
22  www.aiche.org/cep  June 2018  CEP

On the Horizon

The ancient Chinese game of Go has more possible
moves than the number of atoms in the universe.
Unlike chess, Go cannot be won using brute-force

computing power to analyze a lot of moves — there are
just too many possibilities. And, unlike chess, strategies for
winning Go cannot be meaningfully codified by rules: its
principles are mysterious. In some cultures, Go is seen as a
way for humans to connect with the divine via instances of
intuition, by “knowing without knowing how you know.”
	 Experts believed that computers would not be able to
defeat top human players at Go for decades, if ever. But in
2016, a computer program called AlphaGo defeated Lee
Sedol, the legendary world champion of Go (1). During the
games, AlphaGo played highly inventively, making moves
that no human ever would, and defeated the 18-time world
champion four games to one.
	 AlphaGo is an artificial intelligence (AI) program built
using deep learning technologies. From self-driving cars to
lawyer-bots (2), deep learning is fueling what many believe

will be the biggest technology revolution the world has seen.
“Just as electricity transformed almost everything 100 years
ago, I actually have a hard time thinking of an industry that
I don’t think AI will transform in the next several years,”
says Andrew Ng, who has held positions as Director of the
Stanford AI Lab, Chief Scientist of Baidu, and Founder of
Google Brain.
	 Chemical engineers routinely use computers for model-
ing, simulation, design, and optimization of chemical pro-
cesses. Typically, the computational methods are numerical
algorithms (i.e., regression, statistics, differential equations,
etc.) performed with software tools like Excel, MatLab,
AspenPlus, CHEMCAD, COMSOL Multiphysics, etc. All
of these methods and tools are applications of well-known
chemical engineering principles, which the engineer com-
bines and applies intelligently to solve high-level problems.
Could computers do more than mere computation and some-
day solve high-level problems like a chemical engineer?

“The vision is that you’ll be able to walk up to a system

Although deep learning, a branch of
artificial intelligence, has become prominent

only recently, it is based on concepts that are familiar
to chemical engineers. This article describes
artificial neural networks — the algorithms

that enable deep learning.

Amit Gupta
AIChE

Introduction to
Deep Learning: Part 1

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

CEP  June 2018  www.aiche.org/cep  23

and say, ‘I want to make this molecule.’ The software will
tell you the route you should make it from, and the machine
will make it,” says Klavs Jensen, the Warren K. Lewis
Professor of Chemical Engineering at MIT (3). His research
uses deep learning to identify a pathway to transform a set
of available reactants into a target compound (4). Outside
academia, deep learning is already being used by practicing
engineers to solve a whole range of previously intractable
problems and may become as valuable as Excel to chemical
engineers in the future.

What is deep learning?
	 Artificial intelligence is the capability of a machine to
imitate intelligent human behavior (Figure 1). Machine
learning (ML) is a branch of AI that gives computers the
ability to “learn” — often from data — without being
explicitly programmed. Deep learning is a subfield of
ML that uses algorithms called artificial neural networks
(ANNs), which are inspired by the structure and function of
the brain and are capable of self-learning. ANNs are trained
to “learn” models and patterns rather than being explicitly
told how to solve a problem.
	 The building block of an ANN is called the perceptron,
which is an algorithm inspired by the biological neuron
(5). Although the perceptron was invented in 1957, ANNs
remained in obscurity until just recently because they
require extensive training, and the amount of training to
get useful results exceeded the computer power and data
sizes available.
	 To appreciate the recent increase in computing power,
consider that in 2012 the Google Brain project had to use a
custom-made computer that consumed 600 kW of electricity
and cost around $5,000,000. By 2014, Stanford AI Lab was
getting more computing power by using three off-the-shelf
graphics processing unit (GPU)-accelerated servers that each
cost around $33,000 and consumed just 4 kW of electricity.
Today, you can buy a specialized Neural Compute Stick that
delivers more than 100 gigaflops of computing performance
for $80.

The perceptron
	 The average human brain has approximately 100 billion
neurons. A human neuron uses dendrites to collect inputs
from other neurons, adds all the inputs, and if the resulting
sum is greater than a threshold, it fires and produces an out-
put. The fired output is then sent to other connected neurons
(Figure 2).
	 A perceptron is a mathematical model of a biological
neuron (6). Just like a real neuron, it receives inputs and
computes an output. Each input has an associated weight.
All the inputs are individually multiplied by their weights,
added together, and passed into an activation function that
determines whether the neuron should fire and produce an
output (Figure 3).
	 There are many different types of activation functions
with different properties, but one of the simplest is the
step function (7). A step function outputs a 1 if the input is
higher than a certain threshold, otherwise it outputs a 0. For
example, if a perceptron has two inputs (x1 and x2):
	 x1 = 0.9
	 x2 = 0.7
which have weightings (w1 and w2) of:
	 w1 = 0.2
	 w2 = 0.9

p Figure 2. A human neuron collects inputs from other neurons using
dendrites and sums all the inputs. If the total is greater than a threshold
value, it produces an output.

p Figure 3. A perceptron is a mathematical model of a neuron. It receives
weighted inputs, which are added together and passed to an activation
function. The activation function decides whether it should produce
an output.

t Figure 1. Machine
learning is a branch

of artificial intel-
ligence that gives
computers the
ability to learn
without being
programmed.

Deep learning is a
subfield of machine

learning.

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

24  www.aiche.org/cep  June 2018  CEP

On the Horizon

and the activation function threshold is equal to 0.75, then
weighing the inputs and adding them together yields:

x1w1 + x2w2 = (0.9×0.7) + (0.2×0.9) = 0.81

	 Because the total input is higher than the threshold
(0.75), the neuron will fire. Since we chose a simple step
function, the output would be 1.
	 So how does all this lead to intelligence? It starts with
the ability to learn something simple through training.

Training a perceptron
	 Training a perceptron involves feeding it multiple train-
ing samples and calculating the output for each of them.
After each sample, the weights are adjusted to minimize the
output error, usually defined as the difference between the
desired (target) and the actual outputs (Figure 4).
	 By following this simple training algorithm to update
weights, a perceptron can learn to perform binary linear

classification. For example, it can learn to separate dogs
from cats given size and domestication data, if the data are
linearly classifiable (Figure 5).
	 The perceptron’s ability to learn classification is signifi-
cant because classification underlies many acts of intel-
ligence. A common example of classification is detecting
spam emails. Given a training dataset of spam-like emails
labeled as “spam” and regular emails labeled as “not-spam,”
an algorithm that can learn characteristics of spam emails
would be very useful. Similarly, such algorithms could
learn to classify tumors as cancerous or benign, learn your
music preferences and classify songs as “likely-to-like” and
“unlikely-to-like,” or learn to distinguish normally behaving
valves from abnormally behaving valves (8).
	 Perceptrons are powerful classifiers. However, individu-
ally they can only learn linearly classifiable patterns and are
unable to handle nonlinear or more complicated patterns.

Multilayer perceptrons
	 A single neuron is capable of learning simple patterns,
but when many neurons are connected together, their abili-
ties increase dramatically. Each of the 100 billion neurons in
the human brain has, on average, 7,000 connections to other
neurons. It has been estimated that the brain of a three-year-
old child has about one quadrillion connections between
neurons. And, theoretically, there are more possible neural
connections in the brain than there are atoms in the universe.
	 A multilayer perceptron (MLP) is an artificial neural
network with multiple layers of neurons between input and
output. MLPs are also called feedforward neural networks.
Feedforward means that data flow in one direction from the
input to the output layer. Typically, every neuron’s output
is connected to every neuron in the next layer. Layers that
come between the input and output layers are referred to as
hidden layers (Figure 6).
	 MLPs are widely used for pattern classification, recogni-
tion, prediction, and approximation, and can learn compli-
cated patterns that are not separable using linear or other

∑

1

x1

x2

xm

w0

w1

w2

wm

Output

Net Input
Function

Activation
Function

Update Weights
Error

p Figure 4. To train a perceptron, the weights are adjusted to minimize
the output error. Output error is defined as the difference between the
desired output and the actual output.

1

S
iz

e

Domestication

S
iz

e

Domestication
2

3

S
iz

e

Domestication

S
iz

e

Domestication
4

p Figure 5. A perceptron can learn to separate dogs and cats given
size and domestication data. As more training examples are added, the
perceptron updates its linear boundary.

Input
Signal

Output
Layer

Output
Signal

Input
Layer

First
Hidden
Layer

Second
Hidden
Layer

p Figure 6. A multilayer perceptron has multiple layers of neurons
between the input and output. Each neuron’s output is connected to every
neuron in the next layer.

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

CEP  June 2018  www.aiche.org/cep  25

easily articulated curves. The capacity of an MLP network
to learn complicated patterns increases with the number of
neurons and layers (Figure 7).
 	 MLPs have been successful at a wide range of AI tasks,
from speech recognition (9) to predicting thermal conductiv-
ity of aqueous electrolyte solutions (10) and controlling a
continuous stirred-tank reactor (11). For example, an MLP
for recognizing printed digits (e.g., the account and rout-
ing number printed on a check) would be comprised of a
grid of inputs to read individual pixels of digits (say, a 9×12
bitmap), followed by one or more hidden layers, and finally
10 output neurons to indicate which number was recognized
in the input (0–9) (Figure 8).
	 Such an MLP for recognizing digits would typically
be trained by showing it images of digits and telling it
whether it recognized them correctly or not. Initially, the
MLP’s output would be random, but as it is trained, it will
adjust weights between the neurons and start classifying
inputs correctly.
	 A typical real-life MLP for recognizing handwritten digits
consists of 784 perceptrons that accept inputs from a 28×28
pixel bitmap representing a handwritten digit, 15 neurons in
the hidden layer, and 10 output neurons (12). Typically, such
an MLP is trained using a pool of 50,000 labeled images
of handwritten digits. It can learn to recognize previously
unseen handwritten digits with 95% accuracy after a few
minutes of training on a well-configured computer.

	 In a similar fashion, others have used data from Perry’s
Chemical Engineers’ Handbook to train an MLP to predict
viscosity of a compound (13). In another study, scientists
were able to detect faults in a heat exchanger by training an
MLP to recognize deviations in temperature and flowrate as
symptoms of tube plugging and partial fouling in the heat
exchanger internals (14).
	 As another example, MLPs have been used for predic-
tive control of chemical reactors (15). The typical setup
trains a neural network to learn the forward dynamics of the
plant. The prediction error between the plant output and the
neural network output is used for training the neural network
(Figure 9). The neural network learns from previous inputs
and outputs to predict future values of the plant output. For
example, a controller for a catalytic continuous stirred-tank
reactor (Figure 10) can be trained to maintain appropriate
product concentration and flow by using past data about
inflow Q1 and Q2 at concentrations Cb1 and Cb2, respectively,
liquid level h, and outflow Q0 at concentration Cb.

In general, given a statistically relevant dataset, an artifi-
cial neural network can learn from it (16).

9×12 Pixels
Gray Image

10 Output
Neurons

Hidden
Neurons

9×12
Input Neurons

9

0

p Figure 8. A multilayer perceptron for recognizing digits printed on
a check would have a grid of inputs to read individual pixels of digits,
followed by one or more layers of hidden neurons, and 10 output neurons
to indicate which number was recognized.

Plant

Neural Network Model

Learning
Algorithm

Error

u yp

ym

+
–

p Figure 9. An MLP can learn the dynamics of the plant by evaluating the
error between the actual plant output and the neural network output.

x

y Nonlinear InseparableLinear

x

y

x

y

+
++

+
+

+ +
+++

+ +
+ +

++
+

+ +
+
+

+

+

+++
++
+

+
+

+ +
+
+

+
+

+
+

+

+
+

++
+

+
+

+

+

+
+
+
++

+ +
+ +

+
+

+
+

+

+

u Figure 7. Although
single perceptrons can
learn to classify linear
patterns, they are unable to
handle nonlinear or other
more complicated datasets.
Multilayer perceptrons are
more capable of handling
nonlinear patterns, and can
even classify inseparable
data.

h

Cb

Q1

Q0

Cb2Cb1

Q2

t Figure 10. A
continuous stirred-tank
reactor can be trained
to maintain appropriate
product concentra-
tion and flow by using
past data about inflow,
concentration, liquid
level, and outflow.

Article continues on next page

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

26  www.aiche.org/cep  June 2018  CEP

On the Horizon

Training a multilayer perceptron
	 Training a single perceptron is easy — all weights are
adjusted repeatedly until the output matches the expected
value for all training data. For a single perceptron, weights
can be adjusted using the formulas:
Δwi = η(t – o)xi					 (1a)
wi + Δwi → wi (1b)
where wi is the weight, Δwi is the weight adjustment, t is
the target output, o is the actual output, and η is the learning

rate — usually a small value used to moderate the rate of
change of weights.
	 However, this approach of tweaking each weight inde-
pendently does not work for an MLP because each neuron’s
output is an input for all neurons in the next layer. Tweaking
the weight on one connection impacts not only the neuron it
propagates to directly, but also all of the neurons in the fol-
lowing layers as well, and thus affects all the outputs. There-
fore, you cannot obtain the best set of weights by optimizing

Shell has been collecting real-time data across its opera-
tions for decades. More than 10 million operational vari-

ables per minute are presently collected, streamed, archived,
and integrated with operational control systems. There is
enormous potential to exploit these data further. Predic-
tive analytics and machine learning algorithms could make
it possible to avoid unexpected failures and unnecessary
maintenance, which would save millions of dollars per year in
optimized maintenance and deferment avoidance.
	 At the 2018 AIChE Spring Meeting in Orlando, FL, Deval
Pandya presented two proof-of-concept studies carried out
at the Shell Pernis (Pernis, Netherlands) and Shell Martinez
(Martinez, CA) manufacturing sites. In the studies, a team
organized by Shell used unlabeled historical process control
data to develop a digital twin algorithm that predicts valve
failures. Experiments for the use case were performed
on multiple control valves. The aim was to verify whether
machine-learning methods are capable of distinguishing
between normal and abnormal valve behavior. The difference
between the predicted and measured system output (i.e.,
error rate) should be as low as possible for the normal valves
and as high as possible for the abnormal valves.
	 Teammate and study coauthor Sander Suursalu devel-
oped multiple solutions based on artificial neural networks
and statistical approaches to model the normal behavior of
the monitored systems at the Pernis site. Mismatches with
predictions of the modeled systems were then used to pre-
dict failures. The artificial neural networks were able to predict
failure up to a month in advance in some cases.
	 The team found that four-layer gated recurrent units
(GRUs) with tanh activation functions and an input sequence
length of four samples produced the best results. GRUs
were 7% faster to train than long short-term memory (LSTM)
recurrent neural networks, and reduced the prediction error
by 15%. Furthermore, this approach enabled highly accurate
failure prediction. These systems could output deviations
five times larger than the deviations present during normal
operation. This indicates that machine-learning models can
predict failures in petrochemical refineries for the studied use
case without the need for industry-specific knowledge, if the
model is trained with data representing fault-free operation.

	 In the study at the Martinez site, the team developed
a novel, machine-learning-based predictive deterioration
model that relied on first principles and statistical multi
variate regression to augment and validate traditional mass
balances. They tested this model using a traditional mass
balance, with meters upstream and downstream of a target
flow element. The model verified that the mass balance
approach provided acceptable meter accuracies and it
allowed engineers to track predicted flowmeter performance
vs. actual metering.
	 Peter Kwaspen and Bruce Lam were subject mat-
ter experts for this work. Bringing in the right expertise
related to the problem in question is crucial for success of a
machine-learning project. Kwaspen and Lam had extensive
knowledge on how the valves work and brought process-
engineering context to the problem.
	 Going forward, these models should enable equipment
deterioration analysis and be the catalytic step-change
toward predictive maintenance. Pandya explains: “Bridging
the gap between proof-of-concept and putting machine-
learning solutions into production is key to realizing the value
these methods can offer. Solutions like the ones presented
have tremendous potential for replication in thousands of
valves both upstream and downstream. Deploying machine-
learning models at scale requires discipline in not just
building and testing the models, but also selecting the right
tools and architecture, and establishing best practices for
continuous deployment and continuous integration (CD/CI)
for machine learning at an enterprise level.”
	 He also emphasizes the importance of business con-
text and subject matter expertise: “Business context and
potential value are key. The machine-learning-based solution
should have the potential to generate exponential value for
the business. The organization’s readiness to support the
change journey is as important as its technical expertise.”

Deval Pandya, PhD, Shell Global Solutions (Houston, TX)
Sander Suursalu, TU Delft (Delft, Netherlands)
Bruce Lam, Shell Oil Products US (Martinez, CA)
Peter Kwaspen, Shell Global Solutions NL (Amsterdam, Netherlands)

“Digital Twins for Predicting Early Onset of Failures Flow Valves,” 2018
AIChE Spring Meeting, Paper 37a (April 23, 2018).

Predicting Valve Failure with Machine Learning

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

CEP  June 2018  www.aiche.org/cep  27

one weight at a time. Instead, the entire space of possible
weight combinations must be searched simultaneously. The
primary method for doing this relies on a technique called
gradient descent.
	 Imagine you are at the top of a hill and you need to get
to the bottom of the hill in the quickest way possible. One
approach could be to look in every direction to see which
way has the steepest grade, and then step in that direction.
If you repeat this process, you will gradually go farther and
farther downhill. That is how gradient descent works: If
you can define a function over all weights that reflects the
difference between the desired output and calculated output,
then the function will be lowest (i.e., the bottom of the hill)
when the MLP’s output matches the desired output. Moving
toward this lowest value will become a matter of calculating
the gradient (or derivative of the function) and taking a small
step in the direction of the gradient.
	 Backpropagation, short for “backward propagation of
errors,” is the most commonly used algorithm for training
MLPs using gradient descent. The backward part of the
name stems from the fact that calculation of the gradient
proceeds backward through the network. The gradient of the
final layer of weights is calculated first and the gradient of
the first layer of weights is calculated last.
	 Before looking at how backpropagation works, recall that
a perceptron calculates a weighted sum of its input and then
decides whether it should fire. The decision about whether or
not to fire is made by the activation function. In the percep-
tron example, we used a step function that outputted a 1 if the
input was higher than a certain threshold, otherwise it out
putted a 0. In practice, ANNs use nonlinear activation func-
tions like the sigmoid or tanh functions (Figure 11), at least
in part because a simple step function does not lend itself to
calculating gradients — its derivative is 0.
	 The sigmoid function maps its input to the range 0 to 1.
You might recall that probabilities, too, are represented by
values between 0 and 1. Hence, the output of the sigmoid
function can be used to represent a probability — often the
probability that the input belongs to a category (e.g., cat
or dog). For this reason, it is one of the most widely used
activation functions for artificial neural networks.

Example: Training an MLP with backpropagation
Consider a simple MLP with three layers (Figure 12):

two neurons in the input layer (Xi1, Xi2) connected to three
neurons (Xh1, Xh2, Xh3) in the hidden layer via weights
W1–W6, which are connected to a single output neuron (Xo)
via weights W7–W9. Assume that we are using the sigmoid
activation function, initial weights are randomly assigned,
and input values [1, 1] will lead to an output of 0.77.
	 Let’s assume that the desired output for inputs [1, 1]
is 0. The backpropagation algorithm can be used to adjust
weights. First, calculate the error at the last neuron’s (Xo)
output:
Error = Target value – Calculated value 		 (2)
Error = 0 – 0.77 = –0.77
	 Recall that the output (0.77) was obtained by applying
the sigmoid activation function to the weighted sum of the
previous layer’s outputs (1.2):

σ(1.2) = 1/(1 + e–1.2) = 0.77

	 The derivative of the sigmoid function represents the
gradient or rate of change:

	 Hence, the gradient or rate of change of the sigmoid
function at x = 1.2 is: (0.77) × (1 – 0.77) = 0.177
	 If we multiply the error in output (–0.77) by this rate
of change (0.177) we get –0.13. This can be proposed as a
small change in input that could move the system toward the
proverbial “bottom of the hill.”
	 Recall that the sum of the weighted inputs of the output
neuron (1.2) is the product of the output of the three neurons

-10

-10

10

10

-1

1

-

-

0

1

Sigmoid

tanh

-

t Figure 11. Sigmoid
and tanh functions are
nonlinear activation func-
tions. The output of the
sigmoid function is a value
between 0 and 1. The out-
put of the sigmoid function
can be used to represent
a probability, often the
probability that the input
belongs to a category
(e.g., cat or dog).

Xi1 = 1

S1 = 1

W
7 = 0.3

W8 = 0.5

W
9

=
0.

9

W 1
=

0.
7

W
3 = 0.4

W
6 = 0.3

S2 = 1.3

S3 = 0.7

Xh1 = 0.73

Xh2 = 0.79

Xh3 = 0.67

Xo = 0.77So = 1.2

Xi2 = 1

W
4

=
0.

3

W
2 = 0.5

W 5
= 0.8

Input

Hidden

Output

Target = 0
Calculated = 0.77

p Figure 12. An example MLP with three layers accepts an input of [1, 1]
and computes an output of 0.77.

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

28  www.aiche.org/cep  June 2018  CEP

On the Horizon

in the previous layer and the weights between them and the
output neuron:

So = Xh1×W7 + Xh2×W8 + Xh3×W9 			 (5)
1.2 = 0.73×0.3 + 0.79×0.5 + 0.67×0.9

To change this sum (So) by –0.13, we can adjust each
incoming weight (W7, W8, W9) proportional to the corre-
sponding output of the previous (hidden layer) neuron
(Xh1, Xh2, Xh3). So, the weights between the hidden neurons
and the output neuron become:

W7new = W7old + (–0.13/Xh1) = 0.3 + (–0.13/0.73) = 0.11
W8new = W8old + (–0.13/Xh2) = 0.5 + (–0.13/0.79) = 0.33
W9new = W9old + (–0.13/Xh3) = 0.9 + (–0.13/0.67) = 0.7

	 After adjusting the weights between the hidden layer neu-
rons and the output neuron (Figure 13), we repeat the process
and similarly adjust the weights between the input and hidden
layer neurons. This is done by first calculating the gradient
at the input coming into each neuron in the hidden layer. For
example, the gradient at Xh3 is: 0.67×(1–0.67) = 0.22.

The proposed change in the sum of weighted inputs of
Xh3 (i.e., S3) can be calculated by multiplying the gradient
(0.22) by the proposed change in the sum of weighted inputs
of the following neuron (–0.13), and dividing by the weight
from this neuron to the following neuron (W9). Note that we
are propagating errors backward, so it was the error in the
following neuron (Xo) that we proportionally propagated
backward to this neuron’s inputs.

The proposed change in the sum of weighted inputs of
Xh3 (i.e., S3) is:

Change in S3 = Gradient at Xh3 × Proposed change in So/W9
Change in S3 = 0.22 × (–0.13)/0.9 = –0.03

	 Note that we use the original value of W9 (0.9) rather
than the recently calculated new value (0.7) to propagate the
error backward. This is because although we are working
one step at a time, we are trying to search the entire space of
possible weight combinations and change them in the right
direction (toward the bottom of the hill). In each iteration,
we propagate the output error through original weights,
leading to new weights for the iteration. This global back-
ward propagation of the output neuron’s error is the key
concept that lets all weights change toward ideal values.

Once you know the proposed change in the weighted
sum of inputs of each neuron (S1, S2, S3), you can change the
weights leading to the neuron (W1 through W6) proportional
to the output from the previous neuron. Thus, W6 changes
from 0.3 to 0.27.
	 Upon repeating this process for all weights, the new
output in this example becomes 0.68, which is a little closer
to the ideal value (0) than what we started with (0.77). By
performing just one such iteration of forward and back
propagation, the network is already learning!
	 A small neural network like the one in this example
will typically learn to produce correct outputs after a few
hundred such iterations of weight adjustments. On the other
hand, training AlphaGo’s neural network, which has tens of
thousands of neurons arranged in more than a dozen layers,
takes more serious computing power, which is becoming
increasingly available.

Looking forward
	 Even with all the amazing progress in AI, such as
self-driving cars, the technology is still very narrow in its
accomplishments and far from autonomous. Today, 99% of
machine learning requires human work and large amounts
of data that need to be normalized and labeled (i.e., this is a
dog; this is a cat). And, people need to supply and fine-tune
the appropriate algorithms. All of this relies on manual labor.

Other challenges that plague neural networks include:
• Bias. Machine learning is looking for patterns in data.

If you start with bad data, you will end up with bad models.
• Over-fitting. In general, a model is typically trained by

maximizing its performance on a particular training dataset.
The model thus memorizes the training examples, but may
not learn to generalize to new situations and datasets.

• Hyper-parameter optimization. The value of a hyper-
parameter is defined prior to the commencement of the
learning process (e.g., number of layers, number of neurons
per layer, type of activation function, initial value of weights,
value of the learning rate, etc.). Changing the value of such
parameters by a small amount can invoke large changes in
the performance of the network.

• Black-box problems. Neural networks are essentially
black boxes, and researchers have a hard time understanding

p Figure 13. A backpropagation algorithm is used to adjust the weight-
ings between the hidden layer neurons and the output neurons, so that the
output is closer to the target value (0).

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

CEP  June 2018  www.aiche.org/cep  29

how they deduce particular conclusions. Their operation is
largely invisible to humans, rendering them unsuitable for
domains in which verifying the process is important.
	 Thus far, we have looked at neural networks that learn
from data. This approach is called supervised learning.
As discussed in this article, during the training of a neural
network under supervised learning, an input is presented to
the network and it produces an output that is compared with
the desired/target output. An error is generated if there is a
difference between the actual output and the target output and
the weights are adjusted based on this error until the actual
output matches the desired output. Supervised learning relies
on manual human labor for collecting, preparing, and label-
ing a large amount of training data.
	 In Part 2 of this series, we will delve into two other
approaches that are more autonomous: unsupervised learning
and reinforcement learning.
	 Unsupervised learning does not depend on target outputs
for learning. Instead, inputs of a similar type are combined to
form clusters. When a new input pattern is applied, the neural
network gives an output indicating the class to which the
input pattern belongs.
	 Reinforcement learning involves learning by trial and
error, solely from rewards or punishments. Such neural
networks construct and learn their own knowledge directly
from raw inputs, such as vision, without any hand-engineered
features or domain heuristics. AlphaGo Zero, the succes-
sor to AlphaGo, is based on reinforcement learning. Unlike
AlphaGo, which was initially trained on thousands of human
games to learn how to play Go, AlphaGo Zero learned to
play simply by playing games against itself. Although it
began with completely random play, it eventually surpassed
human level of play and defeated the previous version of
AlphaGo by 100 games to 0.
	 In Part 2 we will also look at exotic neural network archi-
tectures like long short-term memory networks (LSTMs),
convolutional neural networks (CNNs), and generative
adversarial networks (GANs).
	 Last but not least, we will discuss social and ethical
aspects, as the recent explosion of progress in AI has created
fear that it will evolve from being a benefit to human society
to taking control. Even Stephen Hawking, who was one of
Britain’s most distinguished scientists, warned of AI’s threats.
“The development of full artificial intelligence could spell the
end of the human race,” said Hawking (17).

Literature Cited
1. AlphaGo, “The Story of AlphaGo So Far,” Deepmind, https://

deepmind.com/research/alphago/ (accessed May 4, 2018).
2.	 Son, H., “JPMorgan Software Does in Seconds What Took Law-

yers 360,000 Hours,” Bloomberg, www.bloomberg.com/news/
articles/2017-02-28/jpmorgan-marshals-an-army-of-developers-
to-automate-high-finance (Feb. 27, 2017).

3.	 Hardesty, L., “Computer System Predicts Products of Chemi-
cal Reactions,” MIT News, MIT News Office, http://news.mit.
edu/2017/computer-system-predicts-products-chemical-reac-
tions-0627 (June 27, 2017).

4.	 Coley, C. W., et al., “Prediction of Organic Reaction Outcomes
Using Machine Learning,” ACS Central Science, 3 (5),
pp. 434–443 (Apr. 18, 2017).

5.	 Rosenblatt, F., “The Perceptron: A Probabilistic Model for
Information Storage And Organization in the Brain,” Psychologi-
cal Review, 65 (6), www.ling.upenn.edu/courses/cogs501/Rosen-
blatt1958.pdf (1958).

6.	 Clabaugh, C., et al., “Neural Networks: The Perceptron,”
Stanford Univ., https://cs.stanford.edu/people/eroberts/courses/
soco/projects/neural-networks/Neuron/index.html (accessed
May 4, 2018).

7.	 Sharma, A. V, “Understanding Activation Functions in Neural
Networks,” Medium, https://medium.com/the-theory-of-every-
thing/understanding-activation-functions-in-neural-networks-
9491262884e0 (Mar. 30, 2017).

8.	 Pandya, D., et al., “Digital Twins for Predicting Early Onset
of Failures Flow Valves,” presented at the AIChE Spring
Meeting and Global Congress on Process Safety, Orlando, FL
(Apr. 23, 2018).

9.	 Azzizi, N., and A. Zaatri, “A Learning Process Of Multilayer
Perceptron for Speech Recognition,” International Journal of
Pure and Applied Mathematics, 107 (4), pp. 1005–1012
(May 7, 2016).

10.	 Eslamloueyan, R., et al., “Using a Multilayer Perceptron Net-
work for Thermal Conductivity Prediction of Aqueous Electrolyte
Solutions,” Industrial and Engineering Chemistry Research,
50 (7), pp. 4050–4056 (Mar. 2, 2011).

11.	 ZareNezhad, B., and A. Aminian, “Application Of The Neural
Network-Based Model Predictive Controllers in Nonlinear
Industrial Systems. Case Study,” Journal of the Univ. of Chemical
Technology and Metallurgy, 46 (1), pp. 67–74 (2011).

12.	 Nielsen, M., “Chapter 1: Using Neural Nets to Recognize Hand-
written Digits,” in “Neural Networks and Deep Learning,” http://
neuralnetworksanddeeplearning.com/chap1.html (Dec. 2017).

13.	 Moghadassi, A., et al., “Application of Artificial Neural Network
for Prediction of Liquid Viscosity,” Indian Chemical Engineer,
52 (1), pp. 37–48 (Apr. 23, 2010).

14.	 Himmelblau, D. M., et al., “Fault Classification with the AID of
Artificial Neural Networks,” IFAC Proceedings Volumes, 24 (6),
pp. 541–545 (Sept. 1991).

15.	 Vasičkaninová, A., and M. Bakošová, “Neural Network Predic-
tive Control of a Chemical Reactor,” Acta Chimica Slovaca,
2 (2), pp. 21–36 (2009).

16.	 Rojas, R., “Chapter 9: Statistics and Neural Networks,” in
“Neural Networks: A Systematic Introduction,” Springer-Verlag,
Berlin, Germany (1996).

17. Cellan-Jones, R., “Stephen Hawking Warns Artificial Intel-
ligence Could End Mankind,” BBC News, www.bbc.com/news/
technology-30290540 (Dec. 2, 2014).

AMIT GUPTA is the Chief Information Officer of the American Institute of
Chemical Engineers (AIChE). He is responsible for planning, coordinat-
ing, and executing the activities of AIChE’s IT function. He has worked
for AIChE for more than 9 years, incrementally assuming responsibili-
ties for web, IT, database, and mobile solutions. Previously, he held
positions at Altria and Philip Morris International. Gupta attended
Nagpur University (India) and received his BE in computer technology.

CEP

Copyright © 2018 American Institute of Chemical Engineers (AIChE)

