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Abstract

Generalised linear models for multi-class classication problems are one of the fundamental building
blocks of modern machine learning tasks. In this manuscript, we characterise the learning of a mixture
of 𝐾 Gaussians with generic means and covariances via empirical risk minimisation (ERM) with any
convex loss and regularisation. In particular, we prove exact asymptotics characterising the ERM esti-
mator in high-dimensions, extending several previous results about Gaussian mixture classication in
the literature. We exemplify our result in two tasks of interest in statistical learning: a) classication for a
mixture with sparse means, where we study the eciency of ℓ1 penalty with respect to ℓ2; b) max-margin
multi-class classication, where we characterise the phase transition on the existence of the multi-class
logistic maximum likelihood estimator for 𝐾 > 2. Finally, we discuss how our theory can be applied
beyond the scope of synthetic data, showing that in dierent cases Gaussian mixtures capture closely
the learning curve of classication tasks in real data sets.
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1 Introduction
A recurring observation in modern deep learning practice is that neural networks often defy the standard
wisdom of classical statistical theory. For instance, deep neural networks typically achieve good gen-
eralisation performances at a regime in which it interpolates the data, a fact at odds with the intuitive
bias-variance trade-o picture stemming from classical theory [1–3]. Surprisingly, many of the “exotic”
behaviours encountered in deep neural networks have recently been shown to be shared by models as
simple as overparametrised linear classiers [4,5], e.g., the aforementioned benign over-tting [6]. There-
fore, understanding the generalisation properties of simple models in high-dimensions has proven to be
a fertile ground for elucidating some of the challenging statistical questions posed by modern machine
learning practice [7–16].

In this manuscript, we pursue this enterprise in the context of a commonly used model for high-
dimensional classication problems: the Gaussian mixture. Indeed, it has been recently argued that the
features learned by deep neural networks trained on the cross-entropy loss “collapse” in a mixture of well-
separated clusters, with the last layer acting as a simple linear classier [17]. Another observation put
forward in [18] is that data obtained using generative adversarial networks behave as Gaussian mixtures.
Here, we derive an exact asymptotic formula characterising the performance of generalised linear clas-
siers trained on 𝐾 Gaussian clusters with generic covariances and means. Our formula is valid for any
convex loss and penalty, encompassing popular tasks in the machine learning literature such as ridge re-
gression, basis pursuit, cross-entropy minimisation and max-margin estimation. This allow us to answer
relevant questions for statistical learning, such as: what is the separability threshold for 𝐾-clustered data?
How does regularisation aects estimation? Can dierent penalties help when the means are sparse? We
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also extend the observation of [18] showing that the learning curves of binary classication tasks on real
data are indeed well captured by our asymptotic analysis.

Model denition We consider learning from a 𝑑-dimensional mixture of 𝐾 Gaussian clusters C𝑘∈[𝐾 ] .
The data set is obtained by sampling 𝑛 pairs (𝒙𝜈 ,𝒚𝜈 )𝜈∈[𝑛] ∈ R𝑑+1 identically and independently. We adopt
the one-hot encoded representation of the labels, i.e., if 𝒙𝜈 ∈ C𝑘 , then 𝒚𝜈 = 𝒆𝑘 , 𝑘th basis vector of R𝐾 . We
will denote the matrix of concatenated samples 𝑿 ∈ R𝑑×𝑛 . The mixture density then reads:

𝑃 (𝒙,𝒚) =
𝐾∑︁
𝑘=1

𝑦𝑘𝜌𝑘N
(
𝒙
��𝝁𝑘 , 𝚺𝑘 )

, (1)

whereN(𝒙 |𝝁, 𝚺) is the multivariate normal distribution with mean 𝝁 and covariance matrix 𝚺. The matrix
of concatenated means is denoted 𝑴 ∈ R𝑑×𝐾 . In Eq. (1), ∀𝑘 , 𝜌𝑘 = 𝑃 (𝒚 = 𝒆𝑘 ) ≥ 0, 𝝁𝑘 ∈ R𝑑 and 𝚺𝑘 ∈ R𝑑×𝑑
is positive-denite. We will consider the estimator obtained by minimising the following empirical risk:

R(𝑾 , 𝒃) ≡
𝑛∑︁
𝜈=1

ℓ

(
𝒚𝜈 ,

𝑾𝒙𝜈
√
𝑑

+ 𝒃

)
+ 𝜆𝑟 (𝑾 ), (2)

(𝑾★, 𝒃★) ≡ argmin
𝑾 ∈R𝐾×𝑑 ,𝒃∈R𝐾

R(𝑾 , 𝒃) , (3)

where𝑾 ∈ R𝐾×𝑑 and 𝒃 ∈ R𝐾 are the weights and bias to be learned, ℓ is a convex loss function, and 𝑟 is
a regularisation function whose strength is tuned by the parameter 𝜆 ≥ 0. For example the loss function
ℓ can represent the composition of a cross-entropy loss with a softmax thresholding on the linear part of
Eq. (2). We will characterise the distribution of the estimator (𝑾★, 𝒃★), and we will evaluate the average
training loss dened as

𝜖ℓ =
1
𝑛

𝑛∑︁
𝜈=1

ℓ

(
𝒚𝜈 ,

𝑾★𝒙𝜈
√
𝑑

+ 𝒃★
)
, (4)

as well as the average training error 𝜖𝑡 and generalisation error 𝜖𝑔, dened as the misclassication rates:

𝜖𝑡 =
1
𝑛

𝑛∑︁
𝜈=1
I

[
𝒚𝜈 ≠ �̂�

(
𝑾★𝒙𝜈
√
𝑑

+ 𝒃★
)]
, (5)

𝜖𝑔 = E(𝒙new,𝒚new)

[
I

[
𝒚new ≠ �̂�

(
𝑾★𝒙new

√
𝑑

+ 𝒃★
)] ]

,

where (𝒙new,𝒚new) is a new unseen data point sampled from the distribution in Eq. (1). In the previous
equations, we have used the function �̂� : R𝐾 → R𝐾 , so that 𝑦𝑘 (𝒙) = I(max𝜅 𝑥𝜅 = 𝑥𝑘 ).

Themain contributions in this manuscript are the following:

(C1) In Sec. 2 and Appendix A we prove closed-form equations characterizing the asymptotic distribution
of the matrix of weights𝑾★ ∈ R𝐾×𝑑 , enabling the exact computation of key quantities such as the
training and generalisation error. Our proof method solves shortcomings of previous approaches
by introducing a novel approximate message-passing sequence, building on recent advances in this
framework, that is of independent interest.

(C2) In Sec. 3.1 we study the problem of classifying an anisotropic mixture with sparse means, where the
strong or weak directions in the data are correlated with the non-zero components of the mean as in
[19]. We study how learning the sparsity with an ℓ1 penalty improves the classication performance.
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(C3) In Sec. 3.2 we study the performance of the cross-entropy estimator in the limit of vanishing regu-
larisation 𝜆 → 0+ for 𝐾 Gaussian clusters as a function of the sample complexity 𝛼 = 𝑛/𝑑; we show
that a phase transition takes place at a certain value 𝛼★

𝐾
between a regime of complete separability

of the data and a regime in which the correct classication of almost all points in the data set is not
possible. We also investigate the eect of 𝜆 > 0 regularisation on the generalisation error, comparing
the 𝐾 > 2 case with the results given in the literature for 𝐾 = 2 [14, 20].

(C4) In Sec. 3.3 we investigate the applicability of our formula beyond the Gaussian assumption by ap-
plying it to classication tasks on real data. We show that for dierent tasks and losses, it closely
captures the real learning curves, even when data is mapped through a non-linear feature map. This
further shows that Gaussian mixtures are a good surrogate model for investigating real classication
tasks, as put forward in [18].

Relation to previous work The analysis of Gaussian mixture models in the high-dimensional regime
has been the subject of many recent works. Exact asymptotics has been derived for the binary classica-
tion case with diagonal covariances in [21–23] for the logistic loss and in [24, 25] for the square loss, both
with ℓ2 penalty. A similar analysis has been performed in [26] for the hard-margin SVM. These works were
generalised to generic convex losses and ℓ2 penalty in [14], where it has been also shown that the regulari-
sation term can play an important role in reaching Bayes-optimal performances. Hinge regression with ℓ1
penalty and diagonal covariance was treated in [13]. Recently, these asymptotic results were generalised
to the case in which both clusters share the same covariance in [27], and nite rate bounds were given
in [28, 29] in the case of sub-Gaussian mixtures. Asymptotic results for the multiclass problem with diag-
onal covariance were derived in [20] for the restricted case of the square loss with ℓ2 penalty. Our result
unies all the aforementioned asymptotic formulas, and extends them to the general case of a multiclass
problem with generic covariances and arbitrary convex losses and penalties.
From a technical standpoint, in [13, 14, 20, 21, 25, 27, 30] the authors use convex Gaussian comparison in-
equalities, see e.g. [31, 32], to prove their result. In particular, the proof given in [20] for the multiclass
problem harnesses the geometry of least-squares, and it is then stressed that this method breaks down for
multiclass problems in which the risk does not factorise over the 𝐾 clusters (as for the cross-entropy, for
example). We solve this problem using an innovative proof technique which has an interest in its own.
Our approach is to capture the eect of non-linearity and generic covariances via the rigorous study of an
approximate message-passing (AMP) sequence, a family of iterations that admit closed-form asymptotics
at each step called state evolution equations [33]. Our proof relies on several renements of AMP methods
to handle the full complexity of the problem, notably spatial coupling with matrix valued variables [34–36]
and non-separable update functions [37], via a multi-layer approach to AMP [38].
The sparse Gaussian mixture model analysed in Section 3.1 is closely related to the rare/weak features
model introduced in [19] and widely studied in the context of sparse linear discriminant analysis [39–42].
It was recently revisited in [28, 29] in the context of ERM with max-margin classiers. Here, we consider
a correlated variation of the model and study the benet of using a sparsity inducing ℓ1 penalty.
The separability transition is a classical topic [43, 44] that has recently witnessed a renewal of interest
thanks to its connection to overparametrization. It was studied in [16] in the context of uncorrelated
Gaussian data, in [8] in the random features model and in [14, 21] for binary Gaussian mixtures.
Recently, [12, 45, 46] showed that the performance of dierent regression tasks on real data are well-
captured by a teacher-student Gaussian model in high-dimensions for ridge regression, but this turned
not to be true for non-linear problems such as logistic classication [12]. Authors of [18] showed instead
that data from generative adversarial networks behave like Gaussian mixtures, motivating the modeling
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of such mixture for real-data in the present paper.

2 Technical results
Our main technical result is an exact asymptotic characterization of the distribution of the estimator𝑾★.
Informally, the estimator𝑾★ and the quantity𝑾★𝑿/

√
𝑑 behave asymptotically as non-linear transforms of

multivariate Gaussian distributions. These transforms are directly linked to the proximal operators [47,48]
associated to the loss and regularisation functions, summarizing the eect of the cost function landscape on
the estimator. The parameters of these Gaussian distributions and proximals can then be computed from
the xed point of a self-contained set of equations. We start by presenting the most generic form of our
result in a concentration of measure-like statement in Theorem 1, and discuss an intuitive interpretation of
the dierent quantities involved. Theorem 2 then states how the training and generalisation errors can be
computed. All results presented in the experiments section can be obtained from Theorem 1. In Corollary
3 we discuss a particular case where explicit simplications can be obtained. But rst, let’s summarise the
required assumptions for our result to hold.

(A1) The functions ℓ (as a function of its second argument) and 𝑟 are proper, closed, lower semi-continuous
convex functions.

(A2) The covariance matrices are positive denite and their spectral norms are bounded.

(A3) The mean vectors 𝝁𝑘 are distributed according to some density 𝑃𝝁 (𝑴) such that the following quan-
tity is nite

∀𝑑 E
[𝑴>𝑴


F
]
< +∞, (6)

where ‖ • ‖F denotes the Frobenius norm.

(A4) The number of samples 𝑛 and dimension 𝑑 both go to innity with xed ratio 𝛼 = 𝑛/𝑑, called hereafter
the sample complexity. The number of clusters 𝐾 is nite.

Before proceeding further, let us specify a useful notation. Suppose that the matrix 𝑮 = (𝐺𝑘𝑖 )𝑘𝑖 ∈ R𝐾×𝑑
is given, alongside the four-index tensor A = (𝐴𝑘𝑖 𝑘′𝑖′)𝑘𝑖 𝑘′𝑖′ ∈ R𝐾×𝑑 ⊗ R𝐾×𝑑 . We will use the notation
𝑮 � A =

∑
𝑘𝑖 𝐺𝑘𝑖𝐴𝑘𝑖 𝑘′𝑖′ ∈ R𝐾×𝑑 . Similarly, given a four-index tensor A, we will dene

√
A as the tensor

such that A =
√
A �

√
A. We are now in a position to state our main result.

Theorem1 (Concentration properties of the estimator). Let 𝝃𝑘∈[𝐾 ] ∼ N(0, 𝑰𝐾 ) be collection of𝐾-dimensional
standard normal vectors independent of other quantities. Let also be {𝚵𝑘 } a set of 𝐾 matrices, 𝚵𝑘 ∈ R𝐾×𝑑 ,
with i.i.d. standard normal entries, independent of other quantities. Under the set of assumptions (A1–A4), for
any pseudo-Lispchitz functions of nite order 𝜙1 : R𝐾×𝑑 → R, 𝜙2 : R𝐾×𝑛 → R, the estimator 𝑾★ and the
matrix 𝒁★ = 1√

𝑑
𝑾★𝑿 verify:

𝜙1 (𝑾★) 𝑃−−−−−−→
𝑛,𝑑→+∞

E𝚵 [𝜙1 (𝑮)] , 𝜙2 (𝒁★) 𝑃−−−−−−→
𝑛,𝑑→+∞

E𝝃 [𝜙2 (𝑯 )] , (7)

where we have introduced the proximal for the loss:

𝒉𝑘 = 𝑽 1/2
𝑘

Prox
ℓ (𝒆𝑘 ,𝑽 1/2

𝑘
•) (𝑽

−1/2
𝑘

𝝎𝑘 ) ∈ R𝐾 , 𝝎𝑘 ≡ 𝒎𝑘 + 𝒃 + 𝑸1/2
𝑘

𝝃𝑘 , (8)
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and 𝑯 ∈ R𝐾×𝑛 is obtained by concatenating each 𝒉𝑘 , 𝜌𝑘𝑛 times. We have also introduced the matrix proximal
𝑮 ∈ R𝐾×𝑑 :

𝑮 = A
1
2 � Prox

𝑟 (A
1
2 �•)

(A 1
2 � 𝑩), A−1 ≡

∑︁
𝑘

�̂�𝑘 ⊗ 𝚺𝑘 , 𝑩 ≡
∑︁
𝑘

(
𝝁𝑘�̂�

>
𝑘
+ 𝚵𝑘 �

√︃
�̂�𝑘 ⊗ 𝚺𝑘

)
. (9)

The collection of parameters (𝑸𝑘 ,𝒎𝑘 , 𝑽𝑘 , �̂�𝑘 , �̂�𝑘 , �̂�𝑘 )𝑘∈[𝐾 ] is given by the xed point of the following self-
consistent equations:

𝑸𝑘 = 1
𝑑
E𝚵 [𝑮𝚺𝑘𝑮>]

𝒎𝑘 = 1√
𝑑
E𝚵 [𝑮𝝁𝑘 ]

𝑽𝑘 = 1
𝑑
E𝚵

[(
𝑮 �

(
�̂�𝑘 ⊗ 𝚺𝑘

)− 1
2 � (𝑰𝐾 ⊗ 𝚺𝑘 )

)
𝚵
>
𝑘

] 
�̂�𝑘 = 𝛼𝜌𝑘E𝝃

[
𝒇𝑘𝒇

>
𝑘

]
�̂�𝑘 = −𝛼𝜌𝑘𝑸

− 1
2

𝑘
E𝝃

[
𝒇𝑘𝝃

>]
�̂�𝑘 = 𝛼𝜌𝑘E𝝃

[
𝒇𝑘

] (10)

where 𝒇𝑘 ≡ 𝑽−1
𝑘
(𝒉𝑘 − 𝝎𝑘 ), and the vector 𝒃★ is such that

∑
𝑘 𝜌𝑘E𝝃

[
𝑽𝑘𝒇𝑘

]
= 0 holds.

The purpose of this statement is to have an asymptotically exact description of the distribution of
the estimator, where the dimensions going to innity are eectively summarized as averages over sim-
ple, independent distributions. Those distributions are parametrised by the set of nite-size parameters
(𝑸𝑘 ,𝒎𝑘 , 𝑽𝑘 , �̂�𝑘 , �̂�𝑘 , �̂�𝑘 )𝑘∈[𝐾 ] that can be exactly evaluated and have a clear interpretation. Indeed, the pa-
rameters (𝒎𝑘 , �̂�𝑘 ) and (𝑸𝑘 , �̂�𝑘 ) respectively represent means and covariances of multivariate Gaussians
(combined with the original 𝝁𝑘 , 𝚺𝑘 ), and the (𝑽𝑘 , �̂�𝑘 ) parametrise the deformations that should be applied
to these Gaussians to obtain the distribution of𝑾★,𝒁★. The distribution is characterized in a weak sense
with concentration of pseudo-Lipschitz (i.e. suciently regular) functions, whose denition is reminded in
the Appendix A. From this result one can work out a number of properties of the weights𝑾★, e.g., training
and generalisation error, but also hypothesis tests as done in [49] for the LASSO. Due to the generality of
the statement, no direct simplication is possible. However, we will see that in certain specic cases all
quantities can be greatly simplied. This is notably the case for diagonal covariance matrices and separable
estimators and observables 𝜙1, 𝜙2, where the sums over high-dimensional Gaussians concentrate explicitly
to one-dimensional expectations. For instance the results of [14, 20] can be recovered as special cases of
the present work. Theorem 1 then allows to obtain the asymptotic values of the generalisation error, of
the training loss and of the training error. Their explicit expression is given in the following Theorem.

Theorem 2 (generalisation error and training loss). In the hypotheses of Theorem 1, the training loss, the
training error and the generalisation error are given by

𝜖ℓ =
𝐾∑︁
𝑘=1

𝜌𝑘E𝝃 [ℓ (𝒆𝑘 ,𝒉𝑘 )] (11)

𝜖𝑡 = 1 −
𝐾∑︁
𝑘=1

𝜌𝑘E𝝃 [𝑦𝑘 (𝒉𝑘 )] , (12)

𝜖𝑔 = 1 −
𝐾∑︁
𝑘=1

𝜌𝑘E𝝃 [𝑦𝑘 (𝝎𝑘 )] . (13)

The case of ridge regularisation and diagonal 𝚺𝑘 The general formulas given above can be remark-
ably simplied under some assumptions about the choice of the regularisation and about the structure of
the covariance matrices 𝚺𝑘 . This is the case for instance for the ridge regularisation 𝑟 (𝑾 ) = ‖𝑾 ‖2F/2 and
jointly diagonalizable covariances. In this case, Theorem 1 simplies as follows.
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Corollary 3. Under the hypotheses of Theorem 1, let us further assume that a ridge regularisation is adopted,
𝑟 (𝑾 ) = ‖𝑾 ‖2F/2, and that the covariance matrices 𝚺𝑘 have a common set of orthonormal eigenvectors {𝒗𝑖 }𝑑𝑖=1,
so that, for each 𝚺𝑘 =

∑𝑑
𝑖=1 𝜎

𝑘
𝑖 𝒗𝑖𝒗

>
𝑖 . Let us also introduce, in the 𝑑 → +∞ limit, the joint distribution for the

𝐾-dimensional vectors 𝝈 = (𝜎1, . . . , 𝜎𝐾 ) and 𝝁 = (𝜇1, . . . , 𝜇𝐾 ),

1
𝑑

𝑑∑︁
𝑖=1

𝐾∏
𝑘=1

𝛿 (𝜎𝑘 − 𝜎𝑘𝑖 )𝛿 (𝜇𝑘 −
√
𝑑𝝁>

𝑘
𝒗𝑖 )

𝑑→+∞−−−−−→ 𝑝 (𝝈 , 𝝁), (14)

Then, the rst three saddle point equations in eqs. (10) take the form

𝑸𝑘 = E𝝈 ,𝝁

[
𝜎𝑘

(
𝜆𝑰𝐾 +

𝐾∑
𝜅=1

𝜎𝜅 �̂�𝑘

)−2 (∑
𝜅𝜅′
𝜇𝜅𝜇𝜅

′
�̂�𝜅�̂�

>
𝜅′ +

𝐾∑
𝜅=1

𝜎𝜅 �̂�𝑘

)]
,

𝒎𝑘 = E𝝈 ,𝝁

[
𝜇𝑘

(
𝜆𝑰𝐾 +

𝐾∑
𝜅=1

𝜎𝜅 �̂�𝑘

)−1
𝐾∑
𝜅=1

𝜇𝜅�̂�𝜅

]
,

𝑽𝑘 = E𝝈 ,𝝁

[
𝜎𝑘

(
𝜆𝑰𝐾 +

𝐾∑
𝜅=1

𝜎𝜅 �̂�𝑘

)−1]
.

(15)

Narrative of the proof The proof is detailed in Appendix A. It overcomes problems that existing meth-
ods, notably convex Gaussian comparison inequalities [20], have yet to be adapted to. The rst main
technical diculty resides in the estimator of interest being a matrix learned with non-linear functions.
This makes it impossible to decompose the problem on each row of the estimator, which must be charac-
terized in a probabilistic sense directly as a matrix. The second main diculty is brought by the mixture
of arbitrary covariances. Intuitively, the covariances correlate the estimator with the individual clusters,
and therefore the correlation function cannot be represented by a single quantity. In our proof, these
points are handled using the AMP and related state-evolution techniques [33, 50–52]. The main idea of
the proof is to express the estimator 𝑾★ as the limit of a convergent sequence whose structure enables
the decomposition of all correlations and distributions in closed form. AMP iterations can handle matrix
valued variables [36,53], correlations in block-structure [36], non-separable functions [37,38] and compo-
sitions of the previous three, leaving a large choice of possibilities in their design. We thus reformulate the
problem in a way that makes the interaction between the estimator and each cluster explicit, eectively
introducing a block structure to the problem, and isolate the overlaps with the means

{
𝝁𝑘

}
. We then de-

sign a matrix-valued sequence that obeys the update rule of an AMP sequence, in order to benet from its
exact asymptotics, and whose xed point condition matches the optimality condition of the ERM problem,
Eq. (2). Our proof builds on the spatial coupling framework in the AMP literature [36,54], which shows that
the eect of random matrices dened with non-identically distributed blocks can be embedded in an AMP
iteration while explicitly keeping the eect of each block. The non-linearities are then obtained by a block
decomposition of the proximal operators dened on sets of matrices, acting on dierent variables of the
AMP sequence and representing the eect of each cluster. The convergence analysis is made possible by
the convexity of the problem: the sequence is dened with proximal operators of convex functions which
are roughly contractions, and results in converging sequences when combined with the high-dimensional
properties of the iteration. It is also interesting to note that the replica method, although heuristic, yet
again gives the correct prediction without any hindering from the aforementioned main diculties, as
detailed in Appendix B.

Universality AMP-type proofs are amenable to both nite sample size analysis and universality proofs.
For instance, in [55] it is shown that simpler instances of AMP for the LASSO exhibit exponential con-
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Figure 1: (Left) Two-dimensional projection of the Gaussian mixture introduced via Eq. (16) in which the
sparse directions of the means are correlated with the weak/strong directions in the data. (Right) Fraction
of non-zero elements of the lasso estimator (top) and optimal regularisation strength (bottom) as a function
of the sample complexity 𝛼 = 𝑛/𝑑 for dierent anisotropy ratios and xed sparsity 𝜌 = 0.1. Note that for
Δ1/Δ2 . 1 and for low 𝛼 the optimal error is achieved for vanishing regularisation, which corresponds to
the basis pursuit algorithm [58].

centration in the system size, and the i.i.d. Gaussian assumption can be relaxed to independently sampled
sub-Gaussian distributions, as shown in [56, 57]. Although these results do not formally encompass our
case, their proof method contains most of the required technicalities, and it should be possible to prove sim-
ilar results in the present setting. Indeed, recent results in [18] suggest that the formula of Theorem 1 and
2 should be universal for all mixtures of concentrated distribution in high-dimension, not only Gaussian
ones. As we discuss Sec. 3.3, even real data learning curves are empirically found to follow the behavior of
the mixture of Gaussians.

3 Results on synthetic and real datasets
In this section we exemplify how Theorem 1 can be employed to compute quantities of interest in dierent
empirical risk minimisation tasks in high-dimensions.

3.1 Correlated sparse mixtures
As a rst example, consider a binary classication problem in which the most relevant features live in a
subspace of R𝑑 , and can be either weaker or stronger with respect to the irrelevant features. This problem
can be modelled with a Gaussian mixture model with sparse means, and where the strong/weak directions
of the covariance matrix are correlated with the non-zero components of the means. Mathematically, we
consider a data set with 𝑛 independent samples (𝒙𝜈 , 𝑦𝜈 ) ∈ R𝑑 × {−1, 1} drawn from a Gaussian mixture
𝒙𝜈 ∼ N(𝑦𝜈𝝁, 𝚺) with diagonal covariance Σ𝑖 𝑗 = 𝜎𝑖𝛿𝑖 𝑗 which is correlated with the sparse means:

𝑃 (𝝁,𝝈) =
𝑑∏
𝑖=1

{
𝜌N(𝜇𝑖 |0, 1)𝛿𝜎𝑖 ,Δ1 + (1 − 𝜌)𝛿𝜇𝑖𝛿𝜎𝑖 ,Δ2

}
(16)

where 𝜌 > 0 is the fraction of non-zero entries in 𝝁. This model is closely related to the rare/weak features
model introduced by Donoho and Jin in [19]. Indeed, in the case Δ1 = Δ2 ≡ Δ the signal-to-noise ratio of
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Figure 2: Learning curves for the sparse mixture model dened via Eq. (16) at xed sparsity 𝜌 = 0.1,
comparing the performance of the ridge (blue) and the lasso (orange) estimators at optimal regularisation
strength 𝜆∗ and for dierent anisotropy ratio Δ1/Δ2 (here Δ1 = 0.1 and we vary Δ2). Full lines denote the
theoretical prediction, and dots denote nite instance simulations with 𝑑 = 1000 using the ElasticNet
module in the Scikit-learn package [59]. Above a certain sample complexity 𝛼 , we can identify two
regimes: a) a Δ1/Δ2 . 1 regime in which the ℓ1 penalty improves signicantly over ℓ2; b) a Δ1/Δ2 & 1
regime in which the performance is similar. Interestingly, even though the generalisation error of lasso is
considerably better in a), the training loss (i.e. the mse on the labels) is higher, & vice-versa in b).

the model is proportional to 𝜌/
√
Δ, with 𝜌 and Δ−1/2 playing the roles of the parameters 𝜖 and 𝜇0 setting

the "rareness" and "strength" of the features in [19].
The formulas given in Theorem 1 simplify considerably for this model (see Appendix C for details), and

therefore can be readily used to characterise the learning performance of dierent losses and penalties.
For instance, one fundamental question we can address is when learning a sparse solution with the ℓ1
regularization is advantageous over the usual ℓ2. Figure 2 compares the learning curves computed from
Theorem 1 for the lasso and ridge estimators, with optimal regularisation strength 𝜆★(𝛼) = argmin 𝜖𝑔 (𝛼, 𝜆)
at xed sparsity 𝜌 = 0.1. We can see that lasso performs considerably better than ridge in the regime where
Δ1/Δ2 . 1, while it achieves a similar performance when Δ1/Δ2 & 1. This is quite intuitive: the sparse
directions are uninformative, and therefore learning the relevant features is better when they are stronger.
Figure 1 (right) shows how the sparsity of the learned estimator 𝑾★ and the optimal regularisation 𝜆★
depends on the sample complexity 𝛼 = 𝑛/𝑑 . Interestingly, for Δ1/Δ2 = 0.1 or lower there is a region of
small 𝛼 in which basis pursuit (𝜆 = 0+) [58] is optimal, and the sparsity of the estimator has a curious
non-monotonic behaviour with 𝛼 .

3.2 Separability transition for the cross-entropy loss
We now consider the problem of classifying points of 𝐾 Gaussian clusters using a cross-entropy loss

ℓ (𝒚, 𝒙) = −
𝐾∑︁
𝑘=1

𝑦𝑘 ln
𝑒𝑥𝑘∑𝐾
𝜅=1 𝑒

𝑥𝜅
. (17)

Using the results of Theorem 2, we estimate the dependence of the generalisation error 𝜖𝑔 on the sample
complexity 𝛼 and on the regularisation 𝜆. We assume Gaussian means 𝝁𝑘 ∼ N(0, 𝑰𝑑/𝑑) and diagonal
covariances 𝚺𝑘 ≡ 𝚺 = Δ𝑰𝑑 . Finally, we adopt a ridge penalty, 𝑟 (𝑾 ) ≡ ‖𝑾 ‖2F/2, and we focus on the case
of balanced clusters, i.e., 𝜌𝑘 = 1/𝐾 for the sake of simplicity.
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with Δ = 1/2. In all presented cases, a quadratic regularisation has been adopted. Numerical experiments
have been performed using 𝑑 = 103. (Left) Generalisation error 𝜖𝑔 (top) and training error 𝜖𝑡 (bottom) as
function of 𝛼 at 𝜆 = 10−4. Theoretical predictions (full lines) are compared with the results of numerical
experiments (dots). Dash-dotted lines of the corresponding color represent, for comparison, the Bayes-
optimal error. The results of numerical experiments are in agreement with the theoretical predictions in
all cases. (Center) Separability transition 𝛼★

𝐾
as a function of 𝐾 in the same setting for dierent values of

Δ. (Right) Dependence of the generalisation error on the regularization 𝜆 for 𝐾 = 3 and Δ = 1/2 in the
balanced case, 𝜌𝑘 = 1/𝐾 .
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100 𝑰𝑑 as function of 𝜆 for dierent values of the
sample complexity 𝛼 . (Right) Generalisation er-
ror 𝜖𝑔 as a function of 𝜆 at xed 𝛼 in the binary
classication of MNIST and in the FashionMNIST
via logistic regression (see Sec. 3.3 for details).

Separability transition In Fig. 3 (left top) we plot
the generalisation error 𝜖𝑔 as function of 𝛼 for 2 ≤
𝐾 ≤ 5 and 𝜆 = 10−4. The smooth curve is ob-
tained solving the xed point equations in Theorem 1
and plugging the results in the formulas in Theorem
2. The results of numerical experiments are obtained
averaging over 102 instances of the problem solved
using the LogisticRegression module in the
Scikit-learn package [59]. An excellent agree-
ment is observed. For each pair (𝐾,Δ) and for van-
ishing regularisation 𝜆 → 0+ we observe a double-
descent-like behaviour in the generalisation error. In-
deed, the cusp 𝛼★

𝐾
(Δ) in the generalisation error cor-

responds to the point in which the cross-entropy es-
timator ceases to perfectly interpolate the data, re-
vealing the existence of a separability transition of
the type discussed in [16] for Gaussian i.i.d. data.
As stressed therein, a phase of perfect separability
of the data points corresponds to a regime in which
the maximum-likelihood estimate does not exist with
probability one. This is visible, in the same gure (left bottom), from the training error 𝜖𝑡 that is identically
zero for 𝛼 < 𝛼★

𝐾
, and strictly positive otherwise. Our result extends the observations in [14, 21], where an
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analytic expression for 𝛼★2 has been given in the case of for 𝐾 = 2, 𝝁1 = −𝝁2 Gaussian vector, generalising
the classical result of Cover [43]. The separability transition point 𝛼★

𝐾
decreases with Δ and increases with

𝐾 , showing that for larger 𝐾 it is easier to separate the dierent clusters: this intuitively follows from the
fact that, at xed 𝛼 and Δ, each cluster is given by 𝛼𝑑/𝐾 points, i.e., fewer for increasing 𝐾 and therefore
easier to classify, see Fig. 3 (center).

The role of regularisation In Fig. 3 (right) we compare the performances of the cross-entropy loss with
respect to the Bayes-optimal error (detailed in Appendix D) for dierent strength 𝜆 of the regularisation,
assuming all identical diagonal covariances 𝚺𝑘 ≡ 𝚺 = Δ𝑰𝑑 . In the case of balanced clusters (i.e., 𝜌𝑘 = 1/𝐾
for all 𝑘) it is observed that the generalisation error approaches the Bayes-optimal error for 𝜆 → +∞. The
same phenomenology has been observed in [14, 24] in the 𝐾 = 2 case with opposite means and generic
loss, and in [20] for 𝐾 > 2 for the square loss. Using the concentration results of Section 2, we investigated
the robustness of this result in the case of balanced clusters but with dierent covariances and various
losses. First, we considered two opposite balanced clusters with 𝚺1 = Δ1𝑰𝑑 and 𝚺2 = Δ2𝑰 2, Δ1 ≠ Δ2,
and we estimated the generalisation error at xed sample complexity as function of 𝜆 ∈ [10−4, 102] using
ridge regression. As shown in Fig. 4 (left), the regularisation strength optimising the error is nite, and in
particular depends on the sample complexity. This situation is closer to what is observed in real problems
with balanced data analysed using logistic regression. Indeed, using the covariances from real data sets
such as MNIST or Fashion-MNIST yields a similar behaviour, see Fig. 4 (right), with an optimal 𝜆 that is
found to be nite.

3.3 Binary classication with real data
A recent line of work has reported that the asymptotic learning curves of simple regression tasks on real
data sets can be well approximated by a surrogate Gaussian model matching the rst two moments of
the data [12, 45, 46]. However, this analysis was fundamentally restricted to least-squares regression, and
considerable deviation from the Gaussian model was observed for classication tasks [12]. Authors of [18]
have shown that realistic-looking data from trained generative adversarial networks behave like Gaussian
mixtures. Here, we pursue these observations and investigate whether Theorem 2 can be used to capture
the learning curves of classication tasks on two popular data sets: MNIST [60] and Fashion-MNIST [61].
Our goal is to compare the performances of some classication tasks on themwith the predictions provided
by the theory for the Gaussian mixture model.

Both data sets consist of 𝑛tot = 7 × 104 images �̂�𝜇 ∈ R𝑑 , 𝑑 = 784. Each image �̂�𝜇 is associated to
a label 𝑦𝜇 = {0, 1, . . . , 9} specifying the type of represented digit (in the case of MNIST) or item (in the
case of Fashion-MNIST). In both cases, we divided the database into two balanced classes (even vs odd
digits for MNIST, clothes vs accessories for Fashion-MNIST), relabelling the elements �̂�𝜇 with 𝑦𝜇 ∈ {−1, 1}
depending on their class, and we selected 𝑛 < 𝑛tot elements to perform the training, leaving the others for
the test of the performances. We adopted a logistic loss with ℓ2 regularisation. First, we performed logistic
regression on the training real data set, then we tested the learned estimators on the remaining 𝑛tot − 𝑛
images. At the same time, for each class 𝑘 of the training set, we empirically estimated the corresponding
mean 𝝁𝑘 ∈ R𝑑 and covariance matrix 𝚺𝑘 ∈ R𝑑×𝑑 . We then assumed that the classication problem on
the real database corresponds to a Gaussian mixture model of 𝐾 = 2 clusters with means {𝝁𝑘 }𝑘∈[2] and
covariances {𝚺𝑘 }𝑘∈[2] . Under this assumption, we computed the generalisation error and the training
loss predicted by the theory inserting the empirical means and covariances in our general formulas. The
results are given in Fig. 5, showing a good agreement between the theoretical prediction and the results
obtained on MNIST and Fashion-MNIST. In Fig. 5 we also plot, as reference, the results of a classication
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with synthetic data produced with the same 𝛾 , and the theoretical prediction.

task performed on synthetic data, obtained generating a genuine Gaussian mixture with the means and
covariances of the real data set.

Interestingly, this construction can also be used to analyse the learning curves of classication problems
with non-linear feature maps [12], e.g. random features [62]. In this case, we rst apply to our data set
a feature map 𝒙𝜇 = erf (𝑭 �̂�𝜇), where 𝑭 ∈ R𝑝×𝑑 has i.i.d. Gaussian entries and the erf function is applied
component wise. The classication task is then performed on the new data set {(𝒙𝜈 , 𝑦𝜈 )}𝜈∈[𝑛] , the new
data points 𝒙𝜈 living in a 𝑝-dimensional space. We denote 𝛾 = 𝑝/𝑑. We repeat the analysis described above
in this new setting. Our results are in Fig. 6 for dierent values of 𝛾 . Once again, the generalisation error
and the training loss are shown to be in a good agreement with both the theoretical prediction and the
synthetic data sets obtained plugging in our formulas the real data means and the real data covariance
matrices.
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Appendix
A Proof
This appendix presents the proof of the main technical result, Theorem 1. Throughout the whole proof,
we assume that the set of conditions from Sec. 2 is veried.

A.1 Required background
In this Section, we give an overview of the main concepts and tools on approximate message passing
algorithms which will be required for the proof.

We start with some denitions that commonly appear in the approximate message-passing literature,
see e.g. [33,36,37]. The main regularity class of functions we will use is that of pseudo-Lipschitz functions,
which roughly amounts to functions with polynomially bounded rst derivatives. We include the required
scaling w.r.t. the dimensions in the denition for convenience.

Denition 1 (Pseudo-Lipschitz function). For 𝑘, 𝐾 ∈ N∗ and any 𝑛,𝑚 ∈ N∗, a function 𝝓 : R𝑛×𝐾 → R𝑚×𝐾

is called a pseudo-Lipschitz of order 𝑘 if there exists a constant 𝐿(𝑘, 𝐾) such that for any 𝒙,𝒚 ∈ R𝑛×𝐾 ,

‖𝝓 (𝒙) − 𝝓 (𝒚)‖F√
𝑚

6 𝐿(𝑘, 𝐾)
(
1 +

(
‖𝒙 ‖F√
𝑛

)𝑘−1
+

( ‖𝒚‖F√
𝑛

)𝑘−1) ‖𝒙 −𝒚‖F√
𝑛

(18)

where ‖•‖F denotes the Frobenius norm. Since 𝐾 will be kept nite, it can be absorbed in any of the constants.

For example, the function 𝑓 : R𝑛 → R, 𝒙 ↦→ 1
𝑛
‖𝒙 ‖22 is pseudo-Lipshitz of order 2.

Moreau envelopes and proximal operators — In our proof, we will also frequently use the notions
of Moreau envelopes and proximal operators, see e.g. [47,48]. These elements of convex analysis are often
encountered in recent works on high-dimensional asymptotics of convex problems, and a detailed analysis
of their properties can be found for example in [12, 31]. For the sake of brevity, we will only sketch the
main properties of such mathematical objects, referring to the cited literature for further details. In this
proof, we will mainly use proximal operators acting on sets of real matrices endowed with their canonical
scalar product. Furthermore, proximals will be dened with matrix valued parameters in the following
way: for a given convex function 𝑓 : R𝑑×𝐾 → R, a given matrix 𝑿 ∈ R𝑑×𝐾 and a given symmetric positive
denite matrix 𝑽 ∈ R𝐾×𝐾 with bounded spectral norm, we will consider operators of the type

argmin
𝑻 ∈R𝑑×𝐾

{
𝑓 (𝑻 ) + 1

2 tr
(
(𝑻 − 𝑿 )𝑽−1 (𝑻 − 𝑿 )>

)}
(19)
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This operator can either be written as a standard proximal operator by factoring the matrix 𝑽−1 in the
arguments of the trace:

Prox𝑓 (•𝑽 1/2) (𝑿𝑽−1/2)𝑽 1/2 ∈ R𝑑×𝐾 (20)

or as a Bregman proximal operator [63] dened with the Bregman distance induced by the strictly convex,
coercive function

𝑿 ↦→ 1
2 tr(𝑿𝑽−1𝑿>) (21)

which justies the use of the Bregman resolvent

argmin
𝑻 ∈R𝑑×𝐾

{
𝑓 (𝑻 ) + 1

2 tr
(
(𝑻 − 𝑿 )𝑽−1 (𝑻 − 𝑿 )>

)}
= (Id + 𝜕𝑓 (•)𝑽 )−1 (𝑿 ) (22)

All the usual properties of standard proximal operators (i.e. rm non-expansiveness, link with More-
au/Bregman envelopes,. . . ) hold for Bregman proximal operators dened with the distance (20), see e.g.
[63, 64], justifying their use without any additional proof.

Gaussian concentration — Gaussian concentration properties are at the root of this proof. Such prop-
erties are reviewed in great detail, for example, in [12, 37]. We refer the interested reader to this set of
works for a detailed and complete discussion.

Notations — For any set of matrices {𝑨𝑘 ∈ R𝑛𝑘×𝑑𝑘 }𝑘∈[𝐾 ] we will use the following notation:
𝑨1

𝑨2 (∗)

(∗) . . .

𝑨𝐾


≡ [𝑨𝑘 ]𝐾𝑘=1 ∈ R

(∑𝐾
𝑘=1 𝑛𝑘 )×(

∑𝐾
𝑘=1 𝑑𝑘 ) (23)

where the terms denoted by (∗) will be zero most of the time.
For a given function 𝝓 : R𝑑×𝐾 → R𝑑×𝐾 , we write :

𝝓 (𝑿 ) =

𝝓1 (𝑿 )
...

𝝓𝑑 (𝑿 )

 ∈ R𝑑×𝐾 (24)

where each 𝝓𝑖 : R𝑑×𝐾 → R𝐾 . We then write the 𝐾 × 𝐾 Jacobian

𝜕𝝓𝑖

𝜕𝑿 𝑗

(𝑿 ) =


𝜕𝜙𝑖1 (𝑿 )
𝜕𝑋 𝑗1

· · · 𝜕𝜙𝑖1 (𝑿 )
𝜕𝑋 𝑗𝐾

...
. . .

...
𝜕𝜙𝑖
𝐾
(𝑿 )

𝜕𝑋 𝑗1
· · · 𝜕𝜙𝑖

𝐾
(𝑿 )

𝜕𝑋 𝑗𝐾


∈ R𝐾×𝐾 (25)

For a given matrix 𝑸 ∈ R𝐾×𝐾 , we write 𝒁 ∈ R𝑛×𝐾 ∼ N(0,𝑸 ⊗ 𝑰𝑛) to denote that the lines of 𝒁 are
sampled i.i.d. from N(0,𝑸). Note that this is equivalent to saying that 𝒁 = �̃�𝑸1/2 where �̃� ∈ R𝑛×𝐾 is an
i.i.d. standard normal random matrix. The notation P' denotes convergence in probability.
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Approximate message-passing — Approximate message-passing algorithms are a statistical physics
inspired family of iterations which can be used to solve high dimensional inference problems [65]. One
of the central objects in such algorithms are the so called state evolution equations, a low-dimensional
recursion equations which allow to exactly compute the high dimensional distribution of the iterates of the
sequence. In this proof we will use a specic form of matrix-valued approximate message-passing iteration
with non-separable non-linearities. In its full generality, the validity of the state evolution equations in
this case is an extension of the works of [36, 37], included in [66]. Consider a sequence Gaussian matrices
𝑨(𝑛) ∈ R𝑛×𝑑 with i.i.d. Gaussian entries, 𝐴𝑖 𝑗 (𝑛) ∼ N(0, 1/𝑑). For each 𝑛,𝑑 ∈ N, consider two sequences of
pseudo-Lipschitz functions

{𝒉𝑡 : R𝑛×𝐾 → R𝑛×𝐾 }𝑡 ∈N {𝒆𝑡 : R𝑑×𝐾 → R𝑑×𝐾 }𝑡 ∈N (26)

initialized on 𝒖0 ∈ R𝑑×𝐾 in such a way that the limit

lim
𝑑→∞

1
𝑑

𝒆0 (𝒖0)>𝒆0 (𝒖0)F (27)

exists and it is nite, and recursively dene:

𝒖𝑡+1 = 𝑨>𝒉𝑡 (𝒗𝑡 ) − 𝒆𝑡 (𝒖𝑡 )〈𝒉′
𝑡 〉> (28)

𝒗𝑡 = 𝑨𝒆𝑡 (𝒖𝑡 ) − 𝒉𝑡−1 (𝒗𝑡−1)〈𝒆′𝑡 〉> (29)

where the dimension of the iterates are 𝒖𝑡 ∈ R𝑑×𝐾 and 𝒗𝑡 ∈ R𝑛×𝐾 . The terms in brackets are dened as:

〈𝒉′
𝑡 〉 =

1
𝑑

𝑛∑︁
𝑖=1

𝜕𝒉𝑖𝑡
𝜕𝒗𝑖

(𝒗𝑡 ) ∈ R𝐾×𝐾 〈𝒆′𝑡 〉 =
1
𝑑

𝑑∑︁
𝑖=1

𝜕𝒆𝑖𝑡
𝜕𝒖𝑖

(𝒖𝑡 ) ∈ R𝐾×𝐾 (30)

We dene now the state evolution recursion on two sequences of matrices {𝑸𝑟,𝑠 }𝑠,𝑟>0 and {�̂�𝑟,𝑠 }𝑠,𝑟>1 initial-
ized with 𝑸0,0 = lim𝑑→∞

1
𝑑
𝒆0 (𝒖0)>𝒆0 (𝒖0):

𝑸𝑡+1,𝑠 = 𝑸𝑠,𝑡+1 = lim
𝑑→∞

1
𝑑
E

[
𝒆𝑠 (�̂�

𝑠 )>𝒆𝑡+1 (�̂�
𝑡+1)

]
∈ R𝐾×𝐾 (31)

�̂�𝑡+1,𝑠+1 = �̂�𝑠+1,𝑡+1 = lim
𝑑→∞

1
𝑑
E

[
𝒉𝑠 (𝒁𝑠 )>𝒉𝑡 (𝒁 𝑡 )

]
∈ R𝐾×𝐾 (32)

where (𝒁 0, . . . ,𝒁 𝑡−1) ∼ N(0, {𝑸𝑟,𝑠 }06𝑟,𝑠6𝑡−1 ⊗ 𝑰𝑛), (�̂�
1
, . . . , �̂�

𝑡 ) ∼ N(0, {�̂�𝑟,𝑠 }16𝑟,𝑠6𝑡 ⊗ 𝑰𝑑 ) and �̂�
0
= 𝒖0.

Then the following holds

Theorem 4. In the setting of the previous paragraph, for any sequence of pseudo-Lipschitz functions 𝜙𝑛 :
(R𝑛×𝐾 × R𝑑×𝐾 )𝑡 → R, for 𝑛,𝑑 → ∞:

𝜙𝑛 (𝒖0, 𝒗0, 𝒖1, 𝒗1, . . . , 𝒗𝑡−1, 𝒖𝑡 )
P' E

[
𝜙𝑛

(
𝒖0,𝒁 0, �̂�

1
,𝒁 1, . . . ,𝒁 𝑡−1, �̂�

𝑡
)]

(33)

where (𝒁 0, . . . ,𝒁 𝑡−1) ∼ N(0, {𝑸𝑟,𝑠 }06𝑟,𝑠6𝑡−1 ⊗ 𝑰𝑛), (�̂�
1
, . . . , �̂�

𝑡 ) ∼ N(0, {�̂�𝑟,𝑠 }16𝑟,𝑠6𝑡 ⊗ 𝑰𝑛).

Proof. This theorem is a consequence of Theorem 1 from [66]. �
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Spatial coupling As a nal premise to our proof, we give the intuition on how to handle a specic form
of block random matrix in an AMP sequence. Consider the iteration (28), but this time with a Gaussian
matrix dened as:

𝑨 =


𝑨1

𝑨2 (0)

(0) . . .

𝑨𝐾


∈ R𝑛×𝐾𝑑 (34)

where 𝑨𝑘 ∈ R𝑛𝑘×𝑑 and ∑𝐾
𝑘=1 𝑛𝑘 = 𝑛, which leads to the following form for the products between matrices

and non-linearities:

𝑨>𝒉𝑡 (𝒗𝑡 ) =


𝑨>
1 𝒉1,𝑡 (𝒗𝑡 )

𝑨>
2 𝒉2,𝑡 (𝒗𝑡 )

...

𝑨>
𝐾
𝒉𝐾,𝑡 (𝒗𝑡 )


∈ R𝐾𝑑×𝐾 𝑨𝒆𝑡 (𝒖𝑡 ) =


𝑨1𝒆1,𝑡 (𝒖𝑡 )
𝑨2𝒆2,𝑡 (𝒖𝑡 )

...

𝑨𝐾 𝒆𝐾,𝑡 (𝒖𝑡 )


∈ R𝑛×𝐾 (35)

where the blocks 𝒉𝑘,𝑡 (𝒗𝑡 ) ∈ R𝑛𝑘×𝐾 , 𝒆𝑘,𝑡 (𝒖𝑡 ) ∈ R𝑑×𝐾 may depend on their full arguments or only the
corresponding blocks depending on their separability. This iteration can be embedded as a subset of the
iterates of a larger sequence dened with the full version of the matrix 𝑨 and non-linearities dened as:

𝒆𝑡 : R𝐾𝑑×𝐾
2 → R𝐾𝑑×𝐾2

generates


𝒆1,𝑡 (•)

𝒆2,𝑡 (•) (0)

(0) . . .

𝒆𝐾,𝑡 (•)


∈ R𝐾𝑑×𝐾2 (36)

𝒉𝑡 : R𝑛×𝐾
2 → R𝑛×𝐾2

generates


𝒉1,𝑡 (•)

𝒉2,𝑡 (•) (0)

(0) . . .

𝒉𝐾,𝑡 (•)


∈ R𝑛×𝐾2 (37)

The original iteration is recovered on the block diagonal of the variables of the iteration. This new setting,
however, introduces a richer correlation structure, since each block will be described by a dierent 𝐾 × 𝐾
covariance according to the state evolution equations. Formally, the new covariance will be a𝐾2×𝐾2 block
diagonal matrix. Also, the shape of the Onsager term changes from a matrix of size 𝐾 × 𝐾 to one of size
𝐾2 × 𝐾2 with a 𝐾 × (𝐾 × 𝐾) block diagonal structure.

A.2 Reformulation of the problem
We start by reformulating problem (2) in a way that can be treated eciently using an AMP iteration.
With respect to the main part of this paper, we will consider the estimator𝑾 ∈ R𝑑×𝐾 instead of R𝐾×𝑑 . The
normalized (so that the cost does not diverge with the dimension) problem (2) then reads:

min
𝑾 ∈R𝑑×𝐾 ,𝒃∈R𝐾

1
𝑑

(
𝐿

(
𝒀 ,

1
√
𝑑
𝑿𝑾 + 𝒃

)
+ 𝑟 (𝑾 )

)
(38)
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where we have introduced the function 𝐿 : R𝑛×𝐾 × R𝑛×𝐾 → R acting as(
𝒀 ,

1
√
𝑑
𝑿𝑾 + 𝒃

)
↦→

𝑛∑︁
𝜈=1

ℓ

(
𝒚𝜈 ,

𝑾𝒙𝜈
√
𝑑

+ 𝒃

)
, (39)

the matrix 𝒀 ∈ R𝑛×𝐾 of concatenated one-hot encoded labels, and the matrix of concatenated means
𝑴 ∈ R𝐾×𝑑 (in the main we took the transpose 𝑴 ∈ R𝑑×𝐾 ). Until further notice, we will drop the scaling 1

𝑑

for convenience and study the problem

min
𝑾 ∈R𝑑×𝐾 ,𝒃∈R𝐾

𝐿

(
𝒀 ,

1
√
𝑑
𝑿𝑾 + 𝒃

)
+ 𝑟 (𝑾 ) (40)

We will write 𝐿𝑘 the application of ℓ on each row of a sub-block in R𝑛𝑘×𝐾 . Without loss of generality,
we can assume that the samples are grouped by clusters in the data matrix, giving the following form for
𝑿 ∈ R𝑛×𝑑 , separating the mean part 𝒀𝑴 and centered Gaussian part :

𝑿 = 𝒀𝑴 + �̃�𝚺 ∈ R𝑛×𝑑 (41)

where we have introduced the block-diagonal matrix �̃� and the 𝐾𝑑 × 𝑑 full-column-rank matrix 𝚺

�̃� =


𝒁 1

𝒁 2 (0)

(0) . . .

𝒁𝐾


∈ R𝑛×𝐾𝑑 𝚺 =


𝚺
1/2
1

𝚺
1/2
2
...

𝚺
1/2
𝐾


∈ R𝐾𝑑×𝑑 . (42)

Here (𝒁 1, . . . ,𝒁𝐾 ) ∈ R𝑛1×𝑑 × · · · × R𝑛𝐾×𝑑 are independent, i.i.d. standard normal matrices.
The product between the data matrix and the weights𝑾 ∈ R𝑑×𝐾 then reads:

𝑿𝑾 = 𝒀𝑴𝑾 + �̃�𝚺𝑾 =


𝒀 1𝑴𝑾 + 𝒁 1𝚺

1/2
1 𝑾

...

𝒀𝐾𝑴𝑾 + 𝒁𝐾𝚺
1/2
𝐾

𝑾

 ∈ R𝑛×𝐾 (43)

where each 𝒀𝑘 ∈ R𝑛𝑘×𝑑 is a 𝑛𝑘 copy of the same label vector. Dening now �̃� = 𝚺𝑾 , observe that

�̃� = 𝚺𝑾 =⇒ 𝑾 = 𝚺
+�̃� , (44)

where

𝚺
+ ≡

(
𝐾∑︁
𝑘=1

𝚺𝑘

)−1
𝚺
> (45)

is the pseudo-inverse of the matrix 𝚺. The optimization problem (2) is thus equivalent to

inf
�̃� ∈R𝐾𝑑×𝐾

𝒃∈R𝐾

𝐾∑︁
𝑘=1

𝐿𝑘

(
1
√
𝑑
𝒀𝑘𝑴𝑾 + 1

√
𝑑
𝒁𝑘�̃�𝑘 , 𝒃

)
+ 𝑟

(
𝚺
+�̃�

)
(46)
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Introducing the order parameter 𝒎 = 1√
𝑑
𝑴𝑾 ∈ R𝐾×𝐾 , we reformulate Eq.(46) as a constrained optimiza-

tion problem :

inf
𝒎,�̃� ,𝒃

𝐾∑︁
𝑘=1

𝐿𝑘

(
1
√
𝑑
𝒀𝑘𝒎 + 1

√
𝑑
𝒁𝑘�̃�𝑘

)
+ 𝑟

(
𝚺
+�̃�

)
(47)

s.t. 1
√
𝑑
𝑴𝚺

+�̃� = 𝒎

whose Lagrangian form, with dual parameters �̂� ∈ R𝐾×𝐾 , reads

inf
𝒎,�̃� ,𝒃

sup
�̂�

𝐾∑︁
𝑘=1
𝐿𝑘

(
𝒀𝑘𝒎+ 1

√
𝑑
𝒁𝑘�̃�𝑘

)
+𝑟

(
𝚺
+�̃�

)
+tr

(
�̂�>

(
𝒎− 1

√
𝑑
𝑴𝚺

+�̃�

))
. (48)

This is a proper, closed, convex, strictly feasible optimization problem, thus strong duality holds and we
can invert the order of the inf-sup to focus on the minimization problem in �̃� for xed 𝒎, �̂�, 𝒃 :

inf
�̃� ∈R𝐾𝑑×𝐾

�̃�

(
1
√
𝑑
�̃��̃�

)
+ 𝑟 (�̃� ) (49)

where we dened the loss term

�̃� : R𝑛×𝐾 → R
1
√
𝑑
�̃��̃� ↦→

𝐾∑︁
𝑘=1

𝐿𝑘

(
𝒀𝑘𝒎 + 1

√
𝑑
𝒁𝑘�̃�𝑘

)
=

𝐾∑︁
𝑘=1

𝑛𝑘∑︁
𝑖=1

ℓ

( [
𝒀𝑘𝒎 + 1

√
𝑑
𝒁𝑘�̃�𝑘

]
𝑖

) (50a)

and the regularisation term

𝑟 : R𝐾𝑑×𝐾 → R

�̃� ↦→ 𝑟

(
𝚺
+�̃�

)
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴𝚺

+�̃�

)) (50b)

where 𝚺>�̃� =
∑𝐾
𝑘=1 𝚺

1/2
𝑘

𝑾𝑘 and �̃� = [𝒁𝑘 ]𝐾𝑘=1 ∈ R𝑛×𝐾𝑑 is an i.i.d. standard normal block diagonal matrix
as in Eq. (42).

A.3 Finding the AMP sequence
We now need to nd an AMP iteration relating to �̃� that solve the optimization problem in Eq. (49).
Although this section is not written as a formal proof, all steps are rigorous. The aim is to give the reader
the core intuition on how the AMP iteration is found, otherwise the solution may feel “parachuted”. The
reader uninterested in the underlying intuition may directly skip to the next section. In order to nd the
appropriate sequence two key points must be considered :

• the xed point of the sequence has to match the optimality condition of Eq. (49);

• the update rule of the sequence should have the form Eq. (28) for the state evolution equations to
hold.

These two points completely determine the form of the iteration. In the subsequent derivation, we absorb
the scaling 1√

𝑑
in the matrix �̃� , such that the 𝒁𝑘 ∈ R𝑛𝑘×𝑑 have i.i.d. N(0, 1/𝑑) elements.
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Resolvent of the loss term — Going back to problem Eq. (49), its optimality condition will look like :

�̃�
>
𝜕�̃�(𝒁�̃� ) + 𝜕𝑟 (�̃� ) = 0 ⇐⇒


𝒁>
1

𝒁>
2 (0)

(0) . . .

𝒁>
𝐾



𝜕�̃�1 (𝒁 1�̃� 1)
𝜕�̃�2 (𝒁 2�̃� 2))

...

𝜕�̃�𝐾 (𝒁𝐾�̃�𝐾 ))


+ 𝜕𝑟 (�̃� ) = 0 (51)

where each 𝒁𝑘 ∈ R𝑛𝑘×𝑑 , and the subdierential of �̃� is separable across blocks of size 𝑛𝑘 × 𝑑 , and 𝜕𝑟 (�̃� ) ∈
R𝐾𝑑×𝐾 . Following the intuition of spatial coupling, we introduce the fullmatrix𝒁 ∈ R𝑛×𝐾𝑑 , with i.i.d.N(0, 1/𝑑)
entries. The optimality condition can then be written on the diagonal of a 𝐾𝑑 × 𝐾2 matrix:

𝒁>


𝜕�̃�1 (𝒁 1�̃� 1)

𝜕�̃�2 (𝒁 2�̃� 2) (0)

(0) . . .

𝜕�̃�𝐾 (𝒁𝐾�̃�𝐾 )


+


𝜕𝑟 (�̃� )1

𝜕𝑟 (�̃� )2 (0)

(0) . . .

𝜕𝑟 (�̃� )𝐾


= 0 (52)

where 𝜕𝑟 (�̃� )𝑘 represents the 𝑘-th block of the subdierential of 𝑟 which is non-separable across the blocks
of �̃� . To make the resolvents/proximals appear, we add the argument of the subdierentials on both sides
weighted by a (symmetric) positive denite matrix 𝑺𝑘 ∈ R𝐾×𝐾 which will be used to allow for Onsager
correction while respecting the xed point condition. Using the notation dened in section A.1[

𝒁>
𝑘
𝜕�̃�𝑘 (𝒁𝑘�̃�𝑘 )

]𝐾
𝑘=1 +

[
𝜕𝑟 (�̃� )

]𝐾
𝑘=1 = 0

⇐⇒
[
𝒁>
𝑘
𝜕�̃�𝑘 (𝒁𝑘�̃�𝑘 ) + 𝒁>

𝑘
𝒁𝑘�̃�𝑘𝑺

−1
𝑘

]𝐾
𝑘=1 +

[
𝜕𝑟 (�̃� )

]𝐾
𝑘=1 =

[
𝒁>
𝑘
𝒁𝑘�̃�𝑘𝑺

−1
𝑘

]𝐾
𝑘=1 (53)

for a given set of positive denite matrices {𝑺𝑘 }𝑘∈[𝐾 ] . Again, the reason for introducing dierent 𝑺𝑘 on
each block is to match the expected structure of the Onsager term. We can introduce the resolvent, formally
Bregman resolvent/proximal operator:

𝑼𝑘 ≡ 𝜕�̃�𝑘 (𝒁𝑘�̃�𝑘 )𝑺𝑘 + 𝒁𝑘�̃�𝑘 ⇐⇒ 𝒁𝑘�̃�𝑘 = 𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 ) (54)

where

𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 )=(Id+𝜕�̃�𝑘 (•)𝑺𝑘 )
−1 (𝑼𝑘 )

=argmin
𝑻 ∈R𝑛𝑘×𝐾

{
�̃�𝑘 (𝑻 )+

1
2 tr

(
(𝑻−𝑼𝑘 )𝑺−1𝑘 (𝑻−𝑼𝑘 )>

)}
=argmin
𝑻 ∈R𝑛𝑘×𝐾

{
𝐿𝑘 (𝑻 )+

1
2 tr

(
(𝑻−(𝒀𝑘𝒎+𝑼𝑘 ))𝑺−1𝑘 (𝑻−(𝒀𝑘𝒎+𝑼𝑘 ))>

)}
−𝒀𝑘𝒎.

(55)

In the previous expressions 𝜕�̃�𝑘 ∈ R𝑛𝑘×𝐾 and 𝑽𝑘 ∈ R𝐾×𝐾 . The following formulation of the optimality
condition is reached: [

𝒁>
𝑘
𝑼𝑘𝑺

−1
𝑘

]𝐾
𝑘=1 +

[
𝜕𝑟 (�̃� )𝑘

]𝐾
𝑘=1 =

[
𝒁>
𝑘
𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 )𝑺

−1
𝑘

]𝐾
𝑘=1

⇐⇒
[
𝒁>
𝑘

(
𝑼𝑘 − 𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 )

)
𝑺−1
𝑘

]𝐾
𝑘=1

+
[
𝜕𝑟 (�̃� )𝑘

]𝐾
𝑘=1 = 0 (56)
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Resolvent of the regularization term Determining the block decomposition of the subdierential of
the regularization term is less simple. We would like a block expression in the avour of:[

𝜕𝑟 (�̃� )𝑘
]𝐾
𝑘=1 +

[
�̃�𝑘 �̂�

−1
𝑘

]𝐾
𝑘=1

=

[
�̃�𝑘 �̂�

−1
𝑘

]𝐾
𝑘=1

(57)

At this point it becomes clear that we cannot consider the resolvent as acting on �̃� ∈ R𝐾𝑑×𝐾 otherwise
there could be only one �̂� ∈ R𝐾×𝐾 and there would be a mismatch with the expected form of the Onsager
terms. As specied by the denitions Eq.(50), the subdierential of 𝑟 is acting on the whole block diagonal
matrix [�̃�𝑘 ]𝐾𝑘=1, by way of summation due to the action of the pseudo-inverse 𝚺+. We can thus consider
its proximal acting on R𝑑×𝐾2 as [�̃� 1�̃� 2...�̃�𝐾 ] (note that we could have also worked directly with a block
diagonal matrix in R𝐾𝑑×𝐾2 ). Proceeding in this way, we can directly write our expression as an application
parametrized by another set of positive denite matrices {�̂�𝑘 }𝑘∈[𝐾 ] , and introduce the resolvent

�̂� ≡
(
Id + 𝜕𝑟 (•)�̂�

)
(�̃� ) �̃� = 𝑹𝑟,�̂� (�̂� ) (58)

where
𝑹𝑟,�̂� (�̂� ) =

(
Id + 𝜕𝑟 (•)�̂�

)−1
(�̂� ) = argmin

𝑻 ∈R𝑑×𝐾2

{
𝑟 (𝑻 ) + 1

2 tr
(
(𝑻 − �̂� )�̂�−1 (𝑻 − �̂� )>

)}
(59)

where �̂� ∈ R𝐾2×𝐾2 block diagonal, and �̂� ∈ R𝑑×𝐾2 . This would lead to the equivalent optimality condition
for the regularization part:

�̂� �̂�
−1

= 𝑹𝑟,�̂� (�̂� )�̂�
−1 ⇐⇒

[
�̂�𝑘 �̂�

−1
𝑘

]𝐾
𝑘=1

=

[
𝑹𝑟,�̂�,𝑘 (�̂� )�̂�

−1
𝑘

]𝐾
𝑘=1

(60)

We now need to gure out the block structure of this resolvent since we want to spread it across a block
diagonal matrix. Let 𝑪 =

∑𝐾
𝑘=1 𝚺𝑘 , so that 𝚺+ = 𝑪−1

𝚺
>, and the blocks 𝑻𝑘 ∈ R𝑑×𝐾 are the solution to the

minimization problem

min
{𝑻𝑘 }𝑘∈[𝐾 ] ∈(R𝑑×𝐾 )𝐾

𝑟 (𝑪−1
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

𝑻𝑘 ) +
1
2 tr

(
(𝑻 − �̂� )�̂�−1 (𝑻 − �̂�

>)
)
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴𝚺

+𝑻

))
(61)

Let �̃� = 𝑪−1 ∑𝐾
𝑘=1 𝚺

1/2
𝑘

𝑻𝑘 ∈ R𝑑×𝐾 , and the equivalent reformulation as a constraint optimization problem:

min
𝑻𝑘∈[𝐾 ] ∈R𝑑×𝐾

�̃� ∈R𝑑×𝐾

𝑟 (�̃� ) + 1
2 tr

(
(𝑻 − �̂� )�̂�−1 (𝑻 − �̂�

>)
)
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴�̃�

))
(62)

s.t. �̃� = 𝑪−1
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

𝑻𝑘

This is a feasible convex problem under convex constraint with a strongly convex term, it thus has a unique
solution and strong duality holds. Introducing the Lagrange multiplier 𝝀 ∈ R𝑑×𝐾 , we get the equivalent
representation:

min
𝑻𝑘∈[𝐾 ] ∈R𝑑×𝐾

�̃� ∈R𝑑×𝐾

max
𝝀∈R𝑑×𝐾

𝑟 (�̃� ) +
𝐾∑︁
𝑘=1

tr
(
(𝑻𝑘 − �̂�𝑘 )�̂�

−1
𝑘 (𝑻𝑘 − �̂�𝑘 )>

)
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+ tr
(
𝝀>

(
�̃� − 𝑪−1

𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

𝑻𝑘

))
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴�̃�

))
. (63)

The optimality condition for this problem reads:

𝜕�̃� : 𝜕𝑟 (�̃� ) + 𝝀 − 1
√
𝑑
𝑴>�̂� = 0 (64)

𝜕𝑻 : (𝑻𝑘 − 𝑼𝑘 )�̂�
−1
𝑘 = 𝚺

1/2
𝑘

𝑪−1𝝀 ∀𝑘 ∈ [𝐾] (65)

𝜕𝝀 : �̃� = 𝑪−1
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

𝑻𝑘 (66)

Using the gradient condition on 𝑻 , we get

𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

(𝑻𝑘 − �̂�𝑘 )�̂�
−1
𝑘 = 𝝀 (67)

The constraint �̃� = 𝑪−1 ∑𝐾
𝑘=1 𝚺

1/2
𝑘

𝑻𝑘 is solved by 𝑻𝑘 = 𝚺
1/2
𝑘

�̃� which gives the solution for 𝝀

𝝀 =
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

(𝚺1/2
𝑘

�̃� − �̂�𝑘 )�̂�
−1
𝑘 =

𝐾∑︁
𝑘=1

𝚺𝑘 �̃� �̂�
−1
𝑘 −

𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

�̂�𝑘 �̂�
−1
𝑘 (68)

and prescribes the following form for �̃� , as solution to the problem

𝜕𝑟 (�̃� ) +
𝐾∑︁
𝑘=1

𝚺𝑘 �̃� �̂�
−1
𝑘 −

𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

�̂�𝑘 �̂�
−1
𝑘 − 1

√
𝑑
𝑴>�̂� = 0

⇐⇒ argmin
�̃�

𝑟 (�̃� ) + 1
2

𝐾∑︁
𝑘=1

𝚺𝑘 �̃� �̂�
−1
𝑘 �̃� −

(
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

�̂�𝑘 �̂�
−1
𝑘 + 1

√
𝑑
𝑴>�̂�

)
�̃� (69)

and then recover 𝑻 from 𝑻 = 𝚺�̃� . Thus, dening the function

𝜼 : R𝑑×𝐾2 → R𝑑×𝐾

�̂� ↦→ argmin
�̃�

𝑟 (�̃� ) + 1
2

𝐾∑︁
𝑘=1

𝚺𝑘 �̃� �̂�
−1
𝑘 �̃� −

(
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

�̂�𝑘 �̂�
−1
𝑘 + 1

√
𝑑
𝑴>�̂�

)
�̃� (70)

the block decomposition of the resolvent for the regularizer reads:

𝑹𝑟,�̂�,𝑘 (�̂� ) = 𝚺
1/2
𝑘

𝜼(�̂� ) (71)

Matching the optimality condition with the AMP xed point The global optimality condition then
reads: [

𝒁>
𝑘

(
𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 ) − 𝑼𝑘

)
𝑺−1
𝑘

]𝐾
𝑘=1

=

[
(�̂�𝑘 − 𝑹𝑟,�̂�,𝑘 (�̂� ))�̂�

−1
𝑘

]𝐾
𝑘=1

(72)[
𝒁𝑘𝑹𝑟,�̂�,𝑘 (�̂� )

]𝐾
𝑘=1 =

[
𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 )

]𝐾
𝑘=1

(73)
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where both equations should be satised. We can now dene update functions based on the previously
obtained block decomposition. The xed point of the matrix-valued AMP Eq.(28) reads:

𝒖 + 𝒆(𝒖)〈𝒉′〉> = 𝒁>𝒉(𝒗) (74)
𝒗 + 𝒉(𝒗)〈𝒆′〉> = 𝒁𝒆(𝒖) (75)

Matching this xed point with the optimality condition Eq.(72) suggests the following mapping:

𝒉𝑘 (𝑼𝑘 ) =
(
𝑹�̃�𝑘 ,𝑺𝑘 (𝑼𝑘 ) − 𝑼𝑘

)
𝑺−1
𝑘
,

𝒆𝑘 (�̂� ) = 𝑹𝑟,�̂�,𝑘 (�̂� �̂�),

𝑺𝑘 = 〈𝒆′
𝑘
〉>,

�̂�𝑘 = −(〈𝒉′
𝑘
〉>)−1,

(76)

where we redened �̂� ≡ �̂� �̂� in (58).

A.4 Proof of Theorem 1 using the AMP sequence
Following the analysis carried out in the previous section, dene the following two sequences of non-
linearities, for xed values of the parameters �̂�,𝒎, 𝒃 and any 𝒖 ∈ R𝑑×𝐾2

, 𝒗 ∈ R𝑛×𝐾 :

𝒆𝑡 : R𝐾𝑑×𝐾
2 → R𝐾𝑑×𝐾2

𝒖 ↦→


𝒆1,𝑡 (𝒖)

𝒆2,𝑡 (𝒖) (0)

(0) . . .

𝒆𝐾,𝑡 (𝒖)


∈ R𝐾𝑑×𝐾2 (77)

𝒉𝑡 : R𝑛×𝐾
2 → R𝑛×𝐾2

𝒗 ↦→


𝒉1,𝑡 (𝒗1)

𝒉2,𝑡 (𝒗2) (0)

(0) . . .

𝒉𝐾,𝑡 (𝒗𝐾 )


∈ R𝑛×𝐾2 (78)

where

𝒉𝑘,𝑡 : R𝑛𝑘×𝐾 → R𝑛𝑘×𝐾

𝒗𝑘 ↦→
(
𝑹�̃�𝑘 ,𝑽 𝑡𝑘

(𝒗𝑘 ) − 𝒗𝑘
)
(𝑽 𝑡
𝑘
)−1

=

(
argmin
𝑻 ∈R𝑛𝑘×𝐾

{
�̃�𝑘 (𝑻 ) +

1
2 tr

(
(𝑻 − 𝒗𝑘 ) (𝑽 𝑡𝑘 )

−1 (𝑻 − 𝒗𝑘 )>
)}

− 𝒗𝑘

)
(𝑽 𝑡
𝑘
)−1

=

(
Prox𝐿𝑘 (•(𝑽 𝑡𝑘 )1/2) ((𝒀𝑘𝒎 + 𝒗𝑘 ) (𝑽 𝑡𝑘 )

−1/2) (𝑽 𝑡
𝑘
)1/2 − (𝒀𝑘𝒎 + 𝒗𝑘 )

)
(𝑽 𝑡
𝑘
)−1 (79)

𝒆𝑘,𝑡 : R𝑑×𝐾
2 → R𝑑×𝐾

𝒖 ↦→ 𝚺
1/2
𝑘

argmin
�̃� ∈R𝑑×𝐾

𝑟 (�̃� ) + 1
2

𝐾∑︁
𝑘=1

𝚺𝑘 �̃� �̂�
𝑡

𝑘 �̃� −
(
𝐾∑︁
𝑘=1

𝚺
1/2
𝑘

𝒖𝑘 +
1
√
𝑑
𝑴>�̂�

)
�̃�

= 𝚺
1/2
𝑘

𝜼(𝒖 (�̂� 𝑡 )−1) (80)
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where 𝒀𝑘 ∈ R𝑛𝑘×𝐾 and (𝑽 𝑡 , �̂� 𝑡 ) ∈ R𝐾2×𝐾2 , are dened as the block diagonal matrices
[
𝑽 𝑡
𝑘

]
𝑘∈[𝐾 ] ,

[
�̂�
𝑡

𝑘

]
𝑘∈[𝐾 ]

such that

𝑽 𝑡
𝑘
= 〈(𝒆𝑡−1

𝑘
) ′〉> �̂�

𝑡

𝑘 = −〈(𝒉𝑡
𝑘
) ′〉> (81)

using the notation from Eq. (30). Since the functions dening 𝒆𝑘 ,𝒉𝑘 are proximal operators, their Jacobians
are positive semi-denite. Assuming they are not zero almost everywhere, the matrices obtained by aver-
aging the Jacobians over Gaussian measures will be positive denite, justifying the validity of the choice
Eq.(81) for the Onsager correction terms. Now dene the following sequence, initialized with

𝒖0,𝒉−1 ≡ 0, �̂� 0 (82)

such that lim
𝑑→∞

1
𝑑

𝒆0 (𝒖0)>𝒆0 (𝒖0)F < +∞ and �̂� 0 ∈ S++𝐾
and recursively dene

𝒖𝑡+1 = 𝒁>𝒉𝑡 (𝒗𝑡 ) − 𝒆𝑡 (𝒖𝑡 )〈𝒉′
𝑡 〉> (83)

𝒗𝑡 = 𝒁𝒆𝑡 (𝒖𝑡 ) − 𝒉𝑡−1 (𝒗𝑡−1)〈𝒆′𝑡 〉> (84)

where 𝒁 ∈ R𝑛×𝐾𝑑 has i.i.d. N(0, 1/𝑑) elements, and in the Jacobians dening �̂� , 𝑽 , we used the notation
from Eq. (25).

State evolution equations The results from section A.3 show that the functions 𝒆𝑡 ,𝒉𝑡 are proximals
operators, and thus are Lipschitz continuous for all 𝑡 ∈ N, along with their block restrictions. Therefore
the conditions of Theorem 4 are veried and we have the following lemma:

Lemma 5. Consider the sequence dened by Eq.(82), for any xed 𝒎, �̂�, 𝒃 . For any sequences of pseudo-
Lipschitz functions 𝜙1,𝑛 : R𝑑×𝐾2 → R, 𝜙2,𝑛 : R𝑛×𝐾2 → R, for any 𝑡 ∈ N∗:

𝜙1,𝑛 (𝒖𝑡1, . . . , 𝒖𝑡𝐾 )
P' E

[
𝜙1,𝑛 (𝑯 1 (�̂�

𝑡

1)1/2, . . . ,𝑯𝐾 (�̂�
𝑡

𝐾 )1/2)
]

(85)

𝜙2,𝑛 (𝒗1, . . . , 𝒗𝐾 )
P' E

[
𝜙1,𝑛 (𝑮1 (𝑸𝑡1)1/2, . . . , 𝑮𝐾 (𝑸𝑡𝐾 )

1/2)
]

(86)

where the matrices 𝑯𝑘 ∈ R𝑑×𝐾 , 𝑮𝑘 ∈ R𝑛𝑘×𝐾 are i.i.d. standard normal matrices, and at each time step 𝑡 > 1

𝑸𝑡
𝑘
= lim
𝑑→+∞

1
𝑑
E

[
𝒆𝑘 ({𝑯𝑘 (�̂�

𝑡

𝑘 )1/2 (�̂�
𝑡

𝑘 )−1}𝑘∈[𝐾 ])>𝒆𝑘 ({𝑯𝑘 (�̂�
𝑡

𝑘 )1/2 (�̂�
𝑡

𝑘 )−1}𝑘∈[𝐾 ])
]
∈ R𝐾×𝐾 (87)

�̂�
𝑡

𝑘 = lim
𝑑→+∞

1
𝑑
E

[
𝒉𝑡−1
𝑘

(𝑮𝑘 (𝑸𝑡−1𝑘
)1/2)>𝒉𝑡−1

𝑘
(𝑮𝑘 (𝑸𝑡−1𝑘

)1/2)
]
∈ R𝐾×𝐾 (88)

𝑽 𝑡
𝑘
= lim
𝑑→+∞

1
𝑑

𝑑∑︁
𝑖=1

𝜕𝒆𝑡−1
𝑘

({𝑯𝑘 (�̂�
𝑡−1
𝑘 )1/2}𝑘∈[𝐾 ])

𝜕(𝑯𝑘 (�̂�
𝑡−1
𝑘 )1/2)𝑖

∈ R𝐾×𝐾 (89)

�̂�
𝑡

𝑘 = − lim
𝑑→+∞

1
𝑑

𝑛𝑘∑︁
𝑖=1

𝜕𝒉𝑡
𝑘
(𝑮𝑘 (𝑸𝑡𝑘 )

1/2)
𝜕(𝑮𝑘 (𝑸𝑡𝑘 )1/2)𝑖

∈ R𝐾×𝐾 (90)

where the sequence is initialized with �̂� 0, 𝒆0,𝑸0,0 = lim𝑑→∞
1
𝑑
‖𝒆0 (𝒖0)>𝒆0 (𝒖0)‖F.

Proof. Lemma 5 is a consequence of Theorem 4whose assumptions have been veried in the paragraph. �
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Note that the 𝑮 dened here is not the same as the 𝑮 in the replica computation, and that in Lemma
5, we have directly written the block decomposition of the state evolution corresponding to the iteration
Eq. (82), which involves the block diagonal matrices 𝑸𝑡 , �̂�

𝑡
, 𝑽 𝑡 , �̂�

𝑡 which are all in R𝐾2×𝐾2 . Using the
notations introduced in section A.1

𝑽 = [𝑽𝑘 ]𝐾𝑘=1 �̂� =
[
�̂�𝑘

]𝐾
𝑘=1 𝑸 =

[
𝑸𝑘

]𝐾
𝑘=1 �̂� =

[
�̂�𝑘

]𝐾
𝑘=1 (91)

Also note that we do not use the full state evolution giving the correlations across all time steps, but only
use those at equal times 𝑡 .

Trajectories and xed point of the AMP sequence Now that we have a sequence with state evolu-
tion equations, the following two lemmas link the xed points of this iteration to any optimal solution of
problem Eq.(49).

Lemma 6. Consider any xed point 𝑽 , �̂� ,𝑸, �̂� of the state evolution equations from Lemma 5. For any xed
point 𝒖∗, 𝒗∗ of iteration Eq.(82), the quantity

𝑹𝑟,�̂� (𝒖
∗�̂�

−1) =
(
Id + 𝜕𝑟 (•)�̂�−1) (𝒖∗�̂�−1) (92)

is an optimal solution �̃�
★
of problem Eq.(49). Furthermore

𝑹�̃�,𝑽 (𝒗
∗) = (Id + 𝜕�̃�(•)𝑽 ) (𝒗∗) = 𝒁�̃�

★ (93)

where the block decompositions of each resolvents have been explicitly calculated in section A.3.

Proof. Lemma 6 is a direct consequence of the analysis carried out in section A.3. �

At this point we know the xed points of the AMP iteration correspond to the optimal solutions of
problem Eq.(49). Note that the resolvents/proximals linking the xed point of the AMP iteration with
the solutions of Eq.(49) are Lipschitz continuous, making them acceptable transforms for state evolution
observables. However this does not guarantee that the optimal solution is characterized by the xed point
of the state evolution equations. Indeed, we need to show that a converging trajectory can be systematically
found for any instance of the problem Eq.(49). This is the purpose of the following lemma.

Lemma 7. Consider iteration Eq.(82), where the parameters 𝑸, �̂�, 𝑽 , �̂� are initialized at any xed point of the
state evolution equations of Lemma 5. For any sequence initialized with �̂� 0 = �̂� and 𝒖0 such that

lim
𝑑→∞

1
𝑑
𝒆0 (𝒖0)>𝒆0 (𝒖0) = 𝑸 (94)

the following holds

lim
𝑡→∞

lim
𝑑→∞

1
√
𝑑

𝒖𝑡 − 𝒖★

F = 0 lim

𝑡→∞
lim
𝑑→∞

1
√
𝑑

𝒗𝑡 − 𝒗★

F = 0 (95)

Proof. The proof of Lemma 7 will be given in a longer version of this paper. �

Combining the lemmas 5, 6 and 7 with the pseudo-Lipschitz property, we have reached the following
lemma
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Lemma 8. For any xed 𝒎, �̂�, 𝒃 , consider the xed point (𝑸, �̂�, 𝑽 , �̂� ) of the state evolution equations from
Lemma. 5. Then, for any sequences of pseudo-Lipschitz functions 𝜙1,𝑛 : R𝑑×𝐾2 → R, 𝜙2,𝑛 : R𝑛×𝐾 → R, for
𝑛,𝑑 → ∞

𝜙1,𝑛 (�̃�
★) P' E

[
𝜙1,𝑛

(
𝑅𝑟,�̂� (𝑯�̂�

1/2
�̂�
−1)

)]
(96)

𝜙2,𝑛 (𝑍�̃�
★) P' E

[
𝜙2,𝑛

(
𝑅�̃�,𝑽 (𝑮𝑸

1/2)
)]

(97)

where we remind that 𝑮 = [𝑮𝑘 ]𝐾𝑘=1 ,𝑯 = [𝑯𝑘 ]𝐾𝑘=1 are block diagonal i.i.d. standard normal matrices as in

Lemma 5, and 𝑸 =
[
𝑸𝑘

]𝐾
𝑘=1 �̂� =

[
�̂�𝑘

]𝐾
𝑘=1 are the 𝐾

2 × 𝐾2 block diagonal covariances.

Proof. Lemma 8 is a consequence of Lemmas 5,6,7 and the pseudo-Lipschitz property. It is also necessary
to check that all iterates of the AMP iteration and any optimal solution of problem Eq.(49) have nite norm
(rescaled by 1√

𝑑
, to prove convergence results involving the pseudo-Lipschitz functions. This is ensured

by the state evolution equations for the iterates, and can be justied for the optimal solutions using the
feasibility of the optimization problem Eq.(49) using similar arguments as in [12] Lemma 8. Note that the
composition of a pseudo-Lipschitz function and a Lipschitz function is also pseudo-Lipschitz. �

Note that the resolvents are implicitly acting on the block diagonals of their arguments. At this point
we are quite close to Theorem 1(details for the exact matching will be given later), but we are missing the
equations on 𝒎, �̂�, 𝒃 .

Fixed point equations for 𝒎, �̂�, 𝒃 We drop the dependence on the bias term 𝒃 as its solution is very
similar to the one for �̂�. To obtain the equations for𝒎, �̂�, we go back to the complete optimization problem

inf
𝒎,�̃� ,𝒃

sup
�̂�
𝐿(𝒀𝑘𝒎 + 𝒁𝑘�̃�𝑘 ) + 𝑟

(
𝚺
+�̃�

)
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴𝚺

+�̃�

))
(98)

where we can use strong duality to write the equivalent form

inf
𝒎,𝒃

sup
�̂�
𝐿(𝒀𝑘𝒎 + 𝒁𝑘�̃�

★

𝑘 ) + 𝑟
(
𝚺
+�̃�

)
+ tr

(
�̂�>

(
𝒎 − 1

√
𝑑
𝑴𝚺

+�̃�
★

))
(99)

The gradients w.r.t. 𝒎, �̂� then read:

𝜕�̂� = 𝒎 − 1
√
𝑑
𝑴𝚺

+�̃�
★ (100)

𝜕𝒎 = �̂� + 𝜕𝒎𝐿(𝒀𝒎 + 𝒁�̃�
★) (101)

Uniform convergence of derivatives and conditions for the dominated convergence theorem are veried
using similar arguments as in [12, Lemma 12]. We can thus invert limits and derivatives, and expectations
and derivatives. To facilitate taking the derivative 𝜕𝒎 , we use Lemma 8 (assuming the normalized loss
function is pseudo-Lipschitz, which is a very loose assumption veried by most machine learning losses)
to obtain, reintroducing the scaling 1/𝑑

1
𝑑
𝐿(𝒀𝒎 + 𝒁�̃�

★) 𝑃−−−−→
𝑑→∞

1
𝑑
E

[
𝐿(𝒀𝒎 + 𝑹�̃�,𝑽 (𝑮𝑸

1/2))
]

(102)
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Using the block decomposition from Eq.(55), the blocks (𝑹�̃�,𝑽 (𝑮𝑸1/2))𝑘 ∈ R𝑛𝑘×𝐾 are given by:

argmin
𝑻 ∈R𝑛𝑘×𝐾

{
𝐿𝑘 (𝑻 )+

1
2 tr

(
(𝑻−(𝒀𝑘𝒎+𝑮𝑘𝑸1/2

𝑘
))𝑽−1

𝑘
(𝑻−(𝒀𝑘𝒎+𝑮𝑘𝑸1/2

𝑘
))>

)}
−𝒀𝑘𝒎 (103)

Using a block diagonal representation, we can write:

1
𝑑
𝐿(𝒀𝒎 + 𝑅�̃�,𝑽 (𝑮𝑸

1/2)) = 1
𝑑
𝐿(𝑅𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2))

=
M𝐿,𝑽 (𝒀𝒎+𝑮𝑸1/2)

𝑑
− 1
2𝑑 tr

(
(𝑹𝐿,𝑽 (𝒀𝒎+𝑮𝑸1/2)−(𝒀𝒎+𝑮𝑸1/2))𝑽−1 (𝑹𝐿,𝑽 (𝒀𝒎+𝑮𝑸1/2)−(𝒀𝒎+𝑮𝑸1/2))>

)
(104)

where we have introduced the Bregman-envelope [64] with respect to the distance Eq. (20)

M𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2) = min
𝑻

{
𝐿(𝑻 ) + 1

2 tr
(
(𝑻 − (𝒀𝒎 + 𝑮𝑸1/2))𝑽−1 (𝑻 − (𝒀𝒎 + 𝑮𝑸1/2))>

)}
. (105)

Then, using the state evolution equations from Lemma 5 and Stein’s lemma, we can write:

1
𝑑
𝐿(𝒀𝒎 + 𝑹�̃�,𝑽 (𝑮𝑸

1/2)) = 1
𝑑
M𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2) − 1

2 tr(𝑽
>𝑸) (106)

taking the gradient w.r.t. 𝒎 using the expression for the derivative of a Bregman envelope [64], we get:

𝜕𝒎𝐿(𝒀𝒎 + 𝑹�̃�,𝑽 (𝑮𝑸
1/2)) = 1

𝑑
𝒀>

(
𝒀𝒎 + 𝑮𝑸1/2 − 𝑹𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2)

)
𝑽−1 (107)

which prescribes, with high probability

�̂�
P' 1
𝑑
𝒀>

(
𝑹𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2) − 𝒀𝒎 + 𝑮𝑸1/2

)
𝑽−1 (108)

For 𝒎, we use the block decomposition from Eq.(69), which simplies the pseudo-inverse 𝚺+ in Eq. (100)
to give, with high probability

𝒎
P' 1
√
𝑑
𝑴𝜼(𝑯�̂�

1/2
�̂�
−1) (109)

where the function 𝜼 acts on the block diagonal and is dened by Eq.(70). Using those results and the
denition of �̃� , the solution𝑾★ and the quantity 𝑿𝑾∗ are characterized, in the pseudo-Lipschitz sense of
Theorem 1, by the xed point of the system of equations

𝑸𝑘 = lim
𝑑→+∞

1
𝑑
E

[
𝒆𝑘 ({𝑯𝑘 (�̂�𝑘 )1/2�̂�

−1
𝑘 }𝑘∈[𝐾 ])>𝒆𝑘 ({𝑯𝑘 (�̂�𝑘 )1/2�̂�

−1
𝑘 }𝑘∈[𝐾 ])

]
∈ R𝐾×𝐾 (110)

�̂�𝑘 = lim
𝑑→+∞

1
𝑑
E

[
𝒉𝑘 (𝑮𝑘𝑸1/2

𝑘
)>𝒉𝑘 (𝑮𝑘𝑸1/2

𝑘
)
]
∈ R𝐾×𝐾 (111)

𝑽𝑘 = lim
𝑑→+∞

1
𝑑

𝑑∑︁
𝑖=1
E

[
𝜕𝒆𝑘 ({𝑯𝑘 (�̂�𝑘 )1/2}𝑘∈[𝐾 ])

𝜕(𝑯𝑘 (�̂�𝑘 )1/2)𝑖

]
∈ R𝐾×𝐾 (112)

�̂�𝑘 = − lim
𝑑→+∞

1
𝑑

𝑛𝑘∑︁
𝑖=1
E

[
𝜕𝒉𝑡
𝑘
(𝑮𝑘 (𝑸𝑡𝑘 )

1/2)
𝜕(𝑮𝑘 (𝑸𝑘 )1/2)𝑖

]
∈ R𝐾×𝐾 (113)
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𝒎 =
1
√
𝑑
E

[
𝑴𝜼(𝑯�̂�

1/2
�̂�
−1)

]
∈ R𝐾×𝐾 (114)

�̂� =
1
𝑑
𝒀>

(
𝑹𝐿,𝑽 (𝒀𝒎 + 𝑮𝑸1/2) − 𝒀𝒎 + 𝑮𝑸1/2

)
𝑽−1 ∈ R𝐾×𝐾 (115)

Using the explicit form of the dierent functions given by Eq.(79,80) and Stein’s lemma for the deriva-
tives, these equations match those of Theorem 1. Matching the update function 𝒉 associated to the loss
is straightforward using the separability of the loss and the denitions of the aspect ratio 𝛼 and cluster
probabilities 𝜌𝑘 (the ratios 𝑛𝑘/𝑛 converge to 𝜌𝑘 using the strong law of large numbers and convergence of
the product with the Gaussian expectation is justied using Slutsky’s lemma). To match the update func-
tion associated to the regularizer, it is useful to consider the integral dening its counterpart in the replica
calculation Eq.(138). Using Laplace’s method on this integral at zero temperature under the replica sym-
metric ansatz yields the same optimization problem as the one dening the update function 𝜼 in Eq.(80).
This completes the proof.

A.5 On the uniqueness of the solution to the xed point equations (110)
If the optimization problem (49) is strictly convex, the provided proof is enough to characterize its unique
solution. For a convex problem, e.g., LASSO with square loss, one can add a vanishing additional ridge
penalty as done in [52], to obtain a strictly convex approximation of the original problem. A fully rigorous
treatment of the convex (non-strictly) case would require proving that the xed point equation have a
unique solution, as done for instance in [12, 49]. Indeed, if the xed point equations (110) have a unique
solution, then any solution of the convex problem is characterized by the same parameters. It is possible
to reconstruct Bregman envelopes on problem (49) for the loss and regularization as we have done for
the loss in the previous section. We then can show that the xed point equations (110) are the optimality
condition of a convex-concave problem involving both Bregman envelopes and linear combinations of the
order parameters. In the same spirit as [12,49], the authors are condent that this problem is asymptotically
strictly convex. This is supported by the simulations presented in the experiments sections. We leave this
analysis for a longer version of this paper.

B Replica computation

B.1 Setting of the problem
In this Section we give a full derivation of the results given in Theorem 1 and Theorem 2 by means of the
replica approach, a standardmethod developed in the realm of statistical physics of disordered systems [67].
In the general computation, we will consider the classication problem of 𝐾 clusters, assuming a dataset
{(𝒙𝜈 ,𝒚𝜈 )}𝜈∈[𝑛] of 𝑛 independent datapoints where, as in the main text, the labels 𝒚 takes value in a set
of 𝐾 elements, 𝒚𝜈 ∈ {𝒆𝑘 }𝑘 , with 𝒆𝑘 ∈ R𝐿 . The elements of the dataset are independently generated by a
mixture density in the form

𝑃 (𝒙,𝒚) =
𝐾∑︁
𝑘=1
I(𝒚 = 𝒆𝑘 )𝜌𝑘N

(
𝒙
��𝝁𝑘 , 𝚺𝑘 )

,
𝐾∑︁
𝑘=1

𝜌𝑘 = 1. (116)

We will perform our classication task searching for a set of parameters (𝑾★, 𝒃★) that will allow us to
construct an estimator. The parameters will be chosen by minimising an empirical risk function in the
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form
R(𝑾 , 𝒃) ≡

𝑛∑︁
𝜈=1

ℓ

(
𝒚𝜈 ,

𝑾𝒙𝜈
√
𝑑

+ 𝒃

)
+ 𝜆𝑟 (𝑾 ), (117)

i.e., they are given by
(𝑾★, 𝒃★) ≡ argmin

𝑾 ∈R𝐿×𝑑 ,𝒃∈R𝐿
R(𝑾 , 𝒃). (118)

We will say that𝑾 ∈ R𝐿×𝑑 and 𝒃 ∈ R𝐿 are the weights and bias to be learned respectively, ℓ is a convex loss
function with respect to its second argument, and 𝑟 is a regularisation function whose strength is tuned
by the parameter 𝜆 ≥ 0. Finally, we will assume that a classier 𝝋 : R𝐿 → {𝒆𝑘 }𝑘 is given, such that, once
(𝑾★, 𝒃★) are obtained, a new point 𝒙 is assigned to the label

𝒙 ↦→ 𝝋

(
𝑾★𝒙
√
𝑑

+ 𝒃★
)
∈ {𝒆𝑘 }𝑘 . (119)

The described setting is slightly more general than the one given in Theorem 1. As a consequence
of the fact that we choose 𝐿-dimensional labels, the order parameters that appear in the computation are
𝐿 dimensional vectors or 𝐿 × 𝐿 matrices. A typical “high-dimensional encoding” is the one-hot encoding
convention adopted in Theorem 1, where {𝒆𝑘 }𝑘 ⊂ R𝐾 is the canonical basis of R𝐾 . In this case, the adopted
classier is

𝝋 (𝒙) ≡ �̂�(𝒙), 𝑦𝑘 (𝒙) = I(max
𝜅
𝑥 = 𝑥𝑘 ). (120)

Assuming scalar labels {𝑒𝑘 }𝑘 ∈ R, we deal with scalar order parameters. For example, in the case of binary
classication (𝐾 = 2) it is common to adopt 𝐿 = 1 and {𝑒1, 𝑒2} = {+1,−1}. In this case 𝜑 (𝑥) = sign(𝑥), see
also Section C.2.

B.2 Gibbs minimisation
The problem stated in Section 1 is formulated as an optimisation problem. We can tackle such optimisation
problem introducing a Gibbs measure over the weights (𝑾 , 𝒃), namely

𝜇𝛽 (𝑾 , 𝒃) ∝ 𝑒−𝛽R(𝑾 ,𝒃) = 𝑒−𝛽𝑟 (𝑾 )︸   ︷︷   ︸
𝑃𝑤 (𝑾 )

𝑛∏
𝜈=1

exp
[
−𝛽ℓ

(
𝒚𝜈 ,

𝑾𝒙𝜈
√
𝑑

+ 𝒃

)]
︸                            ︷︷                            ︸

𝑃𝑦 (𝒚 |𝑾 ,𝒃)

. (121)

The parameter 𝛽 > 0 is introduced for convenience: in the 𝛽 → +∞ limit, the Gibbs measure concentrates
on the values (𝑾★, 𝒃★) whichminimize the empirical riskR(𝑾 , 𝒃) and are therefore the goal of the learning
process. The functions 𝑃𝑦 and 𝑃𝑤 can be interpreted as a (unnormalised) likelihood and prior distribution
respectively. Our analysis will go through the computation of the average free energy density associated
to such Gibbs measure, i.e.,

𝑓𝛽 = − lim
𝑛,𝑑→+∞
𝑛/𝑑=𝛼

E{(𝒙,𝒚) }

[ lnZ𝛽
𝑑𝛽

]
, (122)

where E{(𝒙,𝒚) } [•] is the average over the training dataset, and we have introduced the partition function

Z𝛽 ≡
∫

𝑒−𝛽R(𝑾 ,𝒃)d𝑾 (123)
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To perform the computation of such quantity, we use the so-called replica method, i.e., we compute

− lim
𝑛,𝑑→+∞
𝑛/𝑑=𝛼

E{(𝒙,𝒚) }

[ lnZ𝛽
𝑑𝛽

]
= lim
𝑛,𝑑→+∞
𝑛/𝑑=𝛼

lim
𝑠→0

1 − E{(𝒙,𝒚) } [Z𝑠𝛽 ]
𝑠𝑑𝛽

, (124)

B.3 Replica approach
We proceed in our calculation considering the bias vector assuming no prior on 𝒃 , which will play a role
of an extra parameter. The equations for the bias 𝒃 will be derived extremising with respect to it the nal
result for the free energy. We need to evaluate

E𝒙,𝒚 [Z𝑠𝛽 ] =
𝑠∏
𝑎=1

∫
d𝑾𝑎𝑃𝑤 (𝑾𝑎)

(∑︁
𝑘

𝜌𝑘E𝒙 |𝒚=𝒆𝑘

[
𝑠∏
𝑎=1

𝑃𝑦

(
𝒆𝑘

����𝑾𝑎𝒙
√
𝑑

+ 𝒃

)])𝑛
. (125)

Let us take the inner average introducing a new variable 𝜼,

E𝒙 |𝒚=𝒆𝑘

[
𝑠∏
𝑎=1

𝑃𝑦

(
𝒆𝑘

����𝑾𝑎𝒙
√
𝑑

+ 𝒃

)]
=

𝑠∏
𝑎=1

∫
d𝜼𝑎𝑃𝑦 (𝒆𝑘 |𝜼𝑎)E𝒙

[
𝑠∏
𝑎=1

𝛿

(
𝜼𝑎 − 𝑾𝑎𝒙

√
𝑑

+ 𝒃

)]
=

𝑠∏
𝑎=1

∫
d𝜼𝑎𝑃𝑦 (𝒆𝑘 |𝜼𝑎)N

(
𝜼
���𝑾𝑎𝝁𝑘√

𝑑
− 𝒃 ; 𝑾

𝑎
𝚺𝑘𝑾

𝑏>

𝑑

)
. (126)

We can write then

E𝒙,𝒚 [Z𝑠𝛽 ] =
𝑛∏
𝑎=1

∫
d𝑾𝑎𝑃𝑤 (𝑾𝑎)

(∑︁
𝑘

𝜌𝑘

𝑠∏
𝑎=1

∫
d𝜼𝑎𝑃𝑦 (𝒆𝑘 |𝜼𝑎)N

(
𝜼;

𝑾𝑎𝝁𝑘
𝑑

+ 𝒃 ; 𝑾
𝑎
𝚺𝑘𝑾

𝑏>

𝑑

))𝑛
=

©«
𝐾∏
𝑘=1

∏
𝑎≤𝑏

∬ d𝑸𝑎𝑏
𝑘
d�̂�𝑎𝑏𝑘

(2𝜋)𝐿2/2
ª®¬
(∏
𝑘

∏
𝑎

∫ d𝒎𝑎
𝑘
d�̂�𝑎

𝑘

(2𝜋)𝐿/2

)
𝑒−𝑑𝛽Φ

(𝑠 )
. (127)

where we introduced the order parameters

𝑸𝑎𝑏
𝑘

=
𝑾𝑎

𝚺𝑘𝑾
𝑏>

𝑑
∈ R𝐿×𝐿, 𝑎, 𝑏 = 1, . . . , 𝑠, (128)

𝒎𝑎
𝑘
=
𝑾𝑎𝝁𝑘√

𝑑
∈ R𝐿, 𝑎 = 1, . . . , 𝑠, (129)

and the replicated free-energy

𝛽Φ(𝑠) (𝑸,𝒎, �̂�, �̂�, 𝒃) =
𝐾∑︁
𝑘=1

∑︁
𝑎

�̂�𝑎>
𝑘
𝒎𝑎
𝑘
+

𝐾∑︁
𝑘=1

∑︁
𝑎≤𝑏

tr
[
�̂�
𝑎𝑏>
𝑘 𝑸𝑎𝑏

𝑘

]
− 1
𝑑
ln

𝑠∏
𝑎=1

∫
𝑃𝑤 (𝑾𝑎)d𝑾𝑎

∏
𝑘

(∏
𝑎≤𝑏

𝑒
tr

[
�̂�
𝑎𝑏>
𝑘 𝑾𝑎

𝚺𝑘𝑾
𝑏>

] ∏
𝑎

𝑒
√
𝑑�̂�𝑎>

𝑘
𝑾𝑎𝝁𝑘

)
− 𝛼 ln

∑︁
𝑘

𝜌𝑘

𝑠∏
𝑎=1

∫
d𝜼𝑎𝑃𝑦 (𝒆𝑘 |𝜼𝑎)N

(
𝜼
��𝒎𝑎

𝑘
+ 𝒃,𝑸𝑎𝑏

𝑘

)
. (130)

29



At this point, the free energy 𝑓𝛽 should be computed extremisizing with respect to all the order parameters
by virtue of the Laplace approximation (in addition to 𝒃),

𝑓𝛽 = lim
𝑠→0

Extr
{𝒎,𝑸,�̂�,�̂� },𝒃

Φ(𝑠) (𝑸,𝒎, �̂�, �̂�, 𝒃)
𝑠

. (131)

However, the convexity of the problem allows us to make an important simplication.

Replica symmetric ansatz — Before taking the 𝑠 → 0 limit we make the assumptions

𝑸𝑎𝑎
𝑘

=

{
𝑹𝑘 , 𝑎 = 𝑏

𝑸𝑘 𝑎 ≠ 𝑏

𝒎𝑎
𝑘
= 𝒎𝑘

�̂�
𝑎𝑎

𝑘 =

{
− 1

2𝑹𝑘 , 𝑎 = 𝑏

�̂�𝑘 𝑎 ≠ 𝑏

�̂�𝑎
𝑘
= �̂�𝑘 ∀𝑎

(132)

This ansatz is justied by the fact that we are assuming ℓ and 𝑟 to be convex, and 𝜆 > 0. In this case, the
problem admit one solution only that, therefore, coincide with the replica symmetric solution, in which
overlaps between two replicas do not depend on the chosen replicas. By means of the replica symmetric
hypotesis, we can write

𝑸𝑎𝑏
𝑘

↦→ Q𝑘 ≡ 𝑰 𝑠,𝑠 ⊗ (𝑹𝑘 − 𝑸𝑘 ) + 1𝑠 ⊗ 𝑸𝑘 . (133)

The inverse matrix is therefore

Q−1
𝑘

= 1𝑠 ⊗ (𝑹𝑘 − 𝑸𝑘 )−1 − 𝑰 𝑠,𝑠 ⊗ [(𝑹𝑘 + (𝑠 − 1)𝑸𝑘 )−1𝑸𝑘 (𝑹𝑘 − 𝑸𝑘 )−1], (134)

whereas

detQ𝑘 = det
(
𝑹𝑘 − 𝑸𝑘

)𝑠−1 det(𝑹𝑘 + (𝑠 − 1)𝑸𝑘
)

= 1 + 𝑠 ln det
(
𝑹𝑘 − 𝑸𝑘

)
+ 𝑠 tr

[
(𝑹𝑘 − 𝑸𝑘 )−1𝑸𝑘

]
+ 𝑜 (𝑠).

(135)

If we denote 𝑽𝑘 ≡ 𝑹𝑘 − 𝑸𝑘

ln
∑︁
𝑘

𝜌𝑘

𝑠∏
𝑎=1

∫
d𝜼𝑎𝑃𝑦 (𝒆𝑘 |𝜼𝑎)N

(
𝜼
��𝒎𝑎

𝑘
+ 𝒃,𝑸𝑎𝑏

𝑘

)
= 𝑠

∑︁
𝑘

𝜌𝑘E𝝃 ln
(∫ d𝜼𝑃𝑦 (𝒆𝑘 |𝜼)√︁

det(2𝜋𝑽𝑘 )
𝑒−

1
2 (𝜼−𝒎𝑘−𝒃−𝑸1/2

𝑘
𝝃 )>𝑽−1

𝑘
(𝜼−𝒃−𝒎𝑘−𝑸1/2

𝑘
𝝃 )

)
+ 𝑜 (𝑠)

= 𝑠
∑︁
𝑘

𝜌𝑘E𝝃

[
ln𝑍

(
𝒆𝑘 ,𝒎𝑘 + 𝒃 + 𝑸1/2

𝑘
𝝃 , 𝑽𝑘

)]
+ 𝑜 (𝑠), (136)

with 𝝃 ∼ N(0, 𝑰 𝐿) is a normally distributed vector and we have introduced the function

𝑍 (𝒆𝑘 ,𝒎, 𝑽 ) ≡
∫ d𝜼𝑃𝑦 (𝒆𝑘 |𝜼)√︁

det(2𝜋𝑽 )
𝑒−

1
2 (𝜼−𝒎)>𝑽−1 (𝜼−𝒎) (137)

On the other hand, denoting by �̂�𝑘 = �̂�𝑘 + �̂�𝑘 ,
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1
𝑑
ln

𝑠∏
𝑎=1

(∫
𝑃𝑤 (𝑾𝑎)d𝑾𝑎

∏
𝑘

𝑒
− 1

2 tr
[
�̂�

>
𝑘𝑾

𝑎
𝚺𝑘 (𝑾𝑎)>

]
+
√
𝑑�̂�>

𝑘
𝑾𝑎𝝁𝑘

∏
𝑏,𝑘

𝑒
1
2 tr[�̂�𝑘𝑾𝑎

𝚺𝑘 (𝑾𝑏 )>]
)
=

=
𝑠

𝑑
E𝚵ln


∫
𝑃𝑤 (𝑾 )d𝑾

∏
𝑘

exp
©«−

tr
[
�̂�
>
𝑘𝑾𝚺𝑘𝑾

>
]

2 +
√
𝑑�̂�>

𝑘
𝑾𝝁𝑘+Ξ𝑘�

√︃
�̂�𝑘⊗𝚺𝑘�𝑾

ª®®¬


+ 𝑜 (𝑠). (138)

In the expression above we have used the tensorial product �̂� ⊗ 𝚺 = (�̂�𝑘𝑘′Σ𝑖 𝑗 )𝑘𝑖,𝑘′ 𝑗 ′ . Given a matrix
𝑩 ∈ R𝐿×𝑑 and the tensors A,A′ ∈ R𝐿×𝑑 ⊗ R𝐿×𝑑 , we denote (𝑩 � A)𝑘𝑖 ≡

∑
𝑘′𝑖′ 𝐵𝑘′𝑖′𝐴𝑘′𝑖′ 𝑘𝑖 ∈ R𝐿×𝑑 , (A �

𝑩)𝑘𝑖 ≡ ∑
𝑘′𝑖′ 𝐴𝑘𝑖 𝑘′𝑖′𝐵𝑘′𝑖′ ∈ R𝐿×𝑑 and (A � A′)𝑘𝑖 𝑘′𝑖′ =

∑
𝜅 𝑗 𝐴𝑘𝑖 𝜅 𝑗𝐴𝜅 𝑗 𝑘′𝑖′ . In this way, we dene

√
A as

the tensor such that A =
√
A �

√
A. Finally, we have also introduced a set of 𝑘 matrices 𝚵𝑘 ∈ R𝐿×𝑑 with

i.i.d. random Gaussian entries with zero mean and variance 1, and the average over them E𝚵 [•]. Therefore,
the (replicated) replica symmetric free-energy is given by

lim
𝑠→0

𝛽

𝑠
Φ(𝑠)
RS =

𝐾∑︁
𝑘=1

�̂�>
𝑘
𝒎𝑘 +

1
2

𝐾∑︁
𝑘=1

tr
[
�̂�
>
𝑘 𝑸𝑘

]
− 1
2

𝐾∑︁
𝑘=1

tr
[
�̂�

>
𝑘 𝑽𝑘

]
− 1
2

𝐾∑︁
𝑘=1

tr
[
�̂�
>
𝑘 𝑽𝑘

]
− 𝛼𝛽Ψout (𝒎,𝑸, 𝑽 ) − 𝛽Ψ𝑤 (�̂�, �̂�, �̂� )

(139)

where we have dened two contributions

Ψout (𝒎,𝑸, 𝑽 ) ≡ 𝛽−1
∑︁
𝑘

𝜌𝑘E𝝃𝑘 ln𝑍 (𝒆𝑘 ,𝝎𝑘 , 𝑽𝑘 ) (140)

Ψ𝑤 (�̂�, �̂�, �̂� ) ≡
1
𝛽𝑑
E𝝃 ln

(∫
𝑃𝑤 (𝑾 )d𝑾

∏
𝑘

𝑒−
tr[�̂�>

𝑘𝑾𝚺𝑘𝑾
>]

2 +
√
𝑑�̂�>

𝑘
𝑾𝝁𝑘+𝚵𝑘 :

√
�̂�𝑘 ⊗𝚺𝑘 �𝑾

)
(141)

and introduced, for future convenience,

𝝎𝑘 ≡ 𝒎𝑘 + 𝒃 + 𝑸1/2
𝑘

𝝃𝑘 . (142)

Note that we have separated the contribution coming from the chosen loss (the so-called channel part Ψout)
from the contribution depending on the regularisation (the prior part Ψ𝑤). To write down the saddle-point
equations in the 𝛽 → +∞ limit, let us rst rescale our order parameters as �̂�𝑘 ↦→ 𝛽�̂�𝑘 , �̂�𝑘 ↦→ 𝛽2�̂�𝑘 ,
�̂�𝑘 ↦→ 𝛽�̂�𝑘 and 𝑽𝑘 ↦→ 𝛽−1𝑽𝑘 . For 𝛽 → +∞ the channel part is

Ψout (𝒎,𝑸, 𝑽 ) = −
∑︁
𝑘

𝜌𝑘E𝝃

[
M
ℓ (𝒆𝑘 ,𝑽 1/2

𝑘
•)

(
𝑽−1/2
𝑘

𝝎𝑘
)]
. (143)

Here and in the following the quantity

M𝑓 (•) (𝒖) ≡ min
𝒗∈domain(𝒗)

[
1
2 ‖𝒗 − 𝒖‖2F + 𝑓 (𝒗)

]
(144)

is the Moreau envelope of 𝑓 : domain(𝒗) → R, whereas ‖ • ‖F is the Frobenius norm. We can write the
contribution Ψout in terms of a proximal

𝒉𝑘=𝑽
1/2
𝑘

Proxℓ (𝒆𝑘 ,𝑽 1/2•) (𝑽
−1/2
𝑘

𝝎𝑘 )≡𝑽 1/2
𝑘

argmin
𝒖∈R𝐿

[
1
2 ‖𝒖−𝑽

−1/2
𝑘

𝝎𝑘 ‖2F+ℓ (𝒆𝑘 ,𝑽 1/2𝒖)
]
. (145)
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as
Ψout (𝒎,𝑸, 𝑽 ) = −

∑︁
𝑘

𝜌𝑘E𝝃

[
1
2 ‖𝑽

−1/2𝒉𝑘 − 𝑽−1/2𝝎𝑘 ‖2F + ℓ (𝒆𝑘 ,𝒉𝑘 )
]

(146)

A similar expression can be obtained for Ψ𝑤 . Dening

A =

(∑︁
𝑘

�̂�𝑘 ⊗ 𝚺𝑘

)−1
, 𝑩 =

√
𝑑
∑︁
𝑘

𝝁𝑘�̂�
>
𝑘
+

∑︁
𝑘

𝚵𝑘 �
√︃
�̂�𝑘 ⊗ 𝚺𝑘 . (147)

Ψ𝑤 can be written as

Ψ𝑤 (�̂�, �̂�, �̂� ) =
1
2𝑑 E𝝃 [𝑩 � A � 𝑩]

+ 1
𝛽𝑑
E𝝃 ln

[∫
d𝑾 exp

(
−𝛽2 ‖A

−1/2 �𝑾 − A1/2 � 𝑩‖2F − 𝛽𝑟 (𝑾 )
)]
. (148)

It follows that, for 𝛽 → +∞,

Ψ𝑤 (�̂�, �̂�, �̂� ) =
1
2𝑑 E𝝃 [𝑩 � A � 𝑩] − 1

𝑑
E𝝃

[
M𝑟 (A1/2�•) (A

1/2 � 𝑩)
]
. (149)

As before, let us introduce the proximal

𝑮 = A1/2 � Prox𝑟 (A1/2�•) (A
1/2 � 𝑩) ∈ R𝐿×𝑑 (150)

We can rewrite the prior contribution Ψ𝑤 as

Ψ𝑤 (�̂�, �̂�, �̂� ) =
1
2𝑑 E𝚵 [𝑩 � A � 𝑩] − 1

𝑑
E𝚵

[
‖A−1/2 � 𝑮 − A1/2 � 𝑩‖2F

2 + 𝑟 (𝑮)
]
. (151)

The parallelism between the two contributions is evident, aside from the dierent dimensionality of the
involved objects. The replica symmetric free energy in the 𝛽 → +∞ limit is computed extremising with
respect to the introduced order parameters,

𝑓RS = Extr
𝒎,𝑸,𝑽 ,𝒃
�̂�,�̂�,�̂�

[
𝐾∑︁
𝑘=1

�̂�>
𝑘
𝒎𝑘 +

1
2

𝐾∑︁
𝑘=1

tr
[
�̂�
>
𝑘 𝑸𝑘

]
− 1
2

𝐾∑︁
𝑘=1

tr
[
�̂�

>
𝑘 𝑽𝑘

]
−1
2

𝐾∑︁
𝑘=1

tr
[
�̂�
>
𝑘 𝑽𝑘

]
− 𝛼Ψout (𝒎,𝑸, 𝑽 ) − Ψ𝑤 (�̂�, �̂�, �̂� )

]
. (152)

To do so, we have to write down a set of saddle-point equations and solve them.

Saddle-point equations — The saddle-point equations are derived straightforwardly from the obtained
free energy extremising with respect to all parameters. A rst set of equations is obtained from Ψout as1

�̂�𝑘 = 𝛼𝜌𝑘E𝝃
[
𝒇𝑘𝒇

>
𝑘

]
, (153a)

1To obtain the equation for �̂� it is convenient to use Stein’s lemma, so that E[𝜕𝜉𝒇 𝑘 ] = E[𝒇 𝑘𝝃> ].
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�̂�𝑘 = −𝛼𝜌𝑘𝑸−1/2
𝑘
E𝝃

[
𝒇𝑘𝝃

>]
, (153b)

�̂�𝑘 = 𝛼𝜌𝑘E𝝃
[
𝒇𝑘

]
, (153c)

𝒃 =
∑︁
𝑘

𝜌𝑘E𝝃 [𝒉𝑘 −𝒎𝑘 ] ⇐⇒
∑︁
𝑘

𝜌𝑘E𝝃
[
𝑽𝑘𝒇𝑘

]
= 0. (153d)

where for brevity we have denoted
𝒇𝑘 ≡ 𝑽−1

𝑘
(𝒉𝑘 − 𝝎𝑘 ). (154)

Similarly, the saddle-point equations from Ψout are

𝑽𝑘 =
1
𝑑
E𝚵

[(
𝑮 �

(
�̂�𝑘 ⊗ 𝚺𝑘

)−1/2
� (𝑰𝑘 ⊗ 𝚺𝑘 )

)
𝚵
>
𝑘

]
(155a)

𝑸𝑘 =
1
𝑑
E𝝃

[
𝑮𝚺𝑘𝑮

>]
(155b)

𝒎𝑘 =
1
√
𝑑
E𝝃

[
𝑮𝝁𝑘

]
(155c)

To obtain the replica symmetric free energy, therefore, the given set of equation has to be solved, and the
result then plugged in Eq. (152). No further simplication can be obtained in the most general setting. We
will explore however some simple (but important) applications in Appendix C. Before going on, however,
it is important to express the relevant quantities for learning, i.e., the training and generalization errors, in
terms of the obtained order parameters.

B.4 Training and test errors
The order parameters introduced to solve the problem allow us to reach our ultimate goal of computing
the average errors of the learning process. We will start from the estimation of the training loss. The
complication in computing this quantity is that the order parameters found in the learning process are, of
course, correlated with the dataset used for the learning itself. We need to compute

𝜖ℓ ≡
1
𝑛

𝑛∑︁
𝜈=1

ℓ

(
𝒚𝜈 ,

𝑾★𝒙𝜈
√
𝑑

+ 𝒃★
)

(156)

in the 𝑛 → +∞ limit. Denoting for brevity ℓ𝑘 (𝒙) ≡ ℓ (𝒆𝑘 , 𝒙), the best way to proceed is to observe that
E{(𝒚𝜈 ,𝒙𝜈 ) }𝜈 [R(𝑾★, 𝒃★)] = − lim𝛽→+∞ E{(𝒚𝜈 ,𝒙𝜈 ) }𝜈 [𝜕𝛽 lnZ𝛽 ] = 𝜆E{(𝒚𝜈 ,𝒙𝜈 ) }𝜈 [𝑟 (𝑾★)] + 𝜖ℓ , where

𝜖ℓ = − lim
𝛽→+∞

𝜕𝛽 (𝛽Ψout) = lim
𝛽→+∞

∑︁
𝑘

𝜌𝑘

∫
ℓ𝑘 (𝜼)

𝑒−
𝛽

2 (𝜼−𝒎
★)>𝑽★−1 (𝜼−𝒎★)−𝛽ℓ𝑘 (𝜼)√︃

det
(
2𝜋𝛽−1𝑽★

)
𝑍 (𝒆𝑘 ,𝝎★

𝑘
, 𝛽−1𝑽★

𝑘
)
d𝜼. (157)

In the 𝛽 → +∞ limit, the integral concentrates on the minimizer of the exponent, that is, by denition, the
proximal 𝒉𝑘 . In conclusion, 𝜖ℓ =

∑
𝑘 𝜌𝑘E[ℓ (𝒉𝑘 )].

By means of the same concentration result, the training error is

𝜖𝑡 =
1
𝑛

𝑛∑︁
𝜈=1
I

(
𝝋

(
𝑾★𝒙𝜈
√
𝑑

+ 𝒃★
)
≠ 𝒚𝜈

)
𝑛→+∞−−−−−→

𝐾∑︁
𝑘=1

𝜌𝑘E𝝃 [I(𝝋 (𝒉𝑘 ) ≠ 𝒆𝑘 )] . (158)

The expressions above hold in general, but, as anticipated, important simplications can occur in the set
of saddle-point equations (153) and (155) depending on the choice of the loss ℓ and of the regularization
function 𝑟 .
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The generalisation (or test) error can be written instead as

𝜖𝑔 = E𝒚new,𝒙new

[
I

(
𝝋

(
𝑾★𝒙new

√
𝑑

+ 𝒃★
)
≠ 𝒚new

)]
. (159)

This expression can be rewritten as

𝜖𝑔 =
∑︁
𝑘

𝜌𝑘

∫
I(𝝋 (𝜼) = 𝒆𝑘 )E𝒙new

[
𝛿

(
𝜼 − 𝑾★𝒙new

√
𝑑

− 𝒃★
)]

d𝜼 (160)

Once again, we write

E𝒙new

[
𝛿

(
𝜼 − 𝑾★𝒙new

√
𝑑

− 𝒃★
)]

𝑑→+∞−−−−−→ N(𝜼 |𝒎★
𝑘
+ 𝒃★,𝑸★

𝑘
) (161)

so that

𝜖𝑔 =
𝐾∑︁
𝑘=1

𝜌𝑘E𝝃

[
I
(
𝝋

(
𝒎★
𝑘
+ 𝑸★

𝑘

1/2
𝝃 + 𝒃★

)
≠ 𝒆𝑘

)]
. (162)

This can be easily computed numerically once that the order parameters are given.

B.5 A note on the numerical integration of the saddle-point equations
To estimate 𝜖𝑔, 𝜖𝑡 and 𝜖ℓ we rst need to nd the xed-point solutions of the saddle-point equations (153)
and (155). The simplest numerical strategy consists in updating, in a self-consistent way, the order param-
eters until their variation according to, e.g., the Frobenius norm is smaller than a given threshold value.
The convergence to the the correct xed point is guaranteed (in principle) by the convexity of the problem.
This is the strategy that we followed to solve the problem. However, a few delicate aspects have to be taken
into account in this update process.

1. In the most general case, the update rules given by the saddle-point equations (153) and (155) re-
quire an average over random matrices 𝚵𝑘 and vectors 𝝃𝑘 with i.i.d. Gaussian entries. In our code,
we tackled this problem using a Monte Carlo algorithm whenever an analytic integration was not
possible.

2. The update requires the computation of the proximals 𝑮 and 𝒉𝑘 . Such computations can be per-
formed analytically in some specic cases only (for example, in the case of ridge regression). The ex-
istence of a unique solution is guaranteed by the convexity of the problem. In our study of the cross-
entropy loss function, for example, we computed the proximals 𝒉𝑘 numerically solving Eq. (178).
In this problem, however, additional numerical instabilities emerged in the 𝜆 → 0 limit, due the
fact that the discontinuity in the gradient appear, see Eq. (182). We solved this issue performing an
annealing in 𝜆, i.e., solving for the proximal for decreasing values of the regularization strength.

3. The numerical solution of the saddle-point equations might suer numerical instabilities due to the
operations of inversion involved, see, e.g., the equation for �̂�𝑘 in (153), which requires the inversion
of 𝑸𝑘 . It is convenient, in such cases, to rewrite the equation in an equivalent form which is numeri-
cally more stable. For example, in the aforementioned equation, we can observe that 𝒇𝑘 satises the
equation 𝒇𝑘 + 𝜕𝒙ℓ𝑘 (𝑽𝑘𝒇𝑘 + 𝝎𝑘 ) = 0 so that 𝜕𝝎𝑘𝒇𝑘 = −(𝑰𝐾 + 𝜕2𝒙ℓ𝑘 (𝑽𝑘𝒇𝑘 + 𝝎𝑘 )𝑽𝑘 )−1𝜕2𝒙ℓ𝑘 (𝑽𝑘𝒇𝑘 + 𝝎𝑘 ).
Using Stein’s lemma,

�̂�𝑘 = −𝛼𝜌𝑘E𝝃
[
𝜕𝝃𝒇𝑘

]
= 𝛼𝜌𝑘E𝝃

[ (
𝑰𝐾 + 𝜕2𝒙ℓ𝑘 (𝑽𝑘𝒇𝑘 + 𝝎𝑘 )𝑽𝑘

)−1
𝜕2𝒙ℓ𝑘 (𝑽𝑘𝒇𝑘 + 𝝎𝑘 )

]
. (163)
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We found this equation numerically more stable than the one given in (153) when dealing with the
cross-entropy loss.

C Some relevant particular cases
In this Appendix, we will specify the saddle-point equations for the multiclass classication problem for
dierent choices of the loss function ℓ and of the regularisation function 𝑟 . From the analysis developed
in the previous Appendices, it is clear that the choices of ℓ and 𝑟 impact separately the set of equations
(153) and (155) respectively. Once the order parameters are found, it is possible to estimate the training
and generalisation errors as, for example, in Section B.4.

C.1 The case of ℓ2 regularization
In this Section we consider the relevant case of quadratic regularization, 𝑟 (𝑾 ) = 1/2‖𝑾 ‖2F. In this case the
computation of Ψ𝑤 can be performed explicitly via a Gaussian integration,

1
𝛽
Ψ𝑤 (�̂�, �̂�, �̂� ) = − 1

2𝑑 tr ln
(
𝜆𝑰𝐾 ⊗ 𝑰𝑑 +

∑︁
𝜅

�̂�𝜅 ⊗ 𝚺𝜅

)
− 𝐾 ln 𝛽

2𝛽

+ 1
2 tr

[(
𝜆𝑰𝐾 ⊗ 𝑰𝑑 +

∑︁
𝜅

�̂�𝜅 ⊗ 𝚺𝜅

)−1
�

(∑︁
𝑘𝑘′

�̂�𝑘�̂�
>
𝑘′ ⊗ 𝝁𝑘𝝁

>
𝑘′ +

1
𝑑

∑︁
𝑘

�̂�𝑘 ⊗ 𝚺𝑘

)]
. (164)

This form of Ψ𝑤 allows us to write in a simpler way the set of Eqs. (155), that can be re-written as

𝑸𝑘 = tr𝑑

[
(𝑰𝐾 ⊗ 𝚺𝑘 ) � S �

(∑︁
𝑘𝑘′

�̂�𝑘�̂�
>
𝑘′ ⊗ 𝝁𝑘𝝁

>
𝜅′ +

1
𝑑

∑︁
𝜅

�̂�𝜅 ⊗ 𝚺𝜅

)
� S

]
𝒎𝑘 =

∑︁
𝑘′

tr𝑑
[
S �

(
�̂�𝑘′ ⊗ 𝝁𝑘′𝝁

>
𝑘

) ]
𝑽𝑘 =

1
𝑑
tr𝑑 [(𝑰𝐾 ⊗ 𝚺𝑘 ) � S] ,

(165)

where we have introduced, for notation compactness,

S ≡
(
𝜆𝑰𝐾 ⊗ 𝑰𝑑 +

∑︁
𝜅

�̂�𝜅 ⊗ 𝚺𝜅

)−1
(166)

In the previous equations, by tr𝑑 we denoted the trace with respect to the components living in the 𝑑-
dimensional space of the dataset.
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Jointly diagonal covariances — Suppose now that 𝚺𝑘 =
∑
𝑖 𝜎

𝑘
𝑖 𝒗𝑖𝒗

>
𝑖 for all 𝑘 , i.e., the covariance matri-

ces share the same basis of eigenvectors {𝒗𝑖 }𝑖 . Then, denoting 𝜇𝑘𝑖 ≡
√
𝑑𝝁>

𝑘
𝒗𝑖

𝑸𝑘 =
1
𝑑

𝑑∑︁
𝑖=1

𝜎𝑘𝑖

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅𝑖 �̂�𝜅

)−1 (∑︁
𝑘𝑘′

𝜇𝑘𝑖 𝜇
𝑘′
𝑖 �̂�𝑘�̂�

>
𝑘′ +

∑︁
𝜅

𝜎𝜅𝑖 �̂�𝜅

) (
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅𝑖 �̂�𝜅

)−1
𝒎𝑘 =

1
𝑑

𝑑∑︁
𝑖=1

∑︁
𝑘′
𝜇𝑘𝑖 𝜇

𝑘′
𝑖

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅𝑖 �̂�𝜅

)−1
�̂�𝑘′

𝑽𝑘 =
1
𝑑

𝑑∑︁
𝑖=1

𝜎𝑘𝑖

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅𝑖 �̂�𝜅

)−1
.

(167)

Introducing the joint density

1
𝑑

𝑑∑︁
𝑖=1

𝐾∏
𝜅=1

𝛿 (𝜎𝜅 − 𝜎𝜅𝑖 )𝛿 (𝜇𝜅 − 𝜇𝜅𝑖 )
𝑑→+∞−−−−−→ 𝜌 (𝝈 , 𝝁), (168)

then we can write the saddle-point equations given in Corollary 3

𝑸𝑘 = E𝝈 ,𝝁

[
𝜎𝑘

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅 �̂�𝜅

)−1 (∑︁
𝑘𝑘′

𝜇𝑘𝜇𝑘
′
�̂�𝑘�̂�

>
𝑘′ +

∑︁
𝜅

𝜎𝜅 �̂�𝜅

) (
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅 �̂�𝜅

)−1]
𝒎𝑘 = E𝝈 ,𝝁

[
𝜇𝑘

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅 �̂�𝜅

)−1 ∑︁
𝜅

𝜇𝜅�̂�𝜅

]
𝑽𝑘 = E𝝈 ,𝝁

[
𝜎𝑘

(
𝜆𝑰𝐾 +

∑︁
𝜅

𝜎𝜅 �̂�𝜅

)−1]
.

(169)

where the expectations E𝝈 ,𝝁 are taken with respect to the joint distribution 𝜌 .

C.1.1 Uniform covariances

Let us consider the simpler case 𝚺𝑘 ≡ Δ𝑰𝑑 , with Δ > 0. In this case, the saddle-point equations can
take a more compact form that is particularly suitable for a numerical solution. Moreover, for reasons of
symmetry we can write

𝑸𝑘 ≡ 𝑸, 𝑽𝑘 ≡ 𝑽 , �̂�𝑘 ≡ 1
𝐾Δ

�̂�𝑘 , �̂�𝑘 ≡ 1
𝐾Δ

�̂� , ∀𝑘. (170)

Let us dene the following 𝐾 × 𝐾 matrices

• 𝑴 ∈ R𝐾×𝐾 (resp. �̂� ∈ R𝐾×𝐾 ) is the matrix obtained concatenenating the vectors 𝒎𝑘 (resp. �̂�𝑘 );

• 𝚯 =

(
𝝁>
𝑘
𝝁𝑘′

)
𝑘𝑘′

is the Gram matrix of the means;

• 𝑭 ∈ R𝐾×𝐾 is the matrix obtained concatenenating the vectors 𝒇𝑘 ;

• 𝑯 ∈ R𝐾×𝐾 is the matrix obtained concatenenating the vectors 𝒉𝑘 ;

• 𝚷 = diag(𝜌𝑘 ) ∈ R𝐾×𝐾 is a diagonal matrix with elements Π𝑘𝑘′ = 𝛿𝑘𝑘′𝜌𝑘 .
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The saddle-point equations then can be rewritten as

𝑸=Δ
(
𝜆𝑰𝐾+�̂�

)−1 (
�̂�+�̂�𝚯�̂�

>) (
𝜆𝑰𝐾+�̂�

)−1
𝑴=

(
𝜆𝑰𝐾+�̂�

)−1
�̂�𝚯

𝑽=Δ
(
𝜆𝑰𝐾+�̂�

)−1
,

�̂�=𝛼ΔE𝚵
[
𝑭𝚷𝑭>]

�̂�=−𝛼Δ𝑸−1/2E𝚵
[
𝑭𝚷𝚵

>]
�̂�=𝛼E𝚵 [𝑭𝚷]
𝒃=E𝚵 [(𝑯−𝑴)𝚷1𝐾 ] .

(171)

Here and in the following 1𝐾 is the vector of 𝐾 components all equal to 1. These expressions are partic-
ularly suitable for a numerical implementation, because involve matrix multiplications and inversions of
𝐾-dimensional objects only.

Quadratic loss — If we consider a quadratic loss ℓ (𝒚, 𝒙) = 1
2 (𝒚 − 𝒙)2, then an explicit formula for the

proximal can be found, namely
𝒇𝑘 = (𝑰𝐾 + 𝑽 )−1 (𝒆𝐾 − 𝝎𝑘 ) (172)

so that the second set of saddle-point equations (171) can be written as

�̂� = 𝛼 (𝑰𝐾 + 𝑽 )−1
[
(𝑰𝐾 −𝑴 − 𝒃 ⊗ 1𝐾 )𝚷(𝑰𝐾 −𝑴 − 𝒃 ⊗ 1𝐾 )> + 𝑸

]
(𝑰𝐾 + 𝑽 )−1

�̂� = 𝛼 (𝑰𝐾 + 𝑽 )−1 (𝑰𝐾 −𝑴 − 𝒃 ⊗ 1𝐾 )𝚷
�̂� = 𝛼Δ(𝑰𝐾 + 𝑽 )−1.

(173)

Observe at this point that we can explicitly solve for 𝑽 using the equation for it in Eqs (171). In particular,
𝑽 satises the equation 𝜆𝑽 2 + (𝛼 + 𝜆 − Δ)𝑽 = Δ𝑰𝐾 . Being 𝑽 positive denite, it follows that it is diagonal,
𝑽 = 𝑉 𝑰𝐾 with diagonal element

𝑉 =
Δ(1 − 𝛼) − 𝜆 +

√︁
(Δ − 𝛼Δ − 𝜆)2 + 4Δ𝜆
2𝜆 , 𝑉 =

𝛼Δ

1 +𝑉 , (174)

so that

𝑸=
Δ

(𝜆+Δ𝑉 )2
(
�̂�+�̂�𝚯�̂�

>)
𝑴=

�̂�𝚯

𝜆+Δ𝑉
,

𝒃=(𝑰𝐾−𝑴)𝚷1𝐾 ,

�̂�=
𝛼 [(𝑰𝐾−𝑴−𝒃⊗1𝐾 )𝚷(𝑰𝐾−𝑴−𝒃⊗1𝐾 )>+𝑸]

(1+𝑉 )2

�̂�=−𝛼 (𝑰𝐾−𝑴−𝒃⊗1𝐾 )𝚷
1+𝑉 .

(175)

In the 𝜆 → 0 limit, for 𝛼 < 1 it is convenient to rescale �̂� ↦→ 𝜆2�̂� and �̂� ↦→ 𝜆�̂� , so that

𝑸=Δ(1−𝛼)2
(
�̂�+�̂�𝚯�̂�

>)
,

𝑴=(1−𝛼)�̂�𝚯,

𝒃=(𝑰𝐾−𝑴)𝚷1𝐾 ,

�̂�=
𝛼 [(𝑰𝐾−𝑴−𝒃⊗1𝐾 )𝚷(𝑰𝐾−𝑴−𝒃⊗1𝐾 )>+𝑸]

Δ2 (1−𝛼)2 ,

�̂�=−𝛼 (𝑰𝐾−𝑴−𝒃⊗1𝐾 )𝚷
Δ(1−𝛼) .

(176)
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Cross-entropy loss — We consider now the relevant case of the cross entropy loss

ℓ (𝒚, 𝒙) = −
𝐾∑︁
𝑘=1

𝑦𝑘 ln
𝑒𝑥𝑘∑𝐾
𝜅=1 𝑒

𝑥𝜅
. (177)

If𝒚 ∈ {𝒆𝑘 }𝑘∈[𝐾 ] , the loss can be written in the form ℓ (𝒚, 𝒙) = −𝒚>𝒙 + ln∑
𝜅 𝑒

𝑥𝜅 . If we introduce the softmax
function soft : R𝐾 → R𝐾

𝜕𝒙ℓ (𝒚, 𝒙) = −𝒚 + soft(𝒙), so𝑘 (𝒙) ≡
exp (𝑥𝑘 )∑
𝜅 exp (𝑥𝜅)

(178)

the proximal equation for the cross-entropy loss is the solution of the equations:

𝑽−1 (𝒉𝑘 − 𝝎𝑘 ) − 𝒆𝑘 + soft(𝒉𝑘 ) = 0 ⇐⇒ 𝒇𝑘 = 𝒆𝑘 − soft(𝑽𝒇𝑘 + 𝝎𝑘 ) ∀𝑘 ∈ [𝐾], (179)

having only one solution for which, however, there is no closed-form expression. The equation can be
solved numerically, and in this way we obtained the results in Section 3.2.

The saddle-point equations can be written rescaling 𝑸 ↦→ 𝜆−2𝑸 , 𝑽 ↦→ 𝜆−1𝑽 , 𝑴 ↦→ 𝜆−1𝑴 , 𝒃 ↦→ 𝜆−1𝒃 ,
�̂� ↦→ 𝜆�̂� . They become

𝑸 = Δ
(
𝑰𝐾 + �̂�

)−1 (
�̂� + �̂�𝚯�̂�

>) (
𝑰𝐾 + �̂�

)−1
,

𝑴 =

(
𝑰𝐾 + �̂�

)−1
�̂�𝚯

𝑽 = Δ
(
𝑰𝐾 + �̂�

)−1
,

�̂� = 𝛼ΔE𝚵
[
𝑭𝚷𝑭>]

,

�̂� = −𝛼Δ𝑸−1/2E𝚵
[
𝑭𝚷𝚵

>]
,

�̂� = 𝛼E𝚵 [𝑭𝚷] ,
𝒃 = E𝚵 [(𝑯 −𝑴)𝚷] ,

(180)

so that the dependence on 𝜆 disappears everywhere except in the equation for the proximal 𝒇𝑘

𝒇𝑘 = argmin
𝒙

[
1
2𝒙

>𝑽𝒙 + 𝜆ℓ
(
𝒆𝑘 ,

𝑽𝒙 + 𝝎𝑘
𝜆

)]
, (181)

which, in the 𝜆 → 0 limit, becomes

𝒇𝑘 = argmin
𝒙

[
1
2𝒙

>𝑽𝒙 +min
𝜇

{(𝒆𝜇 − 𝒆𝑘 )> (𝑽𝒙 + 𝝎𝑘 )}
]
. (182)

Note that in this limit, minimising the cross-entropy loss yields precisely the max-margin estimator [68].

C.2 The 𝑲 = 2 case with scalar labels
The formulas for the 𝐾 = 2 case can be derived directly from the general analysis given above imposing
𝐿 = 1. In particular, let us assume that the two clusters are labeled with 𝑒1 = +1 and 𝑒2 = −1. Using as
classier

𝜑 (𝑥) = sign(𝑥) (183)
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the expression of the average errors is

𝜖𝑔 =
∑︁
𝑘∈[2]

𝜌𝑘E𝜉

[
𝜃

(
(−1)𝑘𝜔★

𝑘

)]
=

∑︁
𝑘∈[2]

𝜌𝑘

2 erfc
©«(−1)𝑘−1

𝑚★
𝑘
+ 𝑏★√︃
2𝑞★
𝑘

ª®®¬ ,
𝜖𝑡 =

∑︁
𝑘∈[2]

𝜌𝑘E𝜉

[
𝜃

(
(−1)𝑘ℎ★

𝑘

)]
,

𝜖ℓ =
∑︁
𝑘∈[2]

𝜌𝑘E[ℓ ((−1)𝑘−1, ℎ★𝑘 )] .

(184)

We will further explore this case, considering some special cases in the following.

C.2.1 Example: ℓ1 regularization

In this Section we derive the saddle-point equations for the the case in which the two cluster have opposite
means 𝝁1 = −𝝁2 ≡ 𝝁, and the same diagonal covariance matrix, 𝚺1 = 𝚺2 ≡ 𝚺, with Σ𝑖 𝑗 = 𝜎𝑖𝛿𝑖 𝑗 and 𝜎𝑖 > 0.
In this case, for symmetry reasons, the overlaps simplify and we have:

𝑉1 = 𝑉2 ≡ 𝑉 , 𝑞1 = 𝑞2 ≡ 𝑞, 𝑚+ = −𝑚− ≡𝑚, (185)

𝑉+ = 𝑉− ≡ 1
2𝑉 , 𝑞+ = 𝑞− ≡ 1

2𝑞, �̂�+ = −�̂�− ≡ 1
2�̂�. (186)

We dene
1
𝑑

𝑑∑︁
𝑖=1

𝛿 (𝜎 − 𝜎𝑖 )𝛿 (𝜇 −
√
𝑑𝜇𝑖 )

𝑑→+∞−−−−−→ 𝑝 (𝜎, 𝜇) (187)

joint distribution of the covariance diagonal elements and of themean elements. Wewill denoteE𝜇,𝜎 [•] the
average with respect to this measure. We will focus in particular on the form of the saddle-point equations
obtained from the prior contribution assuming ℓ1 regularization, i.e., 𝑟 (𝒘) =

∑
𝑖 |𝑤𝑖 |, and let us introduce

the corresponding soft-thresholding operator :

Prox𝜆 | · | (𝑥) = sign(𝑥)max{|𝑥 | − 𝜆, 0}. (188)

Observe that Prox𝛼𝜆 | · | (𝛼𝑥) = 𝛼Prox𝜆 | · | (𝑥) for 𝛼 > 0. Its derivative given by Prox′
𝜆 | · | (𝑥) = 𝜃 ( |𝑥 | > 𝜆). The

saddle point equations from the prior part simply read:

𝑉 =
1
𝑉
E𝜇,𝜎,𝜉

[
Prox′𝜆

𝜎�̂�
| · |

(
�̂�𝜇 +

√︁
𝑞𝜎𝜉

𝑉𝜎

)]
, (189)

𝑞 = E𝜇,𝜎,𝜉

𝜎
(
Prox 𝜆

𝜎�̂�
| · |

(
�̂�𝜇 +

√︁
𝑞𝜎𝜉

𝑉𝜎

))2 , (190)

𝑚 = E𝜇,𝜎,𝜉

[
𝜇Prox 𝜆

𝜎�̂�
| · |

(
�̂�𝜇 +

√︁
𝑞𝜎𝜉

𝑉𝜎

)]
. (191)
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The averages over 𝜉 can be performed explicitely using the simple expression of the proximal in this case.
If we dene the auxiliary functions

𝜙0
± (𝑣,𝑢, 𝜆) ≡

1
2erfc

(
𝜆 ± 𝑣
√
2𝑢

)
𝜙1
± (𝑢, 𝑣, 𝜆) =

√︂
𝑢

2𝜋 𝑒
− (𝑣±𝜆)2

2𝑢 − 𝑣 ± 𝜆
2 erfc

(
𝜆 ± 𝑣
√
2𝑢

)
,

𝜙2
± (𝑣,𝑢, 𝜆) = −

√︂
𝑢

2𝜋 𝑒
− (𝜆±𝑣)2

2𝑢 (𝜆 ± 𝑣) + 𝑢 + (𝜆 ± 𝑣)2

2 erfc
(
𝜆 ± 𝑣
√
2𝑢

)
.

(192)

then

𝑉 =
1
𝑉
E𝜇,𝜎

[
𝜙0
+ (𝜇�̂�, 𝜎𝑞, 𝜆) + 𝜙0

− (𝜇�̂�, 𝜎𝑞, 𝜆)
]

𝑞 = E𝜇,𝜎

[
𝜙2
+ (𝜇�̂�, 𝜎𝑞, 𝜆) + 𝜙2

− (𝜇�̂�, 𝜎𝑞, 𝜆)
𝜎𝑉 2

]
,

𝑚 = E𝜇,𝜎

[
𝜇𝜙1

− (𝜇�̂�, 𝜎𝑞, 𝜆) − 𝜇𝜙1
+ (𝜇�̂�, 𝜎𝑞, 𝜆)

𝜎𝑉

]
.

(193)

Gaussian means, homogenous covariances — If 𝑝 (𝜇, 𝜎) = N(𝜇 |0, 1)𝛿 (𝜎 − Δ), i.e., the means have
i.i.d. Gaussian entries and 𝚺 = Δ𝑰𝑑 , then

𝑉 =
1
𝑉
E𝑧

[
erfc

(
𝜆 + �̂�𝑧√︁
2Δ𝑞

)]
,

𝑞 =
1

Δ𝑉 2

−
𝑒
− 1

2
𝜆2

�̂�2+Δ�̂�√︁
2𝜋 (�̂�2 + Δ𝑞)

2(Δ𝑞)2𝜆
�̂�2 + Δ𝑞

+ E𝑧

[
(𝜆 + �̂�𝑧)2 erfc

(
𝜆 + �̂�𝑧√︁
2Δ𝑞

)] ,
𝑚 =

1
Δ𝑉


𝑒
− 1

2
𝜆2

�̂�2+Δ�̂�√︁
2𝜋 (�̂�2 + Δ𝑞)

2Δ𝑞�̂�𝜆
�̂�2 + Δ𝑞

+ E𝑧∼N(0,1)

[
(𝜆 + �̂�𝑧) 𝑧 erfc

(
𝜆 + �̂�𝑧√︁
2Δ𝑞

)] ,
(194)

with 𝑧 ∼ N(0, 1).

Covariance correlated with sparse means — In Section 3.1 we considered the case of sparse means
correlated with the covariance matrices. In particular, we considered

𝑝 (𝜎, 𝜇) = 𝑝N(𝜇 |0, 1)𝛿 (𝜎 − Δ1) + (1 − 𝑝)𝛿 (𝜇)𝛿 (𝜎 − Δ0). (195)

The saddle-point equations are therefore

𝑉 =
1
𝑉

[
𝑝E𝜇

[
erfc

(
𝜆 + �̂�𝜇√︁
2Δ1𝑞

)]
+ (1 − 𝑝)erfc

(
𝜆√︁
2Δ0𝑞

)]
(196)

40



𝑞 =
𝑝

Δ1𝑉 2

−
𝑒
− 1

2
𝜆2

�̂�2+Δ1�̂�√︁
2𝜋 (�̂�2 + Δ1𝑞)

2(Δ1𝑞)2𝜆
�̂�2 + Δ1𝑞

+ E𝑧

[
(𝜆 + �̂�𝑧)2 erfc

(
𝜆 + �̂�𝑧√︁
2Δ1𝑞

)]
− 𝜆(1 − 𝑝)

√︂
Δ0𝑞

2𝜋 𝑒
− 𝜆2

2Δ0𝑞 + 1 − 𝑝
2 (Δ0𝑞 + 𝜆2)erfc

(
𝜆√︁
2Δ0𝑞

) (197)

𝑚 =
𝑝

Δ1𝑉


𝑒
− 1

2
𝜆2

�̂�2+Δ1�̂�√︁
2𝜋 (�̂�2 + Δ1𝑞)

2Δ1𝑞�̂�𝜆

�̂�2 + Δ1𝑞
+ E𝑧

[
(𝜆 + �̂�𝑧) 𝑧 erfc

(
𝜆 + �̂�𝑧√︁
2Δ1𝑞

)] . (198)

In Section 3.1 we compare the performance obtained adopting an ℓ1 regularization with the corresponding
one obtained using ℓ2, 𝑟 (𝒘) =

∑
𝑖 𝑤

2
𝑖 . For the sake of completeness, we give here the expression of the

saddle-point equations in that case as well. In this case, the prior term Ψ𝑤 can be written explicitly after a
Gaussian integration as

Ψ𝑤 (�̂�, �̂�,𝑉 ) = − 1
2𝑑 tr ln

(
𝜆𝑰𝑑 +𝑉𝚺

)
+ 1
2 tr

[(
𝜆𝑰𝑑 +𝑉𝚺

)−1 (
�̂�2
𝑘
𝝁𝝁> + 𝑞

𝑑
𝚺

)]
. (199)

In the setting given by Eq (195) the saddle point equations are then

𝑞 = 𝑝
�̂�2Δ1 + 𝑞Δ2

1

(𝜆 +𝑉Δ1)2
+
(1 − 𝑝)𝑞Δ2

0

(𝜆 +𝑉Δ0)2
(200a)

𝑉 = 𝑝
Δ1

𝜆 +𝑉Δ1
+ (1 − 𝑝)Δ0

𝜆 +𝑉Δ0
(200b)

𝑚 =
�̂�𝑝

𝜆 +𝑉Δ1
. (200c)

D Bayes optimal error
In this Appendix, we derive a formula for the Bayes optimal classication error in the case of 𝐾 clusters
with the same covariance 𝚺𝑘 = Δ𝑰𝑑 in the large 𝑑 limit, assuming that a dataset {(𝒙𝜈 ,𝒚𝜈 )}𝜈∈[𝑛] of correctly
labeled points is available. As usual, we will assume 𝑛/𝑑 = 𝛼 nite. The distribution of a pair (𝒚, 𝒙) is given
by

𝑝 (𝒚, 𝒙 |𝑴) =
∑︁
𝑘

𝑦𝑘

𝜌𝑘 exp
(
− 1

2Δ
𝒙 − 𝝁𝑘

2)
(2𝜋Δ) 𝑑2

. (201)

where 𝑴 ∈ R𝑑×𝐾 is the matrix of concatenated means 𝝁𝑘 estimated from the dataset, so that

𝑝 (𝑴 |{𝒚𝜈 , 𝒙𝜈 }𝜈 ) ∝ 𝑝 ({𝒙𝜈 }𝜈 |𝑴, {𝒚𝜈 }𝜈 )𝑃𝝁 (𝑴)

∝ 𝑃𝝁 (𝑴)
𝑛∏
𝜈=1

∑︁
𝑘

𝑦𝜈
𝑘
exp

(
− 1
2Δ

𝒙𝜈 − 𝝁𝑘
2) . (202)

We will assume in the following the distribution

𝑃𝝁 (𝑴) =
exp

(
−𝑑2 tr[𝑴𝚯

−1𝑴>]
)

(2𝜋) 𝐾𝑑2 𝑑−𝐾/2 |𝚯|1/2
(203)
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where 𝚯 ∈ R𝐾×𝐾 is a given positive denite covariance matrix. In this way

E
[
𝑴>𝑴

]
= 𝚯. (204)

The conditional distribution for the label 𝒚0 of a new point 𝒙0,

𝑝 (𝒚0 |𝒙0, {𝒚𝜈 , 𝒙𝜈 }𝜈 ) ∝ E𝑴 | {𝒚𝜈 ,𝒙𝜈 }𝜈 [𝑝 (𝒚, 𝒙 |𝑴)]

=

∫
d𝑴𝑃𝝁 (𝑴)

∑︁
𝑘

𝑦0
𝑘
𝜌𝑘 exp

(
−
𝒙0 − 𝝁𝑘

2
2Δ

)
𝑛∏
𝜈=1

∑︁
𝑘

𝑦𝜈
𝑘
exp

(
−
𝒙𝜈 − 𝝁𝑘

2
2Δ

)
. (205)

If 𝒏 = (𝑛𝑘 )𝑘 is the vector of the number of examples 𝑛𝑘 in the class 𝑘 , then

𝑝 (𝒚0 |𝒙0, {𝒚𝜈 , 𝒙𝜈 }𝜈 ) ∝
∫

d𝑴𝑃𝝁 (𝑴)
𝐾∏
𝑘=1

[
𝜌
𝑦0
𝑘

𝑘
exp

(
−

𝑛∑︁
𝜈=0

𝑦𝜈
𝑘

𝒙𝜈 − 𝝁𝑘
2

2Δ

)]
= exp

[∑︁
𝑘

𝑦0
𝑘

(
ln 𝜌𝑘 −

‖𝒙 ‖2
2Δ

)
− 1
2 ln det

(
1 + 1

𝑑Δ
diag(𝒏 +𝒚0)𝚯

)]
× exp

[
1
2Δ tr

[(
𝑛∑︁
𝜈=0

𝒚𝜈 ⊗ 𝒙𝜈
)> (

𝑑Δ𝚯−1 + diag(𝒏 +𝒚)
)−1 (

𝑛∑︁
𝜈=0

𝒚𝜈 ⊗ 𝒙𝜈
)] ]

. (206)

In the following we will denote by★ the true label of 𝒙 . Let 𝚷 = diag(𝜌𝑘 ). Then we can write the previous
expression as

𝑝 (𝒚0 |𝒙0, {𝒚𝜈 , 𝒙𝜈 }𝜈 ) ∝ exp
[∑︁
𝑘

𝑦𝑘

(
ln 𝜌𝑘 −

‖𝒙0‖2
2Δ

)
− 1
2 ln det

(
1 + 1

Δ
𝛼𝚷𝚯

)]
× exp

[
1
2Δ tr

[(
1
𝑑

𝑛∑︁
𝜈=0

𝒚𝜈 ⊗ 𝒙𝜈
)> (

Δ𝚯−1 + 𝛼𝚷
)−1 (

𝑛∑︁
𝜈=0

𝒚𝜈 ⊗ 𝒙𝜈
)] ]

(207)

Observe now that

1
𝑑Δ

𝒙0
𝑛∑︁
𝜈=1

𝑦𝜈
𝑘
𝒙𝜈

𝑛,𝑑→+∞−−−−−−→ 𝛼𝜌𝑘
Θ★,𝑘 + 𝜂𝑘𝑍𝑘

Δ
, 𝜂𝑘 ≡

√︄
Δ

(
1 + Δ

𝛼𝜌𝑘

)
, 𝑍𝑘 ∼ N(0, 1), (208)

so that, dening the vector 𝒂★ = (𝑎𝑘 )𝑘∈[𝐾 ] with elements

𝑎★
𝑘
≡ 𝛼𝜌𝑘

Θ★,𝑘 + 𝜂𝑘𝑍𝑘
Δ

, (209)

and neglecting the 𝒚0-independent contributions, the expression above can be rewritten as

𝑝 (𝒚0 |𝒙0, {𝒚𝜈 , 𝒙𝜈 }𝜈 ) ∝ exp
[∑︁
𝑘

𝑦0
𝑘
ln 𝜌𝑘 +

(
𝒂★ + 1

2𝒚
0
)> (

Δ𝚯−1 + 𝛼𝚷
)−1

𝒚0

]
(210)

where we have also used the fact that ‖𝒙0‖2 = 𝑑Δ+𝑂 (1). This means that the Bayes optimal generalization
error is

𝜀BO𝑔 =
∑︁
𝑘

𝜌𝑘P

[
argmax

𝜅

(
ln 𝜌𝜅 +

(
𝒂𝑘 + 1

2 𝒆𝜅
)> (

Δ𝚯−1 + 𝛼𝚷
)−1

𝒆𝜅

)
≠ 𝑘

]
. (211)
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If 𝚯 = 𝑰𝐾 and the clusters have same weights, 𝜌𝑘 ≡ 1/𝐾 ⇔ 𝚷 = 1/𝐾𝑰𝐾 , then 𝜂𝑘 ≡ 𝜂 and

𝜀BO𝑔 = P

[
1
𝜂
< max
𝜅∈[𝐾−1]

𝑍𝜅 + 𝑍
]
, (212)

that is the formula given in [20].

E Experiments with real data
In this Appendix we discuss the experiments of Section 3.3 with real data sets.

Numerical details — Consider a real data set {(𝒙𝜈 , 𝑦𝜈 )}𝑛tot
𝜈=1 with 𝑛tot samples which we assume are

independent. As a pre-processing step we center, normalise and atten the inputs 𝒙𝜈 into 𝑑-dimensional
vectors. For both the MNIST [60] and Fashion-MNIST [61] data sets used in the experiments we have
normalised the inputs by 255, such that components 𝑥𝜈

𝑖
∈ [0, 1]. In what follows we focus on binary

classication tasks and encode the labels as 𝑦𝜈 ∈ {−1, 1}. For example, for the MNIST and Fashion-MNIST
data sets we have 𝑑 = 784 and 𝑛tot = 7 × 104, and we split the inputs into two classes depending on the
task of interest, e.g. odd vs. even digits and clothes vs. accessories items, respectively. Dene the empirical
distribution over the data set:

𝑃 (𝒙, 𝑦) = 1
𝑛tot

𝑛tot∑︁
𝜈=1

𝛿 (𝒙 − 𝒙𝜈 )𝛿 (𝑦 − 𝑦𝜈 ) (213)

The question we want to answer is: how well can we approximate the learning curves (𝜖𝑔, 𝜖𝑡 ) on a given
ERM classication task by approximating 𝑃 with a Gaussian mixture distribution? To answer this question,
we consider a Gaussian mixture distribution 𝑃2 as dened in Eq. (1) with the same means and covariances
as 𝑃 :

�̂�𝑘 =
1
𝑛tot

𝑛tot∑︁
𝜈=1

𝒙𝜈 I (𝒙𝜈 ∈ C𝑘 ) , �̂�𝑘 =
1
𝑛tot

𝑛tot∑︁
𝜈=1

(𝒙𝜈 − 𝝁𝑘 ) (𝒙𝜈 − 𝝁𝑘 )> I (𝒙𝜈 ∈ C𝑘 ) (214)

for 𝑘 ∈ {+,−} labelling the two clusters. Similarly, the class probabilities 𝜌𝑘 are also estimated from the
full data set:

𝜌𝑘 =
1
𝑛tot

𝑛tot∑︁
𝜈=1
I (𝒙𝜈 ∈ C𝑘 ) . (215)

The parameters (�̂�𝑘 , �̂�𝑘 , 𝜌𝑘 ) completely characterise the approximating Gaussian mixture distribution 𝑃2,
and together with Theorem 1 can be used to compute the theoretical learning curves (𝜖𝑔, 𝜖𝑡 ) as in Fig. 5 of
the main. Note that this discussion can be easily generalised to the case in which a non-linear feature map
𝝋 : R𝑑 → R𝑝 is applied to the data prior to tting. The only dierence is that the empirical distribution
𝑃 is dened over the features {(𝒗𝜈 , 𝑦𝜈 )}𝑛tot

𝜈=1 where 𝒗𝜈 = 𝝋 (𝒙𝜈 ), and the Gaussian mixture approximation
𝑃2 is dened with respect to the empirical features distribution. Figure 6 of the main manuscript shows an
example where a random feature map 𝒗 = erf (𝑭𝒙) with 𝑭 ∈ R𝑝×𝑑 a random Gaussian projection applied
to MNIST and fashion MNIST before the tting with dierent ratios 𝛾 = 𝑝/𝑑 .

The theoretical learning curves are then compared with two sets of nite instance simulations. First,
we simulate the learning problem on synthetic data sampled from the approximating Gaussian mixture

43



distribution 𝑃2, and the learning curves are computed by averaging over 10 instances of the problem.
Second, we simulate the learning problem on the real data set. The real data set is split into training and
test sets, and for a given sample complexity 𝛼 = 𝑛/𝑑 we sub-sample 𝑛 = 𝛼𝑑 points from the training set.
The averaged learning curves are computed over dierent instances of the sub-sampling, with replacement.

Discussion — As expected, we nd good agreement between theory and simulations with synthetic data
drawn from the approximating Gaussianmixture distribution 𝑃2, even for relatively small input dimensions
(e.g. 𝑑 = 784 for MNIST). Surprisingly, we have found that in many cases the Gaussian mixture is a good
approximation to the real data curves, see Figs. 5 and 6 for examples of logistic regression on input space
and with random features. Figure 7 shows an example where the feature map 𝝋 is given by removing the
last layer of the following fully-connected 2-layer neural network pre-trained on the full MNIST odd vs.
even data set:
Sequential(
(0): Linear(in_features=784, out_features=784, bias=False)
(1): ReLU()
(2): Linear(in_features=784, out_features=1, bias=False)
(3): Tanh()

)

with the training performed by minimising the square loss with the Adam optimiser and random initial-
isation. However, we have also found cases in which the approximation is not as sharp, see blue curves
in Fig. 10. Understanding the factors determining the quality of the approximation in real data sets is an
interesting question we expect to address in future work.
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Figure 7: Generalisation error and training loss for logistic regression on MNIST with a feature map 𝝋
obtained by training 2-layer fully connected neural network, with ℓ2 penalty and xed 𝜆 = 0.05. The
dierent curves show the performance at dierent stages of training.
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Figure 8: Two dimensional projection of the setting described in eq. (216). (Left) Realisable case, (Right)
Non-realisable case (XOR function).
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regression with ℓ2 penalty and 𝜆 = 10−4 for the four models pictured in Fig. 8. Points denote the separable
model (bottom curve), and triangles denote the non-realisable xor model (top curves). We have chosen a
balanced scenario with Δ = 0.5.

45



0.15

0.20

0.25

0.30

ge
ne

ra
lis

at
io

n 
er

ro
r Theory

P2

MNIST 5v5
P10

0 2 4 6 8 10
sample complexity

0.35

0.40

0.45
tra

in
in

g 
lo

ss

Figure 10: Generalisation error and training loss for logistic regression on the task of classifying {0, 1, 2, 3, 4}
vs {5, 6, 7, 8, 9} digits of MNIST, as a function of the sample complexity for xed ℓ2 penalty 𝜆 = 0.1. The blue
curves show the 2-Gaussian cluster approximation 𝑃2 (solid for theory, points for nite size simulations),
while the orange points show the 10-Gaussian cluster approximation 𝑃10, which lies systematically below.
The green points denote simulations on the true data set.

Multiclass vs. binary approximation – In the cases previously discussed, we have considered a 𝐾 = 2
cluster approximation 𝑃2 to the empirical data distribution 𝑃 . However, the data sets considered here
(MNIST and Fashion-MNIST) are originally composed of 10 classes, and therefore we should ask the ques-
tion of whether a𝐾 = 10 cluster approximation 𝑃10 where we t the means and covariances of each original
class is any dierent from the approximation studied above. In principle, these two approximations can
have very dierent statistical properties. For instance, from Theorem 2 it follows that the generalisation
and training errors of Gaussian mixtures only depend on the statistics of the local eld 𝜆 =𝑾𝒙 conditioned
on the labels, which in the binary setting considered here is 𝑦 ∈ {+,−}. Conditioned on 𝑦 = ±, this local
eld is simply a Gaussian random variable under 𝑃2, while it is a multi-modal random variable under 𝑃10.
Therefore, there is a priori no reason for these two approximations to give the same learning curves.

As an example, consider a 𝐾 = 4 Gaussian mixture distribution with a common variance Σ𝑘 = ΔI𝑑 and
with means:

𝝁1 = 𝒆1 + 𝒆2, 𝝁2 = 𝒆1 − 𝒆2, 𝝁3 = −𝒆1 + 𝒆2, 𝝁4 = −𝒆1 − 𝒆2 (216)

where 𝒆𝑖 ∈ R𝑑 is the canonical basis vector ofR𝑑 , with entries 𝑒𝑖 𝑗 = 𝛿𝑖 𝑗 . We consider two label assignments:
a) a realisable case in which clusters 1 and 2 are assigned label +1, and clusters 3 and 4 are assigned −1
and b) a non-realisable case in which clusters 1 and 4 are assigned +1 and clusters 2 and 3 are assigned
−1 (XOR function), see Fig. 8 (top) for an illustration. Now consider a dual 𝐾 = 2 Gaussian mixture model
with means and covariances (𝝁±, 𝚺±) chosen to match the class means and covariances of the 𝐾 = 4
mixture, see Fig. 8 (bottom) for an illustration. In Fig. 9 we compare the learning curves of the 𝐾 = 4model
with the 𝐾 = 2 counterpart with matched class means and covariances. While in the realisable case 𝑎)
both have identical performance under the error bars, in the non-realisable case 𝑏) the performance in are
signicantly dierent.
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Indeed, a similar behaviour can be observed in the real data experiments. Fig. 10 compares the real
learning curves of a MNIST 5v5 binary classication task (classifying ve rst digits vs. ve last) with the
two dierent Gaussian mixture approximations: 𝑃10 where we t the means and covariances of each indi-
vidual cluster and 𝑃2, where we t only the class-wise means and covariances. While both approximations
capture the high-level behaviour of the learning curves, 𝑃10 is closer to the real learning curve than 𝑃2.

Note on numerical instabilities — When dealing with means and covariance matrices estimated from
real data sets, we have observed that for small regularisation strength 𝜆 � 1 the self-consistent equations
from Theorem 1 can develop spurious xed points corresponding to negative values of the overlap param-
eters 𝑞± = 𝑾>

𝚺±𝑾 – which is clearly not possible since 𝚺± is a positive-denite matrix. This is observed
across dierent scenarios, and is independent of the choice of loss or the particular way the equations are
solved. In fact, the minimum value of 𝜆 below which the spurious xed point develop seems to depend
only on the conditioning number of the covariance matrices.
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