to use SVC to encode ROI with high quality.
These works focus on optimizing user experience by exploiting SVC
to reduce transmission delay, increase region of interest quality and
avoid rebuffering.

Our work is inspired by these works, but differs from them in
that our work targets specifically 360◦ and incorporates tile-based
codingwith layered coding to achieve efficient decoding, bandwidth
saving, and robustness against prediction error.

8 CONCLUSION
In this work, we develop a novel tile-based layered streaming frame-
work to tackle practical limitations of streaming 360◦ videos to
smartphones. Rubiks divides 360◦ video chunks into spatial tiles
and temporal layers. The layered design (i) enables real-time 360◦
video decoding by managing the number of layers sent for different
tiles, (ii) accommodates head movement prediction error by stream-
ing entire 360◦ frames and sending different portions at different
quality, (iii) saves bandwidth by streaming the portion in the FoV
at a higher quality while streaming the other parts at lower quality,
and (iv) optimizes video quality by searching for an appropriate
bitrate and the number of tiles given the predicted user’s head
movement and network condition. Through trace-driven system
experiments and user study, we demonstrate the effectiveness of
Rubiks. Moving forward, we plan to improve head movement pre-
diction and also develop live 360◦ streaming service, which is more
sensitive to transmission delay.



Rubiks MobiSys ’18, June 10–15, 2018, Munich, Germany

REFERENCES
[1] 2017. 360-Degree Football Game Video. (2017). https://www.youtube.com/

watch?v=E0HUVPM_A00
[2] 2017. 360-Degree Rollercoaster Video. (2017). https://www.youtube.com/watch?

v=8lsB-P8nGSM
[3] 2017. 360-Degree Sailing Video. (2017). https://www.youtube.com/watch?v=IJ_

CwOFTZyM
[4] 2017. 360-Degree Shark Encounter Video. (2017). https://www.youtube.com/

watch?v=rG4jSz_2HDY&t=15s
[5] 2017. Android Supported Media Formats. (2017). https://developer.android.com/

guide/topics/media/media-formats.html
[6] 2017. Cisco Visual Networking Index Report. (2017). http://www.cisco.com/

c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html

[7] 2017. Facebook Cubemap for 360 Degree Videos.
(2017). https://code.facebook.com/posts/1126354007399553/
next-generation-video-encoding-techniques-for-360-video-and-vr/

[8] 2017. Google Cardboard. (2017). https://store.google.com/us/product/google_
cardboard

[9] 2017. H264. (2017). https://www.itu.int/rec/T-REC-H.264
[10] 2017. HEVC. (2017). https://www.itu.int/rec/T-REC-H.265
[11] 2017. HEVC Transform and Quantization. (2017). https://link.springer.com/

chapter/10.1007/978-3-319-06895-4_6
[12] 2017. HSDPA TCP dataset. (2017). http://home.ifi.uio.no/paalh/dataset/

hsdpa-tcp-logs/
[13] 2017. HTC Vive. (2017). https://www.vive.com
[14] 2017. Kvazaar. (2017). https://github.com/ultravideo/kvazaar
[15] 2017. LINUX tc. (2017). https://linux.die.net/man/8/tc
[16] 2017. Oculus. (2017). https://www.oculus.com
[17] 2017. Samsung Gear VR. (2017). http://www.samsung.com/us/mobile/

virtual-reality/gear-vr
[18] 2017. Video Codec Hardware Acceleration. (2017). https://trac.ffmpeg.org/wiki/

HWAccelIntro
[19] 2017. VR/AR Market. (2017). http://www.digi-capital.com/news/2017/01/

after-mixed-year-mobile-ar-to-drive-108-billion-vrar-market-by-2021
[20] 2017. YouTube Encoder Settings for 360 Degree Videos. (2017). https://support.

google.com/youtube/answer/6396222?hl=en
[21] 2018. Google Battery Historian Tool. (2018). https://github.com/google/

battery-historian
[22] Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and Ali C.

Begen. 2013. Server-based Traffic Shaping for Stabilizing Oscillating Adaptive
Streaming Players. In Proceeding of the 23rd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV ’13). ACM, New
York, NY, USA, 19–24. https://doi.org/10.1145/2460782.2460786

[23] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. 2016. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE
International Conference on Big Data (Big Data). 1161–1170. https://doi.org/10.
1109/BigData.2016.7840720

[24] A. Bjelopera and S. GrgiÄĞ. 2012. Scalable video coding extension of H.264/AVC.
In Proceedings ELMAR-2012. 7–12.

[25] H. Chen, G. Braeckman, S. M. Satti, P. Schelkens, and A. Munteanu. 2013. HEVC-
based video coding with lossless region of interest for telemedicine applications.
In 2013 20th International Conference on Systems, Signals and Image Processing
(IWSSIP). 129–132. https://doi.org/10.1109/IWSSIP.2013.6623470

[26] Mario Graf, Christian Timmerer, and Christopher Mueller. 2017. Towards Band-
width Efficient Adaptive Streaming of Omnidirectional Video over HTTP: Design,
Implementation, and Evaluation. In Proceedings of the 8th ACM on Multimedia
Systems Conference. ACM, 261–271.

[27] D. Grois, E. Kaminsky, and O. Hadar. 2010. ROI adaptive scalable video coding
for limited bandwidth wireless networks. In 2010 IFIP Wireless Days. 1–5. https:
//doi.org/10.1109/WD.2010.5657709

[28] I. Himawan, W. Song, and D. Tjondronegoro. 2012. Impact of Region-of-Interest
Video Coding on Perceived Quality in Mobile Video. In 2012 IEEE International
Conference on Multimedia and Expo. 79–84. https://doi.org/10.1109/ICME.2012.
126

[29] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive 360 VR
Video Streaming: Divide and Conquer! CoRR abs/1609.08729 (2016). http:
//arxiv.org/abs/1609.08729

[30] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. 2014. A Buffer-based Approach to Rate Adaptation: Evidence from

a Large Video Streaming Service. In Proceedings of the 2014 ACM Conference
on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 187–198. https:
//doi.org/10.1145/2619239.2626296

[31] A. Jerbi, Jian Wang, and S. Shirani. 2005. Error-resilient region-of-interest video
coding. IEEE Transactions on Circuits and Systems for Video Technology 15, 9 (Sept
2005), 1175–1181. https://doi.org/10.1109/TCSVT.2005.852619

[32] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Effi-
ciency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE.
In Proceedings of the 8th International Conference on Emerging Networking Ex-
periments and Technologies (CoNEXT ’12). ACM, New York, NY, USA, 97–108.
https://doi.org/10.1145/2413176.2413189

[33] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. 2014. Probe and
Adapt: Rate Adaptation for HTTP Video Streaming At Scale. IEEE Journal on
Selected Areas in Communications 32, 4 (April 2014), 719–733. https://doi.org/10.
1109/JSAC.2014.140405

[34] Xing Liu, Qingyang Xiao, Vijay Gopalakrishnan, Bo Han, Feng Qian, and Matteo
Varvello. 2017. 360Âř Innovations for Panoramic Video Streaming. In Proc. of
HotNets. 50–56.

[35] Y. Liu, Z. G. Li, and Y. C. Soh. 2008. Region-of-Interest Based Resource Allocation
for Conversational Video Communication of H.264/AVC. IEEE Transactions
on Circuits and Systems for Video Technology 18, 1 (Jan 2008), 134–139. https:
//doi.org/10.1109/TCSVT.2007.913754

[36] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). ACM, New York,
NY, USA, 197–210. https://doi.org/10.1145/3098822.3098843

[37] C. Mueller, S. Lederer, J. Poecher, and Ch. Timmerer. 2013. libdash - An Open
Source Software Library for the MPEG-DASH Standard. In Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME) 2013, San Jose, USA.
pp. 1–2.

[38] J. R. Ohm. 2005. Advances in Scalable Video Coding. Proc. IEEE 93, 1 (Jan 2005),
42–56. https://doi.org/10.1109/JPROC.2004.839611

[39] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Optimizing 360
Video Delivery over Cellular Networks. In Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges (ATC ’16). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/2980055.2980056

[40] T. Schierl, T. Stockhammer, and T. Wiegand. 2007. Mobile Video Transmission
Using Scalable Video Coding. IEEE Transactions on Circuits and Systems for Video
Technology 17, 9 (Sept 2007), 1204–1217. https://doi.org/10.1109/TCSVT.2007.
905528

[41] P. Sivanantharasa, W. A. C. Fernando, and H. K. Arachchi. 2006. Region of
Interest Video Coding with Flexible Macroblock Ordering. In First International
Conference on Industrial and Information Systems. 596–599. https://doi.org/10.
1109/ICIIS.2006.365798

[42] Thomas Stockhammer. 2011. Dynamic adaptive streaming overHTTP–: standards
and design principles. In Proceedings of the second annual ACM conference on
Multimedia systems. ACM, 133–144.

[43] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, NanshuWang, Tao Liu,
and Bruno Sinopoli. 2016. Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction. In Proceedings of the 2016 conference on
ACM SIGCOMM 2016 Conference. ACM, 272–285.

[44] N. Tsapatsoulis, C. Loizou, and C. Pattichis. 2007. Region of Interest Video Coding
for Low bit-rate Transmission of Carotid Ultrasound Videos over 3G Wireless
Networks. In 2007 29th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society. 3717–3720. https://doi.org/10.1109/IEMBS.2007.
4353139

[45] Zhou Wang, Ligang Lu, and Alan C Bovik. 2004. Video quality assessment based
on structural distortion measurement. Signal processing: Image communication
19, 2 (2004), 121–132.

[46] Xiufeng Xie and Xinyu Zhang. 2017. POI360: Panoramic Mobile Video Telephony
over LTE Cellular Networks. In Proceedings of the 13th International Conference
on emerging Networking EXperiments and Technologies. ACM, 336–349.

[47] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15). ACM, New York, NY, USA, 325–338. https:
//doi.org/10.1145/2785956.2787486

[48] Chao Zhou, Zhenhua Li, and Yao Liu. 2017. A measurement study of oculus 360
degree video streaming. In Proceedings of the 8th ACM on Multimedia Systems
Conference. ACM, 27–37.

https://www.youtube.com/watch?v=E0HUVPM_A00
https://www.youtube.com/watch?v=E0HUVPM_A00
https://www.youtube.com/watch?v=8lsB-P8nGSM
https://www.youtube.com/watch?v=8lsB-P8nGSM
https://www.youtube.com/watch?v=IJ_CwOFTZyM
https://www.youtube.com/watch?v=IJ_CwOFTZyM
https://www.youtube.com/watch?v=rG4jSz_2HDY&t=15s
https://www.youtube.com/watch?v=rG4jSz_2HDY&t=15s
https://developer.android.com/guide/topics/media/media-formats.html
https://developer.android.com/guide/topics/media/media-formats.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.facebook.com/posts/1126354007399553/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://store.google.com/us/product/google_cardboard
https://store.google.com/us/product/google_cardboard
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.265
https://link.springer.com/chapter/10.1007/978-3-319-06895-4_6
https://link.springer.com/chapter/10.1007/978-3-319-06895-4_6
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
https://www.vive.com
https://github.com/ultravideo/kvazaar
https://linux.die.net/man/8/tc
https://www.oculus.com
http://www.samsung.com/us/mobile/virtual-reality/gear-vr
http://www.samsung.com/us/mobile/virtual-reality/gear-vr
https://trac.ffmpeg.org/wiki/HWAccelIntro
https://trac.ffmpeg.org/wiki/HWAccelIntro
http://www.digi-capital.com/news/2017/01/after-mixed-year-mobile-ar-to-drive-108-billion-vrar-market-by-2021
http://www.digi-capital.com/news/2017/01/after-mixed-year-mobile-ar-to-drive-108-billion-vrar-market-by-2021
https://support.google.com/youtube/answer/6396222?hl=en
https://support.google.com/youtube/answer/6396222?hl=en
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://doi.org/10.1145/2460782.2460786
https://doi.org/10.1109/BigData.2016.7840720
https://doi.org/10.1109/BigData.2016.7840720
https://doi.org/10.1109/IWSSIP.2013.6623470
https://doi.org/10.1109/WD.2010.5657709
https://doi.org/10.1109/WD.2010.5657709
https://doi.org/10.1109/ICME.2012.126
https://doi.org/10.1109/ICME.2012.126
http://arxiv.org/abs/1609.08729
http://arxiv.org/abs/1609.08729
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1109/TCSVT.2005.852619
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/JSAC.2014.140405
https://doi.org/10.1109/TCSVT.2007.913754
https://doi.org/10.1109/TCSVT.2007.913754
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1109/JPROC.2004.839611
https://doi.org/10.1145/2980055.2980056
https://doi.org/10.1109/TCSVT.2007.905528
https://doi.org/10.1109/TCSVT.2007.905528
https://doi.org/10.1109/ICIIS.2006.365798
https://doi.org/10.1109/ICIIS.2006.365798
https://doi.org/10.1109/IEMBS.2007.4353139
https://doi.org/10.1109/IEMBS.2007.4353139
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/2785956.2787486

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Streaming Framework
	2.2 H.264 and HEVC Codecs
	2.3 Scalable Video Coding

	3 Motivation
	3.1 Real-Time Media Codecs
	3.2 Limitations of Existing Approaches
	3.3 Insights From Existing Approaches

	4 Our Approach
	4.1 Video Encoding
	4.2 360 Video Rate Adaptation

	5 System Design
	5.1 System Architecture
	5.2 Server Side
	5.3 Client Side

	6 Evaluation
	6.1 Evaluation Methodology
	6.2 Micro Benchmarks
	6.3 System Results
	6.4 Summary and Discussion of Results

	7 Related Work
	8 Conclusion
	References

