
The JavaScripting EnglishMajor Cheat Sheet
https://the-javascripting-english-major.org/help/js-cheat-sheet, © 2017, CC BY-NC-SA 4.0 byMoacir P. de Sá Pereira.

Write JavaScript in your scripts.js file, HTML in your
index.html , and CSS (styles) in your styles.css . You can use
different file names, but the JavaScript files should always end
in .js .

End every statement (typically a line of code) with a ; .
Comment text out with // . All of the subsequent code on
that line will not be executed.
Define variables using let variableName; and then assign it

with variableName = "some string"; , for example.

Files & Basic Syntax (ch 2)

string Regular text, surrounded by "" .
number A number. Not surrounded by "" .
boolean true or false .
array A list, surrounded by […] .
object Always surrounded by {…} .

Data Types (ch 2)

If-then-else logic is central to program decision making.
if (true) {

console.log("This will always print .");

}

What follows if in parentheses is a truth test that should
respond either with true or false :
let a, b;

a = 10;

b = "someString ";

if (a > 5) {

console.log("This will print .");

}

if (a <= 5) {

console.log("This will not print .");

}

if (b === "someString ") {

console.log("This will print .");

}

// set an inverse command with else:

if (b === "someString ") {

console.log("b is equal to 'someString .'");

} else {

console.log("b is not equal to 'someString .'");

}

If Statements (ch. 3)

JavaScript provides the verbs of the web. If a page does some-
thing because of you, that’s JavaScript. The verbs of JavaScript,
however, are functions. Functions receive parameters and
return a value:
let myFunction , myReturnValue;

myFunction = function(param1 , param2){

return param1 + " " + param2;

};

myReturnValue = myFunction (" JavaScript", "is OK!");

// myReturnValue is now "JavaScript is OK!"

Parameter names are arbitrary and exist only inside the
function. Methods like .forEach() are functions:
myArray.forEach(function(value , i){

console.log(" index: " + i + ", value: " + value);

});

// "index: 0 value: a"

// "index: 1 value: 1"

// "index: 2 value: string"

// "index: 3 value: 23"

Functions (ch 4 & 6)

Arrays are a list of things (strings, objects, arrays). Every item
in the list has an index (that begins with 0) that can be used to
access it:
let myArray , zerothArrayItem;

myArray = ["a", 1, "string", 23];

zerothArrayItem = myArray [0];

// zerothArrayItem is now "a"

Arrays also have a .length property and useful functions
built-in as methods, like .map() , which takes the array and
builds a new one.
let newArrayLength , newArray;

newArrayLength = newArray.length;

// newArrayLength is now 4

newArray = myArray.map(function(value) {

return value + 1;

});

// newArray is ["a1", 2, "string1", 24]

The .forEach() method works similarly to .map() and iter-
ates over the array—say, a set of points on a map—in order to
execute useful commands on each item. See above.

Arrays (chs 5, 6, & 11)

These basics of JavaScript should lead you much of the way
towards being able to look up other methods and looking up
questions online. Here are some useful references:

1. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference—MDN JavaScript reference
2. http://api.jquery.com— jQuery documentation
3. http://leafletjs.com—Leaflet homepage
4. https://getbootstrap.com/docs/ — Bootstrap docu-

mentation
5. https://stackoverflow.com/questions/tagged/

javascript — Stack Overflow JavaScript questions.
Priceless resource

6. https://www.w3schools.com/TAGs/—HTML reference
7. https://www.w3schools.com/cssref/—CSS reference
8. https://www.w3schools.com/colors/colors_picker.asp

—Color picker

Other Resources

Objects are generic types and have arbitrary properties that
you can assign. They are the multi-purpose blank slate of
JavaScript.
let myObject , myName;

myObject = {

name: "JavaScript",

};

// Access a property:

myName = myObject.name;

// myName is now "JavaScript ";

Properties can be any data type, including functions:
myObject = {

name: "JavaScript",

favNumbers: [1, 3, 5, 6],

favGreeting: function(name){

return "Ahoy , ahoy , " + name + "!";

}

}

myObject.favNumbers.map(function(i){

return i + 2;

});

// returns: [3, 5, 7, 8]

myObject.favGreeting ("Bhalu");

// returns: "Ahoy , ahoy , Bhalu !"

Objects (chs 5, 6, & 11)

1



jQuery lets you select parts of the webpage with $("entity")

selector and manipulate them:
$("# response ").html("New <em>HTML </em> text .");

// Changes the value of <div id=" response"></div >

let pHtml , theParagraph;

pHtml = $("p").html();

// pHtml is the contents of the first <p></p>.

theParagraph = $(".a-class").html();

// theParagraph is the contents of

// <p class ="a-class"></p>

.html() is a method, but there many, many useful ones in
JQuery. Here are two more:
$("p").click(function (){

// do something when you click on <p></p>.

});

$.getJSON ("some.url.of/file.json", function(obj){

// obj is the JSON object & you can manipulate it:

$("p").html(obj.someProperty);

// change the value of the first <p></p> to the

// value of someProperty

});

jQuery (chs 8, 9, 11, & 14)

CSS (cascading style sheets) is the language we use to control
how things look on the page, in terms of colors, fonts, sizes,
margins, etc. Styles are defined in a file ending in .css .

Styles use the same syntax for tags, ids, and classes as jQuery
uses in its $("entity") selector.
p {

color: #657 b83;

background -color: #fdf6e3;

}

.some -class -name {

font -size: 24px;

}

#some -id-name {

margin: 20px;

}

#leaflet -map {

height: 500px;

}

CSS is magic, so I recommend using pre-defined styles like
those in Bootstrap and tweaking them. Colors are defined ei-
ther as hex values or rgb values. See the other resources section
for more.

CSS (ch 8)

HTML is a relatively simple languagemade up of a <tag> that
contains information inside and are then closed with a similar
tag: </tag> . Here is a sample index.html :
<!doctype html>

<html lang="en">

<head>

<meta charset="utf -8">

<title>My Page Title</title >

<link rel="stylesheet" href="styles.css">

</head>

<body>

<h1 class="header">This is my project!</h1>

<div id="response">

<h2 class="header">This is a subhead </h2>

<p>

This is a paragraph inside the #response div.

</p>

</div>

<div id="leaflet -map">Leaflet map</div>

<script src="https :// code.jquery.com/jquery

-3.2.1. min.js"></script >

<script src="scripts.js"></script >

</body>

</html>

Information about the page and pointers to CSS stylesheets
go between the <head></head> tags. The content of the page
goes in the <body></body> tags, with the JavaScript files loaded
at the bottom inside <script></script> tags.

Inside a tag, we can set attributes with values, like
id="response" in the <div> in the example. In addition to
id= , class= and src= (for “source”) are common attributes.
id= should give a unique name to an HTML object, while
many objects can have the same class= .

Some other useful tags include:
<p></p> paragraph
<a href="http://…"></a> anchor, for making links
<img src="http://…" /> images
<h2></h2> 2nd-level heading (down to <h6> )
<div></div> a generic block of content
<span></span> a generic span of inline content
<em></em> emphasis (typically italics)
<strong></strong> strong (typically bold)

The jQuery selector can grab HTML objects based on the
tag type, the id, and the class. See the jQuery section formore.

HTML (ch 8)
Leaflet requires some added stylesheet and script additions in
your HTML file (see ch 10). The map also needs to be drawn
in a <div> with a pre-defined height (see the CSS section here).
Defining a map then requires that <div> , a center point, and
a tile resource to draw the background map.
let map , center , tileLayer;

// draw the map in <div id="leaflet -map"></div >:

map = L.map("leaflet -map");

// define the center as [latitude , longitude ]:

center = [40, -72];

// set the tileLayer to a tile url:

tileLayer = L.tileLayer ("some.url.of/tiles.png", {

attribution: "&copy; rights holders",

subdomains: "abcd",

maxZoom: 18

}).addTo(map);

// now set the view with 9 as the zoom level:

map.setView(center , 9);

Once the basicmap is drawn, you can addmarkers and lines
to it, which can be styled in a way similar to CSS. Every Leaflet
method is of the form L.someMethod() .
let marker , line;

// draw a circleMarker at the center:

marker = L.circleMarker(center , {

radius: 5,

fillColor: "#00 aa00", // green

fillOpacity: 0.8 // make it a bit transparent

}).addTo(map);

// draw a line between the circleMarker and a

// new point at [42, -74]:

line = L.polyline ([center , [42, -74]], {

color: "# aa0000", // red

weight: 5 // line width in pixels

}).addTo(map);

// change the radius and fillColor of marker:

marker.setStyle ({

radius: 20,

fillColor: "#0000 aa" // blue

});

// add a popup that shows when you click on marker:

marker.bindPopup ("This is a <em>popup </em >");

Leaflet also can respond to events like clicking:
// show the coordinates whereever you click:

map.on("click", function(clickEvent) {

alert("You clicked at " + clickEvent.latlng.lat +

", " + clickEvent.latlng.lng);

});

Leaflet (chs 10, 11, & 14)

2


