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Abstract 

Since the invention of the electrodynamic loudspeakec there has been a need for 
greater acoustical output, especially at low frequencies. For modern-day applica- 
tions it is desirable to reduce the volume of the loudspeaker (and cabinet). These 
two demana5 are physically contradictory. It is the aim of this paper to offer op- 
tions to evoke the illusion of a higher bass response, while the power radiated by 
the loudspeaker at those low frequencies remains the same or is even lower: This is 
feasible by exploiting certain psychoacoustic phenomena. The required non-linear 
signal processing is studied for a number of specific implementations in continuous 
and discrete time. 

1 Introduction 
In many sound reproduction applications, small loudspeakers are unavoidable, due 
to size and/or cost requirements. One of the most well-known characteristics of 
small loudspeakers is a poor low-frequency response. In practice this means that 
a significant portion of the audio signal may not be reproduced sufficiently by the 
loudspeaker. As the bass frequencies often play an important role in music, a re- 
production system which is not able to reproduce these bass components will prob- 
ably not be rated favorably by many listeners. Achieving a higher radiated sound 
pressure level by ‘boosting’ low frequencies is a limited solution in the sense that 
distortion or even damage to the loudspeaker may occur. 

The rest of this paper is organized as follows: in Sec. 2 we illustrate the limita- 
tions physics impose on a small loudspeaker, in terms of its parameters. Especially 
in situations where cost is an issue it would be attractive if the perceived bass re- 
sponse of a small loudspeaker could be enhanced by some simple signal processing, 
without altering the loudspeaker itself. Thus, it is the goal of this paper to offer op- 
tions to achieve just this. 

As we get closer to or above the cut-off frequency of a loudspeaker its efficiency 
increases drastically and distortion is less likely to occur. Considering this fact, it 
would be an enormous advantage if we could enhance the perceived bass using only 
higher frequencies. In that case, the loudspeaker would seem to radiate a substantial 
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amount of energy in a region in which it actually hardly does. Now we know, from 
psychoacoustic theory, that a pitch sensation can exist at a frequency at which no 
energy is radiated by the sound source. Sec. 3 shortly reviews some conceptual 
possibilities to create such a low pitch perception using only higher frequencies. 

In Fig. 1, we propose a signal processing algorithm consisting of a few basic 
operations which are required to achieve this psychoacoustic bass enhancement. 
A block scheme with two branches is shown in the figure; in the top signal path 
two bandpass filters and a non-linear device (NLD) are shown. Filter BP1 selects 
those frequency components which are too low to be reproduced by the loudspeaker. 
These bass frequencies form the input for the NLD, which creates an appropriate 
spectrum of higher frequencies, which may be subsequently shaped by filter BP2. In 
the lower signal branch, the input signal is optionally highpass filtered if distortion 
is a problem. Both signals are then added and fed to the loudspeaker. Depending 
on the design of the various filters and the specific implementation of the NLD, the 
radiated acoustic signal has an enhanced bass (this concept was already introduced 
in [l] as applied to ‘Ultra Bass’). The challenge in designing such a circuit is to 
control pitch, timbre and loudness of the enhanced part in some predefined way; one 
option is to try to re-create the original audio signal as perceived through ‘perfect’ 
loudspeakers. In Sec. 4, we discuss several aspects of the circuit of Fig. 1 and we 
give some specific examples for the NLD. We focus on time instead of frequency 
domain implementations. In the latter case, familiar problems such as connection 
of consecutive blocks after the IFFT, spectral leakage for frequencies which are not 
harmonic to the FPT window and non-stationarity of the input signal during the FFT 
window introduce significant problems. 

Finally, in the appendix, we present analytical expressions for the two NLDs 
presented in Sec. 4, in continuous and discrete time. Using these expressions we 
can study the behaviour of the NLDs, for example in regard to intermodulation 
distortion. 

2 Loudspeaker efficiency 

In this section we make plausible that, for a small loudspeaker, achieving a low 
cut-off frequency while maintaining a reasonable efficiency is not possible with 
a traditional loudspeaker-cabinet construction. Reproducing frequencies below the 
cut-off frequency is very inefficient and should be avoided as much as possible. This 
provides enough motivation to investigate the possibility of creating ultra low pitch 
perceptions using frequencies above (or at least closer to) the cut-off frequency of 
the loudspeaker. 

In order to show this we explore the relation between various loudspeaker pa- 
rameters and radiation efficiency. For a more elaborate treatment on the radiation 
characteristics of various types of loudspeakers the reader is referred to Olson [2]. 
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We first define the efficiency q at frequency o as 

pa h) 
rl(4 = - 

PC? 64 ’ (1) 

where Pa is the time averaged acoustically radiated power and P, is the time aver- 
aged electrical power supplied by the generator. We then write 

paw = ~~2w(z_,wL (2) 

where 9 is the voice coil velocity amplitude and Zrad the mechanical radiation 
impedance (B{o} denotes the real part of l ), and P, is given by 

(3) 

where I^ is the current amplitude delivered by the generator and Zi, the total impedance 
load as seen by the generator. 

Using the lumped element analogon [2,3], we find the mobility analogous circuit 
of an electrodynamic loudspeaker in a closed box as shown in Fig. 2. Here, we have 
used the following elements: 

E 
RE 

LE 
Z 
u 
V 
F 
ml 
kt 
RltZ 
z rad 

generator 
resistance of voice coil 
self-inductance of voice coil 
current delivered by generator 
voltage across voice coil 
velocity of voice coil 
force on voice coil 
mass of voice coil and cone 
total spring constant (suspension, cabinet) 
mechanical damping of transducer 
radiation impedance 

IQ1 
[HI 
[Al 
WI 
Wsl 
INI 
kg1 
[N/ml 
[Ns/m] 
[Ns/m] 

We can now write for the impedance Zi, as seen by the generator 

Zin(@) = RE + jdE + 
VW2 

JL + Rrad(m) +j(omtb) - $1’ (4) 

where B is the magnetic inductance ([T]) in the air gap and I is the length of the 
voice coil wire ([ml). &ad is the real part of the complex radiation impedance 
Z rad = &ad i- j Xrad, where Xrad has been added to m 1 to form m,, the total 
moving mass. Strictly speaking m, is frequency dependent due to the contribution 
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of &ad 9 but this contribution is small’ and thus we will consider m, to be frequency 
independent in the following. Combining Eqns. 3 and 4, we get 

PA4 = 
(B02UL + &d(d) 

(&I + &ad (dj2 + (@mt - (;)2) ’ (5) 

Next, we shall express the voice coil velocity amplitude V in I, the current delivered 
by the generator. We substitute the result in Eqn. 2, and then compute the efficiency 
r] by Eqn. 1. According to F = BZ I, the current through the voice coil determines 
the force F on it. The relation between F and V is determined by the mechanical 
impedance 

V(w) = FW 
(Rtn + Rrad (0) + j (mm, - 5)) 

BZZ (co) 

= UL + &2d(O) +j(wm, - $))’ 
Combining Eqns. 2 and 6, we find 

(6) 

(7) 

Now we can readily compute the efficiency by Eqn. 1 to be 

r](o) = 
@l)2&,d (0) 

RE hOfd2 
[[Rmz;fW]‘+ *‘-+~W[~~+[~-~j2] @) 

where 00 is the resonance frequency of the mass-spring system, given as 

To study the behaviour of q for various frequencies, we first notice that according 
to [4, p. 919 

&xi(~) = 
1 

& for w << Jzco 
2Yrcl.3 , 

pocoS for 0 >> +, 
(10) 

where we denote sound velocity by CO, air density by po, cone radius by a and cone 
area by S. The frequency at which the behaviour of Rrad changes is the transition 

‘According to [4, p. 91, for a rigid circular piston in an infinite baffle the mechanical impedance 
(for frequencies much lower than the transition frequency of the piston, which equals c&r& % 
1.5 k& using the values given below) Xrad = @m& = *, with S for cone area, a for cone 
radius and po for air density. We use e.g. po = 1.3 kgmA3, S = ~(0.05)’ m2 and a = 0.05 m, then 
we find for m,c M 1 g. Thus, from now on, we will consider mr to be frequency independent. 
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frequency wt (above which the radiation becomes increasingly directional). We can 
immediately deduce from Eqns. 8 and 10 that in the normal operating range of the 
loudspeaker the efficiency is constant and equals 

This clearly presents a problem: a high efficiency requires a large cone area and at 
the same time a small mass. The precise behaviour of r] around ~0 depends on the 
loudspeaker parameters, but it is not within the scope of this paper to investigate this 
now. If we focus on what happens for w << 00, we notice that the last term between 
the curly braces in the denominator of Eqn. 8 is dominant and equal to (~/o)~, and 
in combination with the w2 behaviour of Rrad, we thus have 

rl(4 N 04, O<<oO. (12) 

It is clear that the efficiency decreases rapidly below the resonance frequency of the 
loudspeaker. Referring to the definition of this cut-off frequency @qn. 9), we see 
that in order to achieve a low cut-off frequency we must have a low k, and a high 
m,. Since the contribution of the cabinet, k,, to k, is given by [3, p. 1291 

(13) 

with V, the cabinet volume, it is obvious that for small loudspeaker enclosures, kt 
will be relatively high. Furthermore, small loudspeakers obviously have a small 
mass; the combination of kt and m, for a small loudspeaker is precisely opposite 
to what one needs to obtain a low cut-off frequency. Increasing m, is not really an 
option, because as Eqn. 11 shows, this will lead to a much lower efficiency. 

3 Psychoacoustics 

There are several options to increase the perception of low frequencies based on 
psychoacoustic events. In this section we discuss three such options. 

3.1 Heterodyning 

In previous studies [5-81 a frequency doubler was introduced, whereby signals in 
the low frequency band also appeared one octave higher. We call this ‘heterodyn- 
ing’, and can be considered as one of the options. The mentioned heterodyning 
method, shown in Fig. 3-a has simplicity as an advantage. By means of a simple 
non-linear element, e.g. a diode, frequencies around fo, the frequency region where 
the loudspeaker does not radiate sufficient power, are shifted to 2fo. A drawback 
is that the pitch has been changed. Furthermore, impulsive sounds with a high low 
frequency content are seriously distorted. Nevertheless, experiments have shown 
that heterodyning can be an improvement. 
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3.2 Virtual pitch! 

Pitch is a subjective, psychophysical quantity. According to the American Standards 
Association pitch is “that attribute of an auditory sensation in terms of which sounds 
may be ordered on a scale extending from low to high”. For a pure tone, where 
the fundamental frequency corresponds to the frequency of the tone, the pitch is 
unambiguous and - if we neglect the influence of sound level on pitch- one can 
identify pitch with the frequency of the pure tone. For a complex tone, consisting 
of more than one frequency, the situation is more complicated. Pitch should then 
be measured by psychophysical experiments. A pitch that is produced by a set of 
frequency components, see Fig. 3-b, rather than by a single sinusoid, is called a 
residue. In Fig. 3-b the fundamental frequency is missing, yet will still be perceived 
as a residue pitch, which in this case is also called virtualpitch. The psychoacoustic 
phenomenon responsible for this effect is the ‘missing fundamental’ effect. Famous 
are the experiments of Seebeck in 1843, and the controversy of him with Ohm; 
see Plomp for a historical review [12]. There is a vast amount of literature on this 
topic, see e.g. [13-191 to name just a few. Only sparse data is known for (very) low 
frequencies, say -z 100 Hz. Ritsma’s papers [ 16,171 discuss the existence region of 
the tonal residue for f > 200 Hz. 

3.3 Difference tone 

Firstly, we will have a digression on organ pipes. The idea is, if there is not enough 
space (in a church) for a pipe long enough to produce very low notes, one can 
combine two higher notes to get a similar perceptual effect. This principle was - 
according to Helmholtz [9] - discovered in 1745 by Sorge, a German organist, 
however, this is often known as Tartini’s tones. Since the end of the sixteenth cen- 
tury, many organs include a stop (the “5$foot fifth”) composed of pipes sounding a 
fifth higher than the pitch of the actual note as played from the musical score. The 
purpose is to stimulate or reinforce the bass one octave below the pitch of the actual 
note (that is, to reinforce the 16-foot sound of the organ). Of older use, (according 
to Roederer [lo], but if Helmholtz is right, it can not be older) is the use of the lOi- 
foot fifth in the pedals, which in combination with 16-foot stops, evokes the 32-foot 
bass. Roederer [lo] attributes this as residue pitch (Fig. 3-b), however, this is prob- 
ably wrong, since the effect of residue pitch decreases very fast for low frequencies. 
Consequently, it is probably due to difference tones (Fig. 3-c). This is illustrated, as 
an example, in Table 1, showing which frequencies are obtained for the mentioned 
pipes. The acoustical bass concept for organs has also been considered by Terhardt 
and Seewann [ll]. 
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Table 1: Example of the acoustical bass of an organ. The length of the two organ pipes 
are L1 and L2 in feet (m) (without end correction term) and their corresponding individual 
frequencies, fl and A. The perceived pitch is Af, which would require a pipe of length 
LAf. 

LAf Af Ll fl L2 f2 

32’ (9.75 m) 17.6 Hz 16’ (4.9 m) 35.2 Hz 10:’ (3.3 m) 52.7 Hz 

3.4 Considerations on loudness effects 

It is well-known that loudness perception depends very strongly on the frequency 
(range) of the stimulus that is presented to the ear(s). Fig. 4 shows the equal- 
loudness contours for pure tones. We clearly see that the contours lie closer to- 
gether as the frequency approaches very low values; this implies that small changes 
in sound level lead to large changes in loudness level. We also see that for very low 
frequencies the hearing threshold increases rapidly. 

Considering the processing proposed in Fig. 1, without at this moment requiring 
knowledge about the non-linear device which creates the higher frequencies, we 
observe that we are transposing a low frequency band (fi - f2) to a higher region 
(f2 - fs). We can expect that the frequencies in the higher band will sound louder 
than in the original band, and also that the sensitivity for variations in loudness 
is greater. But there are many uncertainties if we want to quantify these effects. 
For instance, Fig. 4 pertains to pure tones, while in our case we will have tone 
complexes. Moreover, tone duration and envelope may influence loudness. Based 
on the well-known equal-loudness contours shown in Fig. 4, Ben-Tzur et al. [20] 
have proposed an equal loudness levelfunction. 

4 Generating harmonics 

4.1 Processing scheme 

In this section we discuss the various blocks in the general processing scheme of 
Fig. 1. Obviously, a good choice for the NLD is important, but also the design of 
the various filters is of critical importance for a good result. The complete system 
was implemented in C-code on a workstation, using a digital signal of a CD player. 

4.1.1 First bandpass filter (BPl) 

This filter selects frequencies which lie below the cut-off frequency of the loud- 
speaker. A typical implementation for this filter could be a bandpass filter with 
cut-off frequencies of 20 and 80 Hz (but should be tuned for each loudspeaker). 
The passband should not be too broad, otherwise intermodulation distortion can be- 
come audible in the non-linear device. If a larger bandwidth must be processed an 
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option could be to split this filter in several narrower filters, which then pass their 
output to a corresponding number of NLDs. 

4.1.2 Non-linear device (NLD) 

In this element the input frequencies are transposed to a higher frequency region. 
Keeping the original pitch can be achieved if this non-linear device is a harmonics 
generator. Due to the missing fundamental and/or difference tone effect described 
in Sec. 3, the harmonics at the output yield a perception of the original low pitch. 
As was mentioned previously, unless the input to this NLD is a single frequency, 
intermodulation distortion will occur. In most practical situations this is not really a 
problem, which is probably partly due to the masking effect of the rest of the audio 
signal. However, in some situations, artefacts can occur which might be due to this 
intermodulation distortion. Therefore, when choosing a specific NLD, one of the 
criteria is to explore its behaviour in this respect. In Sets. 4.2 and 4.3 some specific 
examples are presented. 

4.1.3 Second bandpass filter (BP2) 

The input to this filter is the harmonics signal, where the specific spectrum of this 
signal will of course depend on the choice of the harmonics generator. This filter 
is used to shape the spectrum to yield a natural sounding timbre of the enhanced 
bass, and the filter transfer function should be tuned depending on the loudspeaker 
as well as the NLD. 

4.2 Full wave rectifier 

Following the block scheme of Fig. 1, a possibility would be a full wave rectifica- 
tion of the input signal. The advantage here is the simplicity in processing. For a 
sine wave input only even harmonics are generated (in App. A expressions for the 
complete output signal given an arbitrary periodic input signal are given). So for 
an input of frequency fo, we get 2fc, 4f0, 6f0, etc., at the output; this is a signal 
with a fundamental of 2f0 and thus the pitch will not correspond to the original fo. 
Actually, this is the heterodyning mentioned in Sec. 3.1 and can give good results 
for some, but not all, repertoire. Fig. 5 shows an input signal (solid line), which 
leads to an output signal given by the dashed line for the full wave rectifier. Fig. 6 
shows the frequency components: an input of f, gives output frequencies 2fo, 4fo, 
etc., with a relatively rapid decay. 

4.3 Full wave integrator 

To create a deeper bass impression, corresponding to the pitch of the original funda- 
mental, we must create a harmonics signal containing all (odd and even) harmonics. 
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This is possible by using a ‘full wave integrator’. This non-linear device integrates 
the absolute value of the input, and the output is reset to zero when the input has 
a zero crossing with a positive slope. For a sine wave input the situation is shown 
in Fig. 5, the full wave integrator output is shown as the dash-dotted signal. Fig. 6 
shows the input and output spectra: the output contains all harmonics which decay 
relatively slowly. As was tested on a real-time prototype system running on a work- 
station, the full wave integrator indeed yields a much deeper bass impression than 
the full wave rectifier. 

To explore what happens when the input signal is not a single frequency, but 
a more realistic (musical) signal, consider the following: the locations of the zero 
crossings are very important (as the output signal is reset to zero at every zero 
crossing with positive slope) and determine the fundamental frequency of the output 
signal, which should ideally be the same as the fundamental frequency of the input 
signal. If we consider a weakly stationary time series with spectral distribution 
F(w), we can then write, as is shown in Kedem [21], 

cos7ty = 
1; cos o dF (w) 

so” dW) ’ 
(14) 

where y is the expected zero crossing rate of the signal, i.e. the expected number 
of zero crossings in a certain interval (which is e.g. 2 per period for a sine). This is 
called the zero crossing spectral representation and it expresses the tendency of x y 
to be attracted to a specific frequency (band), if this frequency (band) is dominant 
in the signal. This is a well known empirical fact known as the dominantfrequency 
principle. It shows us that we can be confident that if an input signal has a dominant 
frequency component, this will be reflected in its zero crossings. Consequently this 
frequency component will be the fundamental frequency of the output of the full 
wave integrator. Exact expressions for the output as function of an arbitrary periodic 
input signal (and also for discrete-time signals) are given in App. A. 

5 Conclusions 

The proposed signal processing scheme shown in Fig. 1 leads to a significant en- 
hancement of perceived bass, without radiating energy in this bass frequency re- 
gion. This is achieved by exploiting psychoacoustic phenomena. The method can 
be tuned to any loudspeaker which does not reproduce the lowest audible frequen- 
cies. The main advantages are that a greater bass enhancement is possible than with 
traditional equalization or boosting. In addition this method is much more power 
efficient, which makes it especially attractive for portable applications. The system 
is not meant to replace good quality, large loudspeakers, but in many situations it 
is not possible to use these, and then the proposed type of processing can certainly 
increase the performance of the loudspeaker. 
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A Analysis of harmonics generation 

A.1 Introduction 

In this section, we derive analytical descriptions for the full wave rectifier and the 
full wave integrator. Obviously this requires a different approach than the one used 
for linear time-invariant (LTI) systems, and in general, descriptions of non-linear 
systems are extremely complex or pertain to a limited class of signals. However, 
for our purposes, an elegant description has been obtained that encompasses all 
practical signals. 

Firstly, consider 
that 

0 

a real periodic signal f(t), having a period of 1, and assume 

f(0) = f(to) = f(1) = 09 
f(t) # 09 t # 0, to, 1, (13 

Thus f(t) has one zero, at to, in the interval (0, 1). 

f(t) changes sign at every zero crossing. 

We choose f’(0) > 0. 

f(t) is sufficiently smooth in order that its Fourier coefficients a,, (Eqn. 16) 
decay at a rate of at least l/n2 (which will be satisfied if f(t) is twice contin- 
uously differentiable). 

We have for f(t) the Fourier series representation 

f(t) = 2 aneZAinf, (16) 
n=--00 

where a,, = a”,, because f(t) is real (x* represent the complex conjugate of x). 
Now we also consider the real periodic function F(t), derived from f(t) by some 
non-linear operation. We have for F(t) the Fourier series representation 

w 

F(t) = c b e2nint 
n , 

n=-00 

(17) 
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where b, = b”,. In the following, we derive expressions for the b,, in terms of the 
a,, where each subsection covers a different non-linear operator (and hence the b, 
in the various subsections are not the same). More specifically, it is shown that the 
b,, obtained by full wave rectification of f(t) decay as l/n2 and, for large n, can 
be expressed in the values of f’(t) at the zero crossings of f(t). For the full wave 
integrator, the b, decay as l/n and are mainly determined by the area between f(t) 
and the horizontal axis. 

A.2 Full wave rectifier 

The first non-linear device that we treat is the full wave rectifier (see Sec. 4.2). On 
the periodicity interval [ 0, 1) the function F(t) is now given by 

F(t) = If(t)1 , 0 5 t < 1. 

Now there holds 

If(Ol = mw; 0, to, 1) , 0 I t -= 1, 

where 

Letting d, be the Fourier coefficients of h(t; 0, to, l), so that 

h(t; 0, to, 1) = 2 d”e2Xinr, 
n=-ca 

(18) 

(19) 

(20) 

(21) 

we then obtain from Eqns. 16, 19 and 21 that 

00 00 co 
F(t) = c a,e2ni”’ . c d 

m 
e2nimt = 

c 
e2nikt . 

c atdm, (22) 
n=-00 m=-00 k=-oo n+m=k 

hence from Eqn. 17 
do 

bk = c andk-, . 
n=-00 

Due to the piecewise constant nature of h(t) it is easily computed that 

1 

d,= s h(t; 0, to, 1) dt = 2to - 1, 
0 
fil 

d,, = - h(t; 0, to, l)e-2nint dt 

= i(l - e-2ninb), 
nin 

12 # 0. 

(23) 

(24) 

(25) 
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Therefore, from Eqns. 23,24 and 25 

bk = (2te - 1)~ + c an 
nZk ni(k - n) 

(1 - e2ni(“-k)‘o). (26) 

In principle this solves the problem for the full wave rectifier: we have expressed 
the bk in terms of the ak and the locations of the zeros of f(t). However, the 
right-hand side of Eqn. 26 shows a decay of the bk roughly as l/k, while we know 
from the form of F(t) that there should be a decay like l/k2 due to the triangular 
singularity of F(t) at t = to. This decay of the bk can be obtained when we properly 
use the condition stated in Eqn. 15. Accordingly, we have 

00 M 

c an = 0, c -- ane2J- = 0. (27) 
n=-_do ?l=-00 

Then we get for the series at the far right-hand side of Eqn. 26 

c 
an 

,,#k Wk - 4 
(1 _ ,r2zi(n-Wo) = 

c 
an+ 

nZk 7ti k-n 
_ i + $1 _ c2nG-Wo) 

= c 
nan 

npk rik(k - n) 
(1 _ $rih-Wo) + 

1 
-z 
nik n#k 

an(l _ c2W+Wo ), k # 0. (28) 

Now it holds that 

03 c a e2ni(n-kh 
n 

= _ak + c ane2ni(n-Wo 

n#k n=-w 

= _ak + e-2rrikb c a e2ninb 
n 

n=-03 

= -ak. (29) 

and in the same way we have that x,,# u, = -ak. Hence, for k # 0, the second 
term of Eqn. 28 vanishes, and we find 

b. = 
s 

o1 If( dt, 

bk = @to - l)ak _ x nan 
nZk nik(k - n) 

(1 _ ,+(n-kh)_ 

(30) 

(31) 

The right-hand side of Eqn. 31 does exhibit the correct l/k2 behaviour that we 
expect from the bk’s for large k (since the ak also decay at a rate of at least l/ k2 
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as explained in the introduction to this appendix). More precisely, assuming that 
ak = 0 for large k, we have for large k that 

c nan 
nZk rcik(k -n) 

(1 _ e2nib-kh) M _$ 2 %(I _ e2ni+kh). 

tl=-_oo It1 
(32) 

Since 

f’(t) = 2 27rina,e2”‘“‘, (33) 

we then obtain 
n=-w 

c n% 
nZk nik(k - n) 

2nina,( 1 - e2ni(n-k)@) 

1 
= - m (f’(0) - f’(to)e-2”ikb). (34) 

Thus, if ak = 0 for large k, then for large k 

bk N 
1 

2n2k2 (f’(O) - f’(toW2”ikb). (35) 

A.3 Full wave integrator 

Now we consider the full wave integrator (see Sec. 4.3), on the periodicity interval 
[ 0, 1). We get 

F(t) = 
s 

t 

If WI ds, 0 5 t < 1, (36) 
0 

The jumps of F(t) at the resetting moments are given by 

-o()=- 
s 
o1 If(s)1 ds attimet=k, kEiZ. 

For t # 0, to, 1, we have that F’(t) = If (t)l, thus 

F’(t) = If(t)1 - ~0 2 s(t - n). 
n=-00 

(37) 

(38) 

Denoting the Fourier coefficients of If(t) I by ck, so that 

If(t)] = 2 cke2aikt9 
k=-w 

and using C,“=_, s(t - n) = CFz_m e2nikr we can write Eqn. 38 as 

00 

c 2nikbke2”ikt = O” (ck - CQ) etiikt, c 
k=-oo k=-w 

(39) 

(40) 
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so that 
bk = ck -ao , k#O. 

27cik (41) 

The bk show a decay of roughly l/k, which is what we expect due to the discon- 
tinuity of F(t) at t = 1. The ck can be found using the expressions of the previous 
subsection. For k = 0, and using partial integration, we obtain 

s 1 

b. = F(t) dt 
0 

= [ tF(t)]; - 8(t -n) dt 
n=-oo 

J 

1 

= (1 - OlfWl dt. (42) 
0 

A.4 Generalization to arbitrary periodic signals 

We can generalize the above results for arbitrary periodic signals that may have 
more than one zero crossing in the fundamental period. The derivations follow 
exactly the same procedure as given above, with the following considerations: 

The start and end point of a period are now t-r and tZ respectively; in between 
there are z zeros at t a, 1 ...z-l. Due to the @riodicity requirements and the fact 
that f(t) changes sign at every zero, z must be odd. 

The fundamental frequency of the signal is uo = l/Q, - t-r). 

For the full wave integrator F(f) is reset to zero at tr, J...~, the corresponding 
jumps are given by a~, 1...(~-1)/2. 

An example signal with the fm indicated is shown in Fig. 7, for the case z = 7. The 
result for the full wave rectifier follows as 

b. = u. 
s 

t_r; If(t) I dt, (43) 

bk = (1 + ho &- l)mfm)ak - c nan p(- l)m6?2niw(n-k)tm, (4) 
m=O ,,+ ~ik(k - 4 m=O 

and if ak = 0 for large k, we then get for large k 

bk - (45) 
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For the full wave integrator (and denoting the Fourier coefficients of the full wave 
rectified signal by ck), we get 

bk = 
Ck _ p~)~*ame-~ivoktzn+l 

27tivok , 
k z o 

. (46) 

b. = - s ” tlf(t)l dt + ‘z~~~tti+I. (47) 
t-1 m=O 

A.5 Discrete time 

We can derive expressions for sampled signals as well (amplitude-continuous). We 
use square brackets to indicate the time-discrete property of the signals, e.g. f[n]. 
The number of samples per period is N, the sample time At, and the n, (m = 
- 1, 0 . . . z) are the zero crossings of f [n], analogously as in the continuous time 
case. We define a zero crossing in the discrete-time sequence to occur at n, if f [n] 

changes sign at n = n, (or if f[n,] = 0). 
For the full wave rectified signal we get 

b[kl = (1 + $ e(-l)"n,)nWl + 
m=O 

For the full wave integrator (using c[k] for the full wave rectified signal) the b[k] 
become 

b[k] = At 
c[k] _ Cz:)/* (Ilme-*niknti+llN 

1 _ e-2nik/N ’ k #OS 

n,-1 cz-1112 

b[O] = -At c klf[k]l + A? .-z %n2m+i - 

(49) 

k=n-1 m=O 

In the limit that At _1 0, the discrete time and continuous time expressions are be 
expected to become identical. By substituting N = l/(At VO) and At n, = tm in 
Eqns. 48,49 and 50 and taking the limit At J. 0 it can be seen that this is indeed the 
case. 

AES 108th CONVENTION, PARIS, 2000 FEBRUARY 19-22 15 



LARSEN AND AARTS PREPRINT 5151 PERCEIVING LOW PITCH 

References 

[l] R.M. Aarts. 25juurAES in Nederlund, chapter 17, pages 158-159. Gebotekst, 
Zoetermeer, The Netherlands, 1999. 

[2] H.F. Olson. Acoustical Engineering. Van Nostrand, Princeton, New Yersey, 
1957. 

[3] L.L. Beranek. Acoustics. American Institute of Physics, New York, 1954. 
1986 reprint for the Acoust. Sot. Am. 

[4] J. Borwick, editor. Loudspeaker and headphone handbook. Butterworths, 
London, 1988. 

[5] T. Unemura. Audio circuit, 1998. US patent 5,771,296. 

[6] M. Oda. Low frequency audio conversion circuit, 1997. US patent 5,668,885. 

[7] W. Schott. Low frequency audio doubling and mixing circuit, 1991. European 
patent EP05466 19. 

[8] R.M. Aarts. Circuit, audio system and method for processing signals, and a 
harmonics- generator, 1996. European patent EP084395 1. Priority date May 
8th 1996. 

[9] H. Helmholtz. Die Lehre von den Tonempjindungen. Friedr. Vieweg & Sohn, 
Dover, 1913. The first printing: 1863, English translation of the 4th German 
edition of 1877. 

[lo] J.G. Roederer. Introduction to physics and psychophysics of music. Springer, 
New York, 1975. 

[ 1 l] E. Terhardt and M. Seewan. Der ‘akustische Bass’ von Orgeln. In Fortschritte 
der Akustik DAGA84, pages 885-888, Darmstadt, 1999. DeGA. 

[ 121 R. Plomp. Experiments on tone perception. PhD thesis, University of Utrecht, 
1966. 

[ 131 EA. Bilsen and R.J. Ritsma. Some parameters influencing the perceptibility 
of pitch. J. Acoust. Sot. Am., 47(2 (Part 2)):469475, 1970. 

[ 141 E. de Boer. On the ‘residue’ in hearing. PhD thesis, University of Amsterdam, 
1956. 

[ 151 A.J.M. Houtsma and J.L. Goldstein. The central origin of the pitch of complex 
tones: Evidence from musical interval recognition. J. Acoust. Sot. Am., 5 l(2 
(Part 2)):520-529, 1972. 

AES 108th CONVENTION, PARIS, 2000 FEBRUARY 19-22 16 



LARSEN AND AARTS PREPRINT 5151 PERCEIVING LOW PITCH 

[16] R.J. Ritsma. Existence region of the tonal residue I. J. Acoust. Sot. Am., 
34(9): 1224-1229, 1962. 

[ 171 R.J. Ritsma. Existence region of the tonal residue II. J. Acoust. Sot. Am., 
35(8): 1241-1245,1963. 

[ 181 J.F. Schouten. The perception of pitch. Philips Technical Review, 5( 10):286, 
1940. 

[ 191 J.F. Schouten, R.J. Ritsma, and B. Lopes Cardozo. Pitch of the residue. J. 
Acoust. Sot. Am., 34(8 (Part 2)): 1418-1424,1962. 

[20] D. Ben-Tzur and M. Colloms. The effect of MaxxBass psychoacoustic bass 
enhancement on loudspeaker design. In preprint 4892(F3) of the 106th AES 
Convention Munich. Audio Eng. Sot., May 1999. 

[21] B. Kedem. 2”ime series analysis by higher order crossings. IEEE Press, New 
York, 1994. 

[22] International standard IS0 226-1987(E), 1987. Acoustics - normal equal- 
loudness level contours. 

AES 108th CONVENTION, PARIS, 2000 FEBRUARY 19-22 17 



LARSEN AND AARTS PREPRINT 5151 PERCEIVING LOW PITCH 

in 

BP1 

I 

HP 

Figure 1: Block scheme for psychoacoustic bass enhancement. In the upper branch, 
frequencies which are too low to be reproduced by the loudspeaker are transposed 
to a higher frequency region. In the lower branch, the input is optionally highpass 
Jiltered. The output signal will now be perceived to have a higher bass content. 

RE 

Figure 2: The mobility analogous circuit for an electrodynamic loudspeaker in a 
box driven by generator E. The electrodynamic coupling follows U = Bl V and 
F = Bl I. The symbols are explained in the text. 
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Figure 3: Possible options for psychoacoustic bass enhancement. The dottedfre- 
quency component denotes the perceived pitch (but is not necessarily acoustically 
radiated). 
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Figure 4: Equal-loudness level contoursforpure tones (binauralfree-field listening, 
frontal incidence), from [22] Fig. 1. 

Figure 5: The solid line represents a sine wave input. The dashed line is obtained 
by fill wave rectijkation, the dash-dotted line by full wave integration. 
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Figure 6: The solid arrow at fo represents the input spectrum. The arrows at 2 fo, 
4 fo, etc., represent the output spectrum for the fill wave rect@er; the dashed arrows 
at 2 fo, 3 fo, etc., represent the output spectrum for the fill wave integrator. 

Figure 7: An arbitrary periodic signal with the zeros indicated in the notation of 
App. A. In this case z = 7. 
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