
CMPT 705 — Design and Analysis of Algorithms

Exercises on PSPACE and Randomization. Due: Tuesday, Novem-
ber 15th (at the beginning of the class)

Reminder: the work you submit must be your own. Any collaboration and consulting outside
resources must be explicitly mentioned on your submission.

1. Let us consider a special case of Quantified 3-SAT in which the underlying Boolean formula
has no negated variables. Specifically, let Φ(x1, . . . , xn) be a Boolean formula of the form
C1 ∧ . . . ∧ Ck, where each Ci is a disjunction of three terms. We say Φ is monotone if each
term in each clause consists of a nonnegated variable, that is, each term is equal to xi, for
some i rather than ¬xi.
We define Monotone QSAT to be the decision problem

∃x1∀x2 . . . ∃xn−2∀xn−1∃xnΦ(x1, . . . , xn)?

where the formula Φ is monotone.

Do one of the following two things: (a) prove that Monotone QSAT is PSPACE-complete by
reducing Quantified 3-SAT to it; or (b) give an algorithm to solve an arbitrary instance of
Monotone QSAT that runs in time polynomial in n.

2. Prove that deciding if the first player in the Geography game on graphs (see lecture slides)
has a forced win is PSPACE-complete.

3. Let G = (V,E) be an undirected graph with n nodes and m edges. For a subset X ⊆ V , we
use G[X] to denote the subgraph induced on X — that is the graph whose node set is X and
whose edge set consists of all edges of G for which both ends lie in X.

We are given a natural number k ≤ n and are interested in finding a set of k nodes that
induces a ‘dense’ subgraph of G; we will phrase this concretely as follows. Give a polynomial
time algorithm that produces, for a given natural number k ≤ n, a set X ⊆ V of k nodes
with the property that the induced subgraph G[X] has at least mk(k−1)

n(n−1) edges.

You may give either (a) a deterministic algorithm, or (b) a randomized algorithm that has
an expected running time that is polynomial, and that only outputs correct answers.

4. Suppose we have a system with n processes. Certain pairs of processes are in conflict, meaning
that they both require access to a shared resource. In a given time interval, the goal is to
schedule a large subset S of the processes to run — the rest will remain idle — so that no two
conflicting processes are both in the scheduled set S. We will call such a set S conflict-free.

One can picture this process in terms of a graph G = (V,E) with a node representing each
process and an edge joining pairs of processes that are in conflict. It is easy to check that a set
of processes is conflict-free if and only if it forms an independent set in G. This suggests that
finding a maximum size conflict-free set S, for an arbitrary graph G, will be difficult (since the
general Independent Set problem is reducible to this problem). Nevertheless, we can still look
for heuristics that find a reasonably large conflict-free set. Moreover, we would like a simple

1



method for achieving this without centralized control: Each process should communicate with
only a small number of other processes and then decide whether or not it should belong to
the set S.

We will suppose for purposes of this question that each node has exactly d neighbors in the
graph G. (That is, each process is in conflict with exactly d other processes.)

(a) Consider the following simple protocol.

Each process Pi independently picks a random value xi; it sets xi to 1 with probability 1
2 and

sets xi to 0 with probability 1
2 . It then decides to enter the set S if and only if it chooses the

value 1, and each of the processes with which it is in conflict chooses the value 0.

Prove that the set S resulting from the execution of this protocol is conflict free. Also give a
formula for the expected size of S in terms of n (the number of processes) and d (the number
of conflicts per process).

(b) The choice of the probability 1
2 in the protocol above was fairly arbitrary, and it is not

clear that it should give the best system performance. A more general specification of the
protocol would replace the probability 1

2 by a parameter p between 0 and 1, as follows.

Each process Pi independently picks a random value xi; it sets xi to 1 with probability p and
sets xi to 0 with probability 1− p. It then decides to enter the set S if and only if it chooses
the value 1, and each of the processes with which it is in conflict chooses the value 0.

In terms of the parameters of the graph G, give a value of p so that the expected size of the
resulting set S is as large as possible. Give a formula for the expected size of S when p is set
to this optimal value.

2


