581 semester review – Dr. Colton – Winter 2012

Big Themes

- Quasi particles ("collective excitations", "quantized oscillations")
 - o Phonons
 - o Photons
 - Electrons in solids $(m_e \neq m)$
 - o Holes
 - Excitons
 - Polaritons
 - o Plasmons
 - o Polarons (not discussed; see Ch. 14, pp. 420-422)
 - Magnons (not discussed; see Ch. 12, pp. 330-335)
- Dispersion relations, and how to calculate them
 - o Phonons, ω vs. k
 - o Electrons, E vs. k
- Connection with other areas of physics
 - o Thermodynamics
 - Quantum mechanics
 - Electrodynamics
- Mathematical techniques
 - o Calculus, 1D and multivariable
 - Complex numbers
 - Fourier analysis
 - Linear algebra
- Models of reality (not a complete list, I am sure)
 - o Phonons:
 - Balls & springs
 - Debye
 - Einstein
 - Simple scattering model
 - o Electrons:
 - Free electrons
 - Simple scattering model
 - Kronig-Penney
 - Empty lattice
 - Nearly free electron
 - Hydrogen atom (electrons/donor ions; also electrons/holes as excitons)
 - Lorentz model

Chapter 1 – Crystal Structure

- Crystal = Lattice + basis
 - Symmetries (translation, rotation, reflection)
 - Lattice vectors
 - Primitive lattice vectors
- Lattice types ("Bravais")... especially sc, fcc, bcc, hexagonal
- Primitive unit cell
 - Conventional unit cell for fcc, bcc
- Crystal planes, Miller indices
- Examples of crystal structures... especially fcc, bcc, NaCl, CsCl, hcp, diamond, zinc-blende

Chapter 2 – Wave Diffraction and the Reciprocal Lattice

- X-ray diffraction ("Bragg diffraction") as interference from planes of atoms
- Reciprocal lattice as Fourier transform of real space lattice

- Reciprocal lattice vectors
- Primitive reciprocal lattice vectors
- Brillouin zones, first Brillouin zone for common crystals... especially fcc, bcc, NaCl, hcp, diamond, zincblende
- Generalized Bragg diffraction, using reciprocal lattice vectors, $\Delta \mathbf{k} = \mathbf{G}$
- Structure factor, atomic form factors how they impact observed diffraction spots
- Temperature dependence of x-ray diffraction pattern (Debye-Waller factor)

Chapter 3A – Crystal Binding

- Crystal binding (van der Waals, ionic, covalent, metallic, hydrogen)
- Cohesive energy
 - Lenard-Jones potential for van der Waals
 - Madelung potential for ionic
 - Madelung constant α
- Equilibrium lattice constant
- Compressibility/bulk modulus

Chapter 3B – Elastic Constants

- Long wavelength sound waves (solid as elastic continuum)
- Stress/strain tensors (2nd rank)
 - o Physical meaning (fractional volume change as trace of strain tensor, etc.)
 - Stiffness/compliance tensors (4th rank, but expressed as 6×6 matrix)
 - Stiffness constants for cubic crystals (C_{11}, C_{12}, C_{44})
- How to get velocities of sound waves in cubic crystals in various directions (longitudinal and transverse)
 Table of "effective elastic constants" for [100], [110], and [111] directions.

Chapter 4 – Phonons 1. Crystal Vibrations

- Balls & springs models, including 2 or more atoms/basis
 - Boundary conditions (periodic vs. other)
- Dispersion curves, ω vs. k
 - o Acoustic and optical branches
 - Determining number/type of branches for various numbers of atoms in primitive cell, various dimensions
 - Physical meaning of waves at zone center and at zone edge
- Reduced zone scheme (first Brillouin zone)
- Phonons! (quantization of the vibrational modes)
 - Spacing between points in First B.Z. is $L/2\pi$ (($L/2\pi$)³ in 3D)
- Phonon scattering, conservation of crystal momentum (momentum \pm a RLV× \hbar)

Chapter 5 – Phonons 2. Thermal Properties

- Bose-Einstein distribution function
 - How to calculate total number of particles
 - How to calculate total energy
- Density of states $\mathcal{D}(E)$ (how to calculate in 1D, 2D, and 3D)
- Debye model
- How to calculate total energy and heat capacity in the Debye model
 - Low temperature limit ($\sim T^3$)
 - High temperature limit (constant, matches Dulong-Petit value from equipartition theorem)
- Einstein model
- Thermal conductivity phonon scattering model
 - o Scattering time, mean free path
 - o Mechanisms contributing to τ : surfaces, defects, electrons, phonons

• Temperature dependence (low T = dominated by C_V dependence on T; high T = dominated by τ dependence on T)

Chapter 6 – Free Electron Fermi Gas

- Metal = box containing a "gas" of free electrons
- Density of states (1D, 2D, and 3D)
- Fermi-Dirac distribution function
 - o Chemical potential and Fermi energy ("Fermi level")
 - How to calculate total number of particles
 - How to calculate the chemical potential
 - For zero temperature, two methods (Fermi energy)
 - For non-zero temperatures
 - o How to calculate total energy
- Heat capacity of free electron gas
 - Low temperature limit (~T)
- Electrical and thermal conductivity electron scattering model
 - Scattering time, mean free path, drift velocity, Ohm's Law
 - o Wiedermann-Franz Law, Lorentz number
- Hall effect

Chapter 7 – Energy bands

- Bloch theorem ("Bloch functions", "Bloch waves")
- Band structures, E vs. k
 - o Reduced zone scheme (first B.Z.)
- Zone edge as Bragg diffraction of electron waves (standing waves)
- Band structure calculation 0: Free electrons (discussed in last chapter)
- Band structure calculation 1: Kronig-Penney model (1D)
- Band structure calculation 2: Empty lattice approximation
- Band structure calculation 3: Central equation
 - Fourier transform of Schroedinger equation
 - Expanding U in Fourier components U_G
- Band structure calculations 4: Perturbation theory ("Nearly free electron model")
 - States connect to other states with same k (reduced zone)
 - o Degenerate perturbation theory when states with same k have same energy
 - Energy gaps; parabolic bands going away from the gaps
- Metals vs. insulators (and semiconductors) which category a given material will be in

Chapters 8 and 17 – Semiconductors/ Semiconductor Devices

- Energy gaps ("band gaps"), direct and indirect
 - o General picture of band structure for Si and GaAs as prototypical semiconductors
- Valence and conduction bands
- Effective mass
- Holes
- Intrinsic semiconductors
 - Thermal promotion of electrons from VB to CB, intrinsic concentration n_i
 - Chemical potential/Fermi energy (equation)
- Mobility
- Doped semiconductors
 - Donors vs. acceptors; n- vs. p-type
 - Binding energy and Bohr radius of electrons/holes
 - Thermal promotion of electrons from donor level to CB (or holes from acceptor level to VB)
 - Chemical potential/Fermi energy (qualitatively)
- Junctions
 - o p-n ("diode", "diode drop")

- o semiconductor-metal ("Schottky")
- Transistors, bipolar and FET

Chapters 14 – 16 (selected section) – Optical Properties of Solids

- Electromagnetic theory
 - Polarization
 - o Susceptibility
 - Relative permittivity (aka dielectric constant)
 - Index of refraction
- Optical reflectance
 - Kramers-Kronig relations
- Lorentz model

•

- o UV: electrons bound to atoms
- IR: ions, coupling to phonons
 - Polaritons
- o Metals (not bound)
 - Plasma oscillations, plasmons