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The ancient Chinese game of Go has more possible 
moves than the number of atoms in the universe. 
Unlike chess, Go cannot be won using brute-force 

computing power to analyze a lot of moves — there are 
just too many possibilities. And, unlike chess, strategies for 
winning Go cannot be meaningfully codified by rules: its 
principles are mysterious. In some cultures, Go is seen as a 
way for humans to connect with the divine via instances of 
intuition, by “knowing without knowing how you know.” 
 Experts believed that computers would not be able to 
defeat top human players at Go for decades, if ever. But in 
2016, a computer program called AlphaGo defeated Lee 
Sedol, the legendary world champion of Go (1). During the 
games, AlphaGo played highly inventively, making moves 
that no human ever would, and defeated the 18-time world 
champion four games to one. 
 AlphaGo is an artificial intelligence (AI) program built 
using deep learning technologies. From self-driving cars to 
lawyer-bots (2), deep learning is fueling what many believe 

will be the biggest technology revolution the world has seen. 
“Just as electricity transformed almost everything 100 years 
ago, I actually have a hard time thinking of an industry that 
I don’t think AI will transform in the next several years,” 
says Andrew Ng, who has held positions as Director of the 
Stanford AI Lab, Chief Scientist of Baidu, and Founder of 
Google Brain. 
 Chemical engineers routinely use computers for model-
ing, simulation, design, and optimization of chemical pro-
cesses. Typically, the computational methods are numerical 
algorithms (i.e., regression, statistics, differential equations, 
etc.) performed with software tools like Excel, MatLab, 
AspenPlus, CHEMCAD, COMSOL Multiphysics, etc. All 
of these methods and tools are applications of well-known 
chemical engineering principles, which the engineer com-
bines and applies intelligently to solve high-level problems. 
Could computers do more than mere computation and some-
day solve high-level problems like a chemical engineer? 

“The vision is that you’ll be able to walk up to a system 
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and say, ‘I want to make this molecule.’ The software will 
tell you the route you should make it from, and the machine 
will make it,” says Klavs Jensen, the Warren K. Lewis 
Professor of Chemical Engineering at MIT (3). His research 
uses deep learning to identify a pathway to transform a set 
of available reactants into a target compound (4). Outside 
academia, deep learning is already being used by practicing 
engineers to solve a whole range of previously intractable 
problems and may become as valuable as Excel to chemical 
engineers in the future. 

What is deep learning?
 Artificial intelligence is the capability of a machine to 
imitate intelligent human behavior (Figure 1). Machine 
learning (ML) is a branch of AI that gives computers the 
ability to “learn” — often from data — without being 
explicitly programmed. Deep learning is a subfield of 
ML that uses algorithms called artificial neural networks 
(ANNs), which are inspired by the structure and function of 
the brain and are capable of self-learning. ANNs are trained 
to “learn” models and patterns rather than being explicitly 
told how to solve a problem. 
 The building block of an ANN is called the perceptron, 
which is an algorithm inspired by the biological neuron 
(5). Although the perceptron was invented in 1957, ANNs 
remained in obscurity until just recently because they 
require extensive training, and the amount of training to  
get useful results exceeded the computer power and data 
sizes available. 
 To appreciate the recent increase in computing power, 
consider that in 2012 the Google Brain project had to use a 
custom-made computer that consumed 600 kW of electricity 
and cost around $5,000,000. By 2014, Stanford AI Lab was 
getting more computing power by using three off-the-shelf 
graphics processing unit (GPU)-accelerated servers that each 
cost around $33,000 and consumed just 4 kW of electricity. 
Today, you can buy a specialized Neural Compute Stick that 
delivers more than 100 gigaflops of computing performance 
for $80. 

The perceptron
 The average human brain has approximately 100 billion 
neurons. A human neuron uses dendrites to collect inputs 
from other neurons, adds all the inputs, and if the resulting 
sum is greater than a threshold, it fires and produces an out-
put. The fired output is then sent to other connected neurons 
(Figure 2). 
 A perceptron is a mathematical model of a biological 
neuron (6). Just like a real neuron, it receives inputs and 
computes an output. Each input has an associated weight. 
All the inputs are individually multiplied by their weights, 
added together, and passed into an activation function that 
determines whether the neuron should fire and produce an 
output (Figure 3). 
 There are many different types of activation functions 
with different properties, but one of the simplest is the 
step function (7). A step function outputs a 1 if the input is 
higher than a certain threshold, otherwise it outputs a 0. For 
example, if a perceptron has two inputs (x1 and x2):
 x1 = 0.9
 x2 = 0.7
which have weightings (w1 and w2) of:
 w1 = 0.2
 w2 = 0.9

p Figure 2. A human neuron collects inputs from other neurons using
dendrites and sums all the inputs. If the total is greater than a threshold
value, it produces an output.

p Figure 3. A perceptron is a mathematical model of a neuron. It receives
weighted inputs, which are added together and passed to an activation
function. The activation function decides whether it should produce
an output.
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and the activation function threshold is equal to 0.75, then 
weighing the inputs and adding them together yields:

x1w1 + x2w2 = (0.9×0.7) + (0.2×0.9) = 0.81

 Because the total input is higher than the threshold 
(0.75), the neuron will fire. Since we chose a simple step 
function, the output would be 1. 
 So how does all this lead to intelligence? It starts with 
the ability to learn something simple through training. 

Training a perceptron
 Training a perceptron involves feeding it multiple train-
ing samples and calculating the output for each of them. 
After each sample, the weights are adjusted to minimize the 
output error, usually defined as the difference between the 
desired (target) and the actual outputs (Figure 4). 
 By following this simple training algorithm to update 
weights, a perceptron can learn to perform binary linear 

classification. For example, it can learn to separate dogs 
from cats given size and domestication data, if the data are 
linearly classifiable (Figure 5).
 The perceptron’s ability to learn classification is signifi-
cant because classification underlies many acts of intel-
ligence. A common example of classification is detecting 
spam emails. Given a training dataset of spam-like emails 
labeled as “spam” and regular emails labeled as “not-spam,” 
an algorithm that can learn characteristics of spam emails 
would be very useful. Similarly, such algorithms could 
learn to classify tumors as cancerous or benign, learn your 
music preferences and classify songs as “likely-to-like” and 
“unlikely-to-like,” or learn to distinguish normally behaving 
valves from abnormally behaving valves (8). 
 Perceptrons are powerful classifiers. However, individu-
ally they can only learn linearly classifiable patterns and are 
unable to handle nonlinear or more complicated patterns.

Multilayer perceptrons
 A single neuron is capable of learning simple patterns, 
but when many neurons are connected together, their abili-
ties increase dramatically. Each of the 100 billion neurons in 
the human brain has, on average, 7,000 connections to other 
neurons. It has been estimated that the brain of a three-year-
old child has about one quadrillion connections between 
neurons. And, theoretically, there are more possible neural 
connections in the brain than there are atoms in the universe. 
 A multilayer perceptron (MLP) is an artificial neural 
network with multiple layers of neurons between input and 
output. MLPs are also called feedforward neural networks. 
Feedforward means that data flow in one direction from the 
input to the output layer. Typically, every neuron’s output 
is connected to every neuron in the next layer. Layers that 
come between the input and output layers are referred to as 
hidden layers (Figure 6). 
 MLPs are widely used for pattern classification, recogni-
tion, prediction, and approximation, and can learn compli-
cated patterns that are not separable using linear or other 
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p Figure 4. To train a perceptron, the weights are adjusted to minimize
the output error. Output error is defined as the difference between the
desired output and the actual output.
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p Figure 5. A perceptron can learn to separate dogs and cats given
size and domestication data. As more training examples are added, the
perceptron updates its linear boundary.
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p Figure 6. A multilayer perceptron has multiple layers of neurons
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easily articulated curves. The capacity of an MLP network 
to learn complicated patterns increases with the number of 
neurons and layers (Figure 7). 
  MLPs have been successful at a wide range of AI tasks, 
from speech recognition (9) to predicting thermal conductiv-
ity of aqueous electrolyte solutions (10) and controlling a 
continuous stirred-tank reactor (11). For example, an MLP 
for recognizing printed digits (e.g., the account and rout-
ing number printed on a check) would be comprised of a 
grid of inputs to read individual pixels of digits (say, a 9×12 
bitmap), followed by one or more hidden layers, and finally 
10 output neurons to indicate which number was recognized 
in the input (0–9) (Figure 8). 
 Such an MLP for recognizing digits would typically  
be trained by showing it images of digits and telling it 
whether it recognized them correctly or not. Initially, the 
MLP’s output would be random, but as it is trained, it will 
adjust weights between the neurons and start classifying 
inputs correctly. 
 A typical real-life MLP for recognizing handwritten digits 
consists of 784 perceptrons that accept inputs from a 28×28 
pixel bitmap representing a handwritten digit, 15 neurons in 
the hidden layer, and 10 output neurons (12). Typically, such 
an MLP is trained using a pool of 50,000 labeled images 
of handwritten digits. It can learn to recognize previously 
unseen handwritten digits with 95% accuracy after a few 
minutes of training on a well-configured computer. 

 In a similar fashion, others have used data from Perry’s 
Chemical Engineers’ Handbook to train an MLP to predict 
viscosity of a compound (13). In another study, scientists 
were able to detect faults in a heat exchanger by training an 
MLP to recognize deviations in temperature and flowrate as 
symptoms of tube plugging and partial fouling in the heat 
exchanger internals (14). 
 As another example, MLPs have been used for predic-
tive control of chemical reactors (15). The typical setup 
trains a neural network to learn the forward dynamics of the 
plant. The prediction error between the plant output and the 
neural network output is used for training the neural network 
(Figure 9). The neural network learns from previous inputs 
and outputs to predict future values of the plant output. For 
example, a controller for a catalytic continuous stirred-tank 
reactor (Figure 10) can be trained to maintain appropriate 
product concentration and flow by using past data about 
inflow Q1 and Q2 at concentrations Cb1 and Cb2, respectively, 
liquid level h, and outflow Q0 at concentration Cb. 

In general, given a statistically relevant dataset, an artifi-
cial neural network can learn from it (16). 
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p Figure 8. A multilayer perceptron for recognizing digits printed on
a check would have a grid of inputs to read individual pixels of digits, 
followed by one or more layers of hidden neurons, and 10 output neurons
to indicate which number was recognized.
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p Figure 9. An MLP can learn the dynamics of the plant by evaluating the
error between the actual plant output and the neural network output. 
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u Figure 7. Although 
single perceptrons can
learn to classify linear
patterns, they are unable to
handle nonlinear or other
more complicated datasets. 
Multilayer perceptrons are
more capable of handling
nonlinear patterns, and can
even classify inseparable
data.
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Training a multilayer perceptron 
 Training a single perceptron is easy — all weights are 
adjusted repeatedly until the output matches the expected 
value for all training data. For a single perceptron, weights 
can be adjusted using the formulas:
Δwi = η(t – o)xi (1a)
wi + Δwi → wi (1b)
where wi is the weight, Δwi is the weight adjustment, t is 
the target output, o is the actual output, and η is the learning 

rate — usually a small value used to moderate the rate of 
change of weights.
 However, this approach of tweaking each weight inde-
pendently does not work for an MLP because each neuron’s 
output is an input for all neurons in the next layer. Tweaking 
the weight on one connection impacts not only the neuron it 
propagates to directly, but also all of the neurons in the fol-
lowing layers as well, and thus affects all the outputs. There-
fore, you cannot obtain the best set of weights by optimizing 

Shell has been collecting real-time data across its opera-
tions for decades. More than 10 million operational vari-

ables per minute are presently collected, streamed, archived, 
and integrated with operational control systems. There is 
enormous potential to exploit these data further. Predic-
tive analytics and machine learning algorithms could make 
it possible to avoid unexpected failures and unnecessary 
maintenance, which would save millions of dollars per year in 
optimized maintenance and deferment avoidance. 
 At the 2018 AIChE Spring Meeting in Orlando, FL, Deval 
Pandya presented two proof-of-concept studies carried out 
at the Shell Pernis (Pernis, Netherlands) and Shell Martinez 
(Martinez, CA) manufacturing sites. In the studies, a team 
organized by Shell used unlabeled historical process control 
data to develop a digital twin algorithm that predicts valve 
failures. Experiments for the use case were performed 
on multiple control valves. The aim was to verify whether 
machine-learning methods are capable of distinguishing 
between normal and abnormal valve behavior. The difference 
between the predicted and measured system output (i.e., 
error rate) should be as low as possible for the normal valves 
and as high as possible for the abnormal valves. 
 Teammate and study coauthor Sander Suursalu devel-
oped multiple solutions based on artificial neural networks 
and statistical approaches to model the normal behavior of 
the monitored systems at the Pernis site. Mismatches with 
predictions of the modeled systems were then used to pre-
dict failures. The artificial neural networks were able to predict 
failure up to a month in advance in some cases. 
 The team found that four-layer gated recurrent units 
(GRUs) with tanh activation functions and an input sequence 
length of four samples produced the best results. GRUs 
were 7% faster to train than long short-term memory (LSTM) 
recurrent neural networks, and reduced the prediction error 
by 15%. Furthermore, this approach enabled highly accurate 
failure prediction. These systems could output deviations 
five times larger than the deviations present during normal 
operation. This indicates that machine-learning models can 
predict failures in petro chemical refineries for the studied use 
case without the need for industry-specific knowledge, if the 
model is trained with data representing fault-free operation.

 In the study at the Martinez site, the team developed 
a novel, machine-learning-based predictive deterioration 
model that relied on first principles and statistical multi-
variate regression to augment and validate traditional mass 
balances. They tested this model using a traditional mass 
balance, with meters upstream and downstream of a target 
flow element. The model verified that the mass balance 
approach provided acceptable meter accuracies and it 
allowed engineers to track predicted flowmeter performance 
vs. actual metering. 
 Peter Kwaspen and Bruce Lam were subject mat-
ter experts for this work. Bringing in the right expertise 
related to the problem in question is crucial for success of a 
machine-learning project. Kwaspen and Lam had extensive 
knowledge on how the valves work and brought process- 
engineering context to the problem. 
 Going forward, these models should enable equipment 
deterioration analysis and be the catalytic step-change 
toward predictive maintenance. Pandya explains: “Bridging 
the gap between proof-of-concept and putting machine-
learning solutions into production is key to realizing the value 
these methods can offer. Solutions like the ones presented 
have tremendous potential for replication in thousands of 
valves both upstream and downstream. Deploying machine-
learning models at scale requires discipline in not just 
building and testing the models, but also selecting the right 
tools and architecture, and establishing best practices for 
continuous deployment and continuous integration (CD/CI) 
for machine learning at an enterprise level.” 
 He also emphasizes the importance of business con-
text and subject matter expertise: “Business context and 
potential value are key. The machine-learning-based solution 
should have the potential to generate exponential value for 
the business. The organization’s readiness to support the 
change journey is as important as its technical expertise.” 

Deval Pandya, PhD, Shell Global Solutions (Houston, TX)
Sander Suursalu, TU Delft (Delft, Netherlands)
Bruce Lam, Shell Oil Products US (Martinez, CA)
Peter Kwaspen, Shell Global Solutions NL (Amsterdam, Netherlands)

“Digital Twins for Predicting Early Onset of Failures Flow Valves,” 2018 
AIChE Spring Meeting, Paper 37a (April 23, 2018). 

Predicting Valve Failure with Machine Learning
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one weight at a time. Instead, the entire space of possible 
weight combinations must be searched simultaneously. The 
primary method for doing this relies on a technique called 
gradient descent.
 Imagine you are at the top of a hill and you need to get 
to the bottom of the hill in the quickest way possible. One 
approach could be to look in every direction to see which 
way has the steepest grade, and then step in that direction. 
If you repeat this process, you will gradually go farther and 
farther downhill. That is how gradient descent works: If 
you can define a function over all weights that reflects the 
difference between the desired output and calculated output, 
then the function will be lowest (i.e., the bottom of the hill) 
when the MLP’s output matches the desired output. Moving 
toward this lowest value will become a matter of calculating 
the gradient (or derivative of the function) and taking a small 
step in the direction of the gradient. 
 Backpropagation, short for “backward propagation of 
errors,” is the most commonly used algorithm for training 
MLPs using gradient descent. The backward part of the 
name stems from the fact that calculation of the gradient 
proceeds backward through the network. The gradient of the 
final layer of weights is calculated first and the gradient of 
the first layer of weights is calculated last. 
 Before looking at how backpropagation works, recall that 
a perceptron calculates a weighted sum of its input and then 
decides whether it should fire. The decision about whether or 
not to fire is made by the activation function. In the percep-
tron example, we used a step function that outputted a 1 if the 
input was higher than a certain threshold, otherwise it out-
putted a 0. In practice, ANNs use nonlinear activation func-
tions like the sigmoid or tanh functions (Figure 11), at least 
in part because a simple step function does not lend itself to 
calculating gradients — its derivative is 0.
 The sigmoid function maps its input to the range 0 to 1. 
You might recall that probabilities, too, are represented by 
values between 0 and 1. Hence, the output of the sigmoid 
function can be used to represent a probability — often the 
probability that the input belongs to a category (e.g., cat 
or dog). For this reason, it is one of the most widely used 
activation functions for artificial neural networks. 

Example: Training an MLP with backpropagation
Consider a simple MLP with three layers (Figure 12): 

two neurons in the input layer (Xi1, Xi2) connected to three 
neurons (Xh1, Xh2, Xh3) in the hidden layer via weights 
W1–W6, which are connected to a single output neuron (Xo) 
via weights W7–W9. Assume that we are using the sigmoid 
activation function, initial weights are randomly assigned, 
and input values [1, 1] will lead to an output of 0.77.
 Let’s assume that the desired output for inputs [1, 1] 
is 0. The backpropagation algorithm can be used to adjust 
weights. First, calculate the error at the last neuron’s (Xo) 
output:
Error = Target value – Calculated value   (2)
Error = 0 – 0.77 = –0.77
 Recall that the output (0.77) was obtained by applying 
the sigmoid activation function to the weighted sum of the 
previous layer’s outputs (1.2):

σ(1.2) = 1/(1 + e–1.2) = 0.77

 The derivative of the sigmoid function represents the 
gradient or rate of change: 

 Hence, the gradient or rate of change of the sigmoid 
function at x = 1.2 is: (0.77) × (1 – 0.77) = 0.177 
 If we multiply the error in output (–0.77) by this rate 
of change (0.177) we get –0.13. This can be proposed as a 
small change in input that could move the system toward the 
proverbial “bottom of the hill.”
 Recall that the sum of the weighted inputs of the output 
neuron (1.2) is the product of the output of the three neurons 
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in the previous layer and the weights between them and the 
output neuron:

So = Xh1×W7 + Xh2×W8 + Xh3×W9   (5)
1.2 = 0.73×0.3 + 0.79×0.5 + 0.67×0.9 

To change this sum (So) by –0.13, we can adjust each 
incoming weight (W7, W8, W9) proportional to the corre-
sponding output of the previous (hidden layer) neuron  
(Xh1, Xh2, Xh3). So, the weights between the hidden neurons 
and the output neuron become:

W7new = W7old + (–0.13/Xh1) = 0.3 + (–0.13/0.73) = 0.11
W8new = W8old + (–0.13/Xh2) = 0.5 + (–0.13/0.79) = 0.33
W9new = W9old + (–0.13/Xh3) = 0.9 + (–0.13/0.67) = 0.7

 After adjusting the weights between the hidden layer neu-
rons and the output neuron (Figure 13), we repeat the process 
and similarly adjust the weights between the input and hidden 
layer neurons. This is done by first calculating the gradient 
at the input coming into each neuron in the hidden layer. For 
example, the gradient at Xh3 is: 0.67×(1–0.67) = 0.22.

The proposed change in the sum of weighted inputs of 
Xh3 (i.e., S3) can be calculated by multiplying the gradient 
(0.22) by the proposed change in the sum of weighted inputs 
of the following neuron (–0.13), and dividing by the weight 
from this neuron to the following neuron (W9). Note that we 
are propagating errors backward, so it was the error in the 
following neuron (Xo) that we proportionally propagated 
backward to this neuron’s inputs.

The proposed change in the sum of weighted inputs of 
Xh3 (i.e., S3) is: 

Change in S3 = Gradient at Xh3 × Proposed change in So/W9
Change in S3 = 0.22 × (–0.13)/0.9 = –0.03

 Note that we use the original value of W9 (0.9) rather 
than the recently calculated new value (0.7) to propagate the 
error backward. This is because although we are working 
one step at a time, we are trying to search the entire space of 
possible weight combinations and change them in the right 
direction (toward the bottom of the hill). In each iteration, 
we propagate the output error through original weights, 
leading to new weights for the iteration. This global back-
ward propagation of the output neuron’s error is the key 
concept that lets all weights change toward ideal values.

Once you know the proposed change in the weighted 
sum of inputs of each neuron (S1, S2, S3), you can change the 
weights leading to the neuron (W1 through W6) proportional 
to the output from the previous neuron. Thus, W6 changes 
from 0.3 to 0.27.
 Upon repeating this process for all weights, the new 
output in this example becomes 0.68, which is a little closer 
to the ideal value (0) than what we started with (0.77). By 
performing just one such iteration of forward and back 
propagation, the network is already learning! 
 A small neural network like the one in this example 
will typically learn to produce correct outputs after a few 
hundred such iterations of weight adjustments. On the other 
hand, training AlphaGo’s neural network, which has tens of 
thousands of neurons arranged in more than a dozen layers, 
takes more serious computing power, which is becoming 
increasingly available. 

Looking forward
 Even with all the amazing progress in AI, such as 
self-driving cars, the technology is still very narrow in its 
accomplishments and far from autonomous. Today, 99% of 
machine learning requires human work and large amounts 
of data that need to be normalized and labeled (i.e., this is a 
dog; this is a cat). And, people need to supply and fine-tune 
the appropriate algorithms. All of this relies on manual labor. 

Other challenges that plague neural networks include:
• Bias. Machine learning is looking for patterns in data. 

If you start with bad data, you will end up with bad models.
• Over-fitting. In general, a model is typically trained by

maximizing its performance on a particular training dataset. 
The model thus memorizes the training examples, but may 
not learn to generalize to new situations and datasets.

• Hyper-parameter optimization. The value of a hyper-
parameter is defined prior to the commencement of the 
learning process (e.g., number of layers, number of neurons 
per layer, type of activation function, initial value of weights, 
value of the learning rate, etc.). Changing the value of such 
parameters by a small amount can invoke large changes in 
the performance of the network.

• Black-box problems. Neural networks are essentially
black boxes, and researchers have a hard time understanding 

p Figure 13. A backpropagation algorithm is used to adjust the weight-
ings between the hidden layer neurons and the output neurons, so that the
output is closer to the target value (0). 
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how they deduce particular conclusions. Their operation is 
largely invisible to humans, rendering them unsuitable for 
domains in which verifying the process is important.
 Thus far, we have looked at neural networks that learn 
from data. This approach is called supervised learning. 
As discussed in this article, during the training of a neural 
network under supervised learning, an input is presented to 
the network and it produces an output that is compared with 
the desired/target output. An error is generated if there is a 
difference between the actual output and the target output and 
the weights are adjusted based on this error until the actual 
output matches the desired output. Supervised learning relies 
on manual human labor for collecting, preparing, and label-
ing a large amount of training data. 
 In Part 2 of this series, we will delve into two other 
approaches that are more autonomous: unsupervised learning 
and reinforcement learning.
 Unsupervised learning does not depend on target outputs 
for learning. Instead, inputs of a similar type are combined to 
form clusters. When a new input pattern is applied, the neural 
network gives an output indicating the class to which the 
input pattern belongs. 
 Reinforcement learning involves learning by trial and 
error, solely from rewards or punishments. Such neural 
networks construct and learn their own knowledge directly 
from raw inputs, such as vision, without any hand-engineered 
features or domain heuristics. AlphaGo Zero, the succes-
sor to AlphaGo, is based on reinforcement learning. Unlike 
AlphaGo, which was initially trained on thousands of human 
games to learn how to play Go, AlphaGo Zero learned to 
play simply by playing games against itself. Although it 
began with completely random play, it eventually surpassed 
human level of play and defeated the previous version of 
AlphaGo by 100 games to 0. 
 In Part 2 we will also look at exotic neural network archi-
tectures like long short-term memory networks (LSTMs), 
convolutional neural networks (CNNs), and generative 
adversarial networks (GANs).
 Last but not least, we will discuss social and ethical 
aspects, as the recent explosion of progress in AI has created 
fear that it will evolve from being a benefit to human society 
to taking control. Even Stephen Hawking, who was one of 
Britain’s most distinguished scientists, warned of AI’s threats. 
“The development of full artificial intelligence could spell the 
end of the human race,” said Hawking (17). 
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