
SANS Institute
Information Security Reading Room

Runtime Application
Self-Protection (RASP),
Investigation of the
Effectiveness of a RASP
Solution in Protecting Known
Vulnerable Target
Applications

Alexander Fry

Copyright SANS Institute 2021. Author Retains Full Rights.

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express
written permission.

http://www.sans.org/info/36909
http://www.sans.org/info/36914

Runtime Application Self-Protection (RASP),
Investigation of the Effectiveness of a RASP

Solution in Protecting Known Vulnerable Target
Applications

GIAC (GWAPT) and RES 5500 Gold Certification

Author: Alexander J. Fry, alexanderfry@student.sans.edu

Advisor: Tanya Baccam

Accepted: April 15, 2019

Abstract

Year after year, attackers target application-level vulnerabilities. To address these

vulnerabilities, application security teams have increasingly focused on shifting left -

identifying and fixing vulnerabilities earlier in the software development life cycle.

However, at the same time, development and operations teams have been accelerating the

pace of software release, moving towards continuous delivery. As software is released

more frequently, gaps remain in test coverage leading to the introduction of

vulnerabilities in production. To prevent these vulnerabilities from being exploited, it is

necessary that applications become self-defending. RASP is a means to quickly make

both new and legacy applications self-defending. However, because most applications are

custom-coded and therefore unique, RASP is not one-size-fits-all - it must be trialed to

ensure that it meets performance and attack protection goals. In addition, RASP

integrates with critical applications, whose stakeholders typically span the entire

organization. To convince these varied stakeholders, it is necessary to both prove the

benefits and show that RASP does not adversely affect application performance or

stability. This paper helps organizations that may be evaluating a RASP solution by

outlining activities that measure the effectiveness and performance of a RASP solution

against a given application portfolio.

Runtime Application Self-Protection 2

Alexander Fry, alexanderfry@student.sans.edu

1. Introduction

Recent technological trends show a shift from traditional monolithic web

applications to microservices written in Node.js and Spring Boot, single page web

applications written in frameworks such as Angular and React, and JavaScript as the

primary language of the Web, both on the client and the server which pushes data and

business logic closer to the end user (OWASP, 2017). Applications continue to migrate

from traditional data centers to the public cloud and take advantage of technologies such

as containerization (e.g., Docker). In addition, development and operations teams are

accelerating the pace of software release using continuous integration and/or continuous

delivery. Continuous integration entails testing code changes whenever they are made

which is typically when the code changes are submitted to the source code management

system. Continuous delivery involves automating the deployment or release process,

resulting in frequent changes to the application in production. The high rate of code

change and fast pace of development have the potential to introduce software defects and

security vulnerabilities that have not been adequately tested for in the code base.

While these technological trends may have the potential to improve security

posture long-term, applications remain vulnerable. In fact, according to Verizon’s Data

Breach Investigations Report (2018), the majority of breaches were caused by web

application attacks, making it the most common type of breach per pattern (Figure 1).

Runtime Application Self-Protection 3

Alexander Fry, alexanderfry@student.sans.edu

Figure 1. Percentage and count of breaches per pattern (n=2,216). From

“2018 Verizon Data Breach Investigations Report,” 2018.

The reality of application attacks accounting for the majority of breaches

necessitates better protection for production applications. Over the last couple of decades,

network protection has moved closer and closer to the application – from the firewall to

the intrusion prevention system to the web application firewall (WAF): “That evolution

has involved looking deeper and deeper into HTTP, SOAP, XML, and other application-

layer network protocols. The reason for this migration is simple: the better you

understand applications, the more accurately you can detect and block application

attacks” (Contrast, 2017). However, the latest advance in network protection, the WAF,

lacks visibility into the running application.

Runtime Application Self-Protection 4

Alexander Fry, alexanderfry@student.sans.edu

 The purpose of a WAF is to protect web applications and application

programming interfaces (API)s against a variety of attacks, including automated attacks

(bots), injection attacks and application-layer denial of service (DoS). WAFs typically

provide signature-based protection and support positive security models (automated

whitelisting). Some WAFs also provide anomaly detection by first establishing a baseline

of what constitutes normal application behavior. WAFs are deployed in front of web

servers to protect web applications against external and internal attacks, to monitor and

control access to web applications, and to collect access logs for compliance/auditing and

analytics. Traditionally, WAFs were deployed as physical or virtual appliances, but

WAFs are increasingly being delivered as a managed service and/or part of a public cloud

offering such as Amazon Web Services (AWS) WAF (Gartner, Inc., 2019).

WAFs operate in front of the application and therefore lack the context needed to

determine if a given input should be blocked. This need to approximate or guess the

result of a given input results in a high degree of inaccuracy. This inaccuracy may lead to

a given attack being successful. As Ullrich states: “Many web applications are directly

exposed to external attacks and, while infrastructure systems such as web application

firewalls exist, they are often considered inadequate for deterring a sophisticated

attacker” (Ullrich, J., 2016).

Runtime Application Self-Protection (RASP) is the next step in the evolution.

Gartner defines RASP as “a security technology that is built or linked into an application

or application runtime environment and is capable of controlling application execution

and detecting and preventing real-time attacks” (Gartner, 2012, November 4). RASP

provides a level of visibility and accuracy that network security solutions cannot achieve

by operating within the context of the application. Instead of monitoring the application

for potentially malicious inputs, RASP only processes inputs that could change the

behavior or operation of the application. This approach has the potential to increase

accuracy without significantly impacting the performance of the application. RASP

solutions predominantly support the Java programming language and frameworks and

other languages and frameworks to varying degrees including C#, PHP. Ruby, Python,

Node.js, Go, and others. Some RASP solutions require a change to the application code

itself, depending on the programming language, while others do not.

Runtime Application Self-Protection 5

Alexander Fry, alexanderfry@student.sans.edu

1.1. RASP Technology Approaches

In general, there are four categories of RASP technology approaches: Servlet

Filters, Plug-ins & Software Development Kits (SDK)s; Binary Instrumentation; Java

Virtual Machine (JVM) Replacement; and Virtualization.

1.1.1. Servlet Filters, Plug-ins, SDKs

This technique utilizes web server plug-ins or Java servlets, usually implemented

into Apache Tomcat or .NET to handle inbound HTTP Requests. Plug-ins inspect

requests before they reach application code, applying detection methods to each Request.

Requests that match known patterns, known as attack signatures, are then blocked (Cisar,

2016). The Prevoty RASP solution uses either plug-ins or custom code changes via an

SDK for the specific programming language. The plug-ins or SDKs “monitor application

behavior, analyze incoming user-input and data payloads, detect threats and sanitize data

for safe execution within the application(s)” (Prevoty, 2018).

1.1.2. Binary Instrumentation

Binary instrumentation introduces monitoring and control elements into

applications. As an instrumented application runs, the monitoring elements identify

security events, including attacks, and the control elements log events, generate alerts,

and block attacks. Depending on the programming language and framework, these

elements integrate without requiring changes to the application source code or container.

Contrast Security, Inc. states that its RASP solution leverages the Java Instrumentation

API, which requires no changes to the application source code or Java virtual machine

(Contrast, 2017).

1.1.3. JVM Replacement

Some RASP solutions are installed by replacing the standard application libraries,

JAR files, or JVM. This allows the RASP solution to passively monitor application calls

to supporting functions, providing a comprehensive view of data and control flows,

enabling the use of fine-grained detection rules that can be applied as requests are

intercepted (Adrian Lane, 2016).

Runtime Application Self-Protection 6

Alexander Fry, alexanderfry@student.sans.edu

1.1.4. Virtualization

Virtualization is also known as containerized runtime protection. This type of

runtime protection implements a virtual container and uses rules to govern how the

application is protected. Waratek states that its “container-based solution has the

advantage of allowing rule configurations to be completely separated from the

application and has no impact on the application lifecycle or its normal operations.” In

addition, this approach does not require changes to application artifacts such as source

code, deployment descriptors or binaries (Waratek, 2018).

1.2. Deployment Modes

RASP can be deployed in different modes depending on the solution. The

following modes of operation and terminology are particular to Contrast Protect: Off,

Monitor, Block, and Block at Perimeter - Block(P). In the Off mode, neither monitoring

nor blocking is enabled. In Monitor mode, the RASP solution reports on web application

attacks but does not block any attack. The Monitor mode may also log any identified

threats. In Block mode, the RASP solution reports and blocks web application attacks.

Finally, in Block(P) mode, the agent blocks an attack before the application processes the

request. This mode blocks common attack patterns such as Cross-site scripting while

operating in a similar manner to a WAF. However, it may potentially block legitimate

requests which may reduce accuracy.

1.3. Drivers of RASP Adoption

RASP adoption is driven by a number of factors including Digital

Transformation; Vulnerability Management; DevSecOps; Security Visibility and Security

Operations Center (SOC) Fatigue; and Technical Debt, Legacy and Commercial off-the-

shelf (COTS) Applications.

1.3.1. Digital Transformation

Many businesses and industries are undergoing a digital transformation from

paper processes and physical assets to those that are software-driven and digital. In his

now-famous essay, “Why Software Is Eating the World”, Marc Andreesen writes that

“more and more major businesses and industries are being run on software and delivered

as online services.” He goes on to cite examples of how traditional paper-brick-and-

Runtime Application Self-Protection 7

Alexander Fry, alexanderfry@student.sans.edu

mortar businesses are transforming themselves into software businesses and how these

new software-based businesses are disrupting industries (Andreesen, M., 2011, August

20). The transformation continues as today’s organizations develop and deploy custom-

coded applications using the advanced software engineering approaches of continuous

integration, continuous delivery, and continuous deployment. The goal of these

approaches is for organizations to be responsive to their customers and other stakeholders

by building, testing, and releasing software with greater velocity and frequency which

can/may result in reduced cost, time and risk of delivery. However, at times, updates are

released without the necessary oversight from quality assurance and security teams. This

has the potential to introduce software defects and security vulnerabilities that have not

been adequately tested for in the code base.

These security vulnerabilities could be known vulnerabilities that the organization

did not have a chance to fix or an unknown, so-called, Zero Day vulnerability. In either

case, if there is an attack against that vulnerability in production, the RASP solution may

detect the attack and block the exploitation of the vulnerability. This would also provide

insight as to whether or not a specific vulnerability and/or class of vulnerability is being

targeted in an application. This information could be shared with security and business

executives and could be used to demonstrate the importance of application security

initiatives, validate the need for additional investments, and help the organization

prioritize their remediation efforts (Contrast Security, 2017).

1.3.2. Vulnerability Management

Applications that were once written are now assembled. Contrast Labs analyzed

1,857 production software applications, which included several thousand different open

source libraries, frameworks, and modules. They determined that libraries constitute the

largest percentage of application source code (79%). However, they are not the largest

source of vulnerabilities (2.7%). The greatest number of vulnerabilities come from

custom code, which comprises only 21% of applications on average but is responsible for

97.3% of vulnerabilities. Researchers concluded that “While libraries only account for a

small share of the vulnerabilities within an application it is still critical for organizations

Runtime Application Self-Protection 8

Alexander Fry, alexanderfry@student.sans.edu

to track these vulnerabilities, known as CVEs because they create risks for the

organization” (Contrast Security, 2017, July 21).

New vulnerabilities are discovered frequently in both custom code and open

source libraries. If a vulnerability is discovered in custom code and is responsibly

disclosed to the organization that owns the application, the organization may have

sufficient time to fix the vulnerability before it can be discovered and exploited by an

attacker. However, if a vulnerability is discovered in a library, especially in code that is in

widespread use, and the vulnerability is publicly known and remotely discoverable, the

application will be at risk of compromise until a fix is released. In both cases, a RASP

solution may afford some protection until the vulnerability can be remediated. For

example, a researcher discovered an Apache Struts 2 vulnerability (CVE-2017-5638) in

March 2017. Apache Struts 2 is an open-source web application framework for

developing Java web applications and is in widespread use. Exploitation of CVE-2017-

5638 could allow the execution of arbitrary operating system commands. Within ten days

of the vulnerability announcement by the Apache Foundation, there was evidence that

attackers were using automated means to discover and exploit the vulnerability. With

automated exploit scanning being conducted so quickly after the announcement, there

was little time to apply a patch even if it would be available. However, a few RASP

vendors announced that their RASP solution blocked attacks against this specific

vulnerability and class of remote code injection vulnerability.

In addition, a RASP solution may not require changes to the production

environment in order to protect against this attack. For example, Prevoty stated that their

RASP solution blocked this attack with “no virtual patching, definition or signature

updates required” (Prevoty, 2017). The Prevoty RASP solution utilizes a Java plug-in that

integrates with the application. At runtime, the Java application, via the Java plug-in,

calls Prevoty’s APIs to preprocess application artifacts such as content, database queries,

and changes to user state, just before code execution within the application. An analysis

engine using Language Theoretic Security (LangSec) identifies unwanted input and

prevents it from exercising unexpected pathways through code. In short, Prevoty blocks

everything except the approved operating system commands generated from within the

Runtime Application Self-Protection 9

Alexander Fry, alexanderfry@student.sans.edu

application. The application would be protected in this manner until the organization

applies a patched Apache Struts 2 release (Prevoty, 2017).

In the event a RASP solution would not block attacks against a specific

vulnerability, the RASP vendor could quickly write a new rule to block exploitation and

make it available to customers (Prevoty, 2017, March 13).

1.3.3. DevSecOps

DevOps is “the combination of cultural philosophies, practices, and tools that

increase an organization's ability to deliver applications and services at high velocity:

evolving and improving products at a faster pace than organizations using traditional

software development and infrastructure management processes” (AWS, 2019). In

DevOps, organizations establish a workflow between the business and customer; ensure

instant feedback; and build a culture of innovation with frequent product iterations

(Kim, G., 2012, August 22). DevSecOps improves upon these concepts by introducing

security into an organization’s software development and infrastructure management

processes. In DevSecOps, organizations establish a security workflow between the

business and customer; ensure instant security feedback; and build a security culture

(Contrast Security, n.d.).

DevSecOps organizations employ a security approach that allows rapid product

development and deployment to production without introducing friction. In this model,

security teams do not impose manual security checks that interrupt the release cycle and

act as “toll gates.” Instead, security practices take the form of high performance

“guardrails.” RASP solutions support this “guardrails-not-gates” approach where security

is automated and continuous and runs as a passive background process that does not

interfere with release cycles. In production, a RASP solution notifies the security and

operations teams according to pre-configured rules and provides them with highly

accurate attack forensics to facilitate an effective response.

A RASP solution could be employed in pre-production environments as well.

This provides an organization with the capability to test the security posture of an

application before it is deployed to production. For example, an application scheduled for

release may contain important new features, but also known vulnerable code that cannot

Runtime Application Self-Protection 10

Alexander Fry, alexanderfry@student.sans.edu

be remediated in the short term. The organization could test how effective the RASP

solution would be in blocking attacks against the known vulnerable code before the

application is released to production. If the RASP solution blocks these attacks, they

could deploy the application to production and patch the vulnerability in a later release.

This would help accelerate time-to-market for the software without compromising

security.

1.3.4. Security Visibility and SOC Fatigue

Many organizations use performance monitoring software to measure the

performance of their production applications. This software provides information about

the running application such as transaction details with method calls and line numbers, as

well as metrics like CPU utilization and memory usage (New Relic, 2019). This high

level of detail allows operations teams to find root causes and fix issues quickly. RASP

solutions could provide the same level of visibility into attacks as organizations now have

with application performance. For example, security teams would have actionable and

timely threat intelligence across the entire application portfolio. They would know with

greater confidence that an attack is taking place, including the type of attack, details

about the payload, where the attack is coming from, if the attack had been seen

previously, the area of the application targeted and the effectiveness of the RASP solution

in blocking the attack.

The SOC is the nerve center of the security team in a larger organization and

monitors threats across the organization. The SOC receives alerts from Security

Information and Event Management (SIEM) systems that ingest data from the network

and host-based Intrusion Detection Systems/Intrusion Prevention Systems, WAFs,

custom application logging, NetFlow and other sources. These sources generate

thousands of alerts. This overabundance of alerts leads to what is referred to as Alert

Fatigue; the SOC expends energy sifting through false positives, and often lacks the

context to prioritize which alerts are important. Some organizations deal with alert

fatigue by tuning the alert threshold to permit only the number of alerts they are capable

of processing. The drawback of this approach is that significant alerts could be missed,

increasing the probability of a successful attack going unnoticed. In addition, typically

Runtime Application Self-Protection 11

Alexander Fry, alexanderfry@student.sans.edu

the SOC has poor visibility into the application layer of the application portfolio and they

would have very little data to analyze in the event of an incident. Without improved

fidelity and greater context concerning application alerts, the SOC is a poor return on

investment for application security.

A RASP solution provides greater context into attacks to help relieve SOC fatigue

by making the SOC more effective in prioritizing alerts and responding to incidents. For

example, a RASP solution could send attack events to the SIEM as well. The RASP

solution could also be integrated with software like Slack or Pager Duty so that incident

response personnel could respond more effectively to notifications. Notifications could

be configured for specific applications and users using conditional parameters: Category,

Impact, Likelihood, URL, Class, and Method. Once a notification or alert is received, the

incident responder could create an exclusion or virtual patch, blacklist an IP address, add

a new rule, or suppress the event (Contrast Security, 2019).

1.3.5. Technical Debt, Legacy and COTS Applications

Technical debt grows when organizations fail to maintain applications and

systems. For custom-coded applications, it is necessary to update the programming

language version, frameworks, application server, database management system and

third-party libraries, typically, at least, on an annual basis. COTS applications are

commercial applications acquired by an organization. For COTS applications, it is

necessary to apply patches at a point-level release and accrue for major version changes

every three years or less. This helps to keep applications secure and puts organizations in

a better position to retain top talent and continue to service the application. An

application with heavy technical debt may become unserviceable or pose a risk to

conducting business if there is a failure (Price, E., 2017, September 12).

Applications with technical debt are typically referred to as legacy applications. A

legacy application may be an application that was launched years ago, lacks a build

process or pipeline, has limited documentation, is no longer developed or maintained, but

is still mission-critical to the business. There may even be a scarcity of developers with

the necessary skillset to maintain the application. In addition, for both COTS and legacy

applications, the organization may not possess the source code to allow it to easily fix

Runtime Application Self-Protection 12

Alexander Fry, alexanderfry@student.sans.edu

vulnerabilities discovered in these applications. However, even if the vulnerability cannot

be fixed in code, it is still necessary to defend the application against exploitation of that

vulnerability. A RASP solution could afford some protection for legacy applications

through virtual patching. Virtual patching is defined as “the capability to apply both

routine and emergency security patches without the need to change code and with no

downtime” (Waratek, 2018). This is an advantage when the system to be patched is a

critical business system where disruption to normal operations or scheduled downtime is

unacceptable.

1.4. Vendor Landscape

While the choice of a RASP vendor is outside the scope of this paper, it should be

noted that RASP vendors may shift business strategy to align themselves with customers,

compete more effectively, and put themselves in a better position for increased funding or

acquisition. As the vendor changes strategy or organizational structure, it is important for

customers to re-evaluate the solution to ensure it is still a good fit for their information

security program. Keeping up with industry trends and vendor offerings is an important

part of the vendor selection and education process. For example, the Forrester New Wave

™ produces a Runtime Application Self-Protection report that may prove useful in

evaluating the market presence of RASP vendors, as seen below in Figure 2.

Runtime Application Self-Protection 13

Alexander Fry, alexanderfry@student.sans.edu

Figure 2. Strategy vs Offering. From “The Forrester New Wave Runtime

Application Self-Protection, Q1 2018,” 2018.

2. Lab Environment

A controlled lab environment was created for testing the effectiveness of the

RASP solution against two known vulnerable web applications, WebGoat and NodeGoat.

From the available RASP solutions in the marketplace, Contrast Protect was selected

because it supports the technologies and frameworks used in the web applications and

allows for a trial period that is sufficiently long enough to conduct the testing described

in this paper. WebGoat is a deliberately vulnerable Java web application that is

maintained by OWASP and designed to teach web application security best practices.

Similar to WebGoat, NodeGoat is a deliberately vulnerable Node.js web application

Runtime Application Self-Protection 14

Alexander Fry, alexanderfry@student.sans.edu

maintained by OWASP that is also designed as a training tool. Node.js is a modern

service-side framework written in JavaScript. The objective of testing a Node.js

application is to measure the effectiveness of a RASP solution in protecting a modern

web application framework. In addition to security testing, the performance of each web

application, with and without the RASP solution integrated, was measured using the New

Relic application performance monitoring tool.

Attacks against each application were directed at the known vulnerabilities and

were automated and timed using Burp Suite. Further research was carried out by

attempting to evade RASP detection, for example, by using escaping and encoding

techniques to vary the attack signature for Reflected Cross-site Scripting (XSS) attacks.

The evasion approach was guided by techniques used to bypass common input filters and

should not be considered exhaustive (Portswigger, 2018). In addition, the decision to vary

the attack signature of Reflected XSS attacks, as opposed to all attacks, was informed by

the necessary time constraints in conducting the overall research, and because Reflected

XSS is a common vulnerability between the NodeGoat and WebGoat applications, which

provides comparative results. There are other types of attacks with common encoding and

escaping techniques that could be explored in greater detail, but for the purposes of this

research, will not be a focus here.

 In addition, exploitable Server-Side Request Forgery (SSRF) vulnerabilities were

developed for each vulnerable web application to ensure that the RASP solution was not

biased towards the public set of known vulnerabilities. To measure effectiveness, the

result of each attack was compared against the successful exploitation of the vulnerability

in the vulnerable web application. A successful attack results in the exploitation of the

vulnerability, while an unsuccessful attack fails to exploit the vulnerability. If the attack

fails and produces a performance impact or an error condition such as an HTTP Status

Code 500, the impact and error were documented. The application logging capability was

set to the highest level of verbosity and monitored to capture any error or impact to the

application.

Before the attacks could be carried out against the “Goat” applications (WebGoat

and NodeGoat), it was necessary to prepare the environment and applications for the

Runtime Application Self-Protection 15

Alexander Fry, alexanderfry@student.sans.edu

attack. These preparatory steps consisted of: Installation of Goat Applications;

Integration of Goat Applications with Contrast; Attack Automation; and Vulnerability

Development and are found in the supplemental material GitHub repository:

https://github.com/alexanderfry/rasp-research-paper.

3. Attack Protection

Once the lab environment was ready, attack traffic was run against the “Goat”

applications to measure the effectiveness of the RASP attack protection.

Contrast Protect characterizes the status of attacks as one of the following:

• EXPLOITED - The word “EXPLOITED” is the past tense of the word

exploit and, in this context, signifies that an attack against a specific

vulnerability was successful. The exploit itself is computer code, or a

sequence of commands that takes advantage of a vulnerability and causes

unintended functionality or unanticipated behavior to occur in the

application (Technopedia, 2019).

• PROBED – Contrast defines a “PROBED” attack as one that “did not

cause any adverse actions within the application” and was not

“BLOCKED.” It is possible for a “PROBED” attack to exploit a

vulnerability.

• BLOCKED – An attack that is prevented from exploiting a vulnerability.

This action typically results from a Contrast Protect rule set to Block

mode.

• BLOCKED (P) - An attack that is prevented from exploiting a

vulnerability. This action typically results from a Contrast Protect rule set

to Block(P) mode.

Runtime Application Self-Protection 16

Alexander Fry, alexanderfry@student.sans.edu

3.1. NodeGoat - Contrast Protect in Monitor Mode

NodeGoat is launched with the Contrast Protect Agent using the command npm

run contrast -- --agent.logger.level.debug. It is confirmed that Monitor mode is enabled

for all Node.js rules by editing the policy located in Applications->Policy->Protect.

The next step is to run the Burp Macro containing the NodeGoat attacks. Contrast Protect

detects this as an Active Attack, shown in red in the upper right-hand corner, and lists the

Attack Events in aggregate on the Monitor screen. “Live” and “All Environments” are

selected, and the “Show probed” box is checked to ensure that all attack events are

shown.

The Attack Events screen lists two of the attacks as “PROBED” and two of the

attacks as “EXPLOITED” (Figure 3).

Figure 3. Attack Events Screen with NodeGoat in Monitor Mode

3.1.1. Reflected XSS Attack Events Analysis and Cookie Stealer Exploit

The Reflected XSS attack event was characterized as “PROBED.” The Overview

tab for this attack event states that “This attempted attack did not require specific

blocking because it did not cause any adverse actions within the application.” This begs

the question of how Contrast Protect determines if an attack event is characterized as

“PROBED” or “EXPLOITED” and if it is deserving of blocking. The proof of concept

exploit used in the Reflected Cross-Site Scripting attack is a relatively harmless script

that creates an alert dialog with the number 1, <script>alert(1)</script>. However,

attackers commonly use malicious exploits that attempt to compromise the user’s session.

As an attempt to change the way the attack event is characterized, the proof of concept

Runtime Application Self-Protection 17

Alexander Fry, alexanderfry@student.sans.edu

exploit is changed to steal the session cookie and log the cookie to an attacker-controlled

server. To accomplish this new proof-of-concept exploit, an attacker-controlled server is

simulated by running an HTTP server on 127.0.0.1 port 8000, python -m

SimpleHTTPServer 8000. The proof-of-concept exploit is replaced with a cookie stealing

exploit: <script>document.write('<img

src="http://127.0.0.1:8000/?'+document.cookie+' "/>');</script>. A script like this

would typically be delivered to a victim via a phishing e-mail or drive-by attack. Upon

executing this proof of concept exploit, the script delivers the cookie in an HTTP Request

to the HTTP server (Figure 4).

Figure 4. Cookie Stealer HTTP Request in Burp Repeater and Cookie Received

However, the Reflected XSS attack event is still listed as “PROBED” in the

Contrast Portal.

3.1.2. NoSQL Attack Events Analysis

In continuing the analysis, a comparison of the two NoSQL Injection attack events

shows that this is part of the same attack, but was identified as two different query

strings, possibly as a result of how the page is rendered by the application. The overview

of the exploited NoSQL Injection attack event describes where the suspicious value was

seen entering the application through the HTTP Request Query String “threshold” and

how that value altered the meaning of the NoSQL query. The code snippet and line

Runtime Application Self-Protection 18

Alexander Fry, alexanderfry@student.sans.edu

number provide context to remediate or patch the NoSQL Injection vulnerability (Figure

5).

Figure 5. NodeGoat NoSQL Injection Attack Events

3.1.3. Remaining Attack Events Analysis

Contrast Protect created four attack events for attacks that attempted to exploit three

vulnerabilities: NoSQL Injection, Server-Side JavaScript Injection, and Reflected XSS.

Contrast Protect did not identify attacks against Insecure Direct Object Reference,

Missing Function Level Access Control, and Unvalidated Redirect and does not provide

rules to protect against exploitation of these vulnerabilities. The first two vulnerabilities

are considered business logic flaws and are typically identified through manual testing.

However, the third vulnerability, Unvalidated Redirect, has a rule in Contrast Assess, the

pre-production product, but not in Contrast Protect. The Contrast Assess rule identifies

the Unvalidated Redirect vulnerability as, “Unvalidated Redirect from Untrusted Sources

on /learn page”. This signifies that the Contrast agent software that is used by both

Assess and Protect is capable of identifying this vulnerability but a Protect rule has not

yet been written.

Runtime Application Self-Protection 19

Alexander Fry, alexanderfry@student.sans.edu

3.2. NodeGoat - Contrast Protect in Block Mode

All of the attack events have been analyzed in Monitor mode. Now the rules are

changed to Block mode to test if the attacks would be blocked. It is confirmed that Block

mode is enabled for all Node.js rules by viewing the policy located in Applications-

>Policy->Protect.

The Burp Macro was run again. All four attack events were observed in Block

mode. However, the Attack Events screen shows that only one attack was “BLOCKED”.

The other three attacks are shown as “PROBED.” In addition, the Server-Side JavaScript

Injection vulnerability is identified as a Path Traversal vulnerability (Figure 6).

Figure 6. Attack Events Screen with NodeGoat in Block Mode

To confirm that all attacks were blocked, the HTTP Responses in Burp Proxy

were inspected. All HTTP Responses returned HTTP status code “403 – Forbidden”,

preventing the exploitation of the vulnerabilities.

3.3. NodeGoat - Contrast Protect in Block at Perimeter Mode

Contrast Protect was then changed to “Block at Perimeter” Block (P) mode for the

rules that support this option: Path Traversal, Cross-Site Scripting, and NoSQL Injection.

Then the Burp Macro was run again. Three attack events were observed in Block

and Block(P). The Attack Events screen confirmed that three attacks were blocked at

perimeter “BLOCKED (P).” Both Block and Block(P) mode identified the Server-Side

JavaScript Injection vulnerability as a Path Traversal vulnerability (Figure 7).

Runtime Application Self-Protection 20

Alexander Fry, alexanderfry@student.sans.edu

Figure 7. Attack Events Screen with NodeGoat in Block and Block(P) Mode

It was further confirmed that all attacks were blocked by inspecting the HTTP

Responses for each attack in Burp Proxy. All Responses returned HTTP status code “403

– Forbidden”, preventing the exploitation of the vulnerability.

3.4. NodeGoat – Attempt to Evade RASP Detection

All XSS attacks were blocked by Contrast Protect. However, attackers commonly

use evasion techniques such as encoding and escaping to evade detection and blocking.

To test the effectiveness of Contrast Protect in detecting XSS attacks using these

common evasion techniques, first the policy was changed back to Monitoring mode.

Then, attacks were conducted using nine variations of the Reflected XSS proof of

concept exploit: <script>alert(1)</script>. All nine of the XSS attacks were detected by

Contrast Protect (Figure 8).

Runtime Application Self-Protection 21

Alexander Fry, alexanderfry@student.sans.edu

Figure 8. All Evasion Attempts Detected in Monitor Mode

 After switching to Block and Block(P) mode, all nine of the attacks were blocked

by Contrast Protect and verified in both the Browser and Burp Proxy.

3.4.1. NodeGoat - SSRF Attack Events Analysis

The Vulnerability Development section of the supplemental material described

how the SSRF vulnerability was developed and demonstrated exploitability. To test the

ability of Contrast Protect to block attacks against this vulnerability, the SSRF attacks

were run against NodeGoat with a Burp Macro. After running the attacks, the Contrast

Portal was reviewed to ascertain if the SSRF attack events had been detected. However,

the monitor screen displayed “No Attacks Detected.” Even going back to “Last Hour”

and “Last Day” did not show any attacks. This confirms that attacks against the SSRF

vulnerability are not detected by the current Contrast Protect ruleset (Figure 9).

Figure 9. NodeGoat SSRF No Attacks Detected

 As a further confirmation, Contrast Assess was enabled and the SSRF attack was

run again. The Vulnerabilities tab should show that the vulnerability is picked up by

Contrast Assess. However, there was no SSRF vulnerability listed nor was there any

vulnerabilities listed for the “/research” page (Figure 10).

Runtime Application Self-Protection 22

Alexander Fry, alexanderfry@student.sans.edu

Figure 10. NodeGoat SSRF No Research Page Vulnerabilities Listed

 To verify that the Contrast agent is monitoring the “/research” page, the SSRF

vulnerability is converted to an Unvalidated Redirect vulnerability, for which Contrast

Assess has a rule.

 The SSRF attack was run again. This time, the vulnerability was identified as an

Unvalidated Redirect in the “/research” page (Figure 11). This an indication that SSRF is

a gap in both the Contrast Assess and Protect ruleset coverage for Node.js applications.

Runtime Application Self-Protection 23

Alexander Fry, alexanderfry@student.sans.edu

Figure 11. NodeGoat Unvalidated Redirect Vulnerability in Research Page

3.4.2. NodeGoat – Attack Protection Summary

Contrast Protect, in Monitor mode, labeled a Reflected XSS attack that is capable

of stealing a user’s session cookie and sending it to an attacker-controlled server as

“PROBED” rather than “EXPLOITED”. Contrast Protect consistently labeled Reflected

XSS attacks as “PROBED” rather than “EXPLOITED” and labeled the NoSQL Injection

attack as “EXPLOITED.” A reason for the difference in labeling could be that Contrast

Protect considers Injection attacks, such as the NoSQL Injection attack, as higher impact,

which is deserving of the “EXPLOITED” label. After all, injection attacks target the

service-side and could compromise the application itself, the underlying operating system

or lead to a data breach, whereas Reflected XSS target the client-side or individual users.

Contrast Protect, in Monitor Mode, identified a single NoSQL Injection attack as

two separate attack events. One of the attack events was labeled “PROBED” and the

other “EXPLOITED”. This could be caused by how the page was rendered by the

application or how it was blocked by Contrast, resulting in two separate data flows.

Contrast Protect missed Insecure Direct Object Reference, Missing Function

Level Access Control, Unvalidated Redirect and SSRF attacks. There are no Protect rules

for Insecure Direct Object Reference and Missing Function Level Access Control, but

these vulnerabilities are considered business logic flaws and are typically identified

through manual testing, so it is reasonable that no rules exist for these vulnerabilities. The

Unvalidated Redirect and SSRF vulnerabilities are capable of being identified by

Contrast. Contrast Assess has a Node.js rule for Unvalidated Redirect and a Java rule for

SSRF. However, Contrast Protect missed both of these attacks and does not have a rule

for them. Therefore, the lack of a rule for Unvalidated Redirect and SSRF is a gap in

Node.js protection.

Contrast Protect, in Block and Block(P) Mode, characterized an attack against a

Server-Side JavaScript Injection vulnerability as an attack against a Path Traversal

vulnerability. The file system path used in the Server-Side JavaScript vulnerability proof

Runtime Application Self-Protection 24

Alexander Fry, alexanderfry@student.sans.edu

of concept exploit, /etc/passwd, is often used to test for Path Traversal vulnerabilities.

Contrast Protect misidentifies this file system path as a component of a Path Traversal

exploit.

3.5. WebGoat – Contrast Protect in Monitor Mode

It is necessary to monitor the application to ensure that Contrast Protect detects

the attacks. The application is launched with the Contrast Protect Agent enabled. The

Agent build number is 3.5.8.5149. The command to launch WebGoat is java -

Dcontrast.standalone.appname=Webgoat -Dcontrast.override.appname=Webgoat -

javaagent:contrast.jar -jar webgoat-server-v8.0.0.SNAPSHOT.jar –server.port=9080 –

server.address=192.168.0.21.

 Once WebGoat is running, Monitor mode is enabled for all Java rules by editing

the policy located in Applications->Policy->Protect.

The next step was to run the Burp Macro containing the WebGoat attacks.

Contrast Protect detects this as an Active Attack, shown in red in the upper right-hand

corner, and lists the Attack Events in aggregate on the Monitor screen. “Live” and “All

Environments” are selected and the “Show probed” box is checked to ensure that all

attack events are shown.

The Attack Events screen shows six attack events. One of the attack events is

listed as “PROBED” and five are listed as “EXPLOITED” (Figure 12).

Figure 12. Attack Events Screen with WebGoat in Monitor Mode

Runtime Application Self-Protection 25

Alexander Fry, alexanderfry@student.sans.edu

The Overview tab from the Probed Attack Events Screen states that “This attempted

attack did not require specific blocking because it did not cause any adverse actions

within the application.” This is the same response that was received for the NodeGoat

application. In NodeGoat, when the proof of concept exploit for Cross-Site Scripting was

modified to steal the session cookie, the Contrast response remained the same.

Contrast Protect created six attack events for attacks attempting to exploit six

vulnerabilities: SQL Injection, XXE and Cross-site Scripting. It missed the Insecure

Direct Object Reference vulnerability. There are no Protect rules for the Insecure Direct

Object Reference vulnerability because it is considered a business logic flaw and is

typically identified through manual testing.

3.6. WebGoat – Contrast Protect in Block Mode

After the attack events have been analyzed in Monitor mode, the rules are

changed to Block Mode to test if the attacks would be blocked. Block mode is enabled

for all Java rules by editing the policy located in Applications->Policy->Protect.

 The Burp Macro was run again. All six attack events were observed in Block

mode. The Attack Events screen shows that five attack events were “BLOCKED.” The

Cross-Site Scripting attack event is shown as “PROBED.” Selecting the Cross-Site

Scripting attack event provides additional information in four tabs: Overview, Details,

Request and Discussion. The Overview shows the attack event observed by Contrast

Protect and states, “This attempted attack did not require specific blocking because it did

not cause any adverse actions within the application.” This was the same explanation

given when Contrast Protect was run in Monitor mode. The following is a screenshot of

the Attack Events Screen in Block Mode (Figure 13).

Runtime Application Self-Protection 26

Alexander Fry, alexanderfry@student.sans.edu

Figure 13. Attack Events Screen with WebGoat in Block Mode

To confirm that each attack event was blocked, the HTTP Responses in Burp

Proxy were inspected. Five of the attacks failed, preventing the exploitation of the

vulnerabilities. However, the Cross-Site Scripting attack succeeded (Figure 14).

Figure 14. Successful Cross-Site Scripting Attack in Block Mode

3.7. WebGoat – Contrast Protect in Block and Block (P) Mode

Contrast Protect was changed to Block(P) mode to test how the findings changed.

The rules that don’t support Block(P) mode are left in Block mode. The Cross-Site

Scripting and SQL Injection vulnerabilities have a Block(P) rule, and the XML External

Entity Processing vulnerabilities have a Block rule.

The Burp Macro was run again. The monitor screen shows all seven attack events.

The Attack Events screen confirms that all attacks were blocked. The Cross-Site

Runtime Application Self-Protection 27

Alexander Fry, alexanderfry@student.sans.edu

Scripting attacks and SQL Injection attacks were Blocked at Perimeter “BLOCKED (P)”

whereas the XML External Entity Processing (XXE) attacks were “BLOCKED” (Figure

15).

Figure 15. Attack Events Screen with WebGoat in Block and Block(P) Mode

In this test run, two XSS attack events were identified compared to the one XSS

attack event that was identified in Monitor and Block mode. Figure 16, below, shows that

the first XSS attack event was the error page, /WebGoat/error.html, and the second was

the application path for the XSS vulnerability, /WebGoat/CrossSiteScripting/attack5a.

Runtime Application Self-Protection 28

Alexander Fry, alexanderfry@student.sans.edu

Figure 16. Two XSS Attack Events with WebGoat in Block and Block(P) Mode

The additional XSS attack event appears to be the same attack reflected in/on the

WebGoat error page in addition to the vulnerable page in the WebGoat application. The

following Internal Server Error in the HTTP Response caused the additional XSS attack

event (Figure 17).

Figure 17. XSS Attack Response with WebGoat in Block and Block(P) Mode

It was further confirmed that all other attacks were blocked by inspecting the

HTTP Responses for each attack in Burp Proxy.

3.8. WebGoat – Attempt to Evade RASP Detection

All XSS attacks were blocked by Contrast Protect. However, attackers commonly

use evasion techniques such as encoding and escaping to evade detection and blocking.

To test the effectiveness of Contrast Protect in detecting XSS attacks using these

common evasion techniques, first the policy was changed back to Monitoring mode.

Runtime Application Self-Protection 29

Alexander Fry, alexanderfry@student.sans.edu

Then, attacks were conducted using six variations of the Reflected XSS proof of concept

exploit: <script>alert(1)</script>. This was the same set of nine proof of concept

exploits used to test evasion in NodeGoat. For WebGoat, only six of the nine attacks

succeeded in exploiting the Reflected XSS vulnerability. The other three attacks caused

an exception: “java.lang.IllegalArgumentException: Invalid character found in the

request target. The valid characters are defined in RFC 7230 and RFC 3986.” However,

all six of the successful attacks were detected by Contrast Protect (Figure 18).

Figure 18. All Evasion Attempts Detected in Monitor Mode

After switching to Block and Block(P) mode, all six of the attacks were blocked

by Contrast Protect and were verified in both the Browser and Burp Proxy. Each attack

generated two attack events. The additional XSS attack event appears to be the same

attack reflected in/on the WebGoat error page in addition to the vulnerable page in the

WebGoat application. This same behavior was witnessed with the default proof of

concept exploit for XSS. In the following screenshot, the second column from the left

shows that each of the twelve attacks were blocked “BLOCKED(P)” and the rightmost

column shows each attack payload (Figure 19).

Runtime Application Self-Protection 30

Alexander Fry, alexanderfry@student.sans.edu

Figure 19. All Evasion Attempts Blocked in Blocked(P) Mode

3.8.1. WebGoat - SSRF Attack Events Analysis

 The Vulnerability Development section of the supplemental material describes

how the SSRF vulnerability was developed and demonstrated exploitability. To test the

ability of Contrast Protect to block attacks against this vulnerability, the SSRF attacks

were run against WebGoat with a Burp Macro. After running the attacks, the Contrast

Portal was reviewed to ascertain if the SSRF attack events had been detected. However,

the monitor screen displayed “No Attacks Detected.” Even going back to “Last Hour”

and “Last Day” did not show any attacks. This appears to confirm that attacks against the

SSRF vulnerability are not detected by the current Contrast Protect ruleset.

Runtime Application Self-Protection 31

Alexander Fry, alexanderfry@student.sans.edu

 As further confirmation Contrast Assess was enabled and the SSRF attack was

run again. The Vulnerabilities tab shows that Contrast Assess identifies the SSRF

vulnerability. The Policy tab shows that the SSRF rule is enabled. This confirms that

SSRF is a gap in the current Contrast Protect ruleset coverage for Java applications

(Figure 20).

Figure 20. WebGoat SSRF Vulnerability

3.8.2. WebGoat – Attack Protection Summary

Contrast Protect, in Block mode, did not block the proof of concept XSS attack.

Instead of “BLOCKED”, the attack was labeled as “PROBED.” This appears to be an

anomaly as it blocked all other Reflected XSS attacks in Block or Block(P) mode.

Contrast Protect missed Insecure Direct Object Reference and Server-Side

Request Forgery attacks. There is no Protect rule for Insecure Direct Object Reference,

but this vulnerability is considered a business logic flaw and is typically identified

through manual testing, so it is reasonable that no rule exists. SSRF vulnerabilities are

capable of being identified by Contrast. This was proven using the Contrast Assess

product. However, Contrast Protect missed this attack and does not have a rule for SSRF.

Therefore, the lack of a rule for SSRF is considered a gap in Java protection.

Contrast Protect, in Block(P) mode, caused an Internal Server Error, HTTP 500,

when blocking the XSS attack. The Contrast Agent created an AttackBlockedException

that appears to have led to the Internal Server Error.

Runtime Application Self-Protection 32

Alexander Fry, alexanderfry@student.sans.edu

4. Performance Measurement

Application performance was measured for the Goat applications under different

traffic and attack scenarios both with and without Contrast Protect enabled. To make the

generation of metrics repeatable and consistent, the Goat applications were run in VMs

isolated from other running applications; Burp Macros were created to automate the

sending of HTTP traffic and the traffic was sent from a separate host on the same wired

network, switch and VLAN as the VM. To obtain the most realistic results, this test

should ideally be run in an environment that mirrors production. The following ten tests

were run three times each:

• Not Run – Normal application traffic sent to the application. Run without

Contrast Agent starting the application.

• Off - Normal application traffic with Contrast Protect in Off mode.

• Monitor - Normal application traffic with Contrast Protect in Monitor mode.

• Block - Normal application traffic with Contrast Protect in Block mode.

• Block at Perimeter (Block(P)) – Normal application traffic with Contrast Protect

in Block at Perimeter mode (for those rules that have a Block at Perimeter mode).

• Not Run (Attack) – Attack traffic sent to the application. Run without Contrast

Agent starting the application.

• Off (Attack) - Attack traffic with Contrast Protect in Off mode.

• Monitor (Attack) - Attack traffic with Contrast Protect in Monitor mode.

• Block (Attack) - Attack traffic with Contrast Protect in Block mode.

• Block at Perimeter (Block(P)) (Attack) – Attack traffic with Contrast Protect in

Block at Perimeter mode (for those rules that have a Block at Perimeter mode).

The VM hosting the Goat applications was restarted consistently before and after

each test run to reset the environment. New Relic Application Performance Monitoring

(APM) software was used to gather the following metrics: per request times, memory

usage and CPU utilization.

Runtime Application Self-Protection 33

Alexander Fry, alexanderfry@student.sans.edu

The per-request transaction time value was calculated as the geometric mean of

the transaction times of the three runs (x1, x2, x3) for each of the test cases. The

geometric mean is calculated by multiplying the three runs together and taking the cube

root: GM=√(𝑥1
3 ∗ 𝑥2 ∗ 𝑥3).

A geometric mean was selected as the most accurate statistical method to analyze

the data because the resultant transaction time value is closest to the central value and is

not skewed to the higher or lower values in the data set (Suhas, D. 2017, May).

NodeGoat testing was conducted using version 1.35.0 of the Contrast Agent. The

NodeGoat VM was running Ubuntu 14.04.5 LTS 64-bit on VMware Fusion 8.5.10 with

four processor cores and 6144 MB of RAM. The underlying hardware was a Mac Pro

(Early 2008) with 2 x 2.8 GHz Quad-Core Intel Xeon processors, 16 GB 800 MHz

DDRD FB-DIMM memory on OS X Version 10.11.6.

WebGoat testing was conducted using build 3.5.8.5149. The WebGoat VM was

running Ubuntu 18.04.1 LTS 64-bit on VMware Fusion 11.0.2 with four processor cores

and 6144 MB of RAM. The underlying hardware was a MacBook Pro (15-inch, 2017)

with a 2.9 GHz Intel Core i7 processor, 16 GB 2133 MHz LPDDR3 memory on OS X

Version 10.14.2.

Performance measurement visualizations can be found in the supplemental material

GitHub repository: https://github.com/alexanderfry/rasp-research-

paper/blob/master/PERFORMANCE_MEASUREMENT.md.

4.1. NodeGoat Normal Traffic

Each row of Figure 21 below displays the peak transaction time value for the area

of performance that was measured: Node.js, MongoDB, Web external and NodeGoat

overall application response. The Web external response time was not recorded (N/R) in

the New Relic Portal for the test cases when the Contrast Agent was enabled; the reason

for this is unknown. Web external is defined as:

the portion of time spent in transactions to external applications from within the

code of the application you are monitoring. That can be a call to a 3rd party

Runtime Application Self-Protection 34

Alexander Fry, alexanderfry@student.sans.edu

company or it could be a call to another microservice within the company. It

serves to help you understand how much performance impact there is for code

executing outside the application you are measuring (Carpenter, S. ,2017,

February).

A review of the documentation from both New Relic and Contrast Security did

not provide any additional information concerning the troubleshooting of this issue.

However, a decision was made that Node.js response time and overall NodeGoat

response time were the most important performance metrics, so no additional

troubleshooting was pursued.

 Not Run Off Monitor Block Block(P)

Node.js 5.68 48.24 170.61 140.00 137.33

MongoDB 1.61 2.16 2.24 1.21 1.24

NodeGoat 31.96 49.53 171.93 140.33 137.33

Web External 22.41 N/R N/R N/R N/R

Figure 21. NodeGoat Normal Traffic, Response Time Per Request in

Milliseconds (ms)

There was a 749 percent increase in Node.js response time from when NodeGoat

was run without Contrast and when the Contrast Agent was enabled in Off mode. The

performance impact on Node.js more than doubled in the Monitor, Block, and Block(P)

modes. Of all the active modes: Monitoring, Block and Block(P); the Monitoring mode

created the most overhead on the response times across the application. Each row of

Figure 22 below shows the percentage increase in response times in Node.js and the

NodeGoat application for each of the Contrast Protect Modes compared to when Contrast

was not run.

Runtime Application Self-Protection 35

Alexander Fry, alexanderfry@student.sans.edu

 Off Monitor Block Block(P)

Node.js 749 2,904 2,365 2,318

NodeGoat 55 438 339 330

Figure 22. NodeGoat Normal Traffic, Response Time Percentage Increase

The Node.js VM V8 Heap (used) memory ranged from 19.4 to 88 MB. The

memory usage with Contrast was approximately 68.6 MB more than without Contrast, an

increase of 354 percent. All modes including Off appeared to use approximately the same

amount of memory.

 The peak Node.js VM CPU utilization with Contrast was approximately 10

percent more than without Contrast. All modes including Off appeared to use

approximately the same processing power.

 In summary, when normal traffic was run through NodeGoat with the Contrast

Agent enabled, it experienced a significant performance impact. The smallest impact

measured was a Node.js response time increase of 749 percent and an overall application

response time increase of 55 percent. The memory usage increased 354 percent and the

CPU usage increased 10 percent.

4.2. NodeGoat Attack Traffic

Each row of Figure 23 below displays the peak transaction time value for the area

of performance being measured: Node.js, MongoDB, Web external and overall

NodeGoat application response. As in the NodeGoat Normal Traffic performance

measurement, the Web external response time was not recorded (N/R) in the New Relic

Portal for the test cases when Contrast Agent was enabled - the cause of this is unknown.

Runtime Application Self-Protection 36

Alexander Fry, alexanderfry@student.sans.edu

 Not Run Off Monitor Block Block(P)

Node.js 8.54 33.18 180.12 177.42 159.75

MongoDB 2.40 3.10 4.86 1.33 1.32

NodeGoat 19.81 35.33 182.62 177.69 160.04

Web External 11.34 N/R N/R N/R N/R

Figure 23. NodeGoat Attack Traffic, Per Request Times in Milliseconds (ms)

There was a 288 percent increase in Node.js response time from when NodeGoat

was run without Contrast and when the Contrast Agent was enabled in Off mode. The

performance impact on Node.js more than doubled in the Monitor, Block, and Block(P)

modes. Of all the active modes: Monitoring, Block and Block(P); the Monitoring mode

created the most overhead on the response times across the application. Each row of

Figure 24 below shows the percentage increase in response times in Node.js and the

NodeGoat application for each of the Contrast Protect Modes compared to when Contrast

was not run.

 Off Monitor Block Block(P)

Node.js 288 2,009 1,978 1,771

NodeGoat 78 822 797 708

Figure 24. NodeGoat Attack Traffic, Response Time Percentage Increase

The Node.js VM V8 Heap (used) memory ranged from 27.2 to 97.2 MB. The

memory usage with Contrast was approximately 70 MB more than without Contrast, an

increase of 257 percent. All Modes including Off appeared to use the same amount of

memory.

The peak Node.js VM CPU utilization with Contrast was approximately 10

percent more than without Contrast. All Modes including Off appeared to use

approximately the same processing power.

Runtime Application Self-Protection 37

Alexander Fry, alexanderfry@student.sans.edu

In summary, when attack traffic was run through NodeGoat with the Contrast

Agent enabled, it experienced a significant performance impact. The smallest impact

measured was a Node.js response time increase of 288 percent and an overall application

response time increase of 78 percent. The memory usage increased 257 percent and the

CPU usage increased 10 percent.

4.3. WebGoat Normal Traffic

Each row of Figure 25 below displays the peak transaction time value for the area

of performance being measured: JVM, HSQLDB, and overall WebGoat application

response. As in the NodeGoat performance measurement, the Web external response time

was not recorded (N/R) in the New Relic Portal for any of the test cases - the cause for

this is unknown.

 Not Run Off Monitor Block Block(P)

JVM 16.40 25.77 24.72 24.60 29.49

HSQLDB 2.48 4.14 3.68 3.81 4.00

WebGoat 18.90 29.38 28.39 28.40 33.27

Figure 25. WebGoat Normal Traffic, Per Request Times in Milliseconds (ms)

There was a 57 percent increase in the JVM response time from when WebGoat

was run without Contrast and when the Contrast Agent was enabled in Off mode. Of all

the active modes: Monitoring, Block and Block(P); the Block(P) mode created the most

overhead on the response times across the application. Each row of Figure 26 below

shows the percentage increase in response times in the JVM and the WebGoat application

for each of the Contrast Protect Modes compared to when Contrast was not run.

 Off Monitor Block Block(P)

JVM 57 51 50 80

WebGoat 55 50 50 76

Figure 26. WebGoat Normal Traffic, Response Time Percentage Increase

Runtime Application Self-Protection 38

Alexander Fry, alexanderfry@student.sans.edu

The peak memory usage with Contrast was approximately 186 MB more than

without Contrast. All Modes including Off appeared to use approximately the same

amount of memory.

 The peak CPU usage with Contrast was approximately 44 percent more than

without Contrast.

In summary, when normal traffic was run through WebGoat with the Contrast

Agent enabled, it experienced a significant performance impact. The smallest impact

measured was a JVM response time increase of 50 percent and an overall application

response time increase of 50 percent. The memory usage increased 28 percent and the

CPU usage increased 44 percent.

4.4. WebGoat Attack Traffic

Each row of Figure 27 below displays the peak transaction time value for the area

of performance being measured: JVM, HSQLDB, Web external and overall WebGoat

application response. The Web external response time was recorded in the New Relic

Portal for all test cases - it is unknown as to why this was different for WebGoat Attack

Traffic compared to WebGoat Normal Traffic or the NodeGoat Attack and Normal

Traffic tests.

 Not Run Off Monitor Block Block(P)

JVM 20.50 29.96 33.33 31.59 31.55

HSQLDB 3.08 4.57 4.92 4.72 4.75

WebGoat 25.52 36.11 38.90 37.88 37.76

Web External 1.78 1.57 1.84 1.42 1.42

Figure 27. WebGoat Attack Traffic, Per Request Times in Milliseconds (ms)

Runtime Application Self-Protection 39

Alexander Fry, alexanderfry@student.sans.edu

There was a 46 percent increase in the JVM response time from when WebGoat

was run without Contrast and when the Contrast Agent was enabled in Off mode. Of all

the active modes: Monitoring, Block and Block(P); the Monitor mode created the most

overhead on the response times across the application. Each row of Figure 28 below

shows the percentage increase in response times in the JVM and the WebGoat application

for each of the Contrast Protect Modes compared to when Contrast was not run.

 Off Monitor Block Block(P)

JVM 46 63 54 54

WebGoat 42 52 48 48

Figure 28. WebGoat Attack Traffic, Response Time Percentage Increase

The peak memory usage with Contrast was approximately 123 MB more than

without Contrast. All Modes including Off appeared to use approximately the same

amount of memory.

The peak CPU usage with Contrast was approximately 44 percent more than

without Contrast.

In summary, when attack traffic was run through WebGoat with the Contrast

Agent enabled, it experienced a significant performance impact. The smallest impact

measured was a JVM response time increase of 46 percent and an overall application

response time increase of 42 percent. The memory usage increased 18 percent and the

CPU usage increased 44 percent.

5. Evaluation Procedure

Organizations that want to evaluate RASP solutions may find it helpful to follow

a procedure based on the research in this paper. The following procedure helps an

organization evaluate a RASP solution against business and performance requirements.

First, define the business uses cases that the RASP solution should solve. For

example, the RASP solution should provide security visibility and support logging and

Runtime Application Self-Protection 40

Alexander Fry, alexanderfry@student.sans.edu

notification of attacks in production. It should block all attacks for the applications which

are known to be vulnerable in production. And it should block all attacks for unknown

vulnerabilities for which the RASP solution has rules.

Next, define the performance requirements that the RASP solution should meet.

For example, the RASP solution should not increase per request times by more than 10%.

Then, select applications from the portfolio that should be protected with a RASP

solution. Choose a subset of these applications as candidates for the trial, ensuring that all

technology stacks are represented, e.g., Node.js, Java, .NET. Consider including known

vulnerable applications for comparison.

Select RASP vendors that support the technology stacks. Then, contact the RASP

vendors to explore a trial, choosing vendors that best support the trial requirements

including the expected timeframe for testing.

Define success criteria and rank the criteria in order of importance. The following

are example criteria: provides accurate attack detection; reduces risk with increased

attack visibility; provides comprehensive attack results; ease of use; saves time with

faster delivery of attack results; and, meets performance requirements.

Create a lab environment that mirrors production as closely as possible. Integrate

the selected applications with the RASP solution and configure the RASP solution

logging at the highest level of verbosity.

 Next, create scripts or macros to automate normal and attack traffic against the

selected applications. Ensure that the attacks exploit known vulnerabilities. If no known

vulnerabilities exist, develop vulnerabilities and exploits. Run and time the scripts and

macros to ensure that the attacks are repeatable and consistent.

Run the attacks against the applications in each of the different modes, e.g.,

Monitor, Block, Block(P). Monitor application logs and RASP solution logs for errors

and other output. Compare the effectiveness of the RASP solution against the attacks in

each of the different modes.

 Measure the performance of the applications. First, turn off verbose logging for

the RASP solution and applications to better mirror a production operating environment.

Runtime Application Self-Protection 41

Alexander Fry, alexanderfry@student.sans.edu

Run both normal traffic and attack traffic automated tests against the application. Run the

tests without the RASP solution integrated to create a baseline. Run the tests in each of

the different RASP modes, e.g., Off, Monitor, Block, Block(P). Then, compare the

performance of the RASP solution in each of the different modes.

 If the RASP solution uses a central application instance to collect vulnerability

data, consider where this will be hosted. If it will be hosted on-premises instead of using

the vendor’s shared instance, estimate the costs that an on-premise environment will add

to the total cost of ownership.

6. Areas for Further Research

There are other areas of RASP technology that deserve further research. Two of

these are Evasion; and the Complementary Use of RASP with Web Application Firewall

(WAF).

6.1. Evasion

This paper explored encoding and escaping XSS attacks to evade detection. There

are other types of attacks with common evasion techniques that could be explored in

greater detail. For example, SQL Injection attacks can be encoded to bypass

magic_quotes() as well as WAFs (Netsparker Ltd., 2019). In addition, research could

build off of the automated attacks run against the vulnerable web applications to create a

test harness that varies the attacks using different evasion techniques. The test harness

could run against the vulnerable web applications integrated with different RASP

solutions. The industry already conducts standardized testing using similar approaches

for classes of products such as Next Generation Firewalls (NSS Labs, 2017, December

7).

6.2. The Complementary Use of RASP with WAF

A number of organizations have existing investments in WAF technology. A

WAF could be used with a RASP solution to provide greater attack intelligence and WAF

enhancement. Contrast Security refers to this as a targeted defense. In this model, a

cloud-based WAF would be used as a perimeter device and as the first line of defense

Runtime Application Self-Protection 42

Alexander Fry, alexanderfry@student.sans.edu

against application attacks. During an attack, a WAF alert would put the attack on the

SOC’s radar and inform the SOC if the WAF blocked the attack or took other actions.

The RASP solution would send application-specific information to the SIEM such as

source code impacted, data flow, stack trace, backend connections, libraries and

frameworks, configuration and potential vulnerabilities. The SIEM would correlate the

information from both the WAF and RASP using the common HTTP Request.

The combined data from both devices would provide greater context and

intelligence about the attack and attacker. The SOC would be more informed and could

more accurately flag an attack as something worth investigating. They would also be able

to provide more specific guidance to application teams to fix an exploitable vulnerability

(Contrast Security, 2018, March 20).

7. Conclusion

The majority of breaches are caused by web application attacks. Organizations are

building, testing, and releasing applications with greater frequency, with gaps in test

coverage resulting in vulnerabilities being pushed to production. Many custom-coded

applications consist of more open source third-party code than first-party code, exposing

organizations to open source risk. Zero-day vulnerabilities are discovered frequently in

legacy, COTS and custom-coded applications.

With automated exploit scanning being conducted so quickly after the discovery

of vulnerabilities, there is little time to apply a patch even if it is available. However,

RASP solutions have the potential to block unknown attacks with no virtual patching,

definition, or signature updates required. In the event a RASP solution would not block

attacks against a specific vulnerability, the RASP vendor could quickly write a new rule

to block exploitation and make the rule available to its customers. RASP has the potential

to provide greater protection for production applications than existing solutions.

RASP is still not a perfect security solution. It focuses on common application

security weaknesses and does not replace a human being for the discovery of business

logic flaws. In addition, it takes effort by an organization to evaluate RASP offerings to

ensure they meet business and performance requirements. However, RASP solutions are

Runtime Application Self-Protection 43

Alexander Fry, alexanderfry@student.sans.edu

evolving and have become more comprehensive in the types of weaknesses they protect

against and support more programming languages and frameworks. Finally, there is great

promise in RASP solutions complementing existing investments in WAF to provide

greater attack intelligence and WAF enhancement.

Runtime Application Self-Protection 44

Alexander Fry, alexanderfry@student.sans.edu

References

Adrian Lane. (2016, May 17). Understanding and Selecting RASP: Technology

Overview. Retrieved from https://securosis.com/blog/understanding-and-

selecting-rasp-technology-overview

Amazon Web Services (AWS). (2019). What is DevOps?. Retrieved January 5, from

https://aws.amazon.com/devops/what-is-devops/

Andreesen, M. (2011, August 20). Why Software Is Eating the World. The Wall Street

Journal[New York]. Retrieved from

https://www.wsj.com/articles/SB100014240531119034809045765122509156294

60

Asadoorian, P. (2016). Getting a Grasp on RASP. Retrieved from IANS

website: https://www.iansresearch.com/insights/reports/getting-a-grasp-on-rasp

Bird, J. (2017). 2017 State of Application Security: Balancing Speed and Risk. Retrieved

from SANS Institute website: https://www.sans.org/reading-

room/whitepapers/analyst/2017-state-application-security-balancing-speed-risk-

38100

Carpenter, S. (2017, February). What does "Web external" metric means? [Web log post].

Retrieved from https://discuss.newrelic.com/t/what-does-web-external-metric-

means/45743/3

Cisar, P., & Cisar, S. M. (2016). The framework of runtime application self-protection

technology. 2016 IEEE 17th International Symposium on Computational

Intelligence and Informatics (CINTI). doi:10.1109/cinti.2016.7846383

Contrast Security. (n.d.). Contrast Enables DevOp Teams to Deliver Security-as-Code.

Retrieved January 1, 2019, from https://www.contrastsecurity.com/devops

Contrast Security. (2019). Administration | Contrast Open Docs. Retrieved January 5,

from https://docs.contrastsecurity.com/admin-orgsettings.html#org-notify

Contrast Security. (2018, March 20). Get the Most Out of Your WAF Investment |

Technical Brief. Retrieved January 1, 2019, from

https://www.contrastsecurity.com/get-the-most-out-of-your-waf-investment

Runtime Application Self-Protection 45

Alexander Fry, alexanderfry@student.sans.edu

Contrast Security. (2017, July 21). Whitepaper | State of Application Security: Libraries.

Retrieved from https://www.contrastsecurity.com/state-of-application-security-

libraries

Contrast Security. (2017). RASP Technical Brief. Retrieved from Contrast Security, Inc.

website: https://www.contrastsecurity.com/rasptechbrief

Gartner, Inc. (2019). Web Application Firewalls Reviews. Retrieved from

https://www.gartner.com/reviews/market/web-application-firewalls/vendors

Gartner. (2012, November 4). Runtime Application Self-Protection (RASP) - Gartner IT

Glossary. Retrieved January 1, 2019, from https://www.gartner.com/it-

glossary/runtime-application-self-protection-rasp

Kim, G. (2012, August 22). The Three Ways: The Principles Underpinning DevOps - IT

Revolution. Retrieved from https://itrevolution.com/the-three-ways-principles-

underpinning-devops/

Netsparker Ltd. (2019). SQL Injection Cheat Sheet. Retrieved January 1, 2019, from

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

New Relic. (2019). New Relic: Application Performance Monitoring and Management.

Retrieved from https://newrelic.com/products/application-monitoring

NSS Labs. (2017, December 7). Next Generation Firewall (NGFW) Test Methodology.

Retrieved from https://www.nsslabs.com/default/assets/example-

reports/ngfw/NSS_Labs_Next_Generation_Firewall_Methodology_v8_0.pdf

OWASP. (2016). Tutorial - OWASP NodeGoat Project. Retrieved November 1, 2018,

from http://nodegoat.herokuapp.com/tutorial

OWASP. (2017, June 26). Server-Side Request Forgery - OWASP. Retrieved from

https://www.owasp.org/index.php/Server_Side_Request_Forgery

OWASP. (2017). OWASP Top 10 2017. Retrieved from

https://www.owasp.org/index.php/Top_10-2017_Top_10

PortSwigger. (2018). Bypassing Signature-Based XSS Filters. Retrieved from

https://support.portswigger.net/customer/portal/articles/2590820-bypassing-

signature-based-xss-filters-modifying-script-code

Prevoty. (2017, March 13). Prevoty Automatically Protects Against the Latest Struts 2

Vulnerability and Attacks Targeting Remote Code Injection Vulnerabilities.

Runtime Application Self-Protection 46

Alexander Fry, alexanderfry@student.sans.edu

Retrieved from http://www.marketwired.com/press-release/prevoty-

automatically-protects-against-latest-struts-2-vulnerability-attacks-targeting-

2202301.htm

Prevoty. (2017, September). AppSec in an Open Source World 101. Retrieved from

https://s3-us-west-

2.amazonaws.com/prevotyexternaldocs/Whitepapers/AppSec_in_an_Open_Sourc

e_World_101.pdf

Prevoty. (2018, May 17). Prevoty Technical Overview. Retrieved from Prevoty, Inc.

website: https://www.prevoty.com/prevoty-technical-overview

Price, E. (2017, September 12). How to shed the technical debt of legacy code. Retrieved

from https://www.devbridge.com/articles/shed-the-technical-debt-of-legacy-code/

Suhas, D. (2017, May 18). Using the Right Mean for Meaningful Performance Analysis |

Data Analysis [Blog post]. Retrieved from

http://blog.catchpoint.com/2017/05/18/using-mean-performance-analysis/

Tirosh, A., Zumerle, D., & Horvath, M. (2018). Magic Quadrant for Application Security

Testing. Retrieved from Gartner

website: https://www.gartner.com/doc/reprints?id=1-

4TFRCQV&ct=180319&st=sb

Ullrich, J. (2016). 2016 State of Application Security: Skills, Configurations and

Components. Retrieved from SANS Institute

website: https://www.sans.org/reading-room/whitepapers/analyst/2016-state-

application-security-skills-configurations-components-36917

Verizon. (2018). Data Breach Investigations Report (11th Edition). Retrieved from

Verizon website:

https://www.verizonenterprise.com/resources/reports/rp_DBIR_2018_Report_en_

xg.pdf

Waratek. (2018). Application Security Using Runtime Protection. Retrieved from

Waratek Ltd. website: https://cdn.aws.waratek.com/v2/wp-

content/uploads/2018/02/WP-RASP-Intro-20180206.pdf

Williams, J. (2015). Protection from the Inside: Application Security Methodologies

