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Abstract. In celebration of both a special “big”π Day (3/14/15) and the 2015 centennial of
the Mathematical Association of America, we review the illustrious history of the constantπ
in the pages of theAmerican Mathematical Monthly.

1. INTRODUCTION. Once in a century, Pi Day is accurate not just to three digits
but to five. The year the MAA was founded (1915) was such a year andso is the
MAA’s centennial year (2015). To arrive at this auspicious conclusion, we consider
the date to be given as month–day–two-digit year.1 This year, Pi Day turns 26. For a
more detailed discussion of Pi and its history, we refer to last year’s article [46]. We
do note that “I prefer pi” is a succinct palindrome.2

In honor of this happy coincidence, we have gone back andselectedroughly 76
representative papers relating to Pi (the constant not the symbol) published in this
journal since its inception in 1894 (which predates that of the MAA itself). Those
75 papers listed in three periods (before 1945, 1945–1989, and 1990on) form the core
bibliography of this article. The first author and three undergraduate research students3

ran a seminar in which they looked at the 75 papers. Here is what they discovered.

Common themes.In each of the three periods, one observes both the commonality
of topics and the changing style of presentation. We shall saymore about this as we
proceed.

• We see authors of varying notoriety. Many are top-tier research mathematicians
whose names remain known. Others once famous are unknown. Articles come from
small colleges, Big Ten universities, Ivy League schools, andeverywhere else. In
earlier days, articles came from people at big industrial labs, but nowadays, those
labs no longer support research as they used to.

• These papers cover relatively few topics.

◦ Every few years a “simple proof” of the irrationality ofπ is published. Such
proofs can be found in [⋆58, 26, 29, 31, 39, 52, 59, 62, 76].

◦ Many proofs ofζ(2) :=
∑

n≥1 1/n2 = π2/6 appear, each trying to be a bit more
slick or elementary than the last. Of course, whether you prefer your proofs con-
cise and high tech or more leisurely and lower tech is a matter oftaste and con-
text. See [⋆38, ⋆58, 20, 28, 34, 42, 57, 68, 69].

◦ Articles on mathematics outside the European tradition have appeared since the
MONTHLY ’s earliest days. See the papers [3, 9, 11, 15].

http://dx.doi.org/10.4169/amer.math.monthly.122.03.000
1For advocates ofτ = 2π , your big day 6/28/31 will come in 2031.
2Given by the Professor in Ÿoko Ozawa,The Housekeeper and the Professor, Picador Books, 2003. Kindle

location 1095, as is “a nut for a jar of tuna?”
3The students are Elliot Catt from Newcastle and Ghislain McKay and Corey Sinnamon from Waterloo.
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• In the past 30 years, computer algebra begins to enter the discussions – sometimes
in a fundamental way.

• Of course, the compositing style of the MONTHLY has changed several times.
• The process of constructing this selection highlights how much our scholarly life

has changed over the past 30 years. Much more can be found and studied easily, but
there is even more to find than in previous periods. The ease of finding papers in
Google Scholar has the perverse consequence – like Gresham’s law in economics –
of making less easily accessible material even more likely to be ignored.

While our list is not completely exhaustive, almost every paper listed in the bibli-
ography has been cited in the literature. In fact, several have been highly cited. Some
highly used research, such as Ivan Niven’s proof of the irrationality of π in 1947 is
rarely cited as it has been fully absorbed into the literature [76]. Indeed, a quick look
at the AMS’s Mathematical Reviews reveals only 15 citations of Niven’s paper.

We deem as pi-star (orπ ⋆) papers from our MONTHLY bibliography that have been
cited in the literature more than 30 times. The existence of JSTOR means that most
readers can access all these papers easily, but we have arranged forthe π ⋆s to be
available free for the next year on our website (www.maa.org/amm_supplements).
Here are theπ ⋆s with citation numbers according to Google Scholar (as of 1/7/2015).
These papers are marked with a⋆ in the regular bibliography.

1. 133 citations: J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramanujan, modular
equations, and approximations to pi or how to compute one billion digits of pi,
96(1989) 201–219.

2. 119 citations: G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-
geometric mean, ellipses,π , and the ladies diary,95(1988) 585–608.

3. 73 citations: A. Kufner, L. Maligrand, The prehistory of the Hardy inequality,
113(2006) 715–732.

4. 63 citations: J. M. Borwein, P. B. Borwein, K. Dilcher, Pi, Euler numbers, and
asymptotic expansions,96(1989) 681–687.

5. 56 citations: N. D. Baruah, B. C. Berndt, H. H. Chan, Ramanujan’s series for
1/π : a survey,116(2009) 567–587.

6. 40 citations: J. Sondow, Double integrals for Euler’s constant and lnπ/4 and an
analog of Hadjicostas’s formula,112(2005) 61–65.

7. 39 citations: D. H. Lehmer, On arccotangent relations forπ , 45(1938) 657–664.
8. 39 citations: I. Papadimitriou, A simple proof of the formula

∑∞
k=1 1/k2 = π2/6,

80(1973) 424–425.
9. 36 citations: V. Adamchik, S. Wagon, A simple formula forπ , 104(1997) 852–

855.
10. 35 citations: D. Huylebrouck, Similarities in irrationality proofs forπ , ln 2,ζ(2),

andξ(3), 108(2001) 222–231.
11. 35 citations: L. J. Lange, An elegant continued fraction forπ , 106(1999) 456–

458.
12. 33 citations: S. Rabinowitz, S. Wagon, A spigot algorithmfor the digits ofπ ,

102(1995) 195–203.
13. 32 citations: W. S. Brown, Rational exponential expressions and a conjecture

concerningπ ande, 76(1969) 28–34.

The remainder of this article. We begin with a very brief history of Pi, both math-
ematical and algorithmic, which can be followed in more detail in [80] and [46]. We
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then turn to our three periods and make a very few extra comments about some of
the articles. For the most part the title of each article is a pretty good abstract. We
then make a few summatory remarks and list a handful of references from outside
the MONTHLY, such as David Blattner’sJoy of Pi [79] and Arndt and Haenel’sPi
Unleashed[78].

2. PI: A BRIEF HISTORY. Pi is arguably the most resilient of mathematical ob-
jects. It has been studied seriously over many millennia and byevery major culture,
remaining as intensely examined today as in the Syracuse of Archimedes’ time. Its role
in popular culture was described in last year’s Pi Day article [46]. We also recall the
recent moviesLife of Pi ((2012, PG) directed by Ang Lee) andPi ((1998, R) directed
by Darren Aronofsky)4.

From both an analytic and computational viewpoint, it makes sense to begin with
Archimedes. Around 250 BCE, Archimedes of Syracuse (287–212 BCE)is thought to
have been the first (inMeasurement of the Circle) to show that the “two possible Pi’s”
are the same. For a circle of radiusr and diameterd, Area= π1 r 2 while Perimeter
= π2 d but thatπ1 = π2 is not obvious and is often overlooked; see [55].

Archimedes’ method. The first rigorous mathematical calculation ofπ was also due
to Archimedes, who used a brilliant scheme based ondoubling inscribed and circum-
scribed polygons,

6 7→ 12 7→ 24 7→ 48 7→ 96,

and computing the perimeters to obtain the bounds 310
71 < π < 310

70 = . . . .5 The case
of 6-gons and 12-gons is shown in Figure1; for n = 48 one already “sees” near-
circles. No computational mathematics approached this levelof rigor again until the
19th century. Phillips in [41] or [80, pp. 15-19] calls Archimedes the “first numerical
analyst.”
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0
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Figure 1. Archimedes’ method of computingπ with 6- and 12-gons

Archimedes’ scheme constitutes the first true algorithm forπ in that it can produce
an arbitrarily accurate value forπ . It also represents the birth of numerical and error
analysis – all without positional notation or modern trigonometry. As discovered in the
19th century, this scheme can be stated as a simple, numerically stable, recursion, as
follows [82].

4Imagine, an R–rated movie involving Pi!
5All rules are meant to be broken. Writing 10/70 without cancellation makes it easier to see that 1/7 is

larger than 10/71.
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Archimedean mean iteration (Pfaff–Borchardt–Schwab).Seta0 = 2
√

3 andb0 =
3, which are the values for circumscribed and inscribed 6-gons. If

an+1 =
2anbn

an + bn
(H) and bn+1 =

√

an+1bn (G), (1)

thenan andbn converge toπ , with the error decreasing by a factor of four with each
iteration. In this case, the error is easy to estimate—look ata2

n+1 − b2
n+1—and the limit

is somewhat less accessible but still reasonably easy to determine [82].
Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy

calculations ofπ over the next 1,800 years—far after its “best before” date. For ex-
ample, in fifth century China, Tsu Chung-Chih used a variant of this method to obtain
π correct to seven digits. A millennium later, al-Kāsh̄i in Samarkand “who could cal-
culate as eagles can fly” obtained 2π in sexadecimal:

2π ≈ 6 +
16

601
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609
,

good to 16 decimal places (using 3· 228-gons). This is a personal favorite; reentering
it in a computer centuries later and getting the predicted answer gives the authors
horripilation (“goose-bumps”).

Pi’s centrality is emphasised by the many ways it turns up early in new subjects
from irrationality theory to probability and harmonic analysis. For instance, Francois
Vi éta’s (1540–1603) formula

2

π
=

√
2

2

√

2 +
√

2

2

√

2 +
√

2 +
√

2

2
· · · (2)

and John Wallis’ (1616–1703) infinite product [67, 74, 75]

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8

1 · 3 · 3 · 5 · 5 · 7 · 7 · 9
· · · (3)

are counted among the first infinitary objects in mathematics. The latter leads to the
gamma function, Stirling’s formula, and much more [64], including thefirst infinite
continued fraction6 for 2/π by Lord Brouncker (1620–1684), first president of the
Royal Society of London:

2

π
=

1

1 +
9

2 +
25

2 +
49

2 · · ·
. (4)

Here, we use the modern concise notation for a continued fraction.

Arctangents and Machin formulas. With the development of calculus, it became
possible to extend calculations ofπ dramatically as shown in Figure4. Almost all
calculations between 1700 and 1980 reduce to exploiting the series for the arctangent
(or another inverse trig function) and using identities to requirecomputation only near
the center of the interval of convergence. Thus, one starts with

arctan(x) = x −
x3

3
+

x5

5
−

x7

7
+ · · · for − 1 ≤ x ≤ 1 (5)

6This was discovered without proof as was (3).
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and arctan(1) = π/4. Substitutingx = 1 proves theGregory–Leibniz formula(1671–
1674)

π

4
= 1 −

1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · · . (6)

James Gregory (1638–1675) was the greatest of a large Scottish mathematical fam-
ily. The point x = 1, however, is on the boundary of the interval of convergence of
the series. Justifying substitution requires a careful error estimate for the remainder or
Lebesgue’s monotone convergence theorem, but most introductory calculus texts ig-
nore the issue. The arctan integral and series were known centuriesearlier to the Kerala
school, which was identified with Madhava (c. 1350 – c. 1425) ofSangamagrama near
Kerala, India. Madhava may well have computed 13 digits ofπ .

To make (5) computationally feasible, we can use one of many formulas suchas:

arctan(1) = 2 arctan

(

1

3

)

+ arctan

(

1

7

)

(Hutton) (7)

arctan(1) = arctan

(

1

2

)

+ arctan

(

1

5

)

+ arctan

(

1

8

)

(Euler) (8)

arctan(1) = 4 arctan

(

1

5

)

− arctan

(

1

239

)

(Machin). (9)

All of this, including the efficiency of differentMachin formulasas they are now
called, is lucidly described by the early and distinguished computational number the-
orist D.H. Lehmer [⋆13]. See also [2, 5, 49] and [19] by Wrench, who in 1961 with
Dan Shanks performed extended computer computation ofπ using these formulas; see
Figure5.

In [⋆13] Lehmer gives what he considered to be a best possible self-checking pair
of arctan relations for computingπ . The pair was

arctan(1) = 8 arctan

(

1

10

)

− arctan

(

1

239

)

− 4 arctan

(

1

515

)

(10)

arctan(1) = 12 arctan

(

1

18

)

+ 8 arctan

(

1

57

)

− 5 arctan

(

1

239

)

. (11)

In [2], Ballantine shows that this pair makes a good choice since the series for
arctan(1/18) and arctan(1/57) has terms that differ by a constant factor of “0,” a
decimal shift. This observation was implemented in both the 1961 and 1973 computa-
tions listed in Figure4.

Mathematical landmarks in the life of Pi. The irrationality ofπ was first shown by
Lambert in 1761 using continued fractions [⋆63]. This is a good idea since a numberα

has an eventually repeating nonterminating simple continuedfraction if and only ifα
is a quadratic irrational, as made rigorous in 1794 by Legendre. Legendre conjectured
thatπ is nonalgebraic7, that is, thatπ is transcendental. Unfortunately, all the pretty
continued fractions forπ are not simple [⋆63, 70, 83]. In [⋆63], Lange examines various
proofs of

7It can be argued that he was anticipated by Maimonides (the Rambam, 1135–1204)[81].
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π = 3 +
12

2 +
32

2 +
52

2 +
72

2 · · ·
. (12)

Legendre was validated when in 1882 Lindemann provedπ transcendental. He did
this by extending Hermite’s 1873 proof of the transcendence ofe. There followed a
spate of simplifications by Weierstrass in 1885, Hilbert in 1893, and many others. Os-
wald Veblen’s article [18], written only ten years later, is a lucid description of the
topic by one of the leaders of the early 20th century American mathematical commu-
nity.8 A 1939 proof of the transcendence ofπ by Ivan Niven [14] is reproduced exactly
in AppendixA since it remains entirely appropriate for a class today.

We next reproduce our personal favorite MONTHLY proof of the irrationality ofπ .
All such proofs eventually arrive at a putative integer that mustlie strictly between
zero and one.

Theorem 1 (Breusch [26]). π is irrational.

Proof. Assumeπ = a/b with a and b integers. Then, withN = 2a, sinN = 0,
cosN = 1, and cos(N/2) = ±1. If m is zero or a positive integer, then

Am(x) ≡
∞
∑

k=0

(−1)k(2k + 1)m x2k+1

(2k + 1)!
= Pm(x) cosx + Qm(x) sinx

wherePm(x) and Qm(x) are polynomials inx with integral coefficients. (The proof
follows by induction onm : Am+1 = xd Am/dx, and A0 = sinx.) Thus,Am(N) is an
integer for every positive integerm.

If t is any positive integer, then

Bt(N) ≡
∞
∑

k=0

(−1)k (2k + 1 − t − 1)(2k + 1 − t − 2) · · · (2k + 1 − 2t)

(2k + 1)!
N2k+1

=
∞
∑

k=0

(−1)k (2k + 1)t − b1(2k + 1)t−1 + · · · ± bt

(2k + 1)!
N2k+1

= At(N) − b1At−1(N) + · · · ± bt A0(N).

Since all thebi are integers,Bt(N) must be an integer too. Break the sum forBt(N)

into the three pieces

[(t−1)/2]
∑

k=0

,

t−1
∑

k=[(t+1)/2]

, and
∞
∑

k=t

.

In the first sum, the numerator of each fraction is a product oft consecutive integers;
therefore, it is divisible byt ! and hence by(2k + 1)! since 2k + 1 ≤ t . Thus, each term
of the first sum is an integer. Each term of the second sum is zero. Thus, the third sum
must be an integer for every positive integert .

8He was also nephew of Thorstein Veblen, one of the founders of sociology and originator of the term
“conspicuous consumption.”
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This third sum is

∞
∑

k=t

(−1)k (2k − t)!

(2k + 1)!(2k − 2t)!
N2k+1

= (−1)t t !

(2t + 1)!
N2t+1

(

1 −
(t + 1)(t + 2)

(2t + 2)(2t + 3)

N2

2!

+
(t + 1)(t + 2)(t + 3)(t + 4)

(2t + 2)(2t + 3)(2t + 4)(2t + 5)

N4

4!
− · · ·

)

.

Let S(t) stand for the sum in the parenthesis. Certainly

|S(t)| < 1 + N +
N2

2!
+ · · · = eN .

Thus, the whole expression is absolutely less than

t !

(2t + 1)!
N2t+1eN <

N2t+1

t t+1
eN < (N2/t)t+1eN,

which is less than 1 fort > t0.
Therefore,S(t) = 0 for every integert > t0. But this is impossible because

lim
t→∞

S(t) = 1 −
1

22
·

N2

2!
+

1

24
·

N4

4!
− · · · = cos(N/2) = ±1.

A similar argument shows that the natural logarithm of a rational number must be
irrational. From log(a/b) = c/d would follow thatec = ad/bd = A/B. Then

B ·
∞
∑

k=0

(k − t − 1)(k − t − 2) · · · (k − 2t)

k!
ck

would have to be an integer for every positive integert , which leads to a contradiction.
Irrationality measures, denotedµ(α), as described in [83] seem not to have seen

much attention in the MONTHLY. The irrationality measureof a real number is the
infimum overµ > 0 such that the inequality

∣

∣

∣

∣

α −
p

q

∣

∣

∣

∣

≤
1

qµ

has at most finitely many solutions inp ∈ Z and q ∈ N. Currently, the best irra-
tionality measure known forπ is 7.6063. Forπ2, it is 5.095412, and for log 2, it is
3.57455391. For every rational number, the irrationality measure is 1 and the Thue-
Siegel-Roth theorem states that ifα is a real algebraic irrational thenµ(α) = 2. Indeed,
almost all real numbers have an irrationality measure of 2, and transcendental numbers
have irrationality measure 2 or greater. For example, the transcendental numbere has
µ(e) = 2 while Liouville numberssuch as

∑

n≥0 1/10n! are precisely those numbers
having infinite irrationality measure. The fact thatµ(π) < ∞ (equivalentlyπ is not
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a Liouville number) was first proved by Mahler [85] in 1953.9 This fact does figure
in the solution of many MONTHLY problems over the years; for instance, it lets one
estimate how far sin(n) is from zero.

TheRiemann zetafunction10 is defined fors > 1 by ζ(s) =
∑

n≥1 1/ns. TheBasel
problem, first posed by Pietro Mengoli in 1644, which asked for the evaluation of
ζ(2) =

∑

n≥1 1/n2, was popularized by the Bernoullis, who came from Basel in
Switzerland and, hence, the name. In 1735, all even values ofζ were evaluated by
Euler. He argued that sin(πx) could be thought of as an infinite polynomial and so

sin(πx)

x
= π

∞
∏

n=1

(

1 −
x2

n2

)

, (13)

since both sides have the same zeros and value at zero. Comparingthe coefficients of
the Taylor series of both sides of (13) establishes thatζ(2) = π2/6 and then one recur-
sively can determine a closed form (involving Bernoulli polynomials). In particular,
ζ(4) = π4/90, ζ(6) = π6/945, andζ(8) = π8/9450 and so on. By contrast,ζ(3) was
only proven irrational in the late 1970s, and the status ofζ(5) is unsettled—although
every one who has thought about thisknowsit is irrational. It is a nice exercise to con-
firm the values ofζ(4), ζ(6) from (13). A large number of the papers in this collection
center on the Basel problem and its extensions; see [⋆58, ⋆73, 50, 72]. An especially
nice accounting is in [43]. As is discussed in [⋆24, 46], it is striking how little more is
known about the number–theoretic structure ofπ .

Algorithmic high spots in the life of Pi. In the large, only three methods have been
used to make significant computations ofπ : before 1700 by Archimedes’ method,
between 1700 and 1980 using calculus methods (usually based on the arctangent’s
Maclaurin series and Machin formulas), and since 1980 using spectacular series or
iterations both based on elliptic integrals and the arithmetic–geometric mean. The
progress of this multicentury project is shown in Figures2, 4, and5. If plotted on
a log linear scale, the records line up well, especially in Figure 5, which neatly tracks
Moore’s law.

Name Year Digits

Babylonians 2000? BCE 1

Egyptians 2000? BCE 1

Hebrews (1 Kings 7:23) 550? BCE 1

Archimedes 250? BCE 3

Ptolemy 150 3

Liu Hui 263 5

Tsu Ch’ung Chi 480? 7

Al-Kashi 1429 14

Romanus 1593 15

van Ceulen (Ludolph’s number) 1615 35

Figure 2. Pre-calculusπ calculations

9He showedµ(π) ≤ 42. Douglas Adams would be pleased. The entire Mahler archive is on line athttp://

carma.newcastle.edu.au/mahler/.
10As expressed in Stigler’s law of eponymy, discoveries are often named afterlater researchers, but in Euler’s

case, he needs no more glory.
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Decimal Digit Occurrences

0 99999485134

1 99999945664

2 100000480057

3 99999787805

4 100000357857

5 99999671008

6 99999807503

7 99999818723

8 100000791469

9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108

1 62500212206

2 62499924780

3 62500188844

4 62499807368

5 62500007205

6 62499925426

7 62499878794

8 62500216752

9 62500120671

A 62500266095

B 62499955595

C 62500188610

D 62499613666

E 62499875079

F 62499937801

Total 1000000000000

Figure 3. Seemingly random behavior of single digits ofπ in base 10 and 16

Name Year Correct Digits

Sharp (and Halley) 1699 71

Machin 1706 100

Strassnitzky and Dase 1844 200

Rutherford 1853 440

Shanks 1874 (707) 527

Ferguson (Calculator) 1947 808

Reitwiesner et al. (ENIAC) 1949 2,037

Genuys 1958 10,000

Shanks and Wrench 1961 100,265

Guilloud and Bouyer 1973 1,001,250

Figure 4. Calculusπ calculations

The “post-calculus” era was made possible by the simultaneousdiscovery by Eu-
gene Salamin and Richard Brent in 1976 of identities—actuallyknown to Gauss but
not recognized for their value [⋆24, 37, 82]—that lead to the following two illustrative
reduced complexity algorithms.

Quadratic algorithm (Salamin–Brent). Seta0 = 1, b0 = 1/
√

2, ands0 = 1/2. Cal-
culate

ak =
ak−1 + bk−1

2
(Arithmetic), bk =

√

ak−1bk−1 (Geometric), (14)

ck = a2
k − b2

k, sk = sk−1 − 2kck and compute pk =
2a2

k

sk
. (15)

Then pk convergesquadratically to π . Note the similarity between the arithmetic–
geometric mean iteration (14) (which for general initial values converges quickly to
a nonelementary limit) and the out-of-kilter harmonic–geometricmean iteration (1)
(which in general converges slowly to an elementary limit) and which is an arithmetic–
geometric iteration in the reciprocals (see [82]).
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Name Year Correct Digits

Miyoshi and Kanada 1981 2,000,036

Kanada-Yoshino-Tamura 1982 16,777,206

Gosper 1985 17,526,200

Bailey Jan. 1986 29,360,111

Kanada and Tamura Sep. 1986 33,554,414

Kanada and Tamura Oct. 1986 67,108,839

Kanada et. al Jan. 1987 134,217,700

Kanada and Tamura Jan. 1988 201,326,551

Chudnovskys May 1989 480,000,000

Kanada and Tamura Jul. 1989 536,870,898

Kanada and Tamura Nov. 1989 1,073,741,799

Chudnovskys Aug. 1991 2,260,000,000

Chudnovskys May 1994 4,044,000,000

Kanada and Takahashi Oct. 1995 6,442,450,938

Kanada and Takahashi Jul. 1997 51,539,600,000

Kanada and Takahashi Sep. 1999 206,158,430,000

Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000

Takahashi Jan. 2009 1,649,000,000,000

Takahashi April. 2009 2,576,980,377,524

Bellard Dec. 2009 2,699,999,990,000

Kondo and Yee Aug. 2010 5,000,000,000,000

Kondo and Yee Oct. 2011 10,000,000,000,000

Kondo and Yee Dec. 2013 12,200,000,000,000

Figure 5. Post-calculusπ calculations

Each iteration of the Brent–Salamin algorithmdoublesthe correct digits. Successive
iterations produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 good decimal digits ofπ , and
take logN operations to computeN digits. Twenty-five iterations computeπ to over
45 million decimal digit accuracy. A disadvantage is that each of these iterations must
be performed to the precision of the final result. Likewise, we havethe following.

Quartic Algorithm (The Borweins). Seta0 = 6 − 4
√

2 andy0 =
√

2 − 1. Iterate

yk+1 =
1 − (1 − y4

k)
1/4

1 + (1 − y4
k)

1/4
and ak+1 = ak(1 + yk+1)

4 − 22k+3yk+1(1 + yk+1 + y2
k+1).

Then 1/ak converges quartically11 to π . Note that only the power of 2 used inak

depends onk. Twenty-five iterations yield an algebraic number that agrees with π to
in excess of a quadrillion digits. This iteration is nicely derived in [56].

As charmingly detailed in [⋆21], see also [⋆47, 82], Ramanujan discovered that

1

π
=

2
√

2

9801

∞
∑

k=0

(4k)! (1103+ 26390k)

(k!)43964k
. (16)

Each term of this series produces an additionaleightcorrect digits in the result. When
Gosper used this formula to compute 17 million digits ofπ in 1985, it agreed to many
millions of places with the prior estimates,this concluded the first proofof (16). As
described in [⋆24], this computation can be shown to be exact enough to constitute a
bona fide proof! Actually, Gosper first computed the simple continued fraction forπ ,

11A fourth-order iteration might be a compound of two second-order ones; this one cannot be so decom-
posed.
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hoping to discover some new things in its expansion, but foundnone. At the time of
this writing, 500 million terms of the continued fraction forπ have been computed
by Neil Bickford (then a teenager) without shedding light on whether the sequence is
unbounded (see [77]).

G. N. Watson, on looking at various of Ramanujan’s formulas suchas (16), reports
the following sensations [86]:

...a thrill which is indistinguishable from the thrill I feel when I enter the Sagrestia Nuovo
of the Capella Medici and see before me the austere beauty of the four statues representing
‘Day’, ‘Night’, ‘Evening’, and ‘Dawn’ which Michelangelo has set over the tomb of Guiliano
de‘Medici and Lorenzo de‘Medici. – G. N. Watson, 1886–1965.

Soon after Gosper did his computation, David and Gregory Chudnovsky found the
following even more rapidly convergent variation of Ramanujan’s formula. It is a con-
sequence of the fact that

√
−163 corresponds to an imaginary quadratic field with class

number one:

1

π
= 12

∞
∑

k=0

(−1)k (6k)! (13591409+ 545140134k)

(3k)! (k!)3 6403203k+3/2
. (17)

Each term of this series produces an extraordinary additional 14 correct digits. Note
that in both (16) and (17), one computes a rational series and has a single multiplication
by a surd to compute at the end.

Some less familiar themes.While most of the articles in our collection fit into one of
the big themes (irrationality [57], transcendence, arctangent formulas, Euler’s product
for sinx, evaluation ofζ(2), π in other cultures), there are of course some lovely
sporadic examples. These include the following.

• Spigot algorithms, which drip off one more digit at a time for πππ and use only
integer arithmetic [⋆71, 54]. As described in [⋆44], the first spigot algorithm was
discovered fore. While the ideas are simple, the specifics forπ need some care; we
refer to Rabinowitz and Wagon [⋆71] for the carefully explained details.

• Products for πππ · e andπππ/e [35]. Melzack, then at Bell Labs, proved12 that

π

2e
= lim

N→∞

2N
∏

n=1

(

1 +
2

n

)(−1)n+1n

(18)

6

πe
= lim

N→∞

2N+1
∏

n=2

(

1 +
2

n

)(−1)nn

. (19)

Melzak begins by showing that limn→∞ V(Cn)/V(Sn) =
√

2/(πe), whereSn is the
n-sphere andCn is the inscribedn-dimensional cylinder of greatest volume. He then
proves (18) and (19), saying the proof follows that of the derivation of Wallis’ for-
mula, and heconjecturesthat (18) can be used to prove thate/π is irrational. We re-
mind the reader that the transcendentality ofeπ follows from theGelfond–Schneider
theorem (1934) [82] sinceeπ/2 = i −i , but the statuses ofe+ π, e/π, e·π , andπe

are unsettled.

12We correct errors in Melzak’s original formulas.
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Both (18) and (19) are very slowly convergent. To check (19), one may take logs
and expand the series for log then exchange the order of summation to arrive at the
more rapidly convergent “zeta”-series

∞
∑

n=2

(−2)n

n
(α (n − 1) − 1) = log

(π e

6

)

whereα(s) :=
∑

k≥0(−1)k/(k + 1)s is the alternating zeta function, which is well
defined for Res > 0.

If we consider the partial products for (18), then we obtain

(

2

1
·

2

3
·

4

3
·

4

5
·

6

5
·

6

7
·

8

7
·

8

9
· · ·

2N

2N + 1

)

·
(

2N + 1

2N + 2

)2N

.

As N → ∞, the left factor yields Wallis’s product forπ/2 and the right factor tends
to 1/e, which confirms (18). A similar partial product can be obtained from (19).

• A curious predictability in the error in the Gregory–Liebnitz ser ies(6) for π/4
[⋆25, 45]. In 1988, it was observed that the series

π = 4
∞
∑

k=1

(−1)k+1

2k − 1
= 4

(

1 −
1

3
+

1

5
−

1

7
+

1

9
−

1

11
+ · · ·

)

, (20)

when truncated to 5,000,000 terms, differs strangely from the true value ofπ :

3.14159245358979323846464338327950278419716939938730582097494182230781640...

3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770.

Values differ as expected from truncating an alternating series: in the seventh place
a “4” that should be a “6.” But the next 13 digits are correct and, after another blip,
for 12 digits. Of the first 46 digits, only four differ from the corresponding digits
of π . Further, the “error” digits seemingly occur with a period of 14. Such anoma-
lous behavior begs for explanation. A great place to start is by using Neil Sloane’s
Internet-based integer sequence recognition tool, available at www.oeis.org. This
tool has no difficulty recognizing the sequence of errors as twicethe Euler num-
bers. Even Euler numbers are generated by secx =

∑∞
k=0(−1)k E2kx2k/(2k)!. The

first few are 1, −1, 5, −61, 1385, −50521, 2702765. This discovery led to the fol-
lowing asymptotic expansion:

π

2
− 2

N/2
∑

k=1

(−1)k+1

2k − 1
≈

∞
∑

m=0

E2m

N2m+1
. (21)

Now the genesis of the anomaly is clear: by chance, the series had been trun-
cated at 5,000,000 terms—exactly one-half of a fairly large power of ten. Indeed,
settingN = 10, 000, 000 in equation (21) shows that the first hundred or so digits of
the truncated series value are small perturbations of the correct decimal expansion
for π .

On a hexadecimal computer withN = 167, the corresponding strings and hex
errors are
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3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E...

3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF69452821E...

2 -2 A -7A 2AD2

with the first being the correct value ofπ . (In hexadecimal orhexone uses “A,B,
. . ., F” to write 10 through 15 as single “hex-digits.”) Similar phenomena occur for
other constants; see [80]. Also, knowing the errors means we can correct them and
use (21) to make Gregory’s formula computationally tractable.

• Hilbert’s inequality [⋆61, 48] In its simplest incarnation, Hilbert’s inequality is

∞
∑

m,n=1

an bm

n + m
≤ π

√

√

√

√

∞
∑

n=1

a2
n

∞
∑

n=1

b2
n (for an, bm ∈ R, an, bm > 0) (22)

with the assertion that the constantπ is best possible. Actually, 2π was the best
constant that Hilbert could obtain. Hardy’s inequality, which originated in his suc-
cessful attempt to prove (22) early in the development of the modern theory of
inequalities, is well described in [⋆61]. One could write a nice book on the places in
whichπ or ζ(2) arise as the best possible constant in an inequality.

• The distribution of the digits of πππ [46]. Single-digit distribution of the first tril-
lion digits base 10 and 16 is shown in Figure3. All the counts in these figures are
consistent withπ being random.

3. PI IN THIS MONTHLY: 1894–1944. This period yielded 20 papers for our se-
lection. The July 1894 issue of this MONTHLY contained the most embarrassing article
on Pi [10] ever to grace the pages of the MONTHLY. Flagged only by “published by the
request of the author,” who indicated it was copyrighted in 1889, it is the origin of the
famous usually garbled story of the attempt by Indiana in 1897 tolegislate the value of
π ; see [81] and [80, D. Singmaster, The legal values of pi]. It contains a nonsensical
geometric construction ofπ . Soπ and the MONTHLY got off on a bad footing.

Luckily, the future was brighter. While most early articles wouldmeet today’s crite-
ria for publication, this is not true of all. For example, [20] offers a carefully organized
list of 68 consequences of Euler’s product for sin given in (13) with almost no English.
By contrast, [6] is perhaps the first discussion of the efficiency of calculation in the
MONTHLY.
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1. R. C. Archibald, Historical notes on the relatione−(π/2) = i i , Amer. Math. Monthly28(1921) 116–121.
MR1519723
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46(1939), 499–501. MR3168990

3. J. M. Barbour, A sixteenth century Chinese approximation forπ , Amer. Math. Monthly40(1933) 69–73.
MR1522708

4. A. A. Bennett, Discussions: Pi and the factors ofx2 + 1, Amer. Math. Monthly32(1925) 375–377.
MR1520736

5. A. A. Bennett, Two new arctangent relations forπ , Amer. Math. Monthly32(1925) 253–255. MR1520682
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12. W. E. Heal, Quadrature of the circle,Amer. Math. Monthly3(1896) 41–45. MR1514010
⋆13. D. H. Lehmer, On arccotangent relations forπ , Amer. Math. Monthly45(1938) 657–664. MR1524440
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325. MR1520959
16. D. E. Smith, Historical survey of the attempts at the computationand construction ofπ , Amer. Math.

Monthly2(1895) 348–351. MR1513968
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4. PI IN THIS MONTHLY: 1945–1989. This second period collects 22 papers. It
saw the birth and evolution of the digital computer with many consequences for the
computation ofπ . Even old topics are new when new ideas and tools arise. A charming
example is as follows.

Why πππ is not 22/7. Did you know that

0 <

∫ 1

0

(1 − x)4x4

1 + x2
dx =

22

7
− π? (23)

The integrand is strictly positive on(0, 1), so the integral in (23) is strictly positive—
despite claims thatπ is 22/7 that rage over the millennia.13 Why is this identity true?
We have

∫ t

0

x4 (1 − x)4

1 + x2
dx =

1

7
t7 −

2

3
t6 + t5 −

4

3
t3 + 4 t − 4 arctan(t),

as differentiation easily confirms, and so the Newtonian fundamental theorem of cal-
culus proves (23).

One can take the idea in (23) a bit further. Note that

∫ 1

0
x4 (1 − x)4 dx =

1

630
, (24)

and we observe that

1

2

∫ 1

0
x4 (1 − x)4 dx <

∫ 1

0

(1 − x)4x4

1 + x2
dx <

∫ 1

0
x4 (1 − x)4 dx. (25)

Combine this with (23) and (24) to derive

223

71
<

22

7
−

1

630
< π <

22

7
−

1

1260
<

22

7
,

and so we re-obtain Archimedes’ famous computation

3
10

71
< π < 3

10

70
. (26)

13One may still find adverts in newspapers offering such proofs for sale. Arecent and otherwise very nice
children’s book “Sir Cumference and the the Dragon of Pi (A Math Adventure)” published in 1999 repeats the
error, and email often arrives in our in-boxes offering to show why things like this are true.
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This derivation was popularized inEureka, a Cambridge University student journal,
in 1971.14 A recent study of related approximations is made by Lucas [65]. It seems
largely happenstance that 22/7 is an early continued fraction approximate toπ .

Another less standard offering is in [33] where Y. V. Matiyasevich shows that

π = lim
m→∞

√

6 log fcm(F1, . . . , Fm)

log lcm(u1, . . . , um)
. (27)

Here, lcm is the least common multiple, fcm is the formal common multiple (the
product), andFn is the n-th Fibonacci number withF0 = 0, F1 = 1, Fn = Fn−1 +
Fn−2, n ≥ 2 (without the square root we obtain a formula forζ(2)).
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41. G. M. Phillips, Archimedes the numerical analyst,Amer. Math. Monthly88(1981) 165–169. MR0619562
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5. PI IN THIS MONTHLY: 1990–2015. In the final period, we have collected 32
papers and see no sign that interest inπ is lessening. A new topic [⋆44, 46, 51, 81] is
that ofBBP formulas, which can compute individual digits of certain constants such
asπ in base 2 orπ2 in bases 2 and 3 without using the earlier digits. The phenomenon

14Equation (23) was on a Sydney University examination paper in the early sixties and the earliest source
we know of dates from the 1940s [65] in an article by Dalzell, who lamentably did not cite himself in [84].
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is based on the formula

π =
∞
∑

i=0

1

16i

(

4

8i + 1
−

2

8i + 4
−

1

8i + 5
−

1

8i + 6

)

. (28)

On August 27, 2012, Ed Karrel used (28) to extract 25 hex digits ofπ starting after
the 1015 position. They are353CB3F7F0C9ACCFA9AA215F2.15 In 1990, a billion digits
had not yet been computed; see [80], and even now, it is inconceivable to compute the
full first quadrillion digits in any base.

Over this period, the use of the computer has become more routineeven in pure
mathematics, and concrete mathematics is back in fashion. In this spirit, we record the
following evaluation ofζ(2), which to our knowledge first appeared as an exercise in
[82].

Theorem 2 (Sophomore’s Dream).One may square term-wise to obtain

( ∞
∑

n=−∞

(−1)n

2n + 1

)2

=
∞
∑

n=−∞

1

(2n + 1)2
. (29)

In particular ζ(2) = π2/6.

Proof. Let

δN :=
N
∑

n=−N

N
∑

m=−N

(−1)m+n

(2m + 1)(2n + 1)
−

N
∑

k=−N

1

(2k + 1)2
,

and note thatδN =
∑N

n=−N
(−1)n

(2n+1)

∑N
n6=m=−N

(−1)m

m−n . We leave it to the reader to show
that for largeN the inner sumǫN(n) is of order 1/(N − n + 1), which goes to zero.

The proof is finished by evaluating the left side of (29) to π2/4 using Gregory’s
formula (6) and then noting that this means

∑∞
n=0 1/(2n + 1)2 = π2/8.

Another potent and concrete way to establish an identity is toobtain an appropriate
differential equation. For example, consider

f (x) :=
(∫ x

0
e−s2

ds

)2

and g(x) :=
∫ 1

0

exp(−x2(1 + t2))

1 + t2
dt.

The derivative off + g is zero: inMaple,

f:=x->Int(exp(-s^2),s=0..x)^2;

g:=x->Int(exp(-x^2*(1+t^2))/(1+t^2),t=0..1);

with(student):d:=changevar(s=x*t,diff(f(x),x),t)+diff(g(x),x);

d:=expand(d);

15All processing was done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA; the com-
putation took 37 days. CUDA is a parallel computing platform and programming mode developed by NVIDIA
for use in its graphics processing units (GPUs).
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shows this. Hence,f (x) + g(x) is constant for 0≤ x ≤ ∞ and so, after justifying
taking the limit at∞,

(∫ ∞

0
exp(−t2) dt

)2

= f (∞) = g(0) = arctan(1) =
π

4
.

Thus, we have evaluated the Gaussian integral using only elementary calculus and
Gregory’s formula (6). The change of variablest2 = x shows that this evaluation of
the normal distribution agrees withŴ(1/2) =

√
π .

In similar fashion, we may evaluate

F(y) :=
∫ ∞

0
exp(−x2) cos(2xy) dx

by checking that it satisfies the differential equationF ′(y) + 2y F(y) = 0. We obtain

F(y) =
√

π

2
exp(−y2),

since we have just evaluatedF(0) =
√

π/2.
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⋆71. S. Rabinowitz, S. Wagon, A spigot algorithm for the digits ofπ , Amer. Math. Monthly102(1995) 195–
203. MR1317842

72. J. Sondow, A faster product for and a new integral for lnπ/2, Amer. Math. Monthly112(2005) 729–734.
MR216777

⋆73. J. Sondow, Double integrals for Euler’s constant and lnπ/4 and an analog of Hadjicostas’s formula,
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74. J. Sondow, New Wallis- and Catalan-type infinite products forπ , e, and
√

2 +
√
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6. CONCLUDING REMARKS.

It’s generally the way with progress that it looks much greater than it reallyis. – Ludwig
Wittgenstein16

It is a great strength of mathematics that “old” and “inferior” are not synonyms. As we
have seen in this selection, many seeming novelties are actually rediscoveries. That is
not at all a bad thing, but it does behoove authors to write “I have not seen this before”
or “this is to my knowledge new” rather than unnecessarily claiming ontological or
epistemological primacy.
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A. APPENDIX: I. NIVEN - THE TRANSCENDENCE OF πππ [14]. Among the
proofs of the transcendence ofe, which are in general variations and simplifications
of the original proof of Hermite, perhaps the simplest is that of A. Hurwitz.17 His
solution of the problem contains an ingenious device, which we now employ to prove
the transcendence ofπ.

We assume thatπ is an algebraic number, and show that this leads to a contradiction.
Since the product of two algebraic numbers is an algebraic number, the quantityi π is
a root of an algebraic equation with integral coefficients

θ1(x) = 0, (30)

whose roots areα1 = i π, α2, α3, . . . , αn. Using Euler’s relationeiπ + 1 = 0, we have

(eα1 + 1) (eα2 + 1) · · · (eαn + 1) = 0. (31)

17A. Hurwitz, Beweis der Transendenz der Zahle, Mathematische Annalen, vol. 43, 1893, pp. 220-221 (also
in his Mathematische Werke, vol. 2, pp. 134-135).
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We now construct an algebraic equation with integral coefficients whose roots are
the exponents in the expansion of (31). First consider the exponents

α1 + α2, α1 + α3, α2 + α3, . . . , αn−1 + αn. (32)

By equation (30), the elementary symmetric functions ofα1, α2, . . . , αn are rational
numbers. Hence the elementary symmetric functions of the quantities (32) are rational
numbers. It follows that the quantities (32) are roots of

θ2(x) = 0, (33)

an algebraic equation with integral coefficients. Similarily,the sums of theα’s taken
three at a time are thenC3 roots of

θ3(x) = 0. (34)

Proceeding in the same way, we obtain

θ4(x) = 0, θ5(x) = 0, . . . , θn(x) = 0, (35)

algebraic equations with integral coefficients, whose roots arethe sums of theα’s taken
4, 5, . . . , n at a time respectively. The product equation

θ1(x)θ2(x) · · · θn(x) = 0, (36)

has roots that are precisely the exponents in the expansion of (31).
The deletion of zero roots (if any) from equation (36) gives

θ(x) = cxr + c1xr −1 + · · · + cr = 0, (37)

whose rootsβ1, β2, . . . , βr are the non-vanishing exponents in the expansion of (31),
and whose coefficients are integers. Hence (31) may be written in the form

eβ1 + eβ2 + · · · + eβr + k = 0, (38)

wherek is a positive integer.
We define

f (x) =
csxp−1 {θ(x)}p

(p − 1)!
, (39)

wheres = rp − 1, andp is a prime to be specified. Also, we define

F(x) = f (x) + f (1)(x) + f (2)(x) + · · · + f (s+p+1)(x), (40)

noting, with thanks to Hurwitz, that the derivative ofe−x F(x) is −e−x f (x). Hence we
may write

e−x F(x) − e0F(0) =
∫ x

0
−e−ξ f (ξ)dξ.
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The substitutionξ = τx produces

F(x) − ex F(0) = −x
∫ 1

0
e(1−τ)x f (τx)dτ.

Let x range over the valuesβ1, β2, . . . , βr and add the resulting equations. Using (38)
we obtain

r
∑

j =1

F(β j ) + kF(0) = −
r
∑

j =1

β j

∫ 1

0
e(1−τ)β j f (τβ j )dτ. (41)

This result gives the contradiction we desire. For we shall choose the primep to make
the left side a non-zero integer, and make the right side as small as we please.

By (39), we have

r
∑

j =1

f (t) = 0, for 0 ≤ t < p.

Also by (39) the polynomial obtained by multiplyingf (x) by (p − 1)! has integral
coefficients. Since the product ofp consecutive positive integers is divisible byp!, the
pth and higher derivatives of(p − 1)! f (x) are polynomials inx with integral coeffi-
cients divisible byp!. Hence thepth and higher derivatives off (x) are polynomials
with integral coefficients, each of which is divisible byp. That each of these coeffi-
cients is also divisible bycs is obvious from the definition (39). Thus we have shown
that, fort ≥ p, the quantityf (t)(β j ) is a polynomial inβ j of degree at mosts, each of
whose coefficients is divisible bypcs. By (37), a symmetric function ofβ1, β2, . . . , βr

with integral coefficients and of degree at mosts is an integer,provided thateach
coefficient is divisible bycs (by the fundamental theorem on symmetric functions).
Hence

r
∑

j =1

f (1)(β j ) = pkt , (t = p, p + 1, . . . , p + s)

where thekt are integers. It follows that

r
∑

j =1

F(β j ) = p
n+s
∑

t=p

kt .

In order to complete the proof that the left side of (41) is a non-zero integer, we now
show thatkF(0) is an integer that is prime top. From (39) it is clear that

f (t)(0) = 0, (t = 0, 1, . . . , p − 2)

f (p−1)(0) = cscp
r ,

f (t)(0) = pKt , (t = p, p + 1, . . . , p + s)

where theK t are integers. Ifp is chosen greater than each ofk, c, cr (possible since
the number of primes is infinite), the desired result follows from (40).
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Finally, the right side of (41) equals

−
r
∑

j =1

1

c

∫ 1

0

{

cr β j θ(τβ j )
}p

(p − 1)!
e(1−r )β j dτ.

This is a finite sum, each term of which may be made as small as we wish by choosing
p very large, because

lim
p→∞

{

cr β j θ(τβ j )
}p

(p − 1)!
= 0.
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