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Abstract— Left-handed materials are commonly analyzed by 

using frequency-dependent parameters that include regions of 

negative permittivity and negative permeability in Maxwell’s 

equations.  An alternative approach is presented where both 

right-handed and left-handed behavior are supported by 

augmenting Maxwell’s equations with additional terms. The 

proposed equations exhibit typical metamaterial behavior, 

including frequency bandgap and dispersion.  

I. INTRODUCTION  

Recent advances in left-handed materials and negative 
index materials have motivated considerable research in the 
development of new optical devices and novel microwave 
circuits.  For the most part, left-handed phenomena have been 
studied using familiar forms of Maxwell’s equations, but with 
negative values of permittivity and permeability at frequencies 
of interest [1]-[2].  With this approach, the analysis of left-
handed systems may be carried out using Maxwell’s equations 
in conjunction with frequency-dependent (or resonant) 
parameters for permittivity and permeability, where the 
parameters become negative at certain frequencies. 

However, it is also possible to produce a frequency-
dependent model by modifying the differential equations and 
using a new set of constant parameters.  In the proposed 
approach, the frequency dependence is built into the form of 
the differential equations rather than prior methods relying 
upon frequency-dependent parameters for permittivity and 
permeability.  Although the new approach may be equivalent 
to prior methods in various situations, the proposed line of 
attack seems to offer new insight into the behavior and theory 
of left-handed systems.  

In the proposed model, the new left-handed extensions of 
Maxwell’s equations are developed using an approach that is 
motivated by recent developments for left-handed microwave 
systems [3]-[4].  Here, transmission line circuits are used as a 
guide to formulate corresponding modifications to Maxwell’s 
equations.  Although multiple transmission line circuit 
topologies are possible, the development focuses on a form 
that is right-handed at low frequencies and left-handed at high 

frequencies. Using the new equations, some general 
observations are made on predicted behavior, including 
frequency bandgap and dispersion.   

II. RIGHT-HANDED MAXWELL’S EQUATIONS 

A useful framework for the development of the proposed 
extensions to Maxwell’s equations is found in recent research 
on composite right/left-handed (CRLH) microwave structures 
[3].   In this earlier work, lumped-element transmission lines 
are used as the basis for the formulation of new microwave 
structures and theoretical analysis.  Importantly, these left-
handed microwave transmission line models use constant 
parameters that are not frequency dependent.    

The success of such theoretical methods in generating 
fruitful results for left-handed microwave systems motivates 
the proposed left-handed extensions to Maxwell’s equations 
for metamaterials and free space.  In the following, the 
correspondence between transmission line equations and 
Maxwell’s equations is first reviewed for right-handed 
systems.  Then, these results are used as a template for 
developing the proposed left-handed extensions of Maxwell’s 
equations in the following section.   

To begin, first consider the right-handed transmission line 
model of Fig. 1. The right-handed transmission line equations 
for Fig. 1 also correspond to the three-dimensional Maxwell’s 
equations as follows [6] (assuming no sources): 

  

∂v(x,t)

∂x
= −LR

∂i(x,t)

∂t
⇒ ∇ × E = −µ

∂H

∂t

∂i(x,t)

∂x
= −CR

∂v(x, t)

∂t
⇒ ∇ ×H = ε

∂E

∂t

   , (1) 

where the transmission line equations are on the left and the 
corresponding Maxwell’s equations are on the right.  The 
transmission line distributed inductance is LR H/m and 
distributed capacitance is CR F/m, and the Maxwell’s equation 
constants are µ for the permeability in H/m and ε for the 
permittivity in F/m. 
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Taking the curl of both sides from (1): 

∇ ×∇ × E = −µ
∂∇ ×H

∂t
  .   (2) 

Then, the wave equation follows as (where ∇⋅E=0): 

∇2E = µε
∂2E
∂t2

  ,    (3) 

with the usual plane-wave solution  

E = E0e
− jkxe jωt = E0e

− jωx /ue jωt

  ,
   (4) 

where k=ω/u is the wavenumber, ω is frequency in rad/s, and 

u=(µε)-1/2  is the phase velocity in m/s. 

III. PROPOSED EXTENSION OF MAXWELL’S EQUATIONS 

The foregoing correspondence between Fig. 1 and 
Maxwell’s equations in (1) for right-handed systems is next 
used as a template for developing left-handed extensions to 
Maxwell’s equations for metamaterials.  Along the lines of 
Fig. 1, a composite right/left-handed transmission line is given 
in Fig. 2.  The right-handed distributed parameters are LR in 
H/m and CR in F/m, and the left-handed distributed parameters 

are LL in H⋅m and CL in F⋅m.   

The topology in Fig. 2 exhibits right-handed behavior at 
low frequencies and exhibits left-handed behavior above the 
frequency bandgap.  The corresponding extension of 
Maxwell’s equations will then exhibit the normal right-handed 
behavior of Maxwell’s equations at low frequency.   Although 
not considered here, the general methodology can also be used 
for other transmission line topologies along the lines of Fig. 2, 
where such topologies may be better suited to model other 
particular problems or metamaterials. 

Following the same approach used in equation (1) and Fig. 
1, the composite right/left-handed transmission line equations 
for Fig. 2 correspond to the new proposed extension of three-
dimensional Maxwell’s equations as follows [3],[6] (assuming 
no sources): 

∂v(x,t)

∂x
= −LR

∂iR (x,t)

∂t
⇒ ∇× E = −µ

∂
∂t

HR

∂v(x,t)

∂x
= −

1

CL

iL (x,t)∫ ∂t ⇒∇× E = −
1

εL

HL∫ ∂t

or
∂
∂t
∇ × E = −

1

εL

HL

∂i(x,t)

∂x
= −CR

∂vR (x,t)

∂t
⇒ ∇×H = ε

∂
∂t

ER

∂i(x,t)

∂x
= −

1

LL

vL (x,t)∫ ∂t ⇒ ∇×H =
1

µL

EL∫ ∂t

or
∂
∂t
∇ ×H =

1

µL

EL

where v = vR + vL ⇒ E = ER + EL

and i = iR + iL ⇒ H = HR + HL

 ,(5) 

 

where the transmission line equations are on the left and the 
corresponding proposed extensions to Maxwell’s equations 
are on the right.  Derivatives are also taken in two places to 
remove the integral forms in the 3

rd
 and 6

th
 equations of (5).  

On the right side of (5), µ is permeability in H/m, ε is 

permittivity in F/m, εL is defined as left-permittivity in F⋅m, 
and µL is defined as left-permeability in H⋅m.  In addition, the 
electric (E) and magnetic (H) fields are expressed in terms of 
the sums of left-handed contributions (EL and HL) and right-
handed contributions (ER and HR) to the total fields, in the 
same manner as the decomposition of the currents and 
voltages of Fig. 2 into left-handed (vL and iL) and right-handed 
(vR and iR) components. 

The equations in (5) can be combined to eliminate the left-
handed and right-handed components of the fields.  Taking the 
derivative of one of the equations from (5) and adding the 
result to another one of the equations in (5), HR and HL can be 
eliminated as follows: 

 

i(x,t) 

v(x+∆,t) v(x,t) 

i(x+∆,t) 

LR 
CR 

Figure 1.  Lumped-element model of a right-handed transmission line. 

 

 

Figure 2.  Lumped-element model of a right/left-handed transmission 
line. 
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∂
∂t

εL

∂
∂t
∇ × E

 

 
 

 

 
 =

∂
∂t

−HL( )

so εL

∂ 2

∂t 2
∇ × E = −

∂
∂t

HL

and
1

µ
∇ × E = −

∂
∂t

HR from (5)

adding ⇒
1

µ
∇ × E + εL

∂ 2

∂t 2
∇ × E = −

∂
∂t

HR + HL( )= − ∂
∂t

H .

 (6) 

Similarly, ER and EL can be eliminated: 

∂
∂t

µL

∂
∂t
∇ ×H

 

 
 

 

 
 =

∂
∂t

EL( )

so µL

∂2

∂t 2
∇ ×H =

∂
∂t

EL

and
1

ε
∇ ×H =

∂
∂t

ER from (5)

adding ⇒
1

ε
∇ ×H + µL

∂2

∂t2
∇ ×H =

∂
∂t

ER + EL( )= ∂
∂t

E .

 (7) 

The foregoing results give the final proposed extension of 
Maxwell’s equations for the right/left-handed system 
(assuming no sources): 

1

µ
∇ × E + εL

∂ 2

∂t 2
∇ × E = −

∂
∂t

H

1

ε
∇ ×H + µL

∂ 2

∂t 2
∇ ×H =

∂
∂t

E

  . (8) 

 

Unfortunately, the associated wave equation for the 
right/left-handed system of (8) is not straightforward, as seen 
by taking the curl of both sides of (8): 

 

1

µ
∇ ×∇ × E + εL

∂ 2

∂t
2
∇ ×∇ × E = −

∂
∂t
∇ ×H  .  (9) 

Then, the wave equation follows as (where ∇⋅E=0): 

1

µ
∇2E + εL

∂ 2

∂t
2
∇2E = ε

∂ 2

∂t
2

ER    ,    (10) 

where the right side of the result is complicated by the 
appearance of ER instead of E.  Nevertheless, it is possible to 
solve for E.  Suppose a plane wave solution for E as follows: 

E = E0e
− jkxe jωt = E0e

− jωx /ue jωt
  .  (11) 

Substituting the plane wave solution, and after considerable 
rearrangement, the solution for the square of the phase 
velocity u

2
 is: 

u2 =
1−ω 2µεL( )1−ω 2εµL( )

µε
=
1

µε
1−

ω
ω1

 

 
 

 

 
 

2 

 
 
 

 

 
 
 1−

ω
ω2

 

 
 

 

 
 

2 

 
 
 

 

 
 
 
 , (12) 

where the frequency bandgap is determined by ω1=(µLε)
-1/2
 

and ω2=(µεL)
-1/2
. 

From (12), the phase velocity is u≈(µε)
-1/2
 at low 

frequency.  Between ω1 and ω2 there is a bandgap where u
2
 is 

negative, the phase velocity is imaginary, and the wave 
exponentially decays without propagating. And at higher 
frequencies beyond the bandgap, a left-handed solution is 
found with dispersive phase velocity u≈ω

2
(µLεL)

1/2
.  To 

illustrate the behavior of (12), u
2
 is plotted in Fig. 3 for a 

somewhat arbitrary case of (µε)
-1/2
=c=3×10

8
, ω1=10, and 

ω2=20 rad/s.  In Fig. 3, negative values of u
2
 fall between the 

bandgap frequencies of ω1=10 and ω2=20 rad/s. 

In addition, the ratio of the left-handed field to right-
handed field can be calculated.  To find this ratio, first use the 
following relation from (5): 

ε
∂
∂t

ER =∇×H =
1

µL

EL∫ ∂t    ,   (13) 

so 

ε
∂2

∂t2
ER =

1

µL

EL

    

 (14) 

and then EL=−εµLω
2
ER for the plane wave solution as before.  

Therefore, the ratio of the left-handed field contribution EL to 
the right-handed field contribution ER would be approximately 
|EL/ER|= εµLω

2
. 

Interestingly, the bandgap frequency estimate from recent 
gamma ray data can be used to estimate the degree to which 
µL→0 and εL→0 in (8) for free space [5].  Note that when 
µL=0 and εL=0, the extended Maxwell equations in (8) revert 
to the normal Maxell’s equations in (1).  Recent data on 
gamma burst GRB 090510 in May 2009 shows dispersion of 
up to 859 ms for gamma rays at 31 GeV  (ω=4.7×10

25
 rad/s) at 

a distance of d=1.8×10
26
 m (using luminosity distance for 

simplicity).  If 31 GeV photons have velocity u, and low 
energy photons have velocity c, the time difference in arrival 
times over a distance d is τ=d/u-d/c (ignoring cosmological 
issues for simplicity).  After some rearrangement, the velocity 
of the 31 GeV photons is approximated as 

u = c
d

d + cτ
= c

d2 − cdτ
d
2 − c

2τ 2
≈ c 1−

cτ
d

 

 
 

 

 
  ,  (15) 

Figure 3.  Plot of square of phase velocity, u2, as a function of 

frequency, ω, for (µε)-1/2=3×108, ω1=10 and ω2=20 rad/s. 
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where cτ<<d, c=3×10
8
 m/s, τ=0.859 s, d=1.8×10

26
 m, and 

cτ/d=1.4×10
-18
.  Since (12) has two remaining unknowns, 

further approximations are used to provide an estimate of the 
lower bandgap frequency.  For simplicity, let ω1=ω2, where 
equation (12) becomes u=c{1-(ω/ω1)

2
} in free space.  

Comparing this result with (15) gives (ω/ω1)
2
=cτ/d=1.4×10

-18
 

for the 31 GeV photon at a frequency of ω=4.7×10
25
 rad/s.  

Then solving for ω1, the estimate of the bandgap frequency is 
ω1≈3.9×10

34
 rad/s or 2.6×10

19
 eV.  Finally, using the estimate 

of ω1=ω2=3.9×10
34
 rad/s and substituting into the equations 

ω1=(µLε)
-1/2
 and ω2=(µεL)

-1/2
 from (12) results in 

µL≈1/(ε0ω1
2
)≈7.4×10

-59
 H⋅m and εL≈1/(µ0ω1

2
)≈ 5.1×10

-64
 F⋅m 

in free space, where ε0=8.9×10
-12
 F/m and µ0=1.3×10

-6
 H/m.  

Thus, µL→0 and εL→0 in (8) for free space, for most 
frequencies of practical interest. 

IV. ALTERNATE FORMS  

As previously mentioned, the forgoing methodology can 
be applied to circuit topologies other than Fig. 2. A more 
common form is the composite right/left hand (CRLH) 
structures of Fig. 4, described in [3].   The band-pass topology 
of Fig. 4 is similar to the band-stop topology of Fig. 2, and is 
left-handed at low frequencies and right-handed at high 
frequencies.   For the topology of Fig. 4, the left-handed 
extensions of Maxwell’s equations yield: 

∂
∂t
∇ × E = −µ

∂2

∂t 2
H −

1

εL

H

∂
∂t
∇ ×H = ε

∂2

∂t 2
E +

1

µL

E

  , (16) 

where µ, ε, εL, and µL are defined as before.  Then, the 
solution for the square of the plane-wave phase velocity u

2
 is: 

u2 =
ω 4µLεL

1−ω 2µεL( )1−εµLω
2( )
=

ω 4µLεL

1− ω /ω1( )2( )1− ω /ω2( )2( )
 ,(17) 

where the frequency bandgap is determined by ω1=(µLε)
-1/2
 

and ω2=(µεL)
-1/2
.  From (16), the phase velocity is u≈(µε)

-1/2
 at 

high frequency, above the bandgap.  Between ω1 and ω2 there 

is a bandgap where u
2
 is negative. And at frequencies below 

the bandgap, a left-handed solution is found with dispersive 
phase velocity u≈ω

2
(µLεL)

1/2
.  

V. CONCLUSION 

The proposed extensions to Maxwell’s equations 
incorporate familiar frequency-independent permittivity and 
permeability constants and add new frequency-independent 
left-handed permittivity and left-handed permeability 
constants.  These four constants, along with the new 
equations, lead to frequency-dependent solutions with a 
bandgap, frequency-dependent phase velocity, and dispersion.  
This may be somewhat unexpected, since constant 
permeability and permittivity give rise to a constant velocity in 
the conventional form of Maxwell’s equations.  In essence, the 
new proposed extension to Maxwell’s equations incorporates 
the left-handed and right-handed behavior into the form of the 
new equations, rather than using frequency-dependent 
permittivity and permeability to incorporate left-handed 
behavior.  Although two particular forms of left-handed 
extensions of Maxwell’s equations are given, the methodology 
can be applied to a variety of other circuit topologies that may 
be suitable for different metamaterial applications. 
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Figure 4. Lumped-element model of an alternative form of a right-/left handed transmission line. 

 

iR(x+∆,t) 
v(x+∆,t) v(x,t) 

i(x+∆,t) 

LL 

CL LR 

CR 
iL(x+∆,t) 

VR(x,t) VL(x,t) i(x,t) 

 


