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4.1 Sampling and Statistics

4.1 Sampling and Statistics

(Random Sample) X1, · · · ,Xn constitute a random sample on X if
X1, · · · ,Xn are iid with the same distribution as that of X . They
have the same

I expected values (means): E(X1) = · · · = E(Xn) = µ

I variances: V(X1) = · · · = V(Xn) = σ2.
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4.1 Sampling and Statistics

I In theoretical statistics, we use random variables to represent
observations (i.e., data). Then, we can use probability to
study their properties.

I In applied statistics, we use values. We look at their numerical
results.
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4.1 Sampling and Statistics

A statistic is a function of data. It becomes a real number after
you have data.

I Before collecting the data, it is a random variable. In
theoretical statistics, we treat it as a random variable.

I After collecting the data, it is a number. In applied statistics,
we treat it as a number.
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4.1.1. Point Estimators

4.1.1. Point Estimators

Three main problems in statistics.

I Point estimation. The answer is a real number. There are
three terms

I Estimation. The entire method for the formula. It is the most
important step in the derivation of the three main problems.

I Estimator. The formula (must be a statistic).
I Estimate. A value. After you have data, an estimator becomes

an estimate.

I Confidence interval. The answer is an interval, such as a± b
or [L,U].

I Hypothesis testing. The answer is True or False.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.1.1. Point Estimators

Biased versus Unbiased

Suppose we use T = T (X1, · · · ,Xn) to estimate θ.

I If E(T ) = θ, then we call it is unbiased;

I otherwise, we called E(T )− θ as the bias of T .

Criticism: T 2 is not an unbiased estimator of θ2 even if T is an
unbiased estimator of θ.
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4.1.1. Point Estimators

If X1, · · · ,Xn are random sample with common PDF (or PMF)
f (x) and CDF F (x), then the joint PDF (or PMF) is

fX1,··· ,Xn(x1, · · · , xn) =
n∏

i=1

f (xi )

and the joint CDF is

FX1,··· ,Xn(x1, · · · , xn) =
n∏

i=1

F (xi ).
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4.1.1. Point Estimators

If a parameter is contained in f (x) so that we can write

f (x) = fθ(x),

then the likelihood function is defined by their joint PDF (or PMF)
as

L(θ) =
n∏

i=1

fθ(Xi ).
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4.1.1. Point Estimators

I The likelihood function is identical to the joint PDF or PMF.

I The focus is the parameter but not the distribution.

I The maximum likelihood is the most important method.

I A main step in the maximum likelihood approach is the
derivation of the maximizer.

I Maximum likelihood approach has also been extended to
many cases.

I If θ̂ is the MLE of θ, then for any continuous function g(·),
g(θ̂) is also the MLE of g(θ).
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4.1.1. Point Estimators

Example 4.1.1 Suppose X1, · · · ,Xn are identically and
independently collected from Exp(θ). The PDF of Xi is
f (x) = θe−θx . The likelihood function of θ is

L(θ) =
n∏

i=1

f (Xi ) =
n∏

i=1

(θe−θXi ) = θne−θ
∑n

i=1 Xi = θne−nθX̄ ,

where X̄ =
∑n

i=1 Xi/n is called the sample mean. The
loglikelihood function of θ is

ℓ(θ) = log L(θ) = n log(θ)− nθX̄ .
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4.1.1. Point Estimators

Taking derivative with respect to θ, we obtain the estimating
equation (EE) as

ℓ̇(θ) =
∂ℓ(θ)

∂θ
=

n

θ
− nX̄ .

Solve it for θ, we obtain the maximum likelihood estimator (MLE)
of θ as

θ̂ =
1

X̄
.

Note that the right side only depends on data. It will be a real
value if data are provided. This is an important property to check
whether the solution makes sense.
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4.1.1. Point Estimators

Based on the data:

359, 413, 25, 130, 90, 50, 50, 487, 102, 194, 55, 74, 97,

we obtain
x̄ = 163.54.

Then, the maximum likelihood estimate (MLE) of θ is

θ̂ = 1/163.54 = 0.006115.

Since
E(X̄−1) ̸= θ,

θ̂ is a biased estimator of θ.
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4.1.1. Point Estimators

I If I ask you maximum likelihood estimation, you need all of
those.

I If I ask you maximum likelihood estimator, you need to
provide θ̂ = 1/X̄ .

I If I ask you maximum likelihood estimate, you need to provide
0.006115.
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4.1.1. Point Estimators

Example 4.1.2. Let X be Bernoulli(θ). Then, X can only be 0 or
1. Let θ = P(X = 1). Then, the PMF can be expressed as
f (x) = θx(1− θ)1−x . We write X ∼ Bernoulli(θ). Suppose that
X1, · · · ,Xn ∼iid Bernoulli(θ). Then, the likelihood function of θ is

L(θ) =
n∏

i=1

θXi (1− θ)1−Xi = θnX̄ (1− θ)n(1−X̄ ).
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4.1.1. Point Estimators

The loglikelihood function of θ is

ℓ(θ) = log L(θ) = nX̄ log(θ) + n(1− X̄ ) log(1− θ).

The estimating equation is

ℓ̇(θ) =
∂ℓ(θ)

∂θ
=

nX̄

θ
− n(1− X̄ )

1− θ
= 0 ⇒ θ̂ = X̄ .

Since E(X̄ ) = θ, θ̂ is an unbiased estimator of θ.
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4.1.1. Point Estimators

Example 4.1.3. Let X1, · · · ,Xn be iid from N(µ, σ2). Then, the
PDF is

f (x) =
1√
2πσ

e−
(X−µ)2

2σ2 .

Let θ = (θ1, θ2) = (µ, σ2). The likelihood function of θ is

L(θ) =
n∏

i=1

1√
2πσ

e−
(Xi−µ)2

2σ2

=(
1√
2π

)n(
1

σ2
)
n
2 e−

1
2σ2

∑n
i=1[(X̄−µ)2+(Xi−X̄ )2].
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4.1.1. Point Estimators

The loglikelihood function of θ is

ℓ(θ) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2
[n(X̄ − µ)2 +

n∑
i=1

(Xi − X̄ )2].

Taking derivatives, we have

ℓ̇(θ) =

(
∂ℓ(θ)
∂θ1
∂ℓ(θ)
∂θ2

)
=

(
n(X̄−µ)

σ2

− n
2σ2 +

1
2σ4 [n(X̄ − µ)2 +

∑n
i=1(Xi − X̄ )2]

)
.

Solving ℓ̇(θ) = 0, we obtain the MLE of µ as

µ̂ = X̄

and the MLE of σ2 as

σ̂2 =
1

n

n∑
i=1

(Xi − X̄ )2.
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4.1.1. Point Estimators

Based on the data given by the textbook (Page 229), we have
n = 24,

X̄ = 53.92

and

n−1
n∑

i=1

(Xi − X̄ )2 = 97.25.

We obtain the maximum likelihood estimate of µ as

µ̂ = 53.92

and
σ̂2 = 97.25.
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4.1.1. Point Estimators

Note: There is another estimator of σ2. It is given by

S2 =
1

n − 1

n∑
i=1

(Xi − X̄ )2.

We call S2 the sample variance and S the standard error (or
sample standard deviation). We can show that E(S2) = σ2. Then,
σ̂2 is a biased estimator of σ2.
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4.1.1. Point Estimators

Example 4.1.4. Let X1, · · · ,Xn be iid from uniform [0, θ]. The
PDF is

f (x) =
1

θ
I (0 ≤ x ≤ θ) =

{
1/θ, 0 ≤ x ≤ θ,
0, otherwise.

The likelihood function is

L(θ) =
n∏

i=1

f (Xi ) =
n∏

i=1

1

θ
I (0 ≤ Xi ≤ θ)

=
1

θn
I (0 ≤ X(1))I (X(n) ≤ θ).

where X(1) = min(Xi ) and X(n) = max(Xi ).
Now, we look at the MLE. To make L(θ) large, we need to make θ
small, but θ cannot be lower than X(n). Therefore,

θ̂ = X(n) = max(Xi ).
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4.1.1. Point Estimators

Note: We cannot use derivative to find the maximum of the
likelihood function. This example introduces an important method
to find the MLE.
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4.1.1. Point Estimators

We next compute the CDF and PDF of X(n). We have a trick. Let
F (x) be the CDF of X . Then, F (x) = x/θ if 0 ≤ x ≤ θ. The CDF
of X(n) is

Fn(x) =P(X(n) ≤ x)

=P(X1,X2, · · · ,Xn ≤ x)

=
n∏

i=1

P(Xi ≤ x)

=F n(x)

=
xn

θn
.
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4.1.1. Point Estimators

The PDF is

fn(x) =
dFn(x)

dx
=

nxn−1

θn
.

Thus,

E(X(n)) =

∫ θ

0
xfn(x)dx =

n

θn

∫ θ

0
xndx =

nθ

n + 1

and

E(X 2
(n)) =

∫ θ

0
x2fn(x)dx =

n

θn

∫ θ

0
xn+1dx =

nθ2

n + 2
.

We have

V(X(n)) =
nθ2

n + 2
−
(

nθ

n + 1

)2

=
nθ2

(n + 2)(n + 1)2
.

Note: The distribution of the MLE is not normal. This is a nice
example to be evaluated in the future.
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4.1.1. Point Estimators

Example: Let X1 · · · ,Xn ∼iid Poisson(θ). The PMF of the
Poisson distribution if

f (x) =
θx

x!
e−θ.

The likelihood function is the joint PMF, which is

L(θ) =
n∏

i=1

θXi

Xi !
e−θ

=(
n∏

i=1

1

Xi !
)(θ

∑n
i=1 Xi )(e−nθ)

=(
n∏

i=1

1

Xi !
)(θnX̄ )(e−nθ).
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4.1.1. Point Estimators

We still study the log-likelihood function (i.e., the logarithm of the
likelihood function), which is

ℓ(θ) = log L(θ) = − log(
n∏

i=1

1

Xi !
) + nX̄ log θ − nθ.

By

ℓ̇(θ) =
nX̄

θ
− n = 0

we obtain the MLE of θ as

θ̂ = X̄ .
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4.2. Confidence Interval

4.2 Confidence Intevral

Suppose that X1, · · · ,Xn are random variables (or data). Let
L = L(X1, · · · ,Xn) and U = U(X1, · · · ,Xn) be statistics. For any
α ∈ (0, 1). We say that the interval [L,U] is (1− α)% confidence
interval for θ is

Pθ[θ ∈ (L,U)] = 1− α,

where 1− α is called the confidence level or confidence coefficient.
In confidence interval problems, we need to understand:

I confidence level,

I coverage probabilities

I length of the confidence interval.
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4.2. Confidence Interval

Examples 4.2.1. and 4.2.2. Suppose

X1, · · · ,Xn ∼iid N(µ, σ2).

Let x1, · · · , xn be observed values of X1, · · · ,Xn. We also have the
observed value of the sample mean

x̄ =
1

n

n∑
i=1

xi

and

s2 =
1

n − 1

n∑
i=1

(xi − x̄)2.

Then, s is the observed value of the sample standard deviation.
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4.2. Confidence Interval

We have

X̄ ∼ N(µ,
σ2

n
).

Thus,

P(−zα
2
≤ X̄ − µ

σ/
√
n
≤ zα

2
) = 1− α.

With probability 1− α, there is

−zα
2
≤ X̄ − µ

σ/
√
n
≤ zα

2
.
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4.2. Confidence Interval

With probability 1− α there is

X̄ − zα
2

σ√
n
≤ µ ≤ X̄ + zα

2

σ√
n
.

Then the 1− α level confidence interval for µ is

x̄ ± zα
2

σ√
n
= [x̄ − zα

2

σ√
n
, x̄ + zα

2

σ√
n
].
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4.2. Confidence Interval

An often asked question is about the length of confidence interval.
How large is the sample size n so that the 1− α level confidence
interval is less than w . Note that the length of the 1− α level
confidence interval is

2zα
2

σ√
n
.

Thus, we have

2zα
2

σ√
n
≤ w ⇒ n ≥ (2zα

2

σ

w
)2 =

4z2α
2
σ2

w2
.
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4.2. Confidence Interval

Modification 1. If σ2 is unknown, then we can replace σ2 by s2,
leading the large sample confidence interval for µ as

X̄ − zα
2

s√
n
≤ µ ≤ X̄ + zα

2

s√
n
.

This is recommend if n is large (e.g., n ≥ 40).
Modification 2. If n is small, then one suggests to replace zα/2 by
tα.2,n−1, leading to

x̄ ± tα
2
,n−1

s√
n
.
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4.2. Confidence Interval

Theoretical foundation.

I
n∑

i=1

[(Xi − µ)2] ∼ σ2χ2
n

I

(n − 1)S2 =
n∑

i=1

[(Xi − X̄ )2] ∼ σ2χ2
n−1.

I

X̄ ∼ N(µ,
σ2

n
)

and X̄ and S2 are independent.
I Therefore, we have

T =
X̄ − µ√
S2/n

∼ tn−1.
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4.2. Confidence Interval

Coverage probability. Suppose that we use

X̄ ± tα
2
,n−1

S√
n

to compute 95% confidence interval for µ. Theoretically, we need
to evaluate the formulation of the coverage probability. It is given
by

P(Coverage) = Pµ,σ2(X̄ − tα
2
,n−1

S√
n
≤ µ ≤ X̄ − tα

2
,n−1

S√
n
).

This is the probability for the confidence interval to contain the
true value. Generally, we say that the confidence interval is correct
if it contains the true value of µ, or incorrect otherwise.
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4.2. Confidence Interval

Equivalently, we have

P(Coverage) = P(−tα
2
,n−1 ≤

X̄ − µ

S/
√
n
≤ −tα

2
,n−1) = 1− α.

I We want to make the value identical to (or close to) 1− α.

I We claim the formulation is bad if it is too high or too low.

I Based on the above result, we conclude that the formulation
of t-confidence interval is good.
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4.2. Confidence Interval
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Figure : Coverage probability of the t-confidence interval as functions of
µ when n = 10 and σ2 = 1.
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4.2. Confidence Interval

Example 4.2.3 (Confidence interval for binomial proportion). It is
a large sample confidence interval (e.g., np > 10 and
n(1− p) > 10). Suppose X ∼ Bin(n, p) and X is observed. The
estimate of p is p̂ = X/n with

p̂ ∼approx N(p,
p(1− p)

n
).

Approximately, we have

P(−zα
2
≤ p̂ − p√

p(1− p)/n
≤ zα

2
) ≈ 1− α.
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4.2. Confidence Interval

Solve the inequality

−zα
2
≤ p̂ − p√

p(1− p)/n
≤ zα

2
.

We have

p̂ − zα
2

√
p(1− p)

n
≤ p ≤ p̂ + zα

2

√
p(1− p)

n
.

Note that the left and the right are not statistics. We use the
1− α level confidence interval for p as

p̂ ± zα/2

√
p̂(1− p̂)

n
.

This is called the Wald confidence interval.
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4.2. Confidence Interval

I also calculate the covarage probability of the Wald confidence
interval by simulations. The result is displayed in Figure 2. Since
the curve is not alway close to 0.95. The formulation may not be
correct.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.2. Confidence Interval
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Figure : Coverage probability of the t-confidence intervals as functions of
µ when n = 10 and σ2 = 1.
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4.2. Confidence Interval

Assume we observed

X1,X2, · · · ,Xn1 ∼iid N(µ1, σ
2
1)

and
Y1,Y2, · · · ,Yn2 ∼ N(µ2, σ

2
2),

where σ2
1 and σ2

2 are known. Then,

X̄ =
1

n1

n1∑
i=1

Xi ∼ N(µ1,
σ2
1

n1
)

and

Ȳ =
1

n2

n2∑
i=1

Yi ∼ N(µ2,
σ2
2

n2
).

Then,

X̄ − Ȳ ∼ N(µ1 − µ2,
σ2
1

n1
+

σ2
2

n2
).
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4.2. Confidence Interval

Suppose that σ2
1 and σ2

2 are known. Write x̄ and ȳ are observed
values of X̄ and Ȳ respectively. Then, the (1− α)100% confidence
interval for µ1 − µ2 is

(X̄ − ȳ)± zα
2

√
σ2
1

n1
+

σ2
2

n2
.
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4.2. Confidence Interval

Large Sample Case. When σ2
1 and σ2

2 are unknown, but both n1
and n2 are large (e.g. m, n > 40), then we approximately have

Z =
X̄ − Ȳ − (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

∼approx N(0, 1).

Then, the (1− α)100% confidence interval for µ1 − µ2 is

(x̄ − ȳ)± zα
2

√
s21
n1

+
s22
n2

.
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4.2. Confidence Interval

Pooled t-confidence interval. Assume σ2
1 = σ2

2. Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

and write s2p as the observed value of S2
p . Then,

T =
X̄ − Ȳ − (µ1 − µ2)√

S2
p (1/n1 + 1/n2)

∼ tn1+n2−2.

Thus, the (1− α)100% confidence interval for µ1 − µ2 is

x̄ − ȳ ± tα
2
,n1+n2−2sp

√
1

n1
+

1

n2
.
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4.2. Confidence Interval

Confidence interval and test for variance ratio

We have

F ∗ =
S2
1/σ

2
1

S2
2/σ

2
2

∼ Fm−1,n−1.

Thus, the (1− α)100% confidence interval for σ2
1/σ

2
2 is

[
s21/s

2
2

Fα/2,m−1,n−1
,

s21/s
2
2

F1−α/2,m−1,n−1
].
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4.2. Confidence Interval

To test
H0 : σ

2
1 = σ2

2 ↔ Ha : σ
2
1 ̸= σ2

2,

We reject H0 and conclude Ha if

s21
s22

> Fα/2,m−1,n−1

or
s21
s22

< F1−α/2,m−1,n−1.
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4.2. Confidence Interval

To check value in the table, we need an important property. If
F ∼ Fm,n, then 1/F ∼ Fn,m. This implies that

P(Fm,n < c) = P(Fn,m > 1/c)

which gives
Fα,m,n = 1/F1−α,n,m

where Fα,m,n represents the upper α quantile of the F-distribution
with m and n degrees of freedom respectively. For example, if we
know

F0.05,10,8 = 3.35

then we have

F0.95,8,10 =
1

3.35
= 0.2985.
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4.2. Confidence Interval

Assume, we have data

X ∼ Bin(n1, p1)

and
Y ∼ Bin(n2, p2),

and X and Y are independent. Let p̂1 = X/m and p̂2 = Y /n.
Then,

p̂1 − p̂2 ∼approx N(p1 − p2,
p1(1− p1)

n1
+

p2(1− p2)

n2
).
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4.2. Confidence Interval

Since we can estimate the variance

p1(1− p1)

n1
+

p2(1− p2)

n2

by
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

the large-sample (1− α)100% confidence interval for p1 − p2 is

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.4. Order Statistics

4.4. Order Statistics

Let X1, · · · ,Xn be iid continuous random variables with common
PDF f (x) and CDF F (x). Let X(1), · · · ,X(n) be the order
statistics. Then, the joint PDF of X(1), · · · ,X(n) is

g(y1, · · · , yn) = n!
n∏

i=1

f (yi )

for y1 ≤ y2 ≤ · · · ≤ yn.
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4.4. Order Statistics

The marginal PDF of X(i) is

gi (yi ) =
n!

(k − 1)!(n − k)!
[F (yi )]

i−1[1− F (yi )]
n−i f (yi ).

The marginal PDF of X(i) and X(j) with i < j is

gij(yi , yj) =
n!

(i − 1)!(j − i − 1)!(n − j)!
[F (yi )]

i−1

[F (yj)− F (yi )]
j−i−1[1− F (yj)]

n−j f (yi )f (yj)

if yi ≤ yj .
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4.4. Order Statistics

We call X([qn]) is q-th quantile of X1, · · · ,Xn, where [·] is the
function of the integer part. The median is X([n/2]).
As n → ∞ for 0 < q1 < 1, we have

√
n[X([qn]) − xq]

D→ N(0,
q(1− q)

f 2(xq)
),

where xq = F−1(q).
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4.4. Order Statistics

As n → ∞, for 0 < q1 < q2 < 1, we have

√
n

[(
X([q1n])

X([q2n])

)
−
(

xq1
xq2

)]
D→ N

0,
 q1(1−q1)

f 2(xq1 )
q1(1−q2)

f (xq1 )f (xq2 )
q1(1−q2)

f (xq1 )f (xq2 )
q2(1−q2)
f 2(xq2 )

 .
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4.4. Order Statistics

Example 1: Assume X1, · · · ,Xn are iid random variables with
common PDF f (x) and CDF F (x). Suppose we use X([0.3n]) to
estimate x0.3 = F−1(0.3). Then, we have

√
n[X([0.3n]) − x0.3]

D→ N(0,
0.21

f 2(x0.3)
).

Therefore, the 95% confidence interval for x0.3 is approximately

x([0.3n]) ±
1.96×

√
0.21

f (x0.3)
√
n

.
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4.4. Order Statistics

Let xm be the true median and X([0.5m]) be the sample median.
Then,

√
n[X([0.5n]) − xm]

D→ N(0,
0.25

f 2(xm)
)

ad the 95% confidence interval for xm is

X([0.5n]) ±
0.98

f (xm)
√
n
.
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4.4. Order Statistics

Example 2: In the previous example, suppose

f (x) =
1

π[1 + (x − θ)2]
,−∞ < x < ∞.

Then, θ is the median and θ̃ = X([0.5n]) is an estimator of θ. The
confidence interval for θ is

X([0.5n]) ±
0.98π√

n
.
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4.5 Introduction to Hypotheses Testing

4.5 Introduction to Hypotheses Testing

Assume the PDF (or PMF) is f (x ; θ), θ ∈ Ω. Assume Ω0 ∪Ω1 = Ω
and Ω0 ∩ Ω1 = ϕ. Suppose we consider the hypotheses

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1.

We will draw conclusion based on observations.
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4.5 Introduction to Hypotheses Testing

Look at the following 2× 2 table.

Truth
Conclusion H0 H1

Accept H0 Correct Type II Error
Reject H0 Type I Error Correct
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4.5 Introduction to Hypotheses Testing

We call
P(Reject H0|H0)

is the type I error probability and

P(Accept H0|H1)

is the type II error probability. We call the maximum of type I error
probability is the significance level, which is usually denoted by α.
That is

α = max
θ∈Ω0

P(Reject H0|H0).
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4.5 Introduction to Hypotheses Testing

The power function of a test is defined by

P(Reject H0|θ),

whic is a function of θ.
For a given α, we need to find the rejection region C based on a
test statistic T . We reject H0 if T ∈ C and we accept H0 if T ̸∈ C .

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.5 Introduction to Hypotheses Testing

Example: Suppose X1, · · · ,Xn are iid N(µ, 1). Let µ0 be a given
number. We can test

(a) : H0 : µ ≤ µ0 ↔ H1 : µ > µ0

or
(b) : H0 : µ ≥ µ0 ↔ H1 < µ0.

or
(c) : H0 : µ = µ0 ↔ H0 ̸= µ0.
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4.5 Introduction to Hypotheses Testing

Suppose that n = 10 in (a). Given the rejection region

C = {X̄ > µ0 + 0.7},

compute type I error probability when µ = µ0 − 0.5, type II error
probability when µ = µ0 + 0.5, the power function as a function of
µ, and the significance level.
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4.5 Introduction to Hypotheses Testing

Solution: Note that
X̄ ∼ N(µ, 1/10).

The type I error probability when µ = µ− 0.5 is

P(Type I|µ = µ0 − 0.5) =P(Conclude µ > µ0|µ = µ0 − 0.5)

=P(X̄ > µ0 + 0.7|µ = µ0 − 0.5)

=1− Φ(
µ0 + 0.7− (µ0 − 0.5)√

1/10
)

=1− Φ(
1.2√
1/10

)

=1− Φ(3.79)

=7.53× 10−5.
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4.5 Introduction to Hypotheses Testing

The type II error probability when µ = µ+ 0.5 is

P(Type II|µ = µ0 + 0.5) =P(Conclude µ ≤ µ0|µ = µ0 + 0.5)

=P(X̄ ≤ µ0 + 0.7|µ = µ0 + 0.5)

=Φ(
µ0 + 0.7− (µ0 + 0.5)√

1/10
)

=Φ(
0.2√
1/10

)

=Φ(0.63)

=0.7356.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.5 Introduction to Hypotheses Testing

As a function of µ, the power function is

P(Conclude H1|µ) =P(X̄ > µ0 + 0.7|µ)
=Pµ(X̄ > µ0 + 0.7)

=1− Φ(
µ0 + 0.7− µ√

1/10
).
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4.5 Introduction to Hypotheses Testing
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Figure : Power functions of the normal problem. The left is P(type I).
The right is 1− P(type II).
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4.5 Introduction to Hypotheses Testing

The siginficance level is

α =max
H0

P(Type I)

=P(Type I|µ = µ0)

=1− Φ(0.7/
√

1/10)

=1− Φ(2.21)

=0.0135.
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4.5 Introduction to Hypotheses Testing

Given significance level α(1, α), provide the rejection region for the
three testing problems.
Solution: We reject H0 if

X̄ > µ0 + zα/
√
10

in (a),
X̄ < µ− zα/

√
10,

or
|X̄ | ≥ zα/2/

√
10

in (c).

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.5 Introduction to Hypotheses Testing

If we chooce α = 0.05, then we have

X̄ > µ0 + 1.645/
√
10

in (a),
X̄ < µ− 1.645/

√
10,

or
|X̄ | ≥ 1.96/

√
10

in (c).

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.5 Introduction to Hypotheses Testing

Example: Suppose X ∼ Bin(n, p). We can test

(a) H0 : p ≤ p0 ↔ H1 : p > p0

or
(b) H0 : p ≥ p0 ↔ H1 : p < p0

or
(c) H0 : p = p0 ↔ H1 : p ̸= p0.

Suppose that n = 30 in (a) and p0 = 0.5. Given the rejection
region

C = {X ≥ 19},

compute type I error probability when µ = 0.3, type II error
probability when µ = 0.7, the power function as a function of µ,
and the significance level.
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4.5 Introduction to Hypotheses Testing

Solution: Note that X ∼ Bin(n, p). We have

P(Type I|p = 0.3) =P(X ≥ 19|p = 0.3)

=P(Bin(30, 0.3) ≥ 19)

=1.62× 10−4

and
P(Type II|p = 0.7) =P(X < 19|p = 0.7)

=P(Bin(30, 0.7) ≤ 18)

=0.1593.

As a function of p, the power function is

P(Conclude H1|p) =P(X ≥ 19|p)
=P(Bin(30, p) ≥ 19).
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4.5 Introduction to Hypotheses Testing
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Figure : Power functions of the binomial problem when p0 = 0.5 and
n = 30. The left is P(type I). The right is 1− P(type II).
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4.5 Introduction to Hypotheses Testing

Given significance level α ∈ (0, 1), provide the rejection region by
the Wald method.
Solution: Let

Z =
X − np0√
np0(1− p0)

.

We call Z the test statistic. We reject H0 if

Z > zα

in (a). We reject H0 if
Z < −zα

in (b). We reject H0 if
|Z | > zα/2

in (c).
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4.6 Additional Comments About Statistical Tests

4.6 Additional Comments About Statistical Tests

Example 4.6.1: Let X1, · · · ,Xn be iid sample with mean µ and
variance σ2. Test

H0 : µ = µ0 ↔ H1 : µ ̸= µ0.

Let α be the significance level. Then, we reject H0 if∣∣∣∣√n(X̄ − µ0)

S

∣∣∣∣ > tα
2
,n−1.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.6 Additional Comments About Statistical Tests

Example 4.6.2: Assume X1, · · · ,Xn1 are iid N(µ1, σ
2) and

Y1, · · · ,Yn2 are iid N(µ2, σ
2). Test

H0 : µ1 = µ2 ↔ H1 : µ1 ̸= µ2.

Suppose n is large. We reject H0 if∣∣∣∣∣∣ X̄ − Ȳ√
S2
1/n1 + S2

2/n2

∣∣∣∣∣∣ > zα
2
.

Suppose that n is small but we assume σ2
1 = σ2

2 = σ2. Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

(n1 + n2 − 2)
.

We reject H0 is ∣∣∣∣∣ X̄ − Ȳ

Sp
√

1/n1 + 1/n2

∣∣∣∣∣ > tα
2
,n1+n2−2.
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4.6 Additional Comments About Statistical Tests

Example 4.6.3: Suppose X1, · · · ,Xn are iid Bernoulli(p). Test

H0 : p = p0 ↔ H1 : p ̸= p0.

We reject H0 if ∣∣∣∣∣∣ X̄ − p0√
X̂ (1− X̄ )/n

∣∣∣∣∣∣ > zα
2
.
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4.6 Additional Comments About Statistical Tests

Example 4.6.4: Suppose X1, · · · ,X10 are iid sample from
Poisson(θ). Suppose we reject

H0 : θ ≤ 0.1 ↔ H1 : θ > 0.1

if

Y =
10∑
i=1

Xi ≥ 3.

Find the type I error probability, type II error probability and
significance level.
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4.6 Additional Comments About Statistical Tests

Solution: Note that Y ∼ Poisson(10θ). The type I error
probability is

P(Y ≥ 3|θ ≤ 0.1) = P(Poisson(10θ) ≥ 3|θ ≤ 0.1).

The type II error probability is

P(Y ≤ 2|θ > 0.1) = P(Poisson(10θ) ≤ 2|θ > 0.1).

Significance level is

maxTypeI =maxP(Poisson(10θ) ≥ 3|θ ≤ 0.1)

=P(Poisson(1) ≥ 3)

=0.01899.
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4.6 Additional Comments About Statistical Tests

Example 4.6.5: Let X1, · · · ,X25 be iid sample from N(µ, 4).
Consider the test

H0 : µ ≥ 77 ↔ H1 : µ < 77.

Then, we reject H0 is

X̄ − 77√
4/25

≤ −zα.

Suppose we observe x̄ = 76.1. The p-value is

Pµ=77(X̄ ≤ 76.1) = Φ(
76.1− 77√

4/25
) = Φ(−2.25) = 0.012.
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4.7 Chi-Square Tests

4.7 Chi-Square Tests

Consider a test

H0 : θ ∈ Θ0 ↔ H1 : θ ∈ Θ1.

Suppose under H0 we estimate µi = E(Xi ) by µ̂i and we estimate
σ2
i = V(Xi ) by σ̂2

i .
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4.7 Chi-Square Tests

Pearson χ2 statistic. The Pearson χ2 statistic for independent
random samples is

Y =
n∑

i=1

(Xi − µ̂i )
2√

σ̂2
i

.

The idea is motivated from independent normal distributions.
Assume that X1, · · · ,Xn are independent N(µi , σ

2
i ), respectively.

Then,

X 2 =
n∑

i=1

(Xi − µi )
2

σ2
i

∼ χ2
n.
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4.7 Chi-Square Tests

Loglikelihood ratio statistic. Let ℓ(θ) be the likelihood function.
Then, the loglikelihood ratio statistic is defined by

Λ = 2 log
supθ∈Θ ℓ(θ)

supθ∈Θ0
ℓ(θ)

= 2[log sup
θ∈Θ

ℓ(θ)− sup
θ∈Θ0

ℓ(θ)].
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4.7 Chi-Square Tests

I We can show both X 2 and Λ are approximately chi-square
distributed.

I We call X 2 Pearson goodness of fit and Λ deviance goodness
of fit statistics.

I Their degrees of freedom equal to the difference of degrees of
freedom between Θ and Θ0.
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4.7 Chi-Square Tests

Example 4.7.1 Suppose we flip a die n times. Let Xi be the
number observed at the i-th time. Find Pearson χ2 statistic X 2.
Solution: If the die is balanced, then
P(1) = P(2) = · · · = P(6) = 1/6. The Pearson χ2 statistic is

X 2 =
6∑

i=1

(Xi − n/6)2

n/6
.

Under H0 it approximately follows χ2
5 distribution. In the example,

we have X1 = 13, X2 = 19, X3 = 11, X4 = 8, X5 = 5 and X6 = 4.
We have X 2 = 15.6. Since 15.6 > χ2

0.05,5 = 11.07, we conclude
that the die is significantly unbalanced.
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4.7 Chi-Square Tests

Example 4.7.2 Suppose we have X1, · · · ,Xn samples from a
distribution taking values over [0, 1] with PDF f (x) = 2x . How to
find the Pearson χ2 statistic X 2 to test whether the distribution is
uniform. Suppose we partition [0, 1] into four intervals [0, 1/4],
(1/4, 1/2], (1/2, 3/4] and (3/4, 1].
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4.7 Chi-Square Tests

Solution: Let pi be the probabilities within the four intervals,
respectively. Then,

p1 =

∫ 1/4

0
2xdx = 1/16,

p2 =

∫ 1/2

1/4
2xdx = 3/16,

p3 =

∫ 3/4

1/2
2xdx = 5/16,

p4 =

∫ 1

3/4
2xdx = 7/16.

Tonglin Zhang, Department of Statistics, Purdue University Chapter 4: Some Elementary Statistical Inferences



4.7 Chi-Square Tests

Let ni be the total counts in the intervals, respectively. Then,

X 2 =
(n1 − n/16)2

n/16
+
(n2 − 3n/16)2

3n/16
+
(n3 − 5n/16)2

5n/16
+
(n4 − 7n/16)2

7n/16
.

If the true distribution is the given distribution, then X 2 ∼ χ2
3

approximately. Based on data n1 = 6, n2 = 18, n3 = 20, and
n4 = 36. We obtain X 2 = 1.83. Since it is less than χ2

0.05,3 = 7.81,
we conclude that the true distribution is not significantly different
from the given distribution.
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