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I n the current corporate environment, business organizations have to reengineer their pro-
cesses to ensure that process performance efficiencies are increased. This goal has lead to a
recent surge of work on Business Process Reengineering (BPR) and Workflow Management. While
a number of excellent papers have appeared on these topics, all of this work assumes that
existing (AS-IS) processes are known. However, as is also widely acknowledged, coming up
with AS-IS process models is a nontrivial task, that is currently practiced in a very ad-hoc
fashion. With this motivation, in this paper, we postulate a number of algorithms to discover,
i.e., come up with models of, AS-IS business processes. Such methods have been implemented
as tools which can automatically extract AS-IS process models. To the best of our knowledge,
no such work exists in the BPR and workflow domain. We back up our theoretical work with
a case study that illustrates the applicability of these methods to large real-world problems.
We draw on previous work on process modeling and grammar discovery. This work is a
requisite first step in any reengineering endeavor. Our methods, if adopted, have the potential
to severely reduce organizational costs of process redesign.

(Workflow Management; Business Process Reengineering; AS-IS Business Process Models; Process

Discovery; Algorithms)

1. Introduction, Research Context,
and Related Work

The related areas of Workflow Management and Business
Process Reengineering (BPR) have attracted much re-
search attention in the recent past. A lot of this work
is concerned with business process redesign and innova-
tion (Hammer and Champy 1993, Davenport 1993,
Hammer and Stanton 1995, Yu' 1995, Dinkhoff et al.
1994a). Process redesign is percelved to bring about
major improvements in the achievement of organiza-
tional objectives such as service level and quality, by
reducing process cost and time. For anyone unfamiliar
but interested in this area (i.e., BPR, workflows, busi-
ness processes etc.) we would recommend two cita-
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tions—Davenport (1993) and Hammer and Champy
(1993). These works may be regarded as the “pioneer-
ing” literature in this area.

To perform BPR, one must first come up with mod-
els of existing processes. More specifically, it is well-
recognized that models and documentation of existing
processes ‘4re prerequisites for BPR participants in un-
derstanding ‘the existing state of the organization, and
learning about existing problems that have to be
avoided in the “innovated” environment (Davenport
1993, Dinkhoff et al. 1994a). Such models are known
as AS-IS process models. As definitively stressed in
both Davenport (1993) and Hammer and Champy
(1993), the modeling of AS-IS processes is the requisite
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starting point of any reengineering endeavor. Current
BPR research implicitly assumes that the AS-IS model
of organizational processes are always known prior to
reengineering. However, current work also recognizes
that AS-IS process models are very difficult (not to
mention extremely expensive) to extract (Davenport
1993, Hammer and Champy 1993). Furthermore, this
same literature characterize existing procedures for
modeling AS-IS processes as ad-hoc, usually consisting
of extensive meetings and discussions with managers
and employees individually and in groups. Typically,
business processes consist of tasks performed by
agents. Individual agents often know what they do,
but have very little idea of what happens after their
task is performed. On the other hand, managers usu-
ally have a high level understanding of the process,
e.g., the interagent flow, but are often unaware of in-
dividual tasks.

As an example, consider the process of travel request
approvals at universities. After the travel request is ini-
tiated by a faculty member by filling out a form, it is
processed by a departmental secretary before being
routed to the university travel support office for fur-
ther processing and approval. Often the faculty mem-
ber does not know what the secretary does to process
her request, and the secretary has very little idea how
the travel support office deals with his output. Simi-
larly, the travel support office supervisor, while know-
ing the basic flow of information, does not know what
each individual agent does. Thus, extracting the AS-IS
process model of travel request processing would re-
quire extensive meetings with each individual agent,
as well as group meetings with all performers and
managers. Usually, large consulting organizations
spend weeks and charge many thousands of dollars
for these types of tasks (Davenport 1993). Also, it is
easily seen that this task is an unavoidable one, as, un-
til existing processes are modeled, they cannot be reen-
gineered. Moreover, the process model derived in such
a fashion has no rigor or formalism behind it—two
different consulting organizations are apt to come up
with very different models for the same process. There-
fore, as there exists no standard procedure to model
AS-IS processes, most organizations are at the mercy
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of specialized individuals (e.g., consultants) who come
at a heavy cost.

There is, unquestionably, a clear-cut need to come
up with formal, rigorous ways of discovering AS-IS
models for business processes. The major benefit of
such methods is that they can then be implemented as
tools, which could be used by “lay persons” to get a
reasonable first cut of existing processes. While the
utility of business process modeling and redesign is
widely accepted, we are aware of no work that describes
strategies for systematic and automated extraction of AS-
IS process models. Our primary objective in this re-
search is to propose a framework and methodology for
automated AS-IS business process discovery. In other
words, we propose to design strategies that will enable
the programmatic discovery of business processes. The
basic approach we adopt is to observe the behavior of
a process, and extract a formal model of the process
that can account for this behavior. There exist “tried
and true” methods to observe and record process be-
havior. We use these methods to record traces of pro-
cess behavior. Then we show that the problem of pro-
cess discovery from these traces maps to the problem
of grammar discovery from examples of sentences in a
regular language. The grammar discovery problem
has a solid theoretical basis, which we subsequently
exploit to come up with rigorous process discovery al-
gorithms. A case study reveals that our process dis-
covery methods work quite well in practice. Also, since
our algorithms are automated, they take far less time
than the currently used ad-hoc procedures. If em-
ployed in practice, our approach has the potential to
save organizations large sums of money from their
BPR budget. If current trade literature is to be believed
(e.g., Datamation, Computer World) such costs for mid-
size organizations (100 to a 1,000 employees) run into
millions of dollars a year.

In this paper we suggest three different strategies
that may be used to extract AS-IS process models.
These strategies are based on well-studied methodol-
ogies, namely stochastic modeling and finite state machine
synthesis. Because our strategies are systematic (i.e.,
procedural) they can be coded into programs. We have
done so and have used these programs to extract mod-
els from existing “real-life” processes. Such extraction
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is done using substantially less time and resources
than conventional ways.

Work in the following areas are used as basis of our
approach:

1. Work in process modeling. This work lays the foun-
dation of the process model we use in this paper de-
scribed in §2. While looking at process modeling lit-
erature, we looked at two substreams, (a) Business
Process Modeling and Workflows (Blyth et al. 1993,
Medina-Moza et al. 1992, Yu 1995, Yu and Mylopoulos
1994, Yu et al. 1995, Rajapakse and Orlowska 1995,
Anton et al. 1994), and (b) Software Process Modeling
(Dinkhoff et al. 1994b, Kamath and Ramamritham
1996, Kuo et al. 1996, Ngu et al. 1996, Rusinkiewicz
and Sheth 1995, Weissenfels et al. 1996).

2. Work in grammar discovery (see Angluin and Smith
(1983) for a comprehensive survey). In Cook and Wolf
(1995) there is a nice application of these methods to
software process discovery. We borrow from this work
to devise our strategies. However, as explained later,
substantial modifications need to be made to apply
these methods to our problem.

The rest of the paper is organized as follows. Section
2 postulates a model of business processes, followed
by an overview of our basic ideas to discover process
models in Section 4. In Sections 5 and 6 we state, with
examples, three different algorithms that we have de-
signed. We discuss the effectiveness of these algo-
rithms in Section 7. Subsequently, we provide a de-
tailed case study in Section 8 to illustrate the
applicability of our methods to a large scale problem
and conclude in Section 10.

2. Organizational Process Model

Before describing strategies to extract models of busi-
ness processes (BP), we believe it is necessary to pos-
tulate what we mean by a business process and how
we propose to model it. In particular we wish to pro-
pose a simple, yet comprehensive model of a BP, which
would then be used in the rest of the paper. First we
give a brief preview of this section: to describe a BP,
we use the notions of events, states, and activities. We
first define these terms. Note that the idea of describing
processes in terms of the above notions has been
widely used in the process modeling literature (Sato
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and Praehofer 1997, Cook and Wolf 1995). Having de-
fined and explained these notions we represent a BP
in terms of a structure that we call a Process Activity
Graph (PAG). Thus, the problem of discovering an AS-
IS process model maps to coming up with a PAG for
a BP.

To illustrate the discussion in this section, we use
the following organizational scenario as a running ex-
ample: The Information Technology Services Unit
(ITSU) of a department at a university. The ITSU offers
computing facilities housed in a Computing Lab. The
ITSU also provides maintenance support and consul-
tancy to the faculty, staff, and students of the depart-
ment. It also maintains a computer-equipment repos-
itory, and periodically loans equipment such as
computers and LCD projectors to the users.

The ITSU computing Lab serves as the coordination
center of all these tasks, and as the official Help Desk
for all user support requests. The key active partici-
pants of the ITSU are:

* The Lab Technicians, whose duties include com-
puter maintenance service and consulting.

» The Lab Monitors, who supervise the Lab, act as
liaisons between users and the ITSU, and maintain the
equipment-loan system.

» The Lab Manager, who supervises all the techni-
cians and monitors, organizes the important ITSU ac-
tivities such as computing workshops, and publishes
the ITSU newsletter.

All the users of the ITSU services communicate with
the Lab Monitor, who then routes the messages and

requests to the appropriate ITSU employees. In some
cases, the Monitor may be able to address the request
without any assistance from others. He/she is also re-
sponsible for distributing ITSU information brochures
and conveying important announcements to the users.
Using this scenario as an example, we now define the
notions of agents, events, states, and activities. These def-
initions are adapted from similar definitions found
widely in the process modeling literature.

DEFINTTION. Agent. An agent is an active organiza-
tional participant.

Agents may be looked upon as performers of orga-
nizational tasks. In the ITSU example, the agents in-
clude the Lab Monitor, the Manager, and the Lab
Technicians.

277

Copyright © 2000 All Rights Reserved



DATTA
Automating the Discovery of AS-1S BP Models

DeFINITION. Event. An event is an observable, in-

stantaneous occurrence of organizational significance
and indicates the beginning or end of organizational
tasks.
The phrase “organizational significance” simply im-
plies that an event, from a process modeling perspec-
tive, must somehow be related to the organization un-
der observation. For example, for an analyst
attempting to model loan processing in a bank, the oc-
currence atmospheric temperature exceeds hundred degrees
is not relevant, and therefore is not regarded as an
event. Furthermore, in modeling business processes,
we are not interested in any organizational occurrence,
but only in those that mark the start or end of tasks.
We clarify this point further after defining the notion
of an activity below. Each event is described as a 2-
tuple [L, TS], where L is a unique event label and TS
is a timestamp of the event. Since events denote the
initial and terminal points of tasks, we now proceed to
model tasks in terms of activities.

DEFINITION. Activity. An activity is a logical unit of
work performed by a single agent, that occurs over a
temporally extended period. An activity is initiated by
a begin_event, which signals the start of the activity
and terminated by an end event, which signals the end
of the activity.

Any activity A is characterized by a 4-tuple [L,, G,
Epeg, Eenal, Where L, is an activity label, G is the agent
who performed the activity, and Epg and E.q denote
the begin and end events for the activity. The temporal
duration of an activity is delimited by the timestamps
of its begin and end events ie., duration (A4) =
TS(Eena) — TS(Epeg)- Since, in our model, we use events
to characterize the begins and ends of activities, we use
the following simple naming convention for event la-
bels: an event that serves as the begin event for activity
A is denoted by A* and the end event for activity A is
denoted by A~.

In our ITSU scenario, an example activity may be
Receive Support Request (R-SR). This activity would de-
note the organizational task performed in receiving a
request for technical support from some user. As de-
scribed earlier, this activity would be characterized by
a begin event R-SR* and an end event R-SR™.

Having described activities, we now turn our atten-
tion to the effect of performing an activity upon an
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organization. Essentially, activities result in the alter-
ation of the organizational state. The process of activi-
ties changing organizational states may be viewed as
analogous to transactions changing database states.

DEeFINITION. State. The state of an organization at a
given instant in time is the situation of the organization
at that time. One may also conceptualize state as a
snapshot of an organization at a given time.

Having defined activities and states, we are now in
a position to present a model of a business process
(BP). While many definitions of BPs exist in the liter-
ature, we adapt the following definition from the well-
known work by Davenport (1993, p. 5).

DEFINITION. Business Process. A business process is
a specific ordering of work activities, across time and
place, with a beginning, an end and clearly identified
inputs and outputs.

A BP is initiated with respect to an input state of the
organization, and subsequently, through a sequence of
activities, terminates at one or more outputs or goal
states of the organization. In between the terminal
states, a BP may take the organization through a suc-
cession of intermediate states. We hasten to add that
this way of characterizing processes, i.e., using the no-
tions of activities and states, is widely used in the pro-
cess modeling literature. For example, software pro-
cesses have been modeled in the same way in Cook
and Wolf (1995), while similar models of business pro-
cesses may be found in Sato and Praehofer (1997). Our
goal is not to stipulate a novel process modeling meth-
odology. Rather, we wish to state a simple yet com-
prehensive model of a BP using established notions.
Subsequently, using this established model, we will
design novel ways to discover processes.

Having described the model of a BP, we turn our
attention to stating a simple representation of such a
model. Again, established literature comes to our aid.
Process models have often used graph structures to
represent activity sequences. Accordingly we repre-
sent a BP using a Process Activity Graph (PAG) as de-
fined below.

DErFINITION. Process Activity Graph (PAG). A PAG
is a 2-tuple [S,A], where S is the vertex set and A is the
edge set. An edge A; connecting vertices 5; and S; de-
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notes that activity A; takes the organization from state
S; to state S;. S; and Sy are known as input and output
states, respectively, of the activity A;.

The PAG captures the progression of the organiza-
tion from a begin (input) states to one or more goal (out-
put) states, through a sequence of activities and inter-
mediate states, over a period of time.

We now provide an example of how a BP is captured
through a PAG, using the ITSU scenario described ear-
lier. Consider an important BP in the ITSU, namely
“Provide User Support” (PUS), where ITSU users re-
quest and receive computing support from the Tech-
nicians, with the Lab Monitor acting as a liaison. The
PAG for the PUS process is shown in Figure 1. The
figure is self-explanatory; however, we provide a brief
description of the process below.

1. An ITSU user initiates the process by sending an
e-mail/phone support request to the Monitor. This
takes the process through states S; and S,. Clearly, S,
is the begin state of process PUS.

2. If the support request information is complete, the
Monitor either forwards the support request to the
Technician (S;), or performs service tasks (S¢) and logs
the support request as “completed” (S,). Else, he/she
invalidates the SR (S,), and then cancels or nullifies it
(Ss).

Thus, Ss and S; are the two end states of this process.

3. Once a Technician receives a support request from
the Monitor (S3), he also acts as in step 2.

Figure 1 is a PAG corresponding to the process model
of the PUS BP. Using such a model one may identify
various activity sequences that may be performed to
execute instances of a BP. We call such activity se-
quences process paths (analogous to the notion of
workflows).

Figure 1 Process Activity Graph (PAG): Process PUS

User Request
0
Help Desk

Process “Provide User Support™:
Activities: R-SR (Recieve Support t)

e F=T (Forward Reguest to Technician)
P-S (Perform Service Tasks)

1-SR (Invalidate Support Request)
N-SR (Nullify Support Rmm)
L-SR (Log Support Request)

INFORMATION SYSTEMS RESEARCH
Vol. 9, No. 3, September 1998

DEFINITION. Process Path. A process path is any se-
quence of activities that connects a “start state—end
state” pair in the PAG. Clearly, several process paths
are possible for a BP.

The process paths of PUS are as follows: (1) R-5R, I-
SR, N-SR (2) R-SR, P-S, L-SR (3) R-SR, F-T, I-SR, N-SR,
and (4) R-SR, F-T, P-5, L-SR.

3. How Well Does the PAG
Conform to Comprehensive

Business Process Models and
Workflows?

In this section we discuss to what degree our PAG con-
struct satisfies the goal of designing a “comprehen-
sive” business process model. To do this, let us first
enumerate and examine some desired characteristics
of a “good” process model. Let us first ask the ques-
tion: “what does one do with a model of a business
process”? As far as this (and a multitude of other) pa-
pers are concerned, a major use of business process
(BP) is in Business Process Reengineering (BPR) and
Work-Flow Management (WFM). Both BPR and WFM
are concerned with understanding properties of busi-
ness processes (or work-flows) with the intent of un-
covering inherent inefficiencies of these processes/
flows. Thus, for a model to be useful to BPR or WFM
it must adequately capture properties of the underly-
ing process/flow that it models. If one looks carefully
at existing work describing characteristics of business
process models (in addition to the references cited pre-
viously, see also Abeysinghe and Palp (1997), Manley
(1996), and Kueng et al. (1996)) two characteristics
emerge that these models must exhibit:

1. Task/activity flow (we shall simply refer to this
as activity flow), and

2. Control flow.

Activity flow refers to the task/activity ordering re-
lationships (e.g., input-output, precedence etc.) that is
present in a BP. This is also referred to sometimes as
information flow (Kamath and Ramamritham 1996),
particularly in cases where the activities are transac-
tional, i.e., they can be modeled as transactions oper-
ating on some sort of an underlying database. In many
ways the activity flow forms the “structure” or “foun-
dation” of a BP model—almost all the definitions of
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process models available in the literature (many ref-
erences cited previously) define processes as activity
(or task) flows. In fact, our earlier definition (adapted
from Davenport) is no different.

Control flows add additional meaning (or seman-
tics) to the “basic” BP structure offered by task flow
models. Many types of control primitives have been
proposed in the literature (and as understanding of BP
models develop more control structures are being pro-
posed): (a) marking some activities as vital, i.e., if these
activities failed, the process needs to be aborted, (b)
identifying contingency activities, i.e., upon the failure
of some (nonvital) activity the BP execution need not
be terminated. Rather, some preidentified contingency
measures can be adopted, (c) identifying triggering con-
ditions for specific activities, i.e, given a conditional
branching point certain activities will be triggered
based on the occurrence of certain conditions (e.g., the
satisfaction of a predicate upon the state of an under-
lying database). Note the above is just some of the com-
monly stated control primitives, one can easily conjure
up several more. The point is that, unlike activity flow,
there exists no “closed form” definition of control
flows.

PAGs, obviously, represent the activity flows of a BP
model. We are currently working on extending the
work presented in this paper to include the discovery
of “contingency” and “triggering” conditions—this is
elaborated a little more when we talk about future
work in the conclusion section. Note however, that the
activity flows form the backbone of a process model—
without this aspect, there is, in effect, no workable
model. Thus, clearly, the PAG represents an important
and substantial (though by no means complete) com-
ponent of a comprehensive model. The logical next
question is whether it is indeed possible to specify a
complete model. We contend that it is impossible for
any model to be complete, because from a control flow
standpoint completeness is undefinable—more and
more control flow structures are being identified all the
time. Indeed, in many respects control flow is appli-
cation specific, i.e., given a specific application one can
identify a set of control primitives that are important.
For example, the FEMA (Federal Emergency Manage-
ment Agency) is in the business of providing assistance
to residents of disaster afflicted localities (visit the very
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informative FEMA web site at http:/ /www.fema.gov).
FEMA maintains detailed process models of evacua-
tion plans—clearly, in these models contingency con-
trols take on special meaning as disaster evacuation
scenarios tend to be highly unpredictable. This may
not be the case in other application processes. In sum-
mary, our intuition is that it will be very hard to devise
“comprehensive” BP models, and consequently it will
be even harder to discover them. Thus, we contend,
the PAG represents a critical component of BP models;
in fact, the PAG represents a component that must be
present in all BP models. It has several other advan-
tages as well:

» For simple (e.g., linear or processes with no con-
ditional branchings) processes, the PAG represents
most of the information contained in the process

* Given a PAG for a process, a manager, in many
cases, would be able to identify much of the control
flow in the process. For example if the PAG docu-
mented in Figure 1 was shown to the ITSU manager
she would immediately be able to deduce that state S,
is a conditional branching point, i.e, from that state
only one of the three activities I-SR, F-T, or P-S can be
executed for a particular service request. In other
words, many control flows can be identified by a care-
ful examination of the PAG by appropriate enterprise
personnel. We hasten to add that there may exist com-
plex control events that are not identifiable visually—
as mentioned earlier, we are working on systematic
extraction of some such control flows.

Basically what we have attempted to show above is
that PAGs are a necessary component of any BP model.
Moreover, in many cases, based on the characteristics
of the underlying process, interesting inferences may
be drawn about the control flow inherent in the BP
being modeled. In addition PAGs have a few more in-
teresting features that aids workflow management
(WFM) specifically.

One of the important goals of WFM (Rusinkiewicz
and Sheth 1995), is identifying the various workflows
that may be executed to accomplish a specific organi-
zational activity, i.e., a business process. It turns out
that the output of the PAG model is precisely the
above, i.e., a set of process paths as shown in the pre-
vious section. Later in this paper, when describing our
discovery strategies we state criteria to identify “start”
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and “end” states of a process. Essentially, any paths in
the PAG between a pair of such states designate a
workflow. Having identified such paths, one can sub-
ject these workflows to a number of systematic tests to
determine whether these are “good”. For instance, a
path that contains a cycle is possibly inferior than a
competing workflow which does not. Note that this is
a simple generalization which may not hold in all
cases. Moreover, one could potentially record the du-
rations of each task on a PAG (this is easily doable by
noting the timestamps of the begin and end events of
the task, as noted earlier) and do a comparison be-
tween competing process efficiencies.

Thus, we believe that discovering the PAG is a non-
trivial problem, the solution to which can add a lot of
value to organizations.

4. Basic Intuition Behind the
Proposed Process Discovery
Strategies

We propose to discover a BP by extracting a PAG
model of the BP from its observed behavior. The first
question then is how to observe and record the behav-
ior of a business process. Fortunately, existing process
modeling and monitoring literature comes to our aid.
It turns out that there exists much work regarding
monitoring and recording the behavior of processes
(Bradac et al. 1994, Wolf and Rosenblum 1993, Kellner
et al. 1990, Cook and Wolf 1995). All of the aforemen-
tioned work adopt the view that a processiis a se-
quence of actions. Thus, by recording the observed se-
quence of actions, an execution trace of the process
may be obtained. Actions are characterized by events
(i.e., instantaneous, visible occurrences) and conse-
quently, such event data are collected to characterize
the process. One may view the collected event data as
an event stream, which is a sequence of temporally or-
dered events, i.e., in an event stream event E; precedes
Ei’ lff
Timestamp (E)) < Timestamp (E)).

By fixing appropriate granularities of time, it can be
virtually ensured that all recorded events have differ-

ent timestamps. In other words, event streams can be
assumed to be totally temporally ordered. Established
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Vol. 9, No. 3, September 1998

procedures exist for collecting such event data (Bradac
et al. 1994, Wolf and Rosenblum 1993) and are being
used in several industries such as software engineering
(in areas such as program visualization, concurrent-
system engineering, distributed debugging) and
manufacturing. The basic idea behind these proce-
dures is quite simple: observers (or monitors) experi-
ence and record the (repeated) enactment of a process
by keeping a log of the events that they observe. These
events are then organized in temporal order to yield
an event stream. Collected over sufficiently long and
carefully monitored periods of time, these event
streams capture the behavior inherent to a process. To
reduce redundancy, as well as keep the length of this
paper manageable, we do not state these procedures
fully here. Interested readers are referred to the afore-
mentioned papers.

In concordance with existing process modeling lit-
erature, we have modeled BPs with events and actions
(modeled as activities in our case). Thus, we can utilize
the same procedures to collect event data. In our case,
subsequent to collecting an event stream correspond-
ing to a BP, we convert it to an activity stream. This is
done very simply as illustrated below.

Consider the following event stream corresponding
to the enactment of a business process P with an activ-
ity alphabet {A, B, Ck

A*,B*,C*,B-,B*,B7, A", C".

We extract an activity stream from this event stream by
ordering the activities according to the timestamps of
their end events. In other words, for any event stream
E and its corresponding activity stream C, an activity
A; follows an activity A; in C, iff A;” preceded A;” in E.
Thus the activity stream corresponding to the event
stream above is

B, B, A C.

This activity stream may be regarded as a trace of the
execution of the BP whose model we are interested in
discovering. This trace is nothing but an example of the
behavior of the BP. The problem now is to design
methods to discover a formal model of the process
based on this trace. As explained in the previous sec-
tion, we use a Process Activity Graph (PAG) to model a
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BP. Thus, we shall design strategies to extract PAGs
from activity streams.

4.1. Additional Details Regarding Our Approach
Our basic approach to extract process models is to
monitor the behavior of a process by observing the ac-
tivities performed and to record this behavior as an
activity stream, as described above. More accurately,
our approach is to collect and analyze a trace of process
execution and infer a formal model that can account
for the organizational behavior encapsulated in the
trace. Let us make it clear at this point, that we do not
expect that this process will always come up with a
completely accurate PAG (i.e., process model). For in-
stance, due to inherent, unresolvable properties of our
trace collection procedure, we can never guarantee that
there is no “noise” in the trace. This is one major dif-
ference between software processes inherent to soft-
ware engineering and human processes inherent to
business process engineering. For example, if a soft-
ware process, P, includes the activity sequence A;, A;,
then it is highly likely that this exact sequence will ap-
pear in an execution trace of P, (unless of course some
unlikely events such as program or system errors occur
in between). In contrast, human agents are much more
unpredictable. For example, if a business process P,
includes the activity sequence A;, 4, it is quite likely
that some unprecedented activities may be performed
in between e.g., receiving a personal phone call, or go-
ing for lunch, or taking a break. The monitoring pro-
cess, unable to distinguish between “relevant” and
“noisy” activities, will record such extraneous activi-
ties, which will subsequently appear in the process
trace, i.e., the activity stream. Thus, organizational pro-
cess traces are more likely to be noisier than software
process traces. In other words, noise elimination is an
important goal of business process discovery strate-
gies. In practice however, complete elimination of
noise may be impossible. Thus, it would be difficult to
guarantee the accuracy of the PAG generated. How-
ever, our objective is to produce a “reasonable” first
cut of a BP, which the analyst can then refine. As
shown later, our procedures more than fulfill this
objective.

As described above, we intend to collect process be-
havioral information in the form of a trace, and then
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analyze this trace to extract a PAG. The focus of this
paper is not the data collection part. Process monitoring
and data collection are well-researched areas, and sev-
eral methodologies exist (LeBlanc and Robbins 1985,
Bradac et al. 1994, Wolf and Rosenblum 1993) that are
currently being used in several industries (e.g., soft-
ware, manufacturing). As a matter of fact, even com-
mercial workflow software (e.g., IBM’s workflow
product FlowMark (IBM Corporation 1996) supports
process monitoring functions. Even better, such soft-
ware makes it possible to directly record activity
streams instead of having to first record event streams
as would be the case using the methodologies de-
scribed in the papers cited above.

The focus of this paper is the analysis phase, which
is conducted once the activity traces have been col-
lected. Our basic strategy is to examine this trace for
patterns of repetitive behavior. Recall that the activity
stream records activity sequences logged over several
execution instances of the process. Thus, if certain pat-
terns recur often enough in the trace, there would be
a basis for inferring that these patterns are represen-
tative of true process behavior. The logical next ques-
tion therefore is as follows: “what is a good formal
model to represent these patterns?” We found a nice
answer by examining the well-known problem of
grammar discovery (to see a survey of this literature,
see Angluin and Smith (1983)). The grammar discov-
ery problem may be stated as follows: discover the gram-
mar for a regular language, given examples of sentences in
that language. Now, mapping activities to tokens and
activity streams (traces) to sentences, the grammar dis-
covery problem maps, to a large degree to the process
discovery problem. Based on this analogy, we sur-
mised that similar methodologies may be employed to
solve both problems. Now, the grammar discovery
problem is a well-studied problem. It turns out that
the grammar discovery problem has been approached
using Finite State Machine (FSM) synthesis, i.e., given
examples of its behavior, synthesize (discover) a FSM
model that accounts for the behavior. We decided to
take a similar tack, i.e., cast the process discovery prob-
lem in terms of a FSM synthesis problem. Another ad-
vantage of this approach is that the output of this
methodology is a FSM which is similar to a PAG, if
one considers activities as transitions between states.
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Recall from our earlier discussion that our objective is
to extract a PAG from process behavior. Thus, the FSM
synthesis approach appears to be particularly suitable
to fulfill this objective.

Now let us turn our attention to the applicability of
existing FSM synthesis methods to our problem. Sev-
eral techniques have been proposed for discovering
FSMs from input-output behavior, most notably by
Gill (1962) and Ginsberg (1962, 1966). The problem
with applying these directly is that all of these methods
require that enough information be included in the
problem statement such that the solution is unique.
Also these methods do not have the ability to produce
unspecified or “don’t care” conditions to produce sim-
pler solutions. We need procedures that can handle
insufficient information (clearly, regardless of the du-
ration of data collection, one can never guarantee that
all pertinent information with respect to a BP has been
captured) and yield PAGs (i.e., machines) that often
give “reasonable” behavior outside of the specified do-
main. Also, many of the abovementioned methods
need both positive, i.e., legal examples of behavior as
well as negative, i.e., illegal examples of behavior. In
our case, obviously, we can only supply examples of
actual (i.e., legal) behavior. One method that appears
to satisfy some of these criteria is an algorithm postu-
lated by Biermann and Feldman (1972). In particular
the strength of this algorithm is that it can take ex-
amples of “partial” behavior and produce “reason-
able” results. Thus, we start with this algorithm. How-
ever, this algorithm (like the others mentioned
previously) has two major flaws: (a) the final machine
produces too many states, and (b) the procedure is
very susceptible to noise. Our goal is to use the
Biermann-Feldmann (B-F) algorithm as a starting point
and adapt it to the business process engineering
framework.

The several FSM synthesis techniques that have been
proposed may be classified as algorithmic or probabilis-
tic. The former used well-understood algorithms to
compute grammars from legal and illegal sentences,
whereas the latter consists of strategies where sample
sentences yield probabilities, which are then manipu-
lated to synthesize FSMs. In keeping with this trend,
below, we specify two strategies to extract PAGs from
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organizational behavior traces, a probabilistic strategy
and an algorithmic strategy.

5. The Probabilistic Strategy

This strategy was formulated by us and works as fol-
lows: it examines the provided activity stream of a BP
and uses stochastic process modeling techniques to
find the most probable (highest frequency) activity se-
quences. These probabilities are then algorithmically
converted into states and transitions to yield a FSM,
which is the PAG model of the BP. Although our al-
gorithm is new, there is other work that has used a
similar approach. In Miclet and Quinqueton (1988), the
authors use transition probabilities to create FSM rec-
ognizers of protein sequences, while in Cook and Wolf
(1995), the authors use stochastic techniques for soft-
ware process modeling.

A stochastic process is a mathematical model of a sys-
tem that varies in time in a random manner. It is de-
fined as any collection of random variables X(¢) de-
fined on a common probability space S, which is
termed as the state space of the process.! X(¢) represents
the state of the system at time ¢. The random variables
X(#) all take on values from the fixed set S.

A discrete first-order Markov model is a stochastic pro-
cess system that has the following properties:

» The process has a finite number of states.

o The Markov Property: Given the present state of the
system, the past states have no influence on the future state.
In other words, at any point in time, the probability of
the process being in some state depends only upon the
previous state of the process.

» The probabilities of the state transitions do not
change over time.

+ The initial state of the process is defined
probabilistically.

In general, an nth-order Markov model implies that, at
any point in time t, the probability of the state S, of the
process being some X(t) depends upon the previous n
states the process was in (for an excellent treatment of
markov modeling, consult Masaaki (1997)).

We now describe how we extract a model of a BP
using stochastic process modeling. More specifically,

"Process here refers to the generic definition of processes in the
Markov model terminology.
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our objective is to generate a PAG characterizing the
BP. To start with, a sample activity stream that traces
the execution of several instances of the BP is captured,
as explained in Section 4. In order to generate the PAG
for the BP, an activity-sequence probability matrix is con-
structed from the activity stream in the following way:
traversing the sample activity stream, and, for each ac-
tivity sequence, tallying the occurrences of all possible
future activities one by one in the form of a matrix.

Now, the probabilistic strategy, using an nth order
Markov model, proceeds in the following steps. Note
that while at first reading, the description may sound
cryptic, the subsequent example should clarify the
description.

1. Construct the nth order activity-sequence proba-
bility matrix, given the sample activity stream, in the
following manner:

(a) Traverse the sample activity stream. For each ac-
tivity sequence 4; of length n (where # is the order of
the model), tally the number of occurrences of all pos-
sible future activities.

(b) Calculate the probabilities of each of these future
activities occurring after the activity sequence 4;, by
dividing the tally for the future activity, by the total
number of occurrences of 4; in the activity stream. Rep-
resent the activity probabilities for each activity se-
quence in the activity stream in the form of a probability
matrix.

2. A threshold probability is fixed, as a parameter. A
directed graph called the activity graph (AG) is con-
structed from the probability matrix, in the following
way:

(a) Assign a node to each activity type in the activity
stream.

(b) Then, pick out all the activity sequence-future
combinations, of length n + 1, that exceed the thresh-
old probability. For each of these sequences, create
uniquely labeled edges from each element (node) in
the sequence to its immediately succeeding element
(node) in the same sequence, for all the nodes except
the last node.

3. The activity graph AG created in the previous step
(possibly) includes repetitive (duplicate) edges be-
tween the same pairs of nodes. These are eliminated,
such that, if any node-node pair in the EG is connected
by one or more edges, then all but one of these edges
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are removed, and only one connecting edge is retained.
Then, in the resultant AG, all the remaining edges are
newly and uniquely labeled. This step ensures that, in
the final PAG created in the last step, redundant states
are merged with the retained states. More specifically,
if the same transition path A; leads from state S; to
states {S;, S,, -..,S,}, and all these destination states
have the same output transition path(s), then all the
states {5,,...,S,} are merged into one common state
S;- Then, the occurrence of transition path at state S;
takes the organization to the state S; only.

4. The graph AG is converted into its dual, AG’, using
the following steps:

(a) Each edge in AG becomes a node in AG'.

(b) For each in-edge/out-edge pair of a node in AG,
we create an edge in AG’ from the node corresponding
to the in-edge of the pair to the node corresponding to
the out-edge of the pair.

(c) The edge thus created is labeled by the activity

node in the AG for this pair of edges.
These steps result in a coarse PAG (AG’), which still
may have illegal activity sequences (whose probability
is less than the threshold level). Examples of this are
shown below.

5. Lastly, AG’ from the above step is converted into

the final Process Activity Graph for the BP in consid-
eration, in the following manner: All the illegal activity
sequences are removed from AG’, by removing those
edges in AG’ that cause illegal sequences, and at the
same time, taking care that, in doing so, none of the
legal sequences are removed.
The graph constructed in this last step is the final Pro-
cess Activity Graph (PAG) for the BP in consideration.
Note that as a result of step 5 we cannot guarantee that
all illegal sequences will be removed from the PAG.

EXAMPLE. As an illustration, consider the ITSU or-
ganization from our example scenario, and a typical
BP “Reserve Equipment” (ResEqp). This process is per-
formed by the Lab Monitor, and involves the loaning
of computer equipment to the ITSU users. Upon an
equipment request (typically by phone or e-mail), the
Lab Monitor checks an equipment-reservation data-
base. If the equipment has no previous reservations,
he/she makes the new reservation. Otherwise, the re-
quest is added to a waitlist, and then serviced upon
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availability. The five activities of the ResEqp process
are: “Get-Equipment-Request”, “Check-Equipment-
Available”, “Reserve-Equipment”, “Check-
Equipment-Unavailable”, and “Waitlist-Equipment-
Request”. For brevity, we shall refer to these activities
as “P”, “Q", “R”, “S”, and “T” respectively. Thus, the
activity alphabet Zgeeqp = [P, Q, R, S, T]. It is easily
seen from the above description that the ResEqp pro-
cess always begins with a user request for equipment
reservation, and, depending upon the availability of
the equipment, the process ends either with the
“Reserve-Equipment” activity or with the “Waitlist-
Request” activity. In other words, the ResEqp process
always starts with the activity P, and culminates in ei-
ther R or T. Note that since a waitlist exists, it is pos-
sible that activity P draws its input either from a direct
user request, or from the waitlist. In the latter case, it
is possible that activity Q precedes P.

The reason for choosing the ResEqp process, is that
it is intuitively very easy to understand and model. In
other words, this process is simple enough and under-
stood well enough, such that we could come up with
a “correct” and unambiguous model for it. By exam-
ining the activities involved, we can come up with a
very good complete PAG for the ResEqp process, as
shown in Figure 2. This enables us to evaluate how
good our strategies are by comparing their output to
this model. The PAG in Figure 2 shows all the possible
process paths of the ResEqp process. These are the dif-
ferent paths between the start state (51) and and end
state (56). They are: P-Q-R, P-S-T, and Q-P-R. A good
model of this process would yield these process paths.

Figure 2 PAG for the ResEqp process

30

Start State
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Let us now see how the model generated with the
probabilistic strategy performs.

The first step was to capture a trace of this BP by
collecting an activity sequence representing repeated
enactment of this process. This is shown below:

PQRPQRPSTPQPRQPRQRPSTQPRPSPSTT

Next, we describe the process of generating a PAG for
this BP using the probabilistic strategy. We employ a
second-order probability matrix in this example.

1. The activity-sequence probability matrix is con-
structed for the sample activity stream, as shown in
Table 1. We consider every 2-activity sequence in the
activity-stream, and, for each future activity possible,
we tally its actual number of occurrences after the 2-
activity sequence. Then the probabilities of each future
activity occurring after each 2-activity sequence are
calculated and tabulated to form the matrix, as in Table
1. (The probability p of any future f; occurring after an
activity sequence history h; is given by the ratio of
number of occurrences of f; succeeding ;, to the total
number of occurrences of k; in the activity stream). For
the sample activity stream earlier in this section, we
can see from Table 1 that the activity-sequence Q-R is
always followed by a P, and never by a Q or R. Simi-
larly, P-S is followed by T three out of every four times,
and so on.

Note that construction of this matrix is an illustra-
tion of the exploitation of nth order markov properties
alluded to earlier. The matrix shows the probability

Table 1 Probabilistic Strategy: Second-Order Activity Probabilities

Act. P Q R S T

PQ 0.33 0.00 0.67 0.00 0.00
0R 1.00 0.00 0.00 0.00 0.00
RP 0.00 0.25 0.00 0.75 0.00
PS 0.25 0.00 0.00 0.00 0.75
ST 0.34 0.33 0.00 0.00 0.33
TP 0.00 1.00 0.00 0.00 0.00
apP 0.00 0.00 1.00 0.00 0.00
RQ 0.50 0.00 0.50 0.00 0.00
PR 0.33 0.67 0.00 0.00 0.00
TQ 1.00 0.00 0.00 0.00 0.00
SP 0.00 0.00 0.00 1.00 0.00
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that a specific activity will occur following a history
whose length is given by n. The underlying assump-
tion of course is that knowing a history is enough to
“completely” characterize the possible futures. For ex-
ample, given the history PQ (i.e., knowing that the last
activity performed was Q and it was immediately pre-
ceded by P), from Table 1, we will claim that the onl

possible future activities are P (with a probability of 3)
and Q (with a probability of %). In other words, the
futures exclusively depend upon a history of length n
(i.e., n state transitions, where the ith transition is sim-
ply the occurrence of the ith activity in the sequence, i
= n). This is nothing but the exploitation of the Markov
property. Finally we comment on the choice of n. Es-
sentially, n is the length of the history that we choose
to characterize futures. It is trivial to see therefore that

n can take on any discrete value in the interval [1, 1Z1],
where X is the activity alphabet, i.e., the set of possible
activities that characterize the BP under observation.
The choice of n is up to the analyst. Clearly in this
example n is chosen to be 2. The larger the n, the more
fine-grained will be the resulting matrix. However this
fineness will come at the cost of (potential) additional
complexity to the system. In the example shown n was
chosen to be 5, and it is easily seen that the matrix
would have had 120 rows (in general the number of
possible histories, i.e., the number of rows in the
activity-sequence probability matrix, is given by the
number of permutations of n elements from a set of
I1Z1,1ie,

Iz
I1Z1 _
P = (11 - n)!)'

A very small n on the other hand would possibly hide
a lot of system internals and yield an overly simplistic
model. Our sense is that the designer would experi-
ment with a number of different n values and choose
the model that appears to capture reality the best.

2. A threshold probability is fixed, as a parameter. In
this example, we fix the threshold probability as 0.50.
The activity graph (AG), as shown in Figure 3-a, is con-
structed from the probability matrix, using the follow-
ing steps:

(a) The vertices P, Q, R, S, and T are created, repre-
senting each activity type.

(b) All the 2-activity sequences and corresponding
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Probabilistic Strategy: Activity Graph (AG)

Figure 3

future activities, that exceed the threshold probability,
are selected, from Table 1. Thus, the sequences P-Q-R,
R-P-S, P-5-T, Q-R-P, T-P-Q, Q-P-R, R-Q-P, R-Q-R, P-R-
Q, T-Q-P, and S-P-S are selected. These are the legal
sequences. For each of these sequences, we create
uniquely labeled edges from each node in the sequence
to the immediately succeeding node in the same se-
quence. For example, for the activity sequence P-Q-R,
whose probability is 0.67 (from the first row of Table
1), we create edge 1 from node P to node Q, and edge
2 from node Q to node R. This process is repeated for
all the legal sequences. Thus, the edges 1 to 19 are cre-
ated, as in Figure 3a.

3. All the repetitive (duplicate) edges between the
same pairs of nodes in AG are removed, and the re-
sultant AG is created, as shown in Figure 3b, with
nodes P, Q, R, S, and T, and uniquely labeled edges 1
to 11.

4. The graph AG is converted into its dual, AG’
(shown in Figure 4), as follows:

(a) Nodes labeled S, to S, are created, correspond-
ing to each edge in AG.

(b) Edges are created in AG’ as follows: for each in-
edge/out-edge pair of a node in AG, we create an edge
in AG’ from the node corresponding to the in-edge of
the pair to the node corresponding to the out-edge of
the pair. For example, consider the edges 1 and 2, lead-
ing into and out of node Q, as shown in Figure 3b. In
the dual graph, i.e., AG’, shown in Figure 4, create an
edge from node S, to node S,, and label it “Q”. Simi-
larly, we create an edge labeled “R” from node 2 to
node 3, and so on.

5. Lastly, AG’ from the above step is converted into
the final Process Activity Graph for the example BP by
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removing all the edges in AG’ that cause illegal se-
quences. (The legal sequences are listed in Figure 5a).

The resultant PAG is shown in Figure 5b. For ex-
ample, the edge Q, connecting nodes 1 and 7 in AG’,
are removed, thus eliminating the illegal sequence P-
Q-P. The edges S connecting nodes 4 and 10, and P
connecting 10-8 and 10-1, are removed to eliminate the
sequence P-S-P. This step is carried out for all illegal
sequences occurring in AG' (i.e., all sequences whose
probability is less than the threshold probability). The
resultant PAG is created, as shown in Figure 5. Each
of the nodes represent a state of the process, and are
therefore relabeled as S, . .. ,511.

The reader may be curious as to how we determined
the start and end states in Figure 5b. In particular it is
indicated in this figure that the possible start states are
Ss, S7, S10 and Sy, while the possible end states are S,
S, So and Sjo. Our rationale for this determination is
provided in the description of the ResEqp process at
the beginning of the current example. Recall that the
ResEqp process is always initiated with the activity
“P” and may be terminated with the activities “R” or
“T”. Thus any state having an output transition of “P”
is a possible start state and any state having input tran-
sitions of “R” or “T” is a possible end state.

In general, the PAG created by the probabilistic
strategy will possibly include some nondeterministic
transitions, but it can be reduced to a deterministic
FSM model using techniques described in Martinsons
(1995). The robustness of this model can be controlled
through the threshold probability parameter. In the next
section, we describe our purely algorithmic process-
modeling strategy. Note that in this section we did not
comment on the quality of the model produced by the
probabilistic strategy, i.e, the PAG of Figure 5b. We
postpone this discussion until we have shown the
models generated by our other algorithms. Finally, a
comprehensive commentary regarding these models is
provided in Section 7.

6. The Algorithmic Strategy

In this section, we describe a number of algorithmic
process modeling strategies. These strategies are based
on the Biermann-Feldman algorithmic model for syn-
thesizing machines from finite subsets of their input-
output behavior (Biermann and Feldman 1972).
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Probabilistic Strategy: Dual Activity Graph (AG')

Figure 4

Activity~edges

Our objective here is to extract a model of a BP al-
gorithmically, from a sample activity stream collected
during the process execution (as in the probabilistic
strategy). More specifically, our goal is to generate the
PAG from systematically collected process data, de-
scribed in Section 4.

The original B-F algorithm, described in Biermann
and Feldman (1972), is a modification of the Nerode
realization technique (Nerode 1958) for synthesizing
finite state machines (FSMs) that characterize or realize
some finite-state computable function f. The algorithm
is concerned with designing a FSM for a given machine
or system, from only a finite number of its behavior
samples, when no other formal representations of the
machine are available. The resultant FSM has output
values associated with each state; however, in our al-
gorithmic strategy, we adapt the algorithm to generate
a PAG for an organization, given sample activity
streams characterizing a BP. The central idea behind
the original B-F algorithm is as follows: Any state of a
process is defined by what future behaviors can occur from
it. In a sample activity stream collected on the process,
for a given history (continuous sequence) of activities,
the current state reached by that history is determined
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Figure §

Probabilistic Strategy: Final PAG

Coarse PAG
(a)

______ ~ Removed edges

-~ s Retained edges

by what future sets of activities can occur from it. The
length of the “future” sequence of activities is set as a
parameter k to the algorithm. Therefore, we refer to the
original algorithm as B-F(k). If two different histories
result in the same future sequence of activities, then
they are said to reside in the same equivalence class.
Each equivalence class thus derived, represents a state
in the final FSM. The FSM represents the PAG for the
process. We now formally describe the B-F(k)
algorithm.

6.1. B-F(k) Algorithm

Let S be an activity stream collected by observing the
repeated enactment of a BP which we wish to model.
LetZ = {A,, Ay, ..., A,} be the activity alphabet that
characterizes the BP being modeled. Let H be the set
of all activity sequences possible in S, including the full
activity stream in S. Then h € H represents any valid
activity sequence. The activity sequences h € H are
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Final PAG

(b]

Legal Sequences:

PQR QPR RPS
PST RQP PRQ

henceforth referred to as histories. Let k represent the
allowable length of future activity sequences, as a pa-
rameter. Now we define the set F, as the set of all ac-
tivity sequences f; composed from Z, of length k. The
activity sequences in K are referred to as futures. Then
f € F represents any valid future.

The objective is to define a set of equivalence classes
C ={G,, ..., C}, which will represent the states of the
resultant PAG for the process.

DEerINITION. Equivalence Classes. An equivalence
class C; is a set of histories h € H such that, all such
histories have an identical future f € F. More specifi-
cally, if two histories & and h’ have the same future f
(of length k), then k and h’ belong to the same equiv-
alence class. It is possible that an equivalence class can
be comprised of a single history. The whole set of his-
tories 1 € H is classified into a set C = {C;, ..., C,} of
equivalence classes. The equivalence classes in C are
mapped to states in the PAG.
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The parameter k controls the complexity and deter-
minism of the generated model. If k is small then there
will be a large number of possible futures, i.e., large
number of states in the model, leading to potentially a
high degree of nondeterminism. One the other hand,
a large k will reduce the number of states, perhaps, in
the process, sacrificing the observance of subtleties of
the underlying process, but reducing the complexity.

The B-F(k) algorithm creates an PAG using the fol-
lowing steps:

1. All the equivalence classes C,, . . ., C, are extracted
for the given sample activity streams that characterize
the process. Each equivalence class C; is represented as
a unique state S; of the process. A graph is created with
nodes Sy, ..., S;.

2. For each C; (input state), transitions to destination
states C, upon each activity A; are determined as
follows:

(a) For each history h in C;, create a concatenated
activity sequence 4, where g = h.A;.

(b) Now, if 4 is found to belong to some other equiv-
alence class C; (i.e., if ¢ € Cp), then C; is termed as a
destination state of activity A; from state C;.

(c) An edge is created from state S; to each destina-
tion state S; corresponding to Cj, and it is labeled as
“pAr.

(d) If no such destination state can be found, then no
transition exists out of state C; upon the occurrence of
activity A;. (It is also possible that there are more than
one transitions from an input state upon an activity).

3. The resultant graph is the final PAG for the pro-
cess. Each of the states §; in the PAG is mapped to a
set of histories in H.

6.2. B-F(k) Example

To exemplify the B-F(k) algorithm, we now consider
the same example activity stream AS, as shown in Sec-
tion 5, characterizing our ITSU organizational scenario
described in Section 2. For this example, we fix the
value of k as 3. In other words, each future activity
sequence f is made up of 3 successively occurring ac-
tivities. The activity alphabet is L = {P, Q, R, S, T}.
Some of the 3-activity futures actually occurring in AS
are as follows: PQR, QRP, RPQ, RPS, PST, and so on.
In all, there are 19 unique 3-activity futures occurring
in AS, and therefore, 18 equivalence classes. The set H
of all possible histories is created as follows:
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H = {P, PQ, PQR, PQRP, ..., PQRP, ..., PSPSTT}.

Basically, H includes all possible prefixes (to any fu-
ture in AS). Now the B-F(k) algorithm proceeds as
follows:

1. All the equivalence classes Cj, ..., Cyy are ex-
tracted for the given sample activity streams that char-
acterize the process. Each equivalence class C; is rep-
resented as a unique state S; of the process. A graph is
created with nodes S, ..., S5, €ach representing an
equivalence class for the corresponding future. This
graph, shown in Figure 6a, is referred to as the PAG
for the process. The state S;, containing all histories
that lead to the future PQR, is as follows: §; = {PQR},
State S; = {PQ). Similarly, histories are grouped under
each of the other states.

2. For each S; (input state), transitions to destination
states S; upon any activity A; € {P, Q, R} are deter-
mined by the following steps. For example, consider
state S;.

(a) For each history h; € S,, create a concatenated
activity sequence g, where g = h.A;. For example, let
us consider the occurrence of activity P. Then, when
the history in S; is concatenated with P, we see that
the resultant history 4 is as follows: {PQRP}.

(b) Now, we find that g belongs to the equivalence
class S,, whose future is “QRP”. Therefore, state S, is
a destination state of activity P, from state S,.

(c) A transition edge is created from state 5, to des-
tination state S,, and it is labeled as “P”, as shown in
Figure 6a.

(d) The steps a, b, and c are repeated for every his-
tory in the state.

3. Step 2 is repeated for every state S, to Syo. For
example, state S,, by the above steps, has a transition
edge to state S; and S, upon activity “Q”, state 5,3 has
a transition edge to state S, upon activity “R”, and so
on.

4. If no such destination state can be found, then no
transition exists out of state S; upon the occurrence of
activity A;. In our example in Figure 6, however, all
states have output transitions. Also, there are more
than one transition from some states: state S, upon
activity Q, S,, upon R, etc.

5. The resultant graph in Figure 6a is the final PAG
for the process.
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Figure 6

PAG: B-F(k) Strategy

Initial PAG
[a]

The PAG produced by the B-F(k) algorithm is always
correct, as opposed to the probabilistic strategy in Sec-
tion 5. But it may be overly complicated due to the
creation of more than one destination states for the
same transition path which have the same output tran-
sitions. In order to minimize the number of states and
thus simplify the PAG, we propose the merge-state tech-
nique. (A similar technique was described in Cook and
Wolf (1995)). For each transition path (activity) A, the
merge-state technique proceeds as follows:

1. If a state S; has transitions to destination states
St, ..., S, upon activity A, and if the set of output
transition activities for the states S, . . ., S, are equiv-
alent, then the states S, ..., S, are merged into one
unique state 5;.

2. Now, an output transition path is created from the
state S; to the state S;, and labeled by the activity A;.

For example, in the PAG in Figure 6a, state S, has
transitions to both state S; as well as S,, upon activity
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Final PAG
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Q. Further, both S; and S, have the same output tran-
sition activity R. Therefore, states S; and S, are merged,
and the new state is renamed S;. Now, S; has transition
edges labeled “R” to S, and Ss, and both have the same
output transition edge “P”. Therefore, states S; and Ss
are merged, and the new state renamed S;. The resul-
tant PAG, after applying the merge-state technique,
has only eight states, as shown in Figure 6b. But, even
after minimizing the number of states in the PAG as
in Cook and Wolf (1995) the resultant PAG still lacks
robustness in the presence of noise in the activity
stream. (The notion of noise is clarified in the following
section). In order to counter the noise problem and in-
fuse robustness into the model, we propose a modified
B-F algorithm to create an organizational PAG, that
includes additional input parameters for robustness. In
the following section, we describe our proposed B-F(k,
c) strategy. As in the previous section, we defer a dis-
cussion of the “goodness” of the model shown in Fig-
ure 6b until Section 7.

INFORMATION SYSTEMS RESEARCH
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6.3. The B-F(k, c) Strategy

The PAG produced by the B-F(k) algorithm, as in Fig-
ure 6, may still not represent an entirely correct PAG
for the organization. This is because, the activity
stream trace, collected by human agents, is likely to
have noise, defined below.

DerFINITION: Noise A. “Noise” activity is any unre-
lated extraneous activity, executed by a participating
agent, which is not actually a part of any activity in
the process.

For example, in the ITSU scenario, collector-
recorded activities such as “Received phone call for a
friend”, or “Started lunch break” may not be signifi-
cant to the process that is being discovered from the
activity stream. More specifically, let activities A, .. .,
A, occurring continuously in the activity stream rep-
resent an activity. Now if a noise activity A, occurs
between activities A, and Aj, it causes the activity se-
quence (A, Ay) not to be regarded as a future for the
history (A;, A). In other words, the noise activity A,
disrupts a possibly continuous stream.

Some noise activities have to be expected and elim-
inated as the process discovery strategy proceeds. This
is more important in case of the algorithmic strategy,
where probabilities are not taken into account. To
counter this noise problem, and introduce some mea-
sure of confidence into the resulting PAG, we propose
a modified approach, termed as the B-F(k, ¢) strategy.

The B-F(k, c) strategy proceeds in the following steps:
1. The first step of the strategy proceeds similarly as

step 1 of the B-F(k) algorithm. It involves the creation
of the equivalence classes Cy, . . ., C;,, from the given ac-
tivity stream AS, with futures of length k. As these
equivalence classes will undergo further pruning as
this strategy progresses, we refer to them, at this stage,
as Rough Equivalence Classes (REC).

2. Now, we introduce a new parameter ¢ into the
strategy, where c is the confidence factor we apply, in
order to infuse robustness and minimize the noise
problem.

DerinNtTION. Confidence Factor c. The confidence
factor is a frequency parameter that selects, from an
equivalence class C; of future f, only those histories ;
that immediately precede f; with a frequency greater
than or equal to ¢ in AS.

INFORMATION SYSTEMS RESEARCH
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In other words, we feel confident that a history h; in-
deed leads to a future f, if its confidence factor is =c.
Typically, ¢ values of 0.9 or so are chosen, which sim-
ply means that 90% of the occurrences of h; in the ac-
tivity stream are immediately followed by the future
f:- Therefore, we can confidently choose h; as a valid
history to f.. Now the strategy proceeds as follows:

(a) Fix the ¢ value as desired.

(b) Let each Rough Equivalent Class (REC) C; be de-
fined as leading to the future f;. Then, for each C, retain
a history k; in C; only if the ratio of the number of oc-
currences of h; followed by f;, to the total number of occur-
rences of h; in the activity stream AS, is greater than the
chosen confidence factor c.

(c) Retaining only those histories in the RCS whose
confidence is =c results in the formation of Final Equiv-
alence Classes (FEC). After the introduction of the con-
fidence factor ¢ in our strategy, we redefine final equiv-
alence classes, as follows:

DerINtTION. Final Equivalence Classes. A final
equivalence class C; is a set of histories h € Hsuch that,
all such histories have an identical future f € F, and a
confidence factor = c. More specifically, if two histories
h and k' have the same future f (of length k), and each
have a confidence factor = ¢, then h and k' belong to
the same equivalence class. It is possible that an equiv-
alence class can be comprised of a single history. The
whole set of histories h € H is classified into aset C =
{Cy, ..., CJ) of equivalence classes. The equivalence
classes in C are mapped to states S, . . ., S, in the PAG.

3. Now the rest of the strategy proceeds as in the B-
F(k) strategy, steps 2 and 3.

4. The resultant graph is nothing but the PAG for the
process, with nodes representing states, and edges rep-
resenting transition activities.

It can be seen that, in a single sample activity stream,
it is not possible for histories to have more than one
future, as each history, being a prefix, is unique. There-
fore, in order to apply the B-F(k, c) strategy to an or-
ganization and generate the PAG, we need to consider
more than one sample activity streams captured as the
organizational process iterates.

ExamrLE. To exemplify the strategy, let us consider
set S of the following three example activity streams
AS,, AS,, and AS; characterizing our example ITSU
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scenario described in Section 2, and the BP “Reserve
Equipment” described in Section 5. The first activity
stream AS, is almost identical to the one that was used
in Section 5.

AS,: PQRPQRPSTPQPRQPRQRPSTQPRPSTPSP
AS,: PQRPQRPSTPQRQPRQPRPSTQPRPSTPSP
AS,: PQRPQRPSTPQRQPRQPRPSTQPRPSTPST

The activity alphabetisZ = {P, Q, R, S, T}. To apply
the B-F(k, c) strategy to these activity streams, we con-
sider the set H of histories h; such that each h; belongs
to at least one, and possibly more than one of the three
activity streams. For this example, let us fixk = 3 (ac-
tivities), and ¢ = 0.6. We can see that 19 3-activity fu-
tures are possible, out of AS;, AS,, and AS;. Now the
B-F(k, c) strategy proceeds as follows:

1. A graph is created with nodes S,, ..., S, each
representing a rough equivalence class (REC) for these
futures. It is important to note here that histories for
the corresponding future are to be extracted from all
three activity streams.

2. Now, for each of the RECs S;, we eliminate those
histories that do not satisfy the confidence factor of 0.6.
For example, the history PQRPQRPSTPQ is removed
from the REC S, as it has a confidence factor of only
0.33. In other words, this history occurs thrice in S, but
is followed by the future PRQ only once, giving its
confidence factor for PRQ as 1/3 = 0.33. It remains in
the REC S,;, as its confidence factor for future RQP is
0.67. This ensures that this history resides in only that
REC whose future it will most often lead to.

3. As in the above step, all the RECs are converted
into final equivalence classes (FEC).

4. For each state S, transition edges to other states,
upon each of the activities P, Q, R, S, and T are created
in the graph, as explained in the B-F(k) algorithm in
Section 6.1. For example, the concatenation g, of one of
the histories in state S5; with activity P, belongs to the
FEC S,. Therefore an edge labeled P is created between
S; and S,. Similarly, an edge labeled S is created from
S¢ to S;, and so on. No transitions exist into or out of
states Sg and Sy. This means that, the histories in these
states are very rare, and represent “noisy” and non-
characteristic activity combinations. Therefore states Sg
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and S, are not significant to the final PAG. The resul-
tant graph is shown in Figure 7a. -

5. Now the merge-step is applied to the above graph.
The states S; and S, S; and Ss, S and Sy4, S; and Sy,
S;oand S;4 are merged, initially. Then the states S; and
Ss, S7 and S5, S; and S5y, and S, and S;, are merged,
resulting in a total of 7 states in the final graph. The
resultant graph, shown in Figure 7b, is the final PAG
for the organization characterized by the activity
streams in S.

In the following section, we discuss the relative mer-
its and demerits of each of the three strategies so far
described.

7. Discussion of the Strategies

We present a discussion of the results of the three pro-
cess discovery strategies described in the two previous
sections. In this discussion we will try to comment
upon how “good” the strategies are, both individually
as well as comparatively. We use three metrics to eval-
uate the strategies:

(@) The number of “correct” process paths produced: re-
call that the correct process paths for the process under
consideration were described in Section 5. In particular
these paths were P-Q-R, P-5-T and Q-P-R. This metric
reveals the ability of a particular strategy to recognize
repeating behavioral patterns.

(b) The number of “incorrect” or spurious process gen-
erated: this metric yields insight into how susceptible a
strategy is to noise.

(c) Number of states that exist in the final PAG: this
metric captures the complexity of the final model. The
ideal strategy is clearly one which would yield all the
correct process paths, without any spurious ones, with
as few states as possible.

1. The Probabilistic Model. The model output by
this strategy is shown in Figure 5b. We make the fol-
lowing observations regarding this model.

1. States S;, S;, S;p and S;; are the potential start
states. S3, S¢, S, and S;; are the end states. In all this
strategy produces 11 states, the most by any strategy.
Thus the complexity of this model is the greatest.

2. By tracing paths connecting start and end state
pairs, we can see that the PAG captures all three correct
process paths: (a) P-Q-R (linking start state S,, to end

INFORMATION SYSTEMS RESEARCH
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Figure 7 PAG: B-F(k, ¢) Strategy

Initial PAG
[a]

state S3), (b) P-S-T (linking start state S; to end state
Se), and (c) Q-P-R (linking start state 5;; to end state

So). In other words, the probabilistic strategy is suc-
cessful at recognizing correct process behavior. The

reader can also verify that several other possible pro-
cess paths in the figure (such as those connecting S; to
S3 or 53 to Sy;) also belong to the correct set.

3. It can be seen that the probabilistic strategy cap-
tures the spurious path P-R (linking start state S; to
end state Sg), which is semantically incorrect; “Get-
Equipment-Request” (P) cannot lead to “Reserve-
Equipment” (R) directly, without the occurrence of
“Check-Equipment-Available” (Q) in between Pand R.
This happens mainly because the single sample activ-
ity stream used may contain “noisy” sequences.

2. The B-F(k) Strategy. The model produced by
this strategy is shown in Figure 6b. The following ob-
servations may be made about the final PAG resulting
from the B-F(k) strategy.

INFORMATION SYSTEMS RESEARCH
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Final PAG

(b]

1. This strategy yields a less complex final model
than the probabilistic strategy, containing 8 states.

2. This strategy yields 2 of the three process paths:
(a) P-Q-R (linking start state S, to end state S,), and (b)

P-S-T (linking start state S; to end state Sy). It fails to
capture the Q-P-R sequence.

3. This strategy captures two spurious paths, P-R
(linking start state S to end state S;) and P-S (linking
start state S; to end state S,, through the intermediate
state of S¢). Why P-R is incorrect is explained above in
the discussion for the probabilistic strategy. According
to the description of the ResEqp process in Section 5,
P-S makes very little sense; the activity sequence
Get-Equipment-Request” and “Check-Equipment-
Unavailable” cannot comprise a process path in itself.
It needs to be terminated by the activity T (“Waitlist-
Equipment-Request”). It is interesting to note that in
the probabilistic strategy, process path P-S had been
avoided due to the threshold probability factor. Also,
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it appears that the B-F(k) strategy is more susceptible
to noise than the probabilistic strategy. This is rein-
forced by our case study in Section 8. This strategy
correctly captures sequences that occur in the activity
stream, but is unable to distinguish between noisy se-
quences and semantically correct sequences. For in-
stance, a visual examination of the activity stream AS
shows the existence of the P-S-P sequence, which oc-
curs in the PAG between states S¢ and S,. However, in
the PAG, this sequence also yields the spurious process
path P-S.

3. The B-F(k, c) Strategy. The model produced by
this strategy is shown in Figure 7b.

1. The complexity of the model is also the lowest
among all three strategies, comprised of only 7 states.
The PAG has captured all correct process paths: P-Q-
R, and P-S-T, as well as sequence Q-P-R.

2. It has avoided the P-S path that the B-F(k) PAG
produced, and the confidence factor parameter has en-
sured that the sequence P-S is always followed by the
activity T. It still gives the redundant process path P-
R.

3. This PAG has fewer redundant paths here; for ex-
ample, the B-F(k) PAG, in Figure 6 includes the P-Q-P-
R sequence twice (linking states 8-9-10-3-2 and 1-2-10-
3-2), while a single path would have sufficed. In the
B-F(k, ¢) PAG, such redundancies are avoided, and the
Q-P-R loop occurs only once (2-10-3-2).

In summary, we observe that the B-F(k, ¢) PAG has
the minimal number of states required to represent the
various process paths, and therefore avoids redun-
dancy. It also avoids loops and paths that do not occur
frequently enough in the activity streams, and there-
fore are not a significant part of the process. This ap-
pears to validate our intuition that noise elimination is
an important goal in modeling BPs. In Section 8 we
provide a case study of the discovery of a much more
complex process. The conclusions reached from that
study reinforce the discussion above, demonstrating
the scalability of our approach.

8. A Case Study to Validate Our
Strategies

In this section, we describe our case-study analysis of
the performance of the three strategies upon a complex
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BP “Provide Computer Support” (PCS), characterizing
one of the main goals of the ITSU organization de-
scribed in Section 2. More specifically, our case-study
was conducted as follows:

* We first extracted a process model of this BP by
conventional methods, from the agents involved in its
enactment as well as other members of the organiza-
tion responsible for the process design.

* Then we extracted PAGs for the BP using each of
the three strategies, and analyzed the PAGS to under-
stand how well the strategies perform at reproducing
the process model of step 1, thereby studying their
relative process-discovery strengths.

8.1. A PAG for Process PCS Using Conventional
Methods

The example BP “Provide Computer Support” (PCS)
is a complex process of the ITSU, representing the sin-
gle most important objective of the ITSU services, i.e.,
serving as the Computing Help Desk for the depart-
ment. PCS involves several agents and spans a large
activity alphabet. An instance of PCS typically takes a
few hours to complete, but in some cases, may extend
up to one or two working days.

To extract a model using conventional methods, we
conducted interviews with agents of the ITSU. The
main agents were: the Lab Monitor(s), several Tech-
nicians, and the Lab Manager. Interviews with some
of the PCS agents yielded the following outline of the
process. At a high level, PCS proceeds as follows:

* The process is triggered by a user Support-Request
(SR) conveyed by any ITSU user to the Lab Monitor at
that time, through phone, e-mail, or in person.

*» The Monitor classifies the SR based on which agent
it should be sent to, and checks the SR for completeness
of information. He/she then forwards it to either the
Manager or a Technician (if complete), or back to the
user for corrections (if complete). In rare cases, the
Monitor may address the SR.

» The Manager chooses the SR to address, and either
performs Service Tasks (ST), or sends the SR to a Tech-
nician. After completing an SR, the Manager commu-
nicates with the user about the SR status, directly or
through the Monitor.

* The Technician performs STs, and on completion
of the SR, communicates the status to the user, usually
through the Monitor.

INFORMATION SYSTEMS RESEARCH
Vol. 9, No. 3, September 1998

Copyright © 2000 All Rights Reserved



DATTA
Automating the Discovery of AS-IS BP Models

In order to extract the process activity alphabet, we
listed all the agent types involved in this process, such
as “Monitor”, “Manager”, and “Technician”. Then, we
collected individual activity lists from each of the
agents, pertaining to the PCS process only. By collaps-
ing identical activities under a common activity name,
we identified the final list of activities and agents, with
ample guidance from experienced PCS agents.

Then each unique activity name-agent pair was
given a unique activity label. For example, the activity-
type “Forward-SR-To-Technician” is performed both
by the Monitor and the Manager. In the former case, it
was labeled as “E,” and in the latter case, as “N”. Such
labeling provided the complete activity alphabet for
process PCS, as shown in Table 2. Each activity in the
alphabet is characterized by an activity name, agent,
and activity label.

With the collective guidance of the PCS agent-team,
we produced a conventional process model of the PCS
process, in the form of an PAG, as shown in Figure 8.
The intuition behind the PAG is as follows: The activity
A (“Get-SR”) signals an incoming user request for
Computer Support, and hence, triggers off the process.
Therefore state 1, which has an output transition upon
A, is the start state of the process. The agents complete

Table 2 Case-Study: Activity Alphabet Description

Activity Name Agent Label
Get-SR Monitor A
Classify-SR Monitor B
SR-0K Monitor c
Forward-SR-To-Manager Monitor D
SR-Not-0K Monitor E
Forward-SR-To-Technician Monitor F
Choose-SR Manager G
Choose-SR Technician H
Perform-ST Manager !
Perform-ST Technician J
ST-Not-0K Manager K
ST-Not-0K Technician L
SR-Not-0K Manager M
Forward-SR-To-Technician Manager N
Perform-ST Monitor 0
ST-Done-0K Technician P
ST-Done-0K Manager Q
Inform-Customer-SR-Done All agents R

INFORMATION SYSTEMS RESEARCH
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the process by communicating to the user that his/her
request has been fulfilled, i.e., by performing activity
R. Therefore state 12, which has an input transition R,
is the end state of the process. Having identified the
start and end states, we can trace several alternative
activity sequences, or paths, linking states 1 and 12, that
all represent possible instances of process PCS. From
Figure 8, we can identify the following process paths:
(1) A-B-C-F-H-J-P-R (2) A-B-D-G-I-Q-R (3) A-B-C-O-R
(4) A-B-D-G-N-H-J-P-R (5) A-B-D-G-M-E-A-B-. .. (6) A-
B-D-G-I-K-I-I-Q-R, and (7) A-B-C-F-H-J-L-J-]-P-R. Ac-
tivity loops such as D-G-M, J-L-J, I-K-I and so on, char-
acterize iterations and repetitive sequences that
actually occur in PCS. For instance, the PAG shows
that, upon M (incomplete SR), the process returns to
state 3; the state where SRs have been classified, but
not yet checked for information accuracy. This PAG
provides a very useful benchmark for testing the re-
sults of our strategies. Note however, this process took
2 weeks to complete and required extensive time com-
mitments on the part of virtually every agent involved
in the process, as well as the analyst team. However,
the model yielded by this process appears to be a good
one, primarily because the BP was well understood by
several agents, and they all agreed that the PAG in
Figure 8 represents an accurate model of the PCS pro-
cess. This was nice, as this gives us a basis to compare
the results of the three strategies. In the following two
sections, we describe and compare the PAGs generated
by the three strategies. These were generated auto-
matically, by coding the algorithms in C and feeding
the input activity stream to the programs. Though the
running times of these programs are not a major con-
cern, we would like to report that they took, on aver-
age, less than 30 minutes. Also note that we did not

Figure 8

Case-Study: Activity Streams

———aeee- - Activity transitions
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make any special attempts to “optimize” the pro-
grams—even then, the time savings are enormous.
8.2. Models of the PCS Process from our Strategies
In order to generate PAGs for process PCS using our
three strategies, we recorded several activity streams us-
ing established methodologies described in Section 4.
Each activity stream was a trace of the repeated enact-
ment of the process over 2 days. We thus captured the
following four successive activity streams, during our
data-capture period, as shown in Figure 9: Activity
stream AS; served as input to the Probabilistic strat-
egy, and the B-F(k) strategy. The B-F(k, c) strategy used
all the four activity streams. We now describe the
PAGs generated by the probabilistic and algorithmic
strategies. We first describe the PAGs output by each
strategy in Section 8.3, and then compare and contrast
the strategies in Section 8.4.
8.3. Description of the PAGs of the Three
Strategies

1. PAG: Probabilistic Strategy.

1. This PAG was generated for a third-order activity-
probability, i.e., we captured the probabilities of oc-
currences of all futures, given three previous activities.
We chose n = 3 for the following reason: From the
nature of the process as well as the length of the activ-
ity stream, it was obvious that sets of three successive
activities recurred frequently. Therefore, by following
the paths formed by each of these sets, terminated by
their most “probable” future, we could extract the
most likely process paths.

2. The activity-probability matrix for this strategy,
based on AS; and an #n value of 3, is shown in Table 3.

3. We decided to set a threshold probability value of
0.5, for the following reason: in AS,, the maximum fre-
quency of any three-activity sequence is 4; any future
of probability less than 0.5 is likely to be insignificant,
but futures of equal probability need to be captured.

Figure 10 shows the PAG generated by the proba-
bilistic strategy. There are 21 states in all. In order to

Figure 9

AS,: RABEABDGNHJPRABCORABCFHJPRABDGIKIGRABC
AS,: RABEABDGNH.JPRABEABDGMEABDGNHJPRABCFHJP
AS,: ABCFABDGIQRHJJPRABDGABDGIQRABGFHJPRABC
AS,: ABCFABDGIORHJLJPRABCFABDGMEHJPRABDGHQ

Case-Study: PAG for Probabilistic Strategy
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ensure that we do not eliminate any of the legal se-
quences, we need to retain some activity edges in the
PAG that give rise to some illegal sequences. For ex-
ample, if edge “A” (between nodes S, and Sg) or “B”

Table 3 Third-Order Activity Prohabilities

SEQ. A B C DEF G H I J KLMN O P QR

RABGO 06020200 0 0 0 0 0 00O0C O O 0 O
ABE 100 0 0 00 O O0 0 0 0 0OCGO0O O O0 0 O
BEA 0 100 0 00 0 0 0 0 0 000 O 0 0 O
EAB O O 0 1000 0 060 0 0 0 000 0 0 0 O
ABD 0 0 0 0 00 100 0 0 0 000 O 0 0 O
BOG 0 0 0 0 00 O O 050 0 60050 0 0 O
DGN 0 06 0 0 00 O 100 0 0 000 0 0 0 O
GNH 0 0 0 0 00 0 0 100 0 000 0 0 0 O
N 0 0 0 0 00 0 0 O 0 O 00O0C O 100 O
HP 0 0 0 0 00 © 0 0 0 0 000 0 0 0 10
JPR 100 0 0 00 0 0 0 0 0 000 O 0 O O
PRA O 100 0 00 0 0 0 0 0 000 0 0 0 O
ABC 0 0 0 O 0050 0 0 0 0 000 050 0 O
BcO 0 0 0 0 00 0 O 0 O O 00O O O O 10
COR 100 0 0 00 0 0 0 0 0 000 O O 0 0
ORA 0 100 0 0O O O 0 0 0 000 0 0 0 O
BCF 0 0 0 0 00 0 100 ¢ 0 00O O O0 0 O
CFH 0 0 0 0 00 0 0 0 100 €0O0C O 0 0 O
Dgl 0 06 0 0 00 O O O O 10000 O 0 O O
GiKk 0 0 0 0 00 0 0 100 0 000 0 0 O O
K& 0 0 0 0 00 O O O O O 00O O 0 10O
KQ 0 0 0 0 00 0 0 O O O 00O O O O 10
IR 100 0 0 0C 0 0 0 O 0 000 O 0 0 O
GRA 0 100 0 00 O 0 0 0 O 000 0 0 O O
Figure 10 Case-Study: PAG for B-F(k) Strategy
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(between S, and S) is eliminated, we can remove the
illegal sequence E-A-B-E, but the PAG will also lose
the legal sequence B-E-A-B. But, significantly, the PAG
has captured all the legal sequences and all the re-
peated sequences in AS;, such as A-B-C-F, A-B-D-G, H-
J-P-R, and so on.

2. PAG: B-F(k) Strategy.

1. For the B-F(k) strategy, we used the same activity
stream AS, as we did for the probabilistic strategy (Fig-
ure 9). We used a k value of 4; equivalence classes were
generated for futures of 4-activity length. The final
PAG generated by this strategy, shown in Figure 11,
contains 19 states.

2. For the same activity stream, we see that this strat-
egy has captured the same number of process paths (5)
with a lesser number of states than the previous
strategy.

3. Also, the common sequence of two paths occurs
only once here, whereas it was repeated in the proba-
bilistic PAG. For example, path A-B-C-F- and A-B-D-
G-N- both have a single transition upon H, from state
Sy to S,o. Therefore there is less redundancy here.

3. PAG: B-F(k, c) Strategy. For the B-F(k, c) strat-
egy, we employed all four activity streams
AS,, ... ,AS,, given in Figure 9. This was in order to
select histories for the Final Equivalence classes, based
on their confidence factor. The final PAG is shown in

Figure 12.
1. In this case, we chose a k value of 4, as in the B-

F(k) strategy, and a confidence factor ¢ of 0.5. The ¢

Figure 11

Case-Study: PAG for B-F(k) Strategy
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value chosen here tries to ensure that, for any given
future, only those histories are selected that precede
this future at least half the number of times they occur.
In the activity streams used, we see two such pairs of
histories that are repeated twice, giving a confidence
factor of 0.5 each. Therefore, these histories were both
included in the FECs, and are reflected in the PAG. The
histories are: ABCFABDGIQRH], and RABEABDG-
NHJPRAB. (A lower confidence factor would have
caused both the histories to be omitted, and the PAG
would not have captured some important process
paths such as A-B-C-O-R).

2. Since B-F(k, c) uses several activity streams, it cap-
tures process paths and iteration loops that are missed
by the other two strategies, but the PAG still has just
21 states (including a distinct start state): equal to that
of the probabilistic strategy, and just two more than B-
F(k).

8.4. Comparison of the Strategy Results

We present a comparison of the three strategies with
respect to how closely they approximate the conven-
tional PCS model (see Figure 8).

1. The Probabilistic PAG (see Figure 10).

1. The PAG has 21 states, with two start states, and
one end state.

2. It extracts all of the possible process paths derived
from the conventional PAG (see Figure 8). The corre-
sponding process paths were described in Section 8.1,

Case-Study: PAG for B-F(k, ¢) Strategy

Figure 12
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excepting the path A-B-D-G-I-Q-R, and the somewhat
infrequent loops H-J-J, G-I-I, D-G-M, and J-L-]. But it
can be observed that these loops are not present in AS;,
and the problem of missing sequences arises since we
can use only a single activity stream as input.

3. There are some redundant transitions and states,
causing replicated sequences; for instance, edge “A”
and hence, sequence A-B occurs four times, though it
is a common history for four paths in the PAG. This is
because, for each legal sequence in the probability ma-
trix, a new set of edges is created, regardless of
whether part of the sequence already exists in the
graph.

4. Unlike the algorithmic strategies, there is no
merge-state step here to reduce the above redundancy,
and hence, the resulting PAG is less compact than the
B-F(k) PAG.

2. B-F(k) PAG (see Figure 11).

1. This PAG has a fewer number of states (19), with
respect to the probabilistic strategy.

2. The PAG has captured the same paths as the prob-
abilistic PAG, and has also missed the A-B-D-G-I-Q-R
path as well as the smaller loops.

3. The edge “A” and sequence A-B occur only twice,
showing a reduction of repetitions with respect to the
probabilistic strategy. This is a result of the merge-state
technique introduced into the strategy.

4. The algorithm produces a more compact and con-
cise PAG than the probabilistic strategy. But since, here
too, we can use only a single activity stream, the
chances of missing some legal sequences and path ex-
tensions are higher than in the case of the B-F(k, ¢)
strategy.

3. B-F(k, c) PAG (see Figure 12).

1. As a result of using four input activity streams in
Figure 9, the B-F(k, c) PAG has captured more process
paths than either of the above, though it has just two
states more than the probabilistic PAG.

2. In addition to the paths mentioned above, this
PAG also captures the path A-B-D-G-I-Q-R. The
smaller loops or extensions missed by the other two
strategies occur in this PAG; these are: G-M-E-A, D-G-
I-Q-R, H-]-]-P-R, and H-J-L-J-P-R.

3. The merge-state technique ensures that a minimal
number of states is required to capture all the possible
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paths. The confidence factor of 0.5 also ensures that,
when the activity streams include sequences with
equally probable futures, both of these paths are cap-
tured. This can be seen, in the case of sequence RA-
BEABDGNH]JPRAB, in AS; and AS,.

4. Thus, in terms of the process paths captured, the
comparison clearly illustrates that the B-F(k, c) strategy
offers the closest and most complete PAG of a given
process.

9. Why Did We Choose
Probabilistic Strategies?

The reader may have noticed that the three strategies
outlined previously are all probabilistic. A relevant
question therefore is why we chose this strategy rather
than, say, a machine learning based strategy. We pro-
vide a three part answer to this question:

» It is perfectly legitimate to use machine learning
based strategies such as neural networks or genetic al-
gorithms (see Michalski et al. (1983) for a nice intro-
duction to machine learning) for this problem.

In fact, in many areas such as information retrieval,
there are two clear cut philosophies, a probabilistic
school of thought and a machine learning school of
thought. Consider, for instance, the well-known prob-
lem of classification, in much vogue currently owing to
its applicability to the field of data mining. There exists
a huge literature in classification from both the proba-
bilistic as well as the machine learning perspectives
(see, e.g., Wong and Yao (1993) for a probabilistic ap-
proach to this problem and Wu et al. (1995) for a ma-
chine learning approach). This is true in several other
research areas where the fundamental problem is the
“discovery” of something based on certain inputs. Our
problem definitely fits this criteria. However, to the
best of our knowledge, there is no consensus on one
approach being “superior” to the other. If there existed
machine learning based methods of BP discovery, it
would have been incumbent upon us to make a com-
parison. However, even after a careful search, we were
unable to identify any such work. In fact, we were un-
able to find any work on this area, machine learning or
otherwise. However, exploring machine learning to
achieve BP discovery is definitely a worthwhile re-
search area and we would be quite eager to see how

INFORMATION SYSTEMS RESEARCH
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such strategies would perform in comparison to us. We
doubt, however, that unilateral superiority could be
claimed by either approach.

* In our opinion, one of the interesting intuitions that
drove this work was the commonality between the
grammar discovery problem and the process discovery
problem. The work on grammar discovery, in large
part was probabilistic.

» Finally, the authors of this paper are not as familiar
with machine learning as with stochastic process the-
ory—thus, probabilistic methods appeared more nat-
ural to apply. ’

10. Conclusion

The modeling of AS-IS processes is well recognized as
a necessary first step of business process reengineering
(BPR). Unfortunately no tools exist that would enable
organizations to undertake such an endeavor them-
selves. Such tools are impossible to create, as no sys-
tematic procedures exist to perform AS-IS model dis-
covery. As a result, corporations wishing to reexamine
their business processes have to rely on external ex-
pertise to perform this activity. These experts typically
follow ad-hoc or “home grown” methods, usually con-
sisting of a large number of meetings with individuals
and groups. As a result, such efforts consume large
amounts of time and money.

Given this context, the primary contribution of this
paper is that it postulates a number of systematic pro-
cedures to extract AS-IS process models. We have de-
veloped AS-IS process discovery tools by program-
matically implementing these procedures. We have
demonstrated that these procedures work reasonably
well, through two “real-life” discovery applications re-
ported earlier in the paper. While the primary contri-
bution is extremely practical, we also make a signifi-
cant theoretical contribution, by recognizing the
commonality between the grammar discovery prob-
lem and the BP discovery problem. As a result of this
mapping we are able to apply variants of established
FSM synthesis algorithms for our purposes. We also
recognize certain differences between the classical
grammar discovery scenario and our problem, e.g., the
presence of noise. These recognitions aid us in smartly
modifying established algorithms to suit our case. Fi-
nally, this paper appears to be the first one to look at

INFORMATION SYSTEMS RESEARCH
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automating BP discovery—this itself, we believe, is a
contribution of this work. Our methods, if adopted,
promise to save organizations substantial amounts of
money and time.

For future work we are pursuing several avenues of
refining our algorithms to discover control flows. In
particular we have initiated a project to discover con-
tingency relationships between tasks and conditional
branching from a particular state. Our intuition is that
this should be possible by additional processing of the
activity streams, i.e., introducing additional logic to
our current algorithms. We have certain preliminary
ideas regarding how to proceed. For instance, it ap-
pears certain that none of our “single-stream” algo-
rithms are particularly well suited, as a single sequence
may not capture contingency actions or conditional
branchings. Contingency points (i.e., states leading to
contingency actions) may be discovered by augment-
ing the event definition that we currently use (which
conforms to event definitions available in the open lit-
erature), with additional semantics. For example, in-
stead of simply classifying events as begin or end we
can attempt to subclassify the end events as end-with-
success (EWS) events and end-with-failure (EWF) events.
Now, we could examine the input streams paying spe-
cial attention to histories which have prefixes ending
with EWF events. Subsequently, one way to discover
contingency actions would be to identify “different”
activity sequences (i.e., histories) following the same
EWF terminated prefix. Similar avenues could be pur-
sued for conditional branchings.
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