
Representation-Plurality in Multi-Touch Mobile Visual
Programming for Music

Qi Yang
Computer Science & Engineering Division

University of Michigan
2260 Hayward Ave

Ann Arbor, MI 48109-2121
yangqi@umich.edu

Georg Essl
Electrical Engineering & Computer Science and

Music
University of Michigan

2260 Hayward Ave
Ann Arbor, MI 48109-2121

gessl@eecs.umich.edu

ABSTRACT
Multi-touch mobile devices provide a fresh paradigm for
interactions, as well as a platform for building rich musi-
cal applications. This paper presents a multi-touch mobile
programming environment that supports the exploration of
different representations in visual programming for music
and audio interfaces. Using a common flow-based visual
programming vocabulary, we implemented a system based
on the urMus platform that explores three types of touch-
based interaction representations: a text-based menu rep-
resentation, a graphical icon-based representation, and a
novel multi-touch gesture-based representation. We illus-
trated their use on interface design for musical controllers.

Author Keywords
NIME, proceedings, Interaction design and software tools,
Mobile music technology and performance paradigms, Mu-
sical human-computer interaction

ACM Classification
D.1.7 [Software] Visual Programming, H.5.5 [Information
Systems] Sound and Music Computing, H.5.2 [Information
Systems] User Interfaces — Interaction Styles

1. INTRODUCTION
The growing popularity and ubiquity of personal mobile de-
vices enabled creative touch-based interactions for a wide
audience. As the sensing and computational capacity of
these devices become sufficient for rich, creative musical ap-
plications, many efforts also seek to make audio and music
programming accessible on mobile (e.g. [5, 19]).

A variety of approaches to mobile music programming
exists, some uses text-based programming on PC and web
which are then distributed to device (e.g. [17, 21]). Multi-
touch interface on mobile is different in many aspects from
traditional mouse and keyboard input. For example, hand
occlusion and lower pointing accuracy of finger requires
larger tap targets and other adaptations [8, 14]. Some ap-
proach this by adapting text-based and visual block-based
programming [19] for touch, borrowing from extensive works

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’15, May 31-June 3, 2015, Louisiana State Univ., Baton Rouge, LA.
Copyright remains with the author(s).

Figure 1: (left) Touch-based piano keyboard inter-
face and (right) music mixer interface built with our
environment.

on visual programming for PCs. We present an on-device
system that is based solely on visual programming.

Eaglestone et al. [4] found that electroacoustic musicians’
preference for musical tools correlates highly with varying
cognitive styles, suggesting that no single interaction style
in musical programming is best-suited for everyone. We
explored this design space of visual representation on mo-
bile music programming by building an environment where
simple dynamic interfaces can be interactively assembled,
and implemented three different visualization and interac-
tion paradigm using the same underlying visual language.

2. RELATED WORKS
The design of our system draws from previous work in vi-
sual programming, mobile music programming, and visual-
ization for multi-touch.

2.1 Visual Programming
General purpose visual programming has being explored ex-
tensively ever since graphical interface became prevalent on
PCs, often with the aim of making programming accessible
to a wider audience. Visual programming are popular in
the interactive media domain, often using a data-flow visual
metaphor such as Pure Data [16] or Max/MSP. The visual
aspect of programming is important in live coding, where
programming-as-performance is closely coupled with audio-
visual media. Some live coding languages are designed with
a predominantly visual component [2, 13], since the per-
formances usually rely on exposing and conveying the pro-
gramming process to the audience.

The design of our visual environment draws from a num-
ber of previous visual programming representations and vo-
cabularies, from data-flow to interactive or live program-
ming (there is no distinction between editing and running
of the program in our system).



2.2 Mobile Music Programming
General mobile programming environments such as Hop-
scotch 1 adapts a block-based visual metaphor. Others use
block or scripting languages on mobile with a mixed text,
iconic based interface (e.g. LiveCode2, [22, 12]). Closest to
our approach in mobile programming is Pong Designer [11],
which combines a 2D physics engine with directly manipu-
latable objects in a sandbox. Programming logic and causal
relations can be inferred by events to build simple games.

The common graphical representation of our system also
uses a visual sandbox environment for assembling elements,
eschewing text-based coding. Unlike most environments
where a program is built and then ran, our system is fully
interactive with no distinction between assembling a pro-
gram versus running one. For now our environment is not
general purpose but enables construction of simple music
interfaces.

In music and audio domain, programming for mobile de-
vices have received growing attention in recent years. Mul-
tiple approaches use text-based or visual language for audio
and interface programming and distribute it remotely to
mobile devices, using frameworks such as Max/MSP [17].
urMus provides self-contained on-device text-based program-
ming framework accessible through web browser [5]. While
not designed for building graphical music interfaces, ChucK
audio programming environment has also been adapted for
touch interface with some block-based visual elements [19].
Our work seeks to provide a platform on which musical
interfaces can be created directly on device without text-
based programming.

2.3 Visualization and Multi-Touch Gestures
Visual feedback is an important part of multi-touch inter-
faces. For example visual feedback is found to lead to sig-
nificant improvement on accuracy of pointing/crossing tasks
on touch-screens [10]. One main criticism by Donald Nor-
man on gestural interfaces in consumer software is the lack
of feedback to guide learning as well as execution of gesture
commands [15].

There has been many approaches to address this using
visual feedback for multi-touch gesture interactions. Many
have focused the ease of recognition and recall of multi-
touch gestures, but mapped arbitrarily to commands [18,
6]. Using simulated physical objects for visual affordance
has also being explored [3]. Many works used continuous
visualization to show possible commands given the current
state of interaction [1, 9, 20], showing potential gestures
either at the site of the interaction (near the finger touch
location), or mirrored at a more visible location.

We explored three different visual representations in our
system. The menu mode uses only single tap gestures. The
icon and gesture mode make use of more complex drag se-
lection or drag-and-drop gestures, and use different visuals
to guide the gesture interactions continuously.

3. REPRESENTATION DESIGN
Our system is built on the urMus [5] platform. urMus pro-
vides a set of Lua API for mobile phone sensors and audio
and graphics programming, using which a block-based drag-
n-drop interface can be implemented. For us, urMus serves
as a general purpose platform for prototyping representa-
tions and interactions.

1http://www.gethopscotch.com
2http://livecode.com

3.1 Shared Grammar
The basic grammar of the visual environment starts with
a full-screen canvas where user can create basic elements
called regions and arrange them spatially, as well as other
elements that are discussed below. This is where a user cre-
ates a dynamic interface (see Figure 1 for example). Next we
present the general programming and interaction elements
that will be shared between all representations.
Region: The most basic building block is a Region (Fig-
ure 2 (a)). Each region is visually represented by a rectangle
on screen and can be directly manipulated via dragging and
resized via pinching gesture. Regions can be created with
a simple tap gesture on the canvas, and can be arbitrarily
arranged on canvas. Their visual appearance can also be
modified, and they can be pinned to the canvas to prevent
movement.

Regions possess characteristics of a generic variable or
object in the context of programming, in that they can be
used both as abstract containers for values such as a vari-
able, and as a visual object in the interface. All regions
and can send and receive events (similar to function calls).
Regions can be configured to have other functionalities as
well, such as playing an audio sample (which may be useful
for building musical instruments) or moving its position on
screen. Similar to how class can be instantiated as many
times as needed, regions can be duplicated while retaining
its properties and links (which defines how it interacts with
other regions). In all representation modes regions are cre-
ated by tapping on the empty canvas, and its appearance is
changed using a common texture picker interface (Figure 3).
Links: Following the concepts of node and edges in event-
driven data-flow languages, each region can receive events
through links and respond to them with actions. The rout-
ing of these events between regions constitute the main
mechanism of building interactions in the visual environ-
ment. Links are visually shown as lines connecting one re-
gion to another, similar to visual patching interfaces. Each
link is directional and stores an event type that is generated
from the sender of the link and an action that is to be taken
by the receiver when the event is detected.

In the example in Figure 2 (c), a region on the left is
linked to send its vertical position value to the region on
the right (which displays a numerical value), acting as a
vertical slider.

Figure 3: Interface for
changing a region’s tex-
ture

This mechanism can
be used for building
more complex interac-
tions, a region can re-
spond to multiple events
from multiple sources, as
well as respond to each
event with multiple ac-
tions. Events can in-
clude touch-based events
(fired when the region
is dragged, tapped, or
held etc.) and condi-
tional on its properties.
The actions that can be
triggered by events can

changing the spatial properties of the region (size, position
or movement), or passing the event to another region. When
a region is duplicated, all the incoming and outgoing links
are also duplicated, preserving its interaction between other
regions.

We implemented a basic set of touch-based events and
actions. The move event which are evoked when the region
is dragged and sends the current position of the region; this



Region Region
Region

Group regionRegion

Links

(a) (b) (c)

0.54

Figure 2: (a) Regions and links (b) groups, (c) an example slider

event can be responded by move action which move the re-
ceiving region in the same direction and distance, or display
one of the coordinates of the received position and send it
to a music synthesizer.
Grouping: We use groups to encapsulate and organize set
of regions spatially. A group region spatially constrains the
movement of its child regions, so they cannot be moved out
of the group. It can be used to create common interface wid-
gets such as slider (see Figure 1 and Figure 2 for examples).
Because each group is also treated as another region, it can
receive and respond to events, as well as being duplicated.

3.2 Visual Representation Modes
Given the above shared mechanisms we implemented three
types of representations for manipulating and interacting
with them: (1) Menu-driven, (2) Icon-driven, and
(3) Gesture-driven.
Menu-Driven Mode:

Figure 4: The text-
based contextual menu

We created a menu repre-
sentation mode which uses
text menu that has simi-
larity to traditional desk-
top UI. Except for region
and link deletions, and
the shared gestures men-
tioned above, every other
command such as link-
ing or grouping are acti-
vated through a contex-
tual text-based menu (Fig-

ure 4) that is associated with one region. Deletion buttons
shown for each region whenever the menu is activated by a
single tap.

For commands that require a second region (for example,
creating a link between two regions), the user activates the
command and then is prompted to select the second region
(region to create link to, or in case of creating a group,
the region to be used as the container) by tapping. After
the selection the command is executed on the two regions.
Creation of groups uses the identical steps.

Due to its widespread use on different platforms, we ex-
pect this representation/interaction mode to be most famil-
iar to average users who have some prior experience with
PCs and commercial touchscreen operating systems such as
iOS or Android, where text-based menu or list interface is
common.
Icon-Driven Mode:
In icon-driven mode, most commands are accessed through
a contextual graphic symbolic menu (Figure 5). The icons
are arranged similar to a radial layout surrounding the re-
gion, which borrows from previous work on radial menu
design for touch-screens ([7] for example).

Two types of gesture interactions exist in the icon-driven

Figure 5: Left: Icon mode contextual menu with
labels, right: draggable icon handle for linking

menu. Static buttons can be activate by tapping (for exam-
ple, the Delete button on the top left corner), while drag-
gable buttons acts like handles for more complex drag and
drop gestures. These drag gestures activates different types
of semantically related commands. For linking, the link icon
can be dragged and dropped on the region to link to, the
potential link is visually shown using a cable-like metaphor
(Figure 5). The grouping gesture handle is used as a lasso
selector to select other regions to add to the parent group
region. The copy handle is visually represented as a smaller
version of the region, can be tapped and produces a copy
of the parent region. It can also be dragged into any other
area on screen and produces a copy of the parent region at
that location when released (Figure 5). To visually differen-
tiate draggable gesture handles from the static buttons, the
draggable handles are animated periodically when not used,
moving slightly away and back to their original position, as
visual affordance suggesting that they can be dragged as
opposed to responding only to taps.
Gesture-Driven Mode:
The last representation mode is designed to be almost en-
tirely driven by direct manipulation gestures that act on
the regions. In our approach, gestures are designed for di-
rectly manipulating the on screen elements (regions in this
cases). The mapping between gestures and the associated
command is not arbitrary, but semantically related to or
reinforce the command being triggered.

Figure 6: Gesture mode
uses pinch gestures for
creating and deleting
links.

For linking and un-
linking two regions, a
pinch or stretch ges-
ture is used (Figure 6).
A pinch gesture where
two regions are dragged
concurrently and moved
towards each other is
used for linking, while
the opposite, moving
away from each other is
used for unlinking, re-
inforcing the concept of
linking and unlinking.
For each gesture, the re-

gions have to be moved past a threshold (which is visually



Figure 7: A drag-n-drop gesture is used to add a
region to a group (a), the reverse for removal (b).

shown when reached) for the action to be completed, this
acts as a confirmation for each action to prevent mistakenly
activating gestures. If the threshold is not crossed then re-
gions are automatically restored to their previous positions
and the action is cancelled.

A background colour guide is displayed faintly after the
initiation of the gesture as a visual guide, and continuously
updated depending which direction the user is performing
the gesture (pinch or stretch), the colour area corresponding
to the potential command is displayed in increased intensity
while the colour corresponding to the opposite command is
faded (see Figure 6 for the visual guide). The large colour
background is meant to alleviate the problem of occlusion
by the user’s hand.

For grouping regions, a drag and drop gesture is used.
When two regions are dragged, and one is released over an-
other one with a larger size, the smaller or released region is
added to the group associated with the larger region (Fig-
ure 7). To remove a region from a group, the reverse gesture
is used: the user simply drags both the region and its parent
group region, and then move the child region outside of the
group region and release. The movement restriction of child
regions within their group region is temporarily lifted while
this gesture is performed, and restored after the remove-
from-group action is either executed or cancelled. Similar
to the linking gesture, visualization provides guidance in en-
larging the potential group region or showing a drop-zone
for the removing gesture with background colour.

The region creation gesture of a single tap on the empty
canvas (shared among all three interaction modes) is modi-
fied to support copying. While holding onto a source region
to be copied, tapping the empty space on the canvas cre-
ates instead a copy of the source region. Since there is no
need to release the hold on the source region, this allows for
efficient creation of copies.

To pin a region, a double tap gesture is used to toggle
between restricting or allowing movements (see Figure 8
(c)). For region deletion and modifying a region’s texture,
a hold-and-slide gesture menu is used. The gesture menu is
displayed after holding on the region for a short time and
while no other commands (moving, resizing etc.) are acti-
vated, and its two commands are activated by maintaining
the hold gesture while sliding towards the command icon
(similar symbol as the icon mode) and releasing the finger.
Figure 8(b) shows the visual feedback for activating each
commands after the hold-and-slide gesture.

Continuous visual feedback is also used for interaction
modes that relies on drag gestures (e.g. pinch, lasso se-
lection), in previous works continuous visual feedback has
been found to be beneficial in visual programming context
[23]. In icon mode, the cable and lasso selection visualiza-
tion are continuously animated, and in gesture mode the

Figure 8: (a, b) hold-gesture-based menu and its
different activation states, (c) visual feedback for
pinning a region

colour background is continuously updated during the link-
ing gesture (Figure 6).

4. SYSTEM IMPLEMENTATION
Our system was implemented on top of the urMus frame-
work using Lua scripting language. The system consists of
the functional language components (which include classes
that represent the basic entities mentioned earlier: Region,
Link and Group) and visual interface components that en-
ables the interaction and feedback.

In the language components, region is an extension (sub-
class) of the built-in visual region class in urMus, as it re-
tains appearance properties and drag-n-drop interactions.
In our environment, region class also stores interaction
states as part of the gesture state-machine, as well as mech-
anism for dispatching and responding to events (those cre-
ated by user interaction, and sent from other linked enti-
ties), managing links, and managing associated contextual
interfaces for text and icon-based menus.
Group is a subclass of the region class, which acts simply

as a container for other region objects, providing methods
for managing its child regions.
Link object is a utility class for connecting two region

objects, and managing the flow of events from object to
object in a single direction (specified sender and receiver).
Since group is a subclass of region, they can also be con-
nected by links as either a sender. Visual appearance of
link objects on screen is handled centrally by a separate
class which draws and updates all links on screen.

4.1 User Interface
Other than the visual representation of Regions and Links,
the rest of the user interface are managed by text and icon
menu classes, and two utility singleton classes for gesture
recognition and visual gesture guides.

Text menu and icon menu classes are implemented simi-
larly using textured urMus regions and text labels. They are
designed to be reusable and are instantiated and configured
each time they are needed. Callback methods/functions are
used for specifying each commands in the menus.

Gesture interactions are mediated by two singleton classes,
gesture manager which handles the actual multi-touch in-
teraction state-machine, and gesture guide which draws
the visual guides for gestures on screen. The multi-touch
gesture state-machine recognize each gesture such as pinch
or drag-and-drop-onto by listening for low-level touch events
from all regions in the environment, and triggering the as-
signed actions (grouping, linking) when action states are
reached. The modular design of the gesture manager al-
lows a variety of gestures to be swapped in by specifying
different state-machines within the manager class, without
changing the region objects which are involved in the actual
gesture.
Gesture guide is called to update onscreen visual feed-

back by the manager class, allowing the visualization of ges-



tures to be configured separately from the recognition.
Other utilities including logging which records each touch

events and user-triggered actions in a detailed log on device,
and notification class providing simple onscreen help mes-
sages.

In addition to visual interface, a sound module currently
in development serves as a conduit to some of urMus’s sound
synthesis API, allowing user interaction from the program-
ming environment to be fed into sound synthesis parame-
ters, enabling the building of musical controllers. In the
example in Figure 1, each slider controls a different param-
eter of a simple sine oscillator.

5. CONCLUSION
We presented a visual programming environment for creat-
ing music interfaces. Our system allows a variety of rep-
resentation and interaction modes using a basic grammar
that supports the construction of musical controller inter-
faces. All paradigms are visual and we explore the potential
of using both familiar and novel gesture-based multi-touch
paradigms to construct representations. Ongoing and fu-
ture work include evaluation of the different representations
with respect to their usability in musical end-user program-
ming. We are currently in the process of conducting and
analyzing a user study comparing the different represen-
tations. Furthermore we plan to create an accessible API
helping musicians embed their preferred multi-touch inter-
action paradigm in their own performance interfaces.

6. REFERENCES
[1] O. Bau and W. E. Mackay. OctoPocus: A Dynamic

Guide for Learning Gesture-Based Command Sets. In
the 21st annual ACM symposium, pages 37–46, New
York, New York, USA, 2008. ACM Press.

[2] A. Blackwell and N. Collins. The Programming
Language as a Musical Instrument. Proceedings of
PPIG05 (Psychology of Programming Interest Group),
pages 120–130, 2005.

[3] A. Bragdon, A. Uguray, and D. Wigdor. Gesture play:
motivating online gesture learning with fun, positive
reinforcement and physical metaphors. In ITS 2010,
pages 39–48, Saarbru Ì́Lcken,Germany, 2010.

[4] B. Eaglestone, N. Ford, and P. Holdridge. Are
Cognitive Styles an Important Factor in Design of
Electroacoustic Music Software? Journal of New
Music, 2008.

[5] G. Essl and A. Müller. Designing Mobile Musical
Instruments and Environments with urMus. In
Proceedings of the 2010 conference on New Interfaces
for Musical Expression, Sydney, Australia, 2010.

[6] E. Ghomi, S. Huot, O. Bau, M. Beaudouin-Lafon, and
W. E. Mackay. Arpège. In the 2013 ACM
international conference, pages 209–218, New York,
New York, USA, 2013. ACM Press.

[7] D. Kammer, F. Lamack, and R. Groh. Enhancing the
expressiveness of fingers: multi-touch ring menus for
everyday applications. In AmI’10: Proceedings of the
First international joint conference on Ambient
intelligence. Springer-Verlag, Nov. 2010.

[8] S. Lee and S. Zhai. The Performance of Touch Screen
Soft Buttons. In Proceedings of the SIGCHI
conference on Human . . . , 2009.

[9] S. Lundgren and M. Hjulström. Alchemy : dynamic
gesture hinting for mobile devices. In the 15th
International Academic MindTrek Conference, pages
53–60, New York, New York, USA, Sept. 2011. ACM.

[10] Y. Luo, D. Vogel, and Y. Luo. Crossing-based
selection with direct touch input. ACM, New York,
New York, USA, Apr. 2014.

[11] M. Mayer and V. Kuncak. Game programming by
demonstration. In Proceedings of the 2013 ACM
international symposium on New ideas, new
paradigms, and reflections on programming &
software, pages 75–90. ACM, 2013.

[12] S. McDirmid. Coding at the speed of touch. In the
10th SIGPLAN symposium, pages 61–76, New York,
New York, USA, Oct. 2011. ACM.

[13] A. McLean, D. Griffiths, N. Collins, and G. Wiggins.
Visualisation of live code. In EVA’10: Proceedings of
the 2010 international conference on Electronic
Visualisation and the Arts. British Computer Society,
July 2010.

[14] M. A. Nacenta, P. Baudisch, H. Benko, and
A. Wilson. Separability of spatial manipulations in
multi-touch interfaces. In GI ’09: Proceedings of
Graphics Interface 2009. Canadian Information
Processing Society, May 2009.

[15] D. A. Norman and J. Nielsen. Gestural Interfaces: a
Step Backward in Usability. Interactions, 17(5), Sept.
2010.

[16] M. Puckette et al. Pure data: another integrated
computer music environment. Proceedings of the
Second Intercollege Computer Music Concerts, pages
37–41, 1996.

[17] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer. Rapid creation and publication of digital
musical instruments. In Proceedings of the
International Conference on New Interfaces for
Musical Expression (NIME), 2014.

[18] J. s, E. Lecolinet, and T. Selker. Multi-finger Chords
for Hand-held Tablets: Recognizable and Memorable.
In CHI 2014, 2014.

[19] S. Salazar and G. Wang. miniAudicle for iPad:
Touchscreen-based Music Software Programming. In
International Computer Music Conference, 2014.

[20] R. Sodhi, H. Benko, and A. Wilson. LightGuide:
Projected Visualizations for Hand Movement
Guidance. In the 2012 ACM annual conference, pages
179–188, 2012.

[21] B. Taylor, J. Allison, W. Conlin, and Y. Oh.
Simplified Expressive Mobile Development with
NexusUI, NexusUp and NexusDrop. In Proceedings of
the International Conference on New Interfaces for
Musical Expression (NIME), 2014.

[22] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fahndrich. TouchDevelop: programming
cloud-connected mobile devices via touchscreen. In
ONWARD ’11: Proceedings of the 10th SIGPLAN
symposium on New ideas, new paradigms, and
reflections on programming and software, 2011.

[23] E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J.
Cadiz, and C. R. Cook. Does continuous visual
feedback aid debugging in direct-manipulation
programming systems? In CHI ’97: Proceedings of the
ACM SIGCHI Conference on Human factors in
computing systems, pages 258–265, 1997.


