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Abstract 

Year after year, attackers target application-level vulnerabilities. To address these 

vulnerabilities, application security teams have increasingly focused on shifting left - 

identifying and fixing vulnerabilities earlier in the software development life cycle. 

However, at the same time, development and operations teams have been accelerating the 

pace of software release, moving towards continuous delivery. As software is released 

more frequently, gaps remain in test coverage leading to the introduction of 

vulnerabilities in production. To prevent these vulnerabilities from being exploited, it is 

necessary that applications become self-defending. RASP is a means to quickly make 

both new and legacy applications self-defending. However, because most applications are 

custom-coded and therefore unique, RASP is not one-size-fits-all - it must be trialed to 

ensure that it meets performance and attack protection goals.  In addition, RASP 

integrates with critical applications, whose stakeholders typically span the entire 

organization. To convince these varied stakeholders, it is necessary to both prove the 

benefits and show that RASP does not adversely affect application performance or 

stability. This paper helps organizations that may be evaluating a RASP solution by 

outlining activities that measure the effectiveness and performance of a RASP solution 

against a given application portfolio. 
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1. Introduction 

Recent technological trends show a shift from traditional monolithic web 

applications to microservices written in Node.js and Spring Boot, single page web 

applications written in frameworks such as Angular and React, and JavaScript as the 

primary language of the Web, both on the client and the server which pushes data and 

business logic closer to the end user (OWASP, 2017). Applications continue to migrate 

from traditional data centers to the public cloud and take advantage of technologies such 

as containerization (e.g., Docker). In addition, development and operations teams are 

accelerating the pace of software release using continuous integration and/or continuous 

delivery. Continuous integration entails testing code changes whenever they are made 

which is typically when the code changes are submitted to the source code management 

system. Continuous delivery involves automating the deployment or release process, 

resulting in frequent changes to the application in production. The high rate of code 

change and fast pace of development have the potential to introduce software defects and 

security vulnerabilities that have not been adequately tested for in the code base. 

While these technological trends may have the potential to improve security 

posture long-term, applications remain vulnerable. In fact, according to Verizon’s Data 

Breach Investigations Report (2018), the majority of breaches were caused by web 

application attacks, making it the most common type of breach per pattern (Figure 1). 
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Figure 1. Percentage and count of breaches per pattern (n=2,216). From 

“2018 Verizon Data Breach Investigations Report,” 2018. 

The reality of application attacks accounting for the majority of breaches 

necessitates better protection for production applications. Over the last couple of decades, 

network protection has moved closer and closer to the application – from the firewall to 

the intrusion prevention system to the web application firewall (WAF): “That evolution 

has involved looking deeper and deeper into HTTP, SOAP, XML, and other application-

layer network protocols. The reason for this migration is simple: the better you 

understand applications, the more accurately you can detect and block application 

attacks” (Contrast, 2017). However, the latest advance in network protection, the WAF, 

lacks visibility into the running application.  
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 The purpose of a WAF is to protect web applications and application 

programming interfaces (API)s against a variety of attacks, including automated attacks 

(bots), injection attacks and application-layer denial of service (DoS). WAFs typically 

provide signature-based protection and support positive security models (automated 

whitelisting). Some WAFs also provide anomaly detection by first establishing a baseline 

of what constitutes normal application behavior. WAFs are deployed in front of web 

servers to protect web applications against external and internal attacks, to monitor and 

control access to web applications, and to collect access logs for compliance/auditing and 

analytics. Traditionally, WAFs were deployed as physical or virtual appliances, but 

WAFs are increasingly being delivered as a managed service and/or part of a public cloud 

offering such as Amazon Web Services (AWS) WAF (Gartner, Inc., 2019). 

WAFs operate in front of the application and therefore lack the context needed to 

determine if a given input should be blocked. This need to approximate or guess the 

result of a given input results in a high degree of inaccuracy. This inaccuracy may lead to 

a given attack being successful. As Ullrich states: “Many web applications are directly 

exposed to external attacks and, while infrastructure systems such as web application 

firewalls exist, they are often considered inadequate for deterring a sophisticated 

attacker” (Ullrich, J., 2016). 

Runtime Application Self-Protection (RASP) is the next step in the evolution. 

Gartner defines RASP as “a security technology that is built or linked into an application 

or application runtime environment and is capable of controlling application execution 

and detecting and preventing real-time attacks” (Gartner, 2012, November 4).  RASP 

provides a level of visibility and accuracy that network security solutions cannot achieve 

by operating within the context of the application. Instead of monitoring the application 

for potentially malicious inputs, RASP only processes inputs that could change the 

behavior or operation of the application. This approach has the potential to increase 

accuracy without significantly impacting the performance of the application. RASP 

solutions predominantly support the Java programming language and frameworks and 

other languages and frameworks to varying degrees including C#, PHP. Ruby, Python, 

Node.js, Go, and others. Some RASP solutions require a change to the application code 

itself, depending on the programming language, while others do not. 
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1.1. RASP Technology Approaches 

In general, there are four categories of RASP technology approaches: Servlet 

Filters, Plug-ins & Software Development Kits (SDK)s; Binary Instrumentation; Java 

Virtual Machine (JVM) Replacement; and Virtualization. 

1.1.1. Servlet Filters, Plug-ins, SDKs 

This technique utilizes web server plug-ins or Java servlets, usually implemented 

into Apache Tomcat or .NET to handle inbound HTTP Requests. Plug-ins inspect 

requests before they reach application code, applying detection methods to each Request. 

Requests that match known patterns, known as attack signatures, are then blocked (Cisar, 

2016). The Prevoty RASP solution uses either plug-ins or custom code changes via an 

SDK for the specific programming language. The plug-ins or SDKs “monitor application 

behavior, analyze incoming user-input and data payloads, detect threats and sanitize data 

for safe execution within the application(s)” (Prevoty, 2018). 

1.1.2. Binary Instrumentation 

Binary instrumentation introduces monitoring and control elements into 

applications. As an instrumented application runs, the monitoring elements identify 

security events, including attacks, and the control elements log events, generate alerts, 

and block attacks. Depending on the programming language and framework, these 

elements integrate without requiring changes to the application source code or container. 

Contrast Security, Inc. states that its RASP solution leverages the Java Instrumentation 

API, which requires no changes to the application source code or Java virtual machine 

(Contrast, 2017). 

1.1.3. JVM Replacement 

Some RASP solutions are installed by replacing the standard application libraries, 

JAR files, or JVM. This allows the RASP solution to passively monitor application calls 

to supporting functions, providing a comprehensive view of data and control flows, 

enabling the use of fine-grained detection rules that can be applied as requests are 

intercepted (Adrian Lane, 2016). 
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1.1.4. Virtualization 

Virtualization is also known as containerized runtime protection. This type of 

runtime protection implements a virtual container and uses rules to govern how the 

application is protected. Waratek states that its “container-based solution has the 

advantage of allowing rule configurations to be completely separated from the 

application and has no impact on the application lifecycle or its normal operations.” In 

addition, this approach does not require changes to application artifacts such as source 

code, deployment descriptors or binaries (Waratek, 2018). 

1.2. Deployment Modes 

RASP can be deployed in different modes depending on the solution. The 

following modes of operation and terminology are particular to Contrast Protect: Off, 

Monitor, Block, and Block at Perimeter - Block(P). In the Off mode, neither monitoring 

nor blocking is enabled. In Monitor mode, the RASP solution reports on web application 

attacks but does not block any attack. The Monitor mode may also log any identified 

threats. In Block mode, the RASP solution reports and blocks web application attacks. 

Finally, in Block(P) mode, the agent blocks an attack before the application processes the 

request. This mode blocks common attack patterns such as Cross-site scripting while 

operating in a similar manner to a WAF. However, it may potentially block legitimate 

requests which may reduce accuracy. 

1.3. Drivers of RASP Adoption 

RASP adoption is driven by a number of factors including Digital 

Transformation; Vulnerability Management; DevSecOps; Security Visibility and Security 

Operations Center (SOC) Fatigue; and Technical Debt, Legacy and Commercial off-the-

shelf (COTS) Applications. 

1.3.1. Digital Transformation 

Many businesses and industries are undergoing a digital transformation from 

paper processes and physical assets to those that are software-driven and digital. In his 

now-famous essay, “Why Software Is Eating the World”, Marc Andreesen writes that 

“more and more major businesses and industries are being run on software and delivered 

as online services.” He goes on to cite examples of how traditional paper-brick-and-
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mortar businesses are transforming themselves into software businesses and how these 

new software-based businesses are disrupting industries (Andreesen, M., 2011, August 

20).  The transformation continues as today’s organizations develop and deploy custom-

coded applications using the advanced software engineering approaches of continuous 

integration, continuous delivery, and continuous deployment. The goal of these 

approaches is for organizations to be responsive to their customers and other stakeholders 

by building, testing, and releasing software with greater velocity and frequency which 

can/may result in reduced cost, time and risk of delivery. However, at times, updates are 

released without the necessary oversight from quality assurance and security teams. This 

has the potential to introduce software defects and security vulnerabilities that have not 

been adequately tested for in the code base.  

These security vulnerabilities could be known vulnerabilities that the organization 

did not have a chance to fix or an unknown, so-called, Zero Day vulnerability. In either 

case, if there is an attack against that vulnerability in production, the RASP solution may 

detect the attack and block the exploitation of the vulnerability. This would also provide 

insight as to whether or not a specific vulnerability and/or class of vulnerability is being 

targeted in an application. This information could be shared with security and business 

executives and could be used to demonstrate the importance of application security 

initiatives, validate the need for additional investments, and help the organization 

prioritize their remediation efforts (Contrast Security, 2017). 

1.3.2. Vulnerability Management 

Applications that were once written are now assembled. Contrast Labs analyzed 

1,857 production software applications, which included several thousand different open 

source libraries, frameworks, and modules. They determined that libraries constitute the 

largest percentage of application source code (79%). However, they are not the largest 

source of vulnerabilities (2.7%). The greatest number of vulnerabilities come from 

custom code, which comprises only 21% of applications on average but is responsible for 

97.3% of vulnerabilities. Researchers concluded that “While libraries only account for a 

small share of the vulnerabilities within an application it is still critical for organizations 
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to track these vulnerabilities, known as CVEs because they create risks for the 

organization” (Contrast Security, 2017, July 21).  

New vulnerabilities are discovered frequently in both custom code and open 

source libraries. If a vulnerability is discovered in custom code and is responsibly 

disclosed to the organization that owns the application, the organization may have 

sufficient time to fix the vulnerability before it can be discovered and exploited by an 

attacker. However, if a vulnerability is discovered in a library, especially in code that is in 

widespread use, and the vulnerability is publicly known and remotely discoverable, the 

application will be at risk of compromise until a fix is released. In both cases, a RASP 

solution may afford some protection until the vulnerability can be remediated.  For 

example, a researcher discovered an Apache Struts 2 vulnerability (CVE-2017-5638) in 

March 2017. Apache Struts 2 is an open-source web application framework for 

developing Java web applications and is in widespread use. Exploitation of CVE-2017-

5638 could allow the execution of arbitrary operating system commands. Within ten days 

of the vulnerability announcement by the Apache Foundation, there was evidence that 

attackers were using automated means to discover and exploit the vulnerability. With 

automated exploit scanning being conducted so quickly after the announcement, there 

was little time to apply a patch even if it would be available. However, a few RASP 

vendors announced that their RASP solution blocked attacks against this specific 

vulnerability and class of remote code injection vulnerability.  

In addition, a RASP solution may not require changes to the production 

environment in order to protect against this attack. For example, Prevoty stated that their 

RASP solution blocked this attack with “no virtual patching, definition or signature 

updates required” (Prevoty, 2017). The Prevoty RASP solution utilizes a Java plug-in that 

integrates with the application. At runtime, the Java application, via the Java plug-in, 

calls Prevoty’s APIs to preprocess application artifacts such as content, database queries, 

and changes to user state, just before code execution within the application. An analysis 

engine using Language Theoretic Security (LangSec) identifies unwanted input and 

prevents it from exercising unexpected pathways through code. In short, Prevoty blocks 

everything except the approved operating system commands generated from within the 
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application. The application would be protected in this manner until the organization 

applies a patched Apache Struts 2 release (Prevoty, 2017). 

In the event a RASP solution would not block attacks against a specific 

vulnerability, the RASP vendor could quickly write a new rule to block exploitation and 

make it available to customers (Prevoty, 2017, March 13). 

1.3.3. DevSecOps 

DevOps is “the combination of cultural philosophies, practices, and tools that 

increase an organization's ability to deliver applications and services at high velocity: 

evolving and improving products at a faster pace than organizations using traditional 

software development and infrastructure management processes” (AWS, 2019). In 

DevOps, organizations establish a workflow between the business and customer; ensure 

instant feedback; and build a culture of innovation with frequent product iterations 

(Kim, G., 2012, August 22). DevSecOps improves upon these concepts by introducing 

security into an organization’s software development and infrastructure management 

processes. In DevSecOps, organizations establish a security workflow between the 

business and customer; ensure instant security feedback; and build a security culture 

(Contrast Security, n.d.). 

DevSecOps organizations employ a security approach that allows rapid product 

development and deployment to production without introducing friction. In this model, 

security teams do not impose manual security checks that interrupt the release cycle and 

act as “toll gates.” Instead, security practices take the form of high performance 

“guardrails.” RASP solutions support this “guardrails-not-gates” approach where security 

is automated and continuous and runs as a passive background process that does not 

interfere with release cycles. In production, a RASP solution notifies the security and 

operations teams according to pre-configured rules and provides them with highly 

accurate attack forensics to facilitate an effective response. 

A RASP solution could be employed in pre-production environments as well. 

This provides an organization with the capability to test the security posture of an 

application before it is deployed to production. For example, an application scheduled for 

release may contain important new features, but also known vulnerable code that cannot 



Runtime Application Self-Protection 10 

 

Alexander Fry, alexanderfry@student.sans.edu 

  

be remediated in the short term. The organization could test how effective the RASP 

solution would be in blocking attacks against the known vulnerable code before the 

application is released to production. If the RASP solution blocks these attacks, they 

could deploy the application to production and patch the vulnerability in a later release. 

This would help accelerate time-to-market for the software without compromising 

security. 

1.3.4. Security Visibility and SOC Fatigue 

Many organizations use performance monitoring software to measure the 

performance of their production applications. This software provides information about 

the running application such as transaction details with method calls and line numbers, as 

well as metrics like CPU utilization and memory usage (New Relic, 2019). This high 

level of detail allows operations teams to find root causes and fix issues quickly. RASP 

solutions could provide the same level of visibility into attacks as organizations now have 

with application performance. For example, security teams would have actionable and 

timely threat intelligence across the entire application portfolio. They would know with 

greater confidence that an attack is taking place, including the type of attack, details 

about the payload, where the attack is coming from, if the attack had been seen 

previously, the area of the application targeted and the effectiveness of the RASP solution 

in blocking the attack.  

The SOC is the nerve center of the security team in a larger organization and 

monitors threats across the organization. The SOC receives alerts from Security 

Information and Event Management (SIEM) systems that ingest data from the network 

and host-based Intrusion Detection Systems/Intrusion Prevention Systems, WAFs, 

custom application logging, NetFlow and other sources. These sources generate 

thousands of alerts. This overabundance of alerts leads to what is referred to as Alert 

Fatigue; the SOC expends energy sifting through false positives, and often lacks the 

context to prioritize which alerts are important. Some organizations deal with alert 

fatigue by tuning the alert threshold to permit only the number of alerts they are capable 

of processing. The drawback of this approach is that significant alerts could be missed, 

increasing the probability of a successful attack going unnoticed. In addition, typically 
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the SOC has poor visibility into the application layer of the application portfolio and they 

would have very little data to analyze in the event of an incident. Without improved 

fidelity and greater context concerning application alerts, the SOC is a poor return on 

investment for application security. 

A RASP solution provides greater context into attacks to help relieve SOC fatigue 

by making the SOC more effective in prioritizing alerts and responding to incidents. For 

example, a RASP solution could send attack events to the SIEM as well. The RASP 

solution could also be integrated with software like Slack or Pager Duty so that incident 

response personnel could respond more effectively to notifications. Notifications could 

be configured for specific applications and users using conditional parameters: Category, 

Impact, Likelihood, URL, Class, and Method. Once a notification or alert is received, the 

incident responder could create an exclusion or virtual patch, blacklist an IP address, add 

a new rule, or suppress the event (Contrast Security, 2019).  

1.3.5. Technical Debt, Legacy and COTS Applications 

Technical debt grows when organizations fail to maintain applications and 

systems. For custom-coded applications, it is necessary to update the programming 

language version, frameworks, application server, database management system and 

third-party libraries, typically, at least, on an annual basis. COTS applications are 

commercial applications acquired by an organization. For COTS applications, it is 

necessary to apply patches at a point-level release and accrue for major version changes 

every three years or less. This helps to keep applications secure and puts organizations in 

a better position to retain top talent and continue to service the application. An 

application with heavy technical debt may become unserviceable or pose a risk to 

conducting business if there is a failure (Price, E., 2017, September 12).  

Applications with technical debt are typically referred to as legacy applications. A 

legacy application may be an application that was launched years ago, lacks a build 

process or pipeline, has limited documentation, is no longer developed or maintained, but 

is still mission-critical to the business. There may even be a scarcity of developers with 

the necessary skillset to maintain the application.  In addition, for both COTS and legacy 

applications, the organization may not possess the source code to allow it to easily fix 
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vulnerabilities discovered in these applications. However, even if the vulnerability cannot 

be fixed in code, it is still necessary to defend the application against exploitation of that 

vulnerability. A RASP solution could afford some protection for legacy applications 

through virtual patching. Virtual patching is defined as “the capability to apply both 

routine and emergency security patches without the need to change code and with no 

downtime” (Waratek, 2018). This is an advantage when the system to be patched is a 

critical business system where disruption to normal operations or scheduled downtime is 

unacceptable. 

1.4. Vendor Landscape 

While the choice of a RASP vendor is outside the scope of this paper, it should be 

noted that RASP vendors may shift business strategy to align themselves with customers, 

compete more effectively, and put themselves in a better position for increased funding or 

acquisition. As the vendor changes strategy or organizational structure, it is important for 

customers to re-evaluate the solution to ensure it is still a good fit for their information 

security program. Keeping up with industry trends and vendor offerings is an important 

part of the vendor selection and education process. For example, the Forrester New Wave 

™ produces a Runtime Application Self-Protection report that may prove useful in 

evaluating the market presence of RASP vendors, as seen below in Figure 2. 
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Figure 2. Strategy vs Offering. From “The Forrester New Wave Runtime 

Application Self-Protection, Q1 2018,” 2018. 

2. Lab Environment 

A controlled lab environment was created for testing the effectiveness of the 

RASP solution against two known vulnerable web applications, WebGoat and NodeGoat. 

From the available RASP solutions in the marketplace, Contrast Protect was selected 

because it supports the technologies and frameworks used in the web applications and 

allows for a trial period that is sufficiently long enough to conduct the testing described 

in this paper. WebGoat is a deliberately vulnerable Java web application that is 

maintained by OWASP and designed to teach web application security best practices. 

Similar to WebGoat, NodeGoat is a deliberately vulnerable Node.js web application 
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maintained by OWASP that is also designed as a training tool. Node.js is a modern 

service-side framework written in JavaScript. The objective of testing a Node.js 

application is to measure the effectiveness of a RASP solution in protecting a modern 

web application framework. In addition to security testing, the performance of each web 

application, with and without the RASP solution integrated, was measured using the New 

Relic application performance monitoring tool. 

Attacks against each application were directed at the known vulnerabilities and 

were automated and timed using Burp Suite. Further research was carried out by 

attempting to evade RASP detection, for example, by using escaping and encoding 

techniques to vary the attack signature for Reflected Cross-site Scripting (XSS) attacks. 

The evasion approach was guided by techniques used to bypass common input filters and 

should not be considered exhaustive (Portswigger, 2018). In addition, the decision to vary 

the attack signature of Reflected XSS attacks, as opposed to all attacks, was informed by 

the necessary time constraints in conducting the overall research, and because Reflected 

XSS is a common vulnerability between the NodeGoat and WebGoat applications, which 

provides comparative results. There are other types of attacks with common encoding and 

escaping techniques that could be explored in greater detail, but for the purposes of this 

research, will not be a focus here. 

 In addition, exploitable Server-Side Request Forgery (SSRF) vulnerabilities were 

developed for each vulnerable web application to ensure that the RASP solution was not 

biased towards the public set of known vulnerabilities. To measure effectiveness, the 

result of each attack was compared against the successful exploitation of the vulnerability 

in the vulnerable web application. A successful attack results in the exploitation of the 

vulnerability, while an unsuccessful attack fails to exploit the vulnerability. If the attack 

fails and produces a performance impact or an error condition such as an HTTP Status 

Code 500, the impact and error were documented. The application logging capability was 

set to the highest level of verbosity and monitored to capture any error or impact to the 

application. 

Before the attacks could be carried out against the “Goat” applications (WebGoat 

and NodeGoat), it was necessary to prepare the environment and applications for the 
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attack. These preparatory steps consisted of: Installation of Goat Applications; 

Integration of Goat Applications with Contrast; Attack Automation; and Vulnerability 

Development and are found in the supplemental material GitHub repository: 

https://github.com/alexanderfry/rasp-research-paper. 

3. Attack Protection 

Once the lab environment was ready, attack traffic was run against the “Goat” 

applications to measure the effectiveness of the RASP attack protection. 

Contrast Protect characterizes the status of attacks as one of the following: 

• EXPLOITED - The word “EXPLOITED” is the past tense of the word 

exploit and, in this context, signifies that an attack against a specific 

vulnerability was successful. The exploit itself is computer code, or a 

sequence of commands that takes advantage of a vulnerability and causes 

unintended functionality or unanticipated behavior to occur in the 

application (Technopedia, 2019). 

• PROBED – Contrast defines a “PROBED” attack as one that “did not 

cause any adverse actions within the application” and was not 

“BLOCKED.” It is possible for a “PROBED” attack to exploit a 

vulnerability. 

• BLOCKED – An attack that is prevented from exploiting a vulnerability. 

This action typically results from a Contrast Protect rule set to Block 

mode.  

• BLOCKED (P) - An attack that is prevented from exploiting a 

vulnerability. This action typically results from a Contrast Protect rule set 

to Block(P) mode. 
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3.1. NodeGoat - Contrast Protect in Monitor Mode 

NodeGoat is launched with the Contrast Protect Agent using the command npm 

run contrast -- --agent.logger.level.debug. It is confirmed that Monitor mode is enabled 

for all Node.js rules by editing the policy located in Applications->Policy->Protect. 

The next step is to run the Burp Macro containing the NodeGoat attacks. Contrast Protect 

detects this as an Active Attack, shown in red in the upper right-hand corner, and lists the 

Attack Events in aggregate on the Monitor screen. “Live” and “All Environments” are 

selected, and the “Show probed” box is checked to ensure that all attack events are 

shown.  

The Attack Events screen lists two of the attacks as “PROBED” and two of the 

attacks as “EXPLOITED” (Figure 3). 

 

Figure 3. Attack Events Screen with NodeGoat in Monitor Mode 

 

3.1.1. Reflected XSS Attack Events Analysis and Cookie Stealer Exploit 

The Reflected XSS attack event was characterized as “PROBED.” The Overview 

tab for this attack event states that “This attempted attack did not require specific 

blocking because it did not cause any adverse actions within the application.” This begs 

the question of how Contrast Protect determines if an attack event is characterized as 

“PROBED” or “EXPLOITED” and if it is deserving of blocking. The proof of concept 

exploit used in the Reflected Cross-Site Scripting attack is a relatively harmless script 

that creates an alert dialog with the number 1, <script>alert(1)</script>. However, 

attackers commonly use malicious exploits that attempt to compromise the user’s session. 

As an attempt to change the way the attack event is characterized, the proof of concept 
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exploit is changed to steal the session cookie and log the cookie to an attacker-controlled 

server. To accomplish this new proof-of-concept exploit, an attacker-controlled server is 

simulated by running an HTTP server on 127.0.0.1 port 8000, python -m 

SimpleHTTPServer 8000. The proof-of-concept exploit is replaced with a cookie stealing 

exploit: <script>document.write('<img 

src="http://127.0.0.1:8000/?'+document.cookie+' "/>');</script>. A script like this 

would typically be delivered to a victim via a phishing e-mail or drive-by attack. Upon 

executing this proof of concept exploit, the script delivers the cookie in an HTTP Request 

to the HTTP server (Figure 4). 

 

 

Figure 4. Cookie Stealer HTTP Request in Burp Repeater and Cookie Received 

 

However, the Reflected XSS attack event is still listed as “PROBED” in the 

Contrast Portal.  

3.1.2. NoSQL Attack Events Analysis 

In continuing the analysis, a comparison of the two NoSQL Injection attack events 

shows that this is part of the same attack, but was identified as two different query 

strings, possibly as a result of how the page is rendered by the application. The overview 

of the exploited NoSQL Injection attack event describes where the suspicious value was 

seen entering the application through the HTTP Request Query String “threshold” and 

how that value altered the meaning of the NoSQL query. The code snippet and line 
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number provide context to remediate or patch the NoSQL Injection vulnerability (Figure 

5). 

 

Figure 5. NodeGoat NoSQL Injection Attack Events 

 

3.1.3. Remaining Attack Events Analysis 

Contrast Protect created four attack events for attacks that attempted to exploit three 

vulnerabilities: NoSQL Injection, Server-Side JavaScript Injection, and Reflected XSS. 

Contrast Protect did not identify attacks against Insecure Direct Object Reference, 

Missing Function Level Access Control, and Unvalidated Redirect and does not provide 

rules to protect against exploitation of these vulnerabilities. The first two vulnerabilities 

are considered business logic flaws and are typically identified through manual testing. 

However, the third vulnerability, Unvalidated Redirect, has a rule in Contrast Assess, the 

pre-production product, but not in Contrast Protect. The Contrast Assess rule identifies 

the Unvalidated Redirect vulnerability as, “Unvalidated Redirect from Untrusted Sources 

on /learn page”.  This signifies that the Contrast agent software that is used by both 

Assess and Protect is capable of identifying this vulnerability but a Protect rule has not 

yet been written. 
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3.2. NodeGoat - Contrast Protect in Block Mode 

All of the attack events have been analyzed in Monitor mode. Now the rules are 

changed to Block mode to test if the attacks would be blocked. It is confirmed that Block 

mode is enabled for all Node.js rules by viewing the policy located in Applications-

>Policy->Protect. 

The Burp Macro was run again. All four attack events were observed in Block 

mode.  However, the Attack Events screen shows that only one attack was “BLOCKED”. 

The other three attacks are shown as “PROBED.” In addition, the Server-Side JavaScript 

Injection vulnerability is identified as a Path Traversal vulnerability (Figure 6).  

 

Figure 6. Attack Events Screen with NodeGoat in Block Mode 

  

To confirm that all attacks were blocked, the HTTP Responses in Burp Proxy 

were inspected. All HTTP Responses returned HTTP status code “403 – Forbidden”, 

preventing the exploitation of the vulnerabilities. 

 

3.3. NodeGoat - Contrast Protect in Block at Perimeter Mode 

Contrast Protect was then changed to “Block at Perimeter” Block (P) mode for the 

rules that support this option: Path Traversal, Cross-Site Scripting, and NoSQL Injection.  

Then the Burp Macro was run again. Three attack events were observed in Block 

and Block(P). The Attack Events screen confirmed that three attacks were blocked at 

perimeter “BLOCKED (P).” Both Block and Block(P) mode identified the Server-Side 

JavaScript Injection vulnerability as a Path Traversal vulnerability (Figure 7).  
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Figure 7. Attack Events Screen with NodeGoat in Block and Block(P) Mode 

 

It was further confirmed that all attacks were blocked by inspecting the HTTP 

Responses for each attack in Burp Proxy. All Responses returned HTTP status code “403 

– Forbidden”, preventing the exploitation of the vulnerability.  

3.4. NodeGoat – Attempt to Evade RASP Detection 

All XSS attacks were blocked by Contrast Protect. However, attackers commonly 

use evasion techniques such as encoding and escaping to evade detection and blocking. 

To test the effectiveness of Contrast Protect in detecting XSS attacks using these 

common evasion techniques, first the policy was changed back to Monitoring mode. 

Then, attacks were conducted using nine variations of the Reflected XSS proof of 

concept exploit: <script>alert(1)</script>. All nine of the XSS attacks were detected by 

Contrast Protect (Figure 8). 
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Figure 8. All Evasion Attempts Detected in Monitor Mode 

 

 After switching to Block and Block(P) mode, all nine of the attacks were blocked 

by Contrast Protect and verified in both the Browser and Burp Proxy.  

  

3.4.1. NodeGoat - SSRF Attack Events Analysis 

The Vulnerability Development section of the supplemental material described 

how the SSRF vulnerability was developed and demonstrated exploitability. To test the 

ability of Contrast Protect to block attacks against this vulnerability, the SSRF attacks 

were run against NodeGoat with a Burp Macro. After running the attacks, the Contrast 

Portal was reviewed to ascertain if the SSRF attack events had been detected. However, 

the monitor screen displayed “No Attacks Detected.” Even going back to “Last Hour” 

and “Last Day” did not show any attacks. This confirms that attacks against the SSRF 

vulnerability are not detected by the current Contrast Protect ruleset (Figure 9).  

 

Figure 9. NodeGoat SSRF No Attacks Detected 

 

 As a further confirmation, Contrast Assess was enabled and the SSRF attack was 

run again. The Vulnerabilities tab should show that the vulnerability is picked up by 

Contrast Assess. However, there was no SSRF vulnerability listed nor was there any 

vulnerabilities listed for the “/research” page (Figure 10). 
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Figure 10. NodeGoat SSRF No Research Page Vulnerabilities Listed 

 

 To verify that the Contrast agent is monitoring the “/research” page, the SSRF 

vulnerability is converted to an Unvalidated Redirect vulnerability, for which Contrast 

Assess has a rule.  

 The SSRF attack was run again. This time, the vulnerability was identified as an 

Unvalidated Redirect in the “/research” page (Figure 11). This an indication that SSRF is 

a gap in both the Contrast Assess and Protect ruleset coverage for Node.js applications. 
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Figure 11. NodeGoat Unvalidated Redirect Vulnerability in Research Page 

 

3.4.2. NodeGoat – Attack Protection Summary 

Contrast Protect, in Monitor mode, labeled a Reflected XSS attack that is capable 

of stealing a user’s session cookie and sending it to an attacker-controlled server as 

“PROBED” rather than “EXPLOITED”. Contrast Protect consistently labeled Reflected 

XSS attacks as “PROBED” rather than “EXPLOITED” and labeled the NoSQL Injection 

attack as “EXPLOITED.” A reason for the difference in labeling could be that Contrast 

Protect considers Injection attacks, such as the NoSQL Injection attack, as higher impact, 

which is deserving of the “EXPLOITED” label. After all, injection attacks target the 

service-side and could compromise the application itself, the underlying operating system 

or lead to a data breach, whereas Reflected XSS target the client-side or individual users.  

Contrast Protect, in Monitor Mode, identified a single NoSQL Injection attack as 

two separate attack events. One of the attack events was labeled “PROBED” and the 

other “EXPLOITED”. This could be caused by how the page was rendered by the 

application or how it was blocked by Contrast, resulting in two separate data flows. 

Contrast Protect missed Insecure Direct Object Reference, Missing Function 

Level Access Control, Unvalidated Redirect and SSRF attacks. There are no Protect rules 

for Insecure Direct Object Reference and Missing Function Level Access Control, but 

these vulnerabilities are considered business logic flaws and are typically identified 

through manual testing, so it is reasonable that no rules exist for these vulnerabilities. The 

Unvalidated Redirect and SSRF vulnerabilities are capable of being identified by 

Contrast. Contrast Assess has a Node.js rule for Unvalidated Redirect and a Java rule for 

SSRF. However, Contrast Protect missed both of these attacks and does not have a rule 

for them. Therefore, the lack of a rule for Unvalidated Redirect and SSRF is a gap in 

Node.js protection. 

Contrast Protect, in Block and Block(P) Mode, characterized an attack against a 

Server-Side JavaScript Injection vulnerability as an attack against a Path Traversal 

vulnerability. The file system path used in the Server-Side JavaScript vulnerability proof 
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of concept exploit, /etc/passwd, is often used to test for Path Traversal vulnerabilities. 

Contrast Protect misidentifies this file system path as a component of a Path Traversal 

exploit. 

 

3.5. WebGoat – Contrast Protect in Monitor Mode 

It is necessary to monitor the application to ensure that Contrast Protect detects 

the attacks. The application is launched with the Contrast Protect Agent enabled. The 

Agent build number is 3.5.8.5149. The command to launch WebGoat is java -

Dcontrast.standalone.appname=Webgoat -Dcontrast.override.appname=Webgoat -

javaagent:contrast.jar -jar webgoat-server-v8.0.0.SNAPSHOT.jar –server.port=9080 –

server.address=192.168.0.21. 

 Once WebGoat is running, Monitor mode is enabled for all Java rules by editing 

the policy located in Applications->Policy->Protect. 

The next step was to run the Burp Macro containing the WebGoat attacks. 

Contrast Protect detects this as an Active Attack, shown in red in the upper right-hand 

corner, and lists the Attack Events in aggregate on the Monitor screen. “Live” and “All 

Environments” are selected and the “Show probed” box is checked to ensure that all 

attack events are shown. 

The Attack Events screen shows six attack events. One of the attack events is 

listed as “PROBED” and five are listed as “EXPLOITED” (Figure 12).  

 

Figure 12. Attack Events Screen with WebGoat in Monitor Mode 
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The Overview tab from the Probed Attack Events Screen states that “This attempted 

attack did not require specific blocking because it did not cause any adverse actions 

within the application.” This is the same response that was received for the NodeGoat 

application. In NodeGoat, when the proof of concept exploit for Cross-Site Scripting was 

modified to steal the session cookie, the Contrast response remained the same. 

Contrast Protect created six attack events for attacks attempting to exploit six 

vulnerabilities: SQL Injection, XXE and Cross-site Scripting. It missed the Insecure 

Direct Object Reference vulnerability. There are no Protect rules for the Insecure Direct 

Object Reference vulnerability because it is considered a business logic flaw and is 

typically identified through manual testing. 

 

3.6. WebGoat – Contrast Protect in Block Mode 

After the attack events have been analyzed in Monitor mode, the rules are 

changed to Block Mode to test if the attacks would be blocked. Block mode is enabled 

for all Java rules by editing the policy located in Applications->Policy->Protect. 

 The Burp Macro was run again. All six attack events were observed in Block 

mode. The Attack Events screen shows that five attack events were “BLOCKED.” The 

Cross-Site Scripting attack event is shown as “PROBED.” Selecting the Cross-Site 

Scripting attack event provides additional information in four tabs: Overview, Details, 

Request and Discussion. The Overview shows the attack event observed by Contrast 

Protect and states, “This attempted attack did not require specific blocking because it did 

not cause any adverse actions within the application.” This was the same explanation 

given when Contrast Protect was run in Monitor mode. The following is a screenshot of 

the Attack Events Screen in Block Mode (Figure 13).  
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Figure 13. Attack Events Screen with WebGoat in Block Mode 

 

To confirm that each attack event was blocked, the HTTP Responses in Burp 

Proxy were inspected. Five of the attacks failed, preventing the exploitation of the 

vulnerabilities. However, the Cross-Site Scripting attack succeeded (Figure 14). 

  

Figure 14. Successful Cross-Site Scripting Attack in Block Mode 

 

3.7. WebGoat – Contrast Protect in Block and Block (P) Mode 

Contrast Protect was changed to Block(P) mode to test how the findings changed. 

The rules that don’t support Block(P) mode are left in Block mode. The Cross-Site 

Scripting and SQL Injection vulnerabilities have a Block(P) rule, and the XML External 

Entity Processing vulnerabilities have a Block rule. 

The Burp Macro was run again. The monitor screen shows all seven attack events. 

The Attack Events screen confirms that all attacks were blocked. The Cross-Site 
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Scripting attacks and SQL Injection attacks were Blocked at Perimeter “BLOCKED (P)” 

whereas the XML External Entity Processing (XXE) attacks were “BLOCKED” (Figure 

15). 

 

Figure 15. Attack Events Screen with WebGoat in Block and Block(P) Mode 

 

In this test run, two XSS attack events were identified compared to the one XSS 

attack event that was identified in Monitor and Block mode. Figure 16, below, shows that 

the first XSS attack event was the error page, /WebGoat/error.html, and the second was 

the application path for the XSS vulnerability, /WebGoat/CrossSiteScripting/attack5a. 
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Figure 16. Two XSS Attack Events with WebGoat in Block and Block(P) Mode 

 

The additional XSS attack event appears to be the same attack reflected in/on the 

WebGoat error page in addition to the vulnerable page in the WebGoat application. The 

following Internal Server Error in the HTTP Response caused the additional XSS attack 

event (Figure 17). 

 

Figure 17. XSS Attack Response with WebGoat in Block and Block(P) Mode 

 

It was further confirmed that all other attacks were blocked by inspecting the 

HTTP Responses for each attack in Burp Proxy. 

 

3.8. WebGoat – Attempt to Evade RASP Detection 

All XSS attacks were blocked by Contrast Protect. However, attackers commonly 

use evasion techniques such as encoding and escaping to evade detection and blocking. 

To test the effectiveness of Contrast Protect in detecting XSS attacks using these 

common evasion techniques, first the policy was changed back to Monitoring mode. 
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Then, attacks were conducted using six variations of the Reflected XSS proof of concept 

exploit: <script>alert(1)</script>. This was the same set of nine proof of concept 

exploits used to test evasion in NodeGoat. For WebGoat, only six of the nine attacks 

succeeded in exploiting the Reflected XSS vulnerability. The other three attacks caused 

an exception: “java.lang.IllegalArgumentException: Invalid character found in the 

request target. The valid characters are defined in RFC 7230 and RFC 3986.” However, 

all six of the successful attacks were detected by Contrast Protect (Figure 18). 

 

Figure 18. All Evasion Attempts Detected in Monitor Mode 

 

After switching to Block and Block(P) mode, all six of the attacks were blocked 

by Contrast Protect and were verified in both the Browser and Burp Proxy. Each attack 

generated two attack events. The additional XSS attack event appears to be the same 

attack reflected in/on the WebGoat error page in addition to the vulnerable page in the 

WebGoat application. This same behavior was witnessed with the default proof of 

concept exploit for XSS. In the following screenshot, the second column from the left 

shows that each of the twelve attacks were blocked “BLOCKED(P)” and the rightmost 

column shows each attack payload (Figure 19). 
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Figure 19. All Evasion Attempts Blocked in Blocked(P) Mode 

3.8.1. WebGoat - SSRF Attack Events Analysis 

 The Vulnerability Development section of the supplemental material describes 

how the SSRF vulnerability was developed and demonstrated exploitability. To test the 

ability of Contrast Protect to block attacks against this vulnerability, the SSRF attacks 

were run against WebGoat with a Burp Macro. After running the attacks, the Contrast 

Portal was reviewed to ascertain if the SSRF attack events had been detected. However, 

the monitor screen displayed “No Attacks Detected.” Even going back to “Last Hour” 

and “Last Day” did not show any attacks. This appears to confirm that attacks against the 

SSRF vulnerability are not detected by the current Contrast Protect ruleset. 
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 As further confirmation Contrast Assess was enabled and the SSRF attack was 

run again. The Vulnerabilities tab shows that Contrast Assess identifies the SSRF 

vulnerability. The Policy tab shows that the SSRF rule is enabled. This confirms that 

SSRF is a gap in the current Contrast Protect ruleset coverage for Java applications 

(Figure 20). 

 

 

Figure 20. WebGoat SSRF Vulnerability 

3.8.2. WebGoat – Attack Protection Summary 

Contrast Protect, in Block mode, did not block the proof of concept XSS attack. 

Instead of “BLOCKED”, the attack was labeled as “PROBED.” This appears to be an 

anomaly as it blocked all other Reflected XSS attacks in Block or Block(P) mode. 

Contrast Protect missed Insecure Direct Object Reference and Server-Side 

Request Forgery attacks. There is no Protect rule for Insecure Direct Object Reference, 

but this vulnerability is considered a business logic flaw and is typically identified 

through manual testing, so it is reasonable that no rule exists. SSRF vulnerabilities are 

capable of being identified by Contrast. This was proven using the Contrast Assess 

product. However, Contrast Protect missed this attack and does not have a rule for SSRF. 

Therefore, the lack of a rule for SSRF is considered a gap in Java protection. 

Contrast Protect, in Block(P) mode, caused an Internal Server Error, HTTP 500, 

when blocking the XSS attack. The Contrast Agent created an AttackBlockedException 

that appears to have led to the Internal Server Error.  
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4. Performance Measurement 

Application performance was measured for the Goat applications under different 

traffic and attack scenarios both with and without Contrast Protect enabled. To make the 

generation of metrics repeatable and consistent, the Goat applications were run in VMs 

isolated from other running applications; Burp Macros were created to automate the 

sending of HTTP traffic and the traffic was sent from a separate host on the same wired 

network, switch and VLAN as the VM. To obtain the most realistic results, this test 

should ideally be run in an environment that mirrors production. The following ten tests 

were run three times each: 

• Not Run – Normal application traffic sent to the application. Run without 

Contrast Agent starting the application. 

• Off - Normal application traffic with Contrast Protect in Off mode. 

• Monitor - Normal application traffic with Contrast Protect in Monitor mode. 

• Block - Normal application traffic with Contrast Protect in Block mode. 

• Block at Perimeter (Block(P)) – Normal application traffic with Contrast Protect 

in Block at Perimeter mode (for those rules that have a Block at Perimeter mode). 

• Not Run (Attack) – Attack traffic sent to the application. Run without Contrast 

Agent starting the application. 

• Off (Attack) - Attack traffic with Contrast Protect in Off mode. 

• Monitor (Attack) - Attack traffic with Contrast Protect in Monitor mode. 

• Block (Attack) - Attack traffic with Contrast Protect in Block mode. 

• Block at Perimeter (Block(P)) (Attack) – Attack traffic with Contrast Protect in 

Block at Perimeter mode (for those rules that have a Block at Perimeter mode). 

The VM hosting the Goat applications was restarted consistently before and after 

each test run to reset the environment. New Relic Application Performance Monitoring 

(APM) software was used to gather the following metrics: per request times, memory 

usage and CPU utilization.  
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The per-request transaction time value was calculated as the geometric mean of 

the transaction times of the three runs (x1, x2, x3) for each of the test cases. The 

geometric mean is calculated by multiplying the three runs together and taking the cube 

root: GM=√(𝑥1
3 ∗ 𝑥2 ∗ 𝑥3). 

A geometric mean was selected as the most accurate statistical method to analyze 

the data because the resultant transaction time value is closest to the central value and is 

not skewed to the higher or lower values in the data set (Suhas, D. 2017, May). 

NodeGoat testing was conducted using version 1.35.0 of the Contrast Agent. The 

NodeGoat VM was running Ubuntu 14.04.5 LTS 64-bit on VMware Fusion 8.5.10 with 

four processor cores and 6144 MB of RAM. The underlying hardware was a Mac Pro 

(Early 2008) with 2 x 2.8 GHz Quad-Core Intel Xeon processors, 16 GB 800 MHz 

DDRD FB-DIMM memory on OS X Version 10.11.6. 

WebGoat testing was conducted using build 3.5.8.5149. The WebGoat VM was 

running Ubuntu 18.04.1 LTS 64-bit on VMware Fusion 11.0.2 with four processor cores 

and 6144 MB of RAM. The underlying hardware was a MacBook Pro (15-inch, 2017) 

with a 2.9 GHz Intel Core i7 processor, 16 GB 2133 MHz LPDDR3 memory on OS X 

Version 10.14.2. 

Performance measurement visualizations can be found in the supplemental material 

GitHub repository: https://github.com/alexanderfry/rasp-research-

paper/blob/master/PERFORMANCE_MEASUREMENT.md. 

 

4.1. NodeGoat Normal Traffic 

Each row of Figure 21 below displays the peak transaction time value for the area 

of performance that was measured: Node.js, MongoDB, Web external and NodeGoat 

overall application response. The Web external response time was not recorded (N/R) in 

the New Relic Portal for the test cases when the Contrast Agent was enabled; the reason 

for this is unknown. Web external is defined as: 

the portion of time spent in transactions to external applications from within the 

code of the application you are monitoring. That can be a call to a 3rd party 
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company or it could be a call to another microservice within the company. It 

serves to help you understand how much performance impact there is for code 

executing outside the application you are measuring (Carpenter, S. ,2017, 

February).  

A review of the documentation from both New Relic and Contrast Security did 

not provide any additional information concerning the troubleshooting of this issue. 

However, a decision was made that Node.js response time and overall NodeGoat 

response time were the most important performance metrics, so no additional 

troubleshooting was pursued.  

 Not Run Off Monitor Block Block(P) 

Node.js 5.68 48.24 170.61 140.00 137.33 

MongoDB 1.61 2.16 2.24 1.21 1.24 

NodeGoat 31.96 49.53 171.93 140.33 137.33 

Web External 22.41 N/R N/R N/R N/R 

Figure 21. NodeGoat Normal Traffic, Response Time Per Request in 

Milliseconds (ms) 

  

There was a 749 percent increase in Node.js response time from when NodeGoat 

was run without Contrast and when the Contrast Agent was enabled in Off mode. The 

performance impact on Node.js more than doubled in the Monitor, Block, and Block(P) 

modes. Of all the active modes: Monitoring, Block and Block(P); the Monitoring mode 

created the most overhead on the response times across the application. Each row of 

Figure 22 below shows the percentage increase in response times in Node.js and the 

NodeGoat application for each of the Contrast Protect Modes compared to when Contrast 

was not run. 
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 Off Monitor Block Block(P) 

Node.js 749 2,904 2,365 2,318 

NodeGoat 55 438 339 330 

Figure 22. NodeGoat Normal Traffic, Response Time Percentage Increase 

 

The Node.js VM V8 Heap (used) memory ranged from 19.4 to 88 MB. The 

memory usage with Contrast was approximately 68.6 MB more than without Contrast, an 

increase of 354 percent. All modes including Off appeared to use approximately the same 

amount of memory. 

 The peak Node.js VM CPU utilization with Contrast was approximately 10 

percent more than without Contrast. All modes including Off appeared to use 

approximately the same processing power. 

   In summary, when normal traffic was run through NodeGoat with the Contrast 

Agent enabled, it experienced a significant performance impact. The smallest impact 

measured was a Node.js response time increase of 749 percent and an overall application 

response time increase of 55 percent. The memory usage increased 354 percent and the 

CPU usage increased 10 percent. 

 

4.2. NodeGoat Attack Traffic 

Each row of Figure 23 below displays the peak transaction time value for the area 

of performance being measured: Node.js, MongoDB, Web external and overall 

NodeGoat application response. As in the NodeGoat Normal Traffic performance 

measurement, the Web external response time was not recorded (N/R) in the New Relic 

Portal for the test cases when Contrast Agent was enabled - the cause of this is unknown.  
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 Not Run Off Monitor Block Block(P) 

Node.js 8.54 33.18 180.12 177.42 159.75 

MongoDB 2.40 3.10 4.86 1.33 1.32 

NodeGoat 19.81 35.33 182.62 177.69 160.04 

Web External 11.34 N/R N/R N/R N/R 

Figure 23. NodeGoat Attack Traffic, Per Request Times in Milliseconds (ms) 

 

There was a 288 percent increase in Node.js response time from when NodeGoat 

was run without Contrast and when the Contrast Agent was enabled in Off mode. The 

performance impact on Node.js more than doubled in the Monitor, Block, and Block(P) 

modes. Of all the active modes: Monitoring, Block and Block(P); the Monitoring mode 

created the most overhead on the response times across the application. Each row of 

Figure 24 below shows the percentage increase in response times in Node.js and the 

NodeGoat application for each of the Contrast Protect Modes compared to when Contrast 

was not run. 

 Off Monitor Block Block(P) 

Node.js 288 2,009 1,978 1,771 

NodeGoat 78 822 797 708 

Figure 24. NodeGoat Attack Traffic, Response Time Percentage Increase 

 

The Node.js VM V8 Heap (used) memory ranged from 27.2 to 97.2 MB. The 

memory usage with Contrast was approximately 70 MB more than without Contrast, an 

increase of 257 percent. All Modes including Off appeared to use the same amount of 

memory. 

The peak Node.js VM CPU utilization with Contrast was approximately 10 

percent more than without Contrast. All Modes including Off appeared to use 

approximately the same processing power. 
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In summary, when attack traffic was run through NodeGoat with the Contrast 

Agent enabled, it experienced a significant performance impact. The smallest impact 

measured was a Node.js response time increase of 288 percent and an overall application 

response time increase of 78 percent. The memory usage increased 257 percent and the 

CPU usage increased 10 percent. 

4.3. WebGoat Normal Traffic 

Each row of Figure 25 below displays the peak transaction time value for the area 

of performance being measured: JVM, HSQLDB, and overall WebGoat application 

response. As in the NodeGoat performance measurement, the Web external response time 

was not recorded (N/R) in the New Relic Portal for any of the test cases - the cause for 

this is unknown.  

 Not Run Off Monitor Block Block(P) 

JVM 16.40 25.77 24.72 24.60 29.49 

HSQLDB 2.48 4.14 3.68 3.81 4.00 

WebGoat 18.90 29.38 28.39 28.40 33.27 

Figure 25. WebGoat Normal Traffic, Per Request Times in Milliseconds (ms) 

 

There was a 57 percent increase in the JVM response time from when WebGoat 

was run without Contrast and when the Contrast Agent was enabled in Off mode. Of all 

the active modes: Monitoring, Block and Block(P); the Block(P) mode created the most 

overhead on the response times across the application. Each row of Figure 26 below 

shows the percentage increase in response times in the JVM and the WebGoat application 

for each of the Contrast Protect Modes compared to when Contrast was not run. 

 Off Monitor Block Block(P) 

JVM 57 51 50 80 

WebGoat 55 50 50 76 

Figure 26. WebGoat Normal Traffic, Response Time Percentage Increase 
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The peak memory usage with Contrast was approximately 186 MB more than 

without Contrast. All Modes including Off appeared to use approximately the same 

amount of memory. 

 The peak CPU usage with Contrast was approximately 44 percent more than 

without Contrast.  

In summary, when normal traffic was run through WebGoat with the Contrast 

Agent enabled, it experienced a significant performance impact. The smallest impact 

measured was a JVM response time increase of 50 percent and an overall application 

response time increase of 50 percent. The memory usage increased 28 percent and the 

CPU usage increased 44 percent. 

 

4.4. WebGoat Attack Traffic 

Each row of Figure 27 below displays the peak transaction time value for the area 

of performance being measured: JVM, HSQLDB, Web external and overall WebGoat 

application response. The Web external response time was recorded in the New Relic 

Portal for all test cases - it is unknown as to why this was different for WebGoat Attack 

Traffic compared to WebGoat Normal Traffic or the NodeGoat Attack and Normal 

Traffic tests. 

 Not Run Off Monitor Block Block(P) 

JVM 20.50 29.96 33.33 31.59 31.55 

HSQLDB 3.08 4.57 4.92 4.72 4.75 

WebGoat 25.52 36.11 38.90 37.88 37.76 

Web External 1.78 1.57 1.84 1.42 1.42 

Figure 27. WebGoat Attack Traffic, Per Request Times in Milliseconds (ms) 
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There was a 46 percent increase in the JVM response time from when WebGoat 

was run without Contrast and when the Contrast Agent was enabled in Off mode. Of all 

the active modes: Monitoring, Block and Block(P); the Monitor mode created the most 

overhead on the response times across the application. Each row of Figure 28 below 

shows the percentage increase in response times in the JVM and the WebGoat application 

for each of the Contrast Protect Modes compared to when Contrast was not run. 

 Off Monitor Block Block(P) 

JVM 46 63 54 54 

WebGoat 42 52 48 48 

Figure 28. WebGoat Attack Traffic, Response Time Percentage Increase 

 

The peak memory usage with Contrast was approximately 123 MB more than 

without Contrast. All Modes including Off appeared to use approximately the same 

amount of memory. 

The peak CPU usage with Contrast was approximately 44 percent more than 

without Contrast. 

In summary, when attack traffic was run through WebGoat with the Contrast 

Agent enabled, it experienced a significant performance impact. The smallest impact 

measured was a JVM response time increase of 46 percent and an overall application 

response time increase of 42 percent. The memory usage increased 18 percent and the 

CPU usage increased 44 percent. 

5. Evaluation Procedure 

Organizations that want to evaluate RASP solutions may find it helpful to follow 

a procedure based on the research in this paper. The following procedure helps an 

organization evaluate a RASP solution against business and performance requirements. 

First, define the business uses cases that the RASP solution should solve. For 

example, the RASP solution should provide security visibility and support logging and 
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notification of attacks in production. It should block all attacks for the applications which 

are known to be vulnerable in production. And it should block all attacks for unknown 

vulnerabilities for which the RASP solution has rules.  

Next, define the performance requirements that the RASP solution should meet. 

For example, the RASP solution should not increase per request times by more than 10%. 

Then, select applications from the portfolio that should be protected with a RASP 

solution. Choose a subset of these applications as candidates for the trial, ensuring that all 

technology stacks are represented, e.g., Node.js, Java, .NET. Consider including known 

vulnerable applications for comparison. 

Select RASP vendors that support the technology stacks. Then, contact the RASP 

vendors to explore a trial, choosing vendors that best support the trial requirements 

including the expected timeframe for testing. 

Define success criteria and rank the criteria in order of importance. The following 

are example criteria: provides accurate attack detection; reduces risk with increased 

attack visibility; provides comprehensive attack results; ease of use; saves time with 

faster delivery of attack results; and, meets performance requirements. 

Create a lab environment that mirrors production as closely as possible. Integrate 

the selected applications with the RASP solution and configure the RASP solution 

logging at the highest level of verbosity. 

 Next, create scripts or macros to automate normal and attack traffic against the 

selected applications. Ensure that the attacks exploit known vulnerabilities. If no known 

vulnerabilities exist, develop vulnerabilities and exploits. Run and time the scripts and 

macros to ensure that the attacks are repeatable and consistent.  

Run the attacks against the applications in each of the different modes, e.g., 

Monitor, Block, Block(P). Monitor application logs and RASP solution logs for errors 

and other output. Compare the effectiveness of the RASP solution against the attacks in 

each of the different modes. 

 Measure the performance of the applications. First, turn off verbose logging for 

the RASP solution and applications to better mirror a production operating environment. 
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Run both normal traffic and attack traffic automated tests against the application. Run the 

tests without the RASP solution integrated to create a baseline. Run the tests in each of 

the different RASP modes, e.g., Off, Monitor, Block, Block(P). Then, compare the 

performance of the RASP solution in each of the different modes. 

 If the RASP solution uses a central application instance to collect vulnerability 

data, consider where this will be hosted. If it will be hosted on-premises instead of using 

the vendor’s shared instance, estimate the costs that an on-premise environment will add 

to the total cost of ownership. 

6. Areas for Further Research 

There are other areas of RASP technology that deserve further research. Two of 

these are Evasion; and the Complementary Use of RASP with Web Application Firewall 

(WAF).  

6.1. Evasion 

This paper explored encoding and escaping XSS attacks to evade detection. There 

are other types of attacks with common evasion techniques that could be explored in 

greater detail. For example, SQL Injection attacks can be encoded to bypass 

magic_quotes() as well as WAFs (Netsparker Ltd., 2019).  In addition, research could 

build off of the automated attacks run against the vulnerable web applications to create a 

test harness that varies the attacks using different evasion techniques. The test harness 

could run against the vulnerable web applications integrated with different RASP 

solutions. The industry already conducts standardized testing using similar approaches 

for classes of products such as Next Generation Firewalls (NSS Labs, 2017, December 

7). 

6.2. The Complementary Use of RASP with WAF 

A number of organizations have existing investments in WAF technology. A 

WAF could be used with a RASP solution to provide greater attack intelligence and WAF 

enhancement. Contrast Security refers to this as a targeted defense. In this model, a 

cloud-based WAF would be used as a perimeter device and as the first line of defense 
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against application attacks.  During an attack, a WAF alert would put the attack on the 

SOC’s radar and inform the SOC if the WAF blocked the attack or took other actions.  

The RASP solution would send application-specific information to the SIEM such as 

source code impacted, data flow, stack trace, backend connections, libraries and 

frameworks, configuration and potential vulnerabilities. The SIEM would correlate the 

information from both the WAF and RASP using the common HTTP Request.  

The combined data from both devices would provide greater context and 

intelligence about the attack and attacker. The SOC would be more informed and could 

more accurately flag an attack as something worth investigating. They would also be able 

to provide more specific guidance to application teams to fix an exploitable vulnerability 

(Contrast Security, 2018, March 20). 

7. Conclusion 

The majority of breaches are caused by web application attacks. Organizations are 

building, testing, and releasing applications with greater frequency, with gaps in test 

coverage resulting in vulnerabilities being pushed to production. Many custom-coded 

applications consist of more open source third-party code than first-party code, exposing 

organizations to open source risk. Zero-day vulnerabilities are discovered frequently in 

legacy, COTS and custom-coded applications.  

With automated exploit scanning being conducted so quickly after the discovery 

of vulnerabilities, there is little time to apply a patch even if it is available. However, 

RASP solutions have the potential to block unknown attacks with no virtual patching, 

definition, or signature updates required. In the event a RASP solution would not block 

attacks against a specific vulnerability, the RASP vendor could quickly write a new rule 

to block exploitation and make the rule available to its customers. RASP has the potential 

to provide greater protection for production applications than existing solutions.  

RASP is still not a perfect security solution. It focuses on common application 

security weaknesses and does not replace a human being for the discovery of business 

logic flaws. In addition, it takes effort by an organization to evaluate RASP offerings to 

ensure they meet business and performance requirements. However, RASP solutions are 
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evolving and have become more comprehensive in the types of weaknesses they protect 

against and support more programming languages and frameworks. Finally, there is great 

promise in RASP solutions complementing existing investments in WAF to provide 

greater attack intelligence and WAF enhancement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Runtime Application Self-Protection 44 

 

Alexander Fry, alexanderfry@student.sans.edu 

  

References 
 

Adrian Lane. (2016, May 17). Understanding and Selecting RASP: Technology 

Overview. Retrieved from https://securosis.com/blog/understanding-and-

selecting-rasp-technology-overview 

Amazon Web Services (AWS). (2019). What is DevOps?. Retrieved January 5, from 

https://aws.amazon.com/devops/what-is-devops/ 

Andreesen, M. (2011, August 20). Why Software Is Eating the World. The Wall Street 

Journal[New York]. Retrieved from 

https://www.wsj.com/articles/SB100014240531119034809045765122509156294

60 

Asadoorian, P. (2016). Getting a Grasp on RASP. Retrieved from IANS 

website: https://www.iansresearch.com/insights/reports/getting-a-grasp-on-rasp 

Bird, J. (2017). 2017 State of Application Security: Balancing Speed and Risk. Retrieved 

from SANS Institute website: https://www.sans.org/reading-

room/whitepapers/analyst/2017-state-application-security-balancing-speed-risk-

38100 

Carpenter, S. (2017, February). What does "Web external" metric means? [Web log post]. 

Retrieved from https://discuss.newrelic.com/t/what-does-web-external-metric-

means/45743/3 

Cisar, P., & Cisar, S. M. (2016). The framework of runtime application self-protection 

technology. 2016 IEEE 17th International Symposium on Computational 

Intelligence and Informatics (CINTI). doi:10.1109/cinti.2016.7846383 

Contrast Security. (n.d.). Contrast Enables DevOp Teams to Deliver Security-as-Code. 

Retrieved January 1, 2019, from https://www.contrastsecurity.com/devops 

Contrast Security. (2019). Administration | Contrast Open Docs. Retrieved January 5, 

from https://docs.contrastsecurity.com/admin-orgsettings.html#org-notify 

Contrast Security. (2018, March 20). Get the Most Out of Your WAF Investment | 

Technical Brief. Retrieved January 1, 2019, from 

https://www.contrastsecurity.com/get-the-most-out-of-your-waf-investment 



Runtime Application Self-Protection 45 

 

Alexander Fry, alexanderfry@student.sans.edu 

  

Contrast Security. (2017, July 21). Whitepaper | State of Application Security: Libraries. 

Retrieved from https://www.contrastsecurity.com/state-of-application-security-

libraries 

Contrast Security. (2017). RASP Technical Brief. Retrieved from Contrast Security, Inc. 

website: https://www.contrastsecurity.com/rasptechbrief 

Gartner, Inc. (2019). Web Application Firewalls Reviews. Retrieved from 

https://www.gartner.com/reviews/market/web-application-firewalls/vendors 

Gartner. (2012, November 4). Runtime Application Self-Protection (RASP) - Gartner IT 

Glossary. Retrieved January 1, 2019, from https://www.gartner.com/it-

glossary/runtime-application-self-protection-rasp 

Kim, G. (2012, August 22). The Three Ways: The Principles Underpinning DevOps - IT 

Revolution. Retrieved from https://itrevolution.com/the-three-ways-principles-

underpinning-devops/ 

Netsparker Ltd. (2019). SQL Injection Cheat Sheet. Retrieved January 1, 2019, from 

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/ 

New Relic. (2019). New Relic: Application Performance Monitoring and Management. 

Retrieved from https://newrelic.com/products/application-monitoring 

NSS Labs. (2017, December 7). Next Generation Firewall (NGFW) Test Methodology. 

Retrieved from https://www.nsslabs.com/default/assets/example-

reports/ngfw/NSS_Labs_Next_Generation_Firewall_Methodology_v8_0.pdf 

OWASP. (2016). Tutorial - OWASP NodeGoat Project. Retrieved November 1, 2018, 

from http://nodegoat.herokuapp.com/tutorial 

OWASP. (2017, June 26). Server-Side Request Forgery - OWASP. Retrieved from 

https://www.owasp.org/index.php/Server_Side_Request_Forgery 

OWASP. (2017). OWASP Top 10 2017. Retrieved from 

https://www.owasp.org/index.php/Top_10-2017_Top_10 

PortSwigger. (2018). Bypassing Signature-Based XSS Filters. Retrieved from 

https://support.portswigger.net/customer/portal/articles/2590820-bypassing-

signature-based-xss-filters-modifying-script-code 

Prevoty. (2017, March 13). Prevoty Automatically Protects Against the Latest Struts 2 

Vulnerability and Attacks Targeting Remote Code Injection Vulnerabilities. 



Runtime Application Self-Protection 46 

 

Alexander Fry, alexanderfry@student.sans.edu 

  

Retrieved from http://www.marketwired.com/press-release/prevoty-

automatically-protects-against-latest-struts-2-vulnerability-attacks-targeting-

2202301.htm 

Prevoty. (2017, September). AppSec in an Open Source World 101. Retrieved from 

https://s3-us-west-

2.amazonaws.com/prevotyexternaldocs/Whitepapers/AppSec_in_an_Open_Sourc

e_World_101.pdf 

Prevoty. (2018, May 17). Prevoty Technical Overview. Retrieved from Prevoty, Inc. 

website: https://www.prevoty.com/prevoty-technical-overview 

Price, E. (2017, September 12). How to shed the technical debt of legacy code. Retrieved 

from https://www.devbridge.com/articles/shed-the-technical-debt-of-legacy-code/ 

Suhas, D. (2017, May 18). Using the Right Mean for Meaningful Performance Analysis | 

Data Analysis [Blog post]. Retrieved from 

http://blog.catchpoint.com/2017/05/18/using-mean-performance-analysis/ 

Tirosh, A., Zumerle, D., & Horvath, M. (2018). Magic Quadrant for Application Security 

Testing. Retrieved from Gartner 

website: https://www.gartner.com/doc/reprints?id=1-

4TFRCQV&ct=180319&st=sb 

Ullrich, J. (2016). 2016 State of Application Security: Skills, Configurations and 

Components. Retrieved from SANS Institute 

website: https://www.sans.org/reading-room/whitepapers/analyst/2016-state-

application-security-skills-configurations-components-36917 

Verizon. (2018). Data Breach Investigations Report (11th Edition). Retrieved from 

Verizon website: 

https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_

xg.pdf 

Waratek. (2018). Application Security Using Runtime Protection. Retrieved from 

Waratek Ltd. website: https://cdn.aws.waratek.com/v2/wp-

content/uploads/2018/02/WP-RASP-Intro-20180206.pdf 

Williams, J. (2015). Protection from the Inside: Application Security Methodologies 

 


