
1 The basic equations of fluid dynamics

The main task in fluid dynamics is to find the velocity field describing the flow in a
given domain. To do this, one uses the basic equations of fluid flow, which we derive
in this section. These encode the familiar laws of mechanics:

• conservation of mass (the continuity equation, Sec. 1.2)

• conservation of momentum (the Cauchy equation, Sec. 1.3)

at the level of “fluid elements”, defined in Sec. 1.1. In any domain, the flow equations
must be solved subject to a set of conditions that act at the domain boundary, Sec. 1.5.
If the flow leads to compression of the fluid, we must also consider thermodynamics:

• conservation of energy.

However we defer this complication until later in the course, Sec. 5, assuming initially
that the flow remains incompressible, Sec. 1.4.

1.1 The continuum hypothesis; fluid elements

At a microscopic scale, fluid comprises individual molecules and its physical properties
(density, velocity, etc.) are violently non-uniform. However, the phenomena studied
in fluid dynamics are macroscopic, so we do not usually take this molecular detail into
account. Instead, we treat the fluid as a continuum by viewing it at a coarse enough
scale that any “small” fluid element actually still contains very many molecules. One
can then assign a local bulk flow velocity v(x, t) to the element at point x, by averaging
over the much faster, violently fluctuating Brownian molecular velocities. Similarly one
defines a locally averaged density ρ(x, t), etc. These locally averaged quantities then
vary smoothly with x on the macroscopic scale of the flow.

1.2 Conservation of mass

1.2.1 The continuity equation

Consider a volume V bounded by a surface S that is fixed in space. This mass inside
it is given by

∫

V ρ dV , so the

rate of decrease of mass in V = −
d

dt

∫

V
ρ dV = −

∫

V

∂ρ

∂t
dV. (1)

If mass is conserved, Eqn. 1 must equal the total rate of mass flux out of V . How do
we calculate this? The rate of outward mass flux across any small element dS of S is
ρv ·dS where the magnitude of dS is equal to the element’s area and we take dS along
the outward normal. Integrating over the whole surface we have

rate of mass flux out of V =

∫

S

ρv · dS =

∫

V
∇ · (ρv)dV (2)

where we used Green’s formula to convert to a volume integral. The integrand ∇· (ρv)
on the RHS is expressed in Cartesian coordinates x = (x, y, z), v = (u, v,w) as

∇ · (ρv) =
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
. (3)
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Figure 1: Mass fluxes entering and leaving an element.

See Fig. 1, which shows clearly that gradients in the flow field are required for non-zero
net flux. For mass to be conserved everywhere, Eqns. 1 and 2 must be equal for any
volume V and so we get

the continuity equation:
∂ρ

∂t
+ ∇.(ρv) = 0. (4)

1.2.2 The material derivative

The continuity equation contains the “time-derivative” of the fluid density. What does
this mean exactly? For any physical quantity f = f(x, t) (density, temperature, each
velocity component, etc.), we must actually take care to distinguish two different time
derivatives. By ∂f/∂t, as in Eqn. 4, we mean the rate of change of f at a particular

point that is fixed in space. But we might instead ask about the rate of change of f
in a given element of fluid as it moves along its trajectory x = x(t) in the flow. This
defines the material (or substantive) derivative

Df

Dt
=

d

dt
f(x(t), y(t), z(t), t)

=
∂f

∂t
+

dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
+

dz

dt

∂f

∂z

=
∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z

=
∂f

∂t
+ v · ∇f (5)

This. 5 conveys the intuitively obvious fact that, even in a time-independent flow field
(∂f/∂t = 0 everywhere), any given element can suffer changes in f (via v · ∇f) as it
moves from place to place.

Check as an exercise that the continuity equation can also be written in the form

Dρ

Dt
+ ρ∇ · v = 0. (6)
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1.2.3 Incompressible continuity equation

If the fluid is incompressible, ρ = constant, independent of space and time, so that
Dρ/Dt = 0. The continuity equation then reduces to

∇ · v = 0, (7)

which in Cartesian coordinates is

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (8)

1.3 Conservation of momentum

1.3.1 The Cauchy equations

Consider a volume V bounded by a material surface S that moves with the flow, always
containing the same material elements. Its momentum is

∫

V dV ρv, so:

rate of change of momentum =
d

dt

∫

V
dV ρv =

∫

V
dV ρ

Dv

Dt
. (9)

(The mass ρ dV of each material element is constant.) This must equal the net force
on the element. Actually there are two different types of forces that act in any fluid:

• Long ranged external body forces that penetrate matter and act equally on all
the material in any element dV . The only one considered here is gravity, ρg dV .

• Short ranged molecular forces, internal to the fluid. For any element, the net
effect of these due to interactions with other elements acts in a thin surface

layer. In 3D, each of the 3 sets of surface planes bounding an element experiences
a 3-component force, giving 9 components in all. These form the stress tensor [Π],
defined so the force exerted per unit area across a surface element dS ≡ n̂ dS (by
the fluid on the side to which n̂ points on the fluid on the other side) is f = [Π] · n̂.

Total force (body + surface) =

∫

V
dV ρg +

∫

S

[Π] · dS

=

∫

V
dV (ρg + ∇ · [Π]) . (10)

By Newton’s second law, Eqns. 9 and 10 must be equal for any V , so we get finally

the Cauchy equation: ρ
Dv

Dt
= ρg + ∇ · [Π]. (11)

The physical meaning of this is seen clearly in Cartesian coordinates (in 2D in Fig. 2):

Momentum, x : ρ
Du

Dt
= ρgx +

∂

∂x
(Πxx) +

∂

∂y
(Πxy) +

∂

∂z
(Πxz)

Momentum, y : ρ
Dv

Dt
= ρgy +

∂

∂x
(Πyx) +

∂

∂y
(Πyy) +

∂

∂z
(Πyz)

Momentum, z : ρ
Dw

Dt
= ρgz +

∂

∂x
(Πzx) +

∂

∂y
(Πzy) +

∂

∂z
(Πzz). (12)
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Figure 2: Surface stresses on a fluid element in 2 dimensions.

Πij is the force per unit area in the i direction across a plane with normal in the j
direction. As can be seen from the figure, gradients in the stress tensor are needed for
there to be a net force on any element (consistent with the surface integral of [Π] · n̂
equating to a volume integral of ∇ · [Π]). It is possible to show that the stress tensor
is symmetric, i.e.

Πxy = Πyx, Πzx = Πxz, Πyz = Πzy, (13)

otherwise any small fluid element would suffer infinite angular acceleration.

1.3.2 Constitutive relations

The surface stresses [Π] on any element arise from a combination of pressure p and
viscous friction, as prescribed by the constitutive relations

Πxx = −p + λ∇ · v + 2µ
∂u

∂x
, Πxy = µ

(

∂u

∂y
+

∂v

∂x

)

, (14)

Πyy = −p + λ∇ · v + 2µ
∂v

∂y
, Πyz = µ

(

∂v

∂z
+

∂w

∂y

)

, (15)

Πzz = −p + λ∇ · v + 2µ
∂w

∂z
, Πxz = µ

(

∂u

∂z
+

∂w

∂x

)

. (16)

µ and λ are the coefficients of dynamic and bulk viscosity respectively. These expres-
sions assume that the relationship between stress and velocity gradients is

• linear (which is valid for Newtonian fluids) and

• isotropic (i.e., the intrinsic properties of the fluid have no preferred direction).

1.3.3 Incompressible Navier-Stokes equations

For incompressible flow, ∇ · v = 0 (Eqn. 7). The constitutive relations then reduce to

Πij = −pδij + µ

(

∂ui

∂xj
+

∂uj

∂xi

)

. (17)

Here we have used suffix notation v = (u1, u2, u3), x = (x1, x2, x3) and defined the
Kronecker delta symbol δij = 1 if i = j and δij = 0 if i 6= j. Check that you are happy
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with this notation by working through the derivation of Eqn. 17 from Eqns. 14 to 16.
Inserting Eqn. 17 into Eqn. 11, assuming constant µ, and utilising again the incom-
pressibility condition 7, we get the incompressible Navier–Stokes (N–S) equations:

Continuity : 0 =
∂u

∂x
+

∂v

∂y
+

∂w

∂z

Momentum, x : ρ
Du

Dt
= ρgx −

∂p

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)

Momentum, y : ρ
Dv

Dt
= ρgy −

∂p

∂y
+ µ

(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2

)

Momentum, z : ρ
Dw

Dt
= ρgz −

∂p

∂z
+ µ

(

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2

)

(18)

or, in compact notation
Continuity

∇ · v = 0 (19)

Momentum

ρ
Dv

Dt
= ρg −∇p + µ∆v, (20)

in which ∆ is the Laplacian operator. For uniform ρ we can simplify Eqn. 20 by realising
that the gravitational force is exactly balanced by a pressure gradient ∇p0 = g that
does not interact with any flow: defining P = p − p0, we get

ρ
Dv

Dt
= −∇P + µ∆v. (21)

1.3.4 Physical interpretation

The surface stresses (pressure and viscous effects) on any fluid element were introduced
above via the constitutive relation. What is their physical interpretation?

• Viscous stresses are generated by velocity gradients. They oppose relative motion
of fluid elements. Consider Fig. 3. Across any plane AB, a tangential viscous
stress Πxy = µ∂u

∂y
acts: the faster fluid above AB drags the fluid below forward,

and the slower fluid below drags the fluid above back.

• Even in the absence of velocity gradients, each element still experiences an isotropic
pressure p. In rest at equilibrium, this equals the thermodynamic pressure in the
equation of state. In flow this is no longer true: p is now defined in purely
mechanical terms, as a measure of the local intensity of ‘squeezing’ in the fluid.

1.4 Condition for incompressibility

We have seen that the continuity equation, Eqn. 4, and the constitutive relations,
Eqns. 14 to 16, take on much simpler forms (Eqns. 7, 17) when the flow is incom-
pressible. We therefore assume incompressibility for much of the course (deferring
compressible flow to Sec. 5). The criterion1 for this is that the flow speed U should be
much less than the speed of sound a. In practice, this only breaks down for high speed
(subsonic and hypersonic) gas flows.

1Specifically, the Mach number Ma ≡ U/a must obey Ma2 ≪ 1. (Tritton 5.8 for those interested.)
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Figure 3: Planar shear flow.

1.5 Boundary conditions

In any flow domain, the flow equations must be solved subject to a set of conditions
that act at the domain boundary. For a rigid bounding wall moving at velocity U and
having unit normal n̂, we assume for the local fluid velocity v that

1. The wall is impermeable: v · n̂ = U · n̂.

2. The fluid doesn’t slip relative to the wall: v × n̂ = U× n̂.

Condition 2 is not obvious: why shouldn’t slip occur? The underlying notion is that
the fluid interacts with the wall in the same way as with other fluid: there cannot exist
any discontinuity in velocity, or an infinite viscous stress would arise. But the ultimate
justification comes from experimental verification.

1.6 Summary

In this section, we have derived the basic equations governing incompressible fluid flow.
In what follows, we are mainly concerned with flow fields that are time-independent
and two-dimensional. Eqns. 19 and 21 then reduce, in Cartesian coordinates (x, y) to:

Continuity:
∂u

∂x
+

∂v

∂y
= 0, (22)

Momentum:

ρ

(

u
∂u

∂x
+ v

∂u

∂y

)

= −
∂P

∂x
+ µ

(

∂2u

∂x2
+

∂2u

∂y2

)

, (23)

ρ

(

u
∂v

∂x
+ v

∂v

∂y

)

= −
∂P

∂y
+ µ

(

∂2v

∂x2
+

∂2v

∂y2

)

, (24)

where v = (u, v) is the velocity field. As discussed above, the first term on the RHS in
Eqns. 23 and 24 refers to pressure forces, ∇ · P . The rest of the RHS describes viscous

forces, µ∇2v. The LHS is the momentum change that any element experiences as it
moves between regions of different velocity in the flow field. This has the dimensions
of a force, and is referred to as the inertia force, ρv · ∇v.

We will refer back to these basic equations 22 to 24 extensively throughout the
rest of the course.
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