
Algorithms – NP-Completeness 17-1

NP and NP-Completeness

Design and Analysis of Algorithms

Andrei Bulatov

Algorithms – NP-Completeness 17-2

Efficient Certification

By a “solution” of a decision problem X we understand a certificate

witnessing that an instance is a “yes”-instance

We say that an algorithm B is an efficient certifier for a problem X if

- B is a polynomial time algorithm that takes two input arguments:

instance s and a certificate t

- there is polynomial p such that for every string s, we have

s ∈ X if and only if there exists a string t such that |t| ≤ p(|s|) and

B(s,t) = yes

The class of problems having an efficient certifier is denoted by NP

Certifying vs. Solving

Certifying and brute force

Algorithms – NP-Completeness 17-3

Efficient Certification: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff

s is composite. Moreover |t| ≤ |s|.

Certifier.

Instance. s = 437,669.

Certificate. t = 541 or 809.

Conclusion. COMPOSITES is in NP.

437,669 = 541 × 809

Check if t > 1 and t < s

If yes, check if t is a divisor of s

Algorithms – NP-Completeness 17-4

Efficient Certification: 3-SAT

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Example

Conclusion. SAT is in NP.

() () () ()431421321321 xxxxxxxxxxxx ∨∨∧∨∨∧∨∨∧∨∨

1 ,0 ,1 ,1 4321 ==== xxxx

instance s

certificate t

Algorithms – NP-Completeness 17-5

Efficient Certification: Hamilton Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a

simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly

once, and that there is an edge between each pair of adjacent nodes

in the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

Algorithms – NP-Completeness 17-6

NP

P is the class of problems for which there is a polynomial time algorithm

NP is the class of problems for which there is an efficient certifier

3-SAT, Independent Set, Vertex Cover, problems about feasible

circulations are in NP

Lemma

P ⊆ NP

Proof

Certifier is a solution algorithm that runs with empty certificate.

Algorithms – NP-Completeness 17-7

NP-Completeness

What are the most difficult problems in NP?

A problem X is said to be NP-complete if

(i) X ∈ NP

(ii) for any Y ∈ NP, we have Y ≤ X

Lemma

If an NP-complete problem solvable in polynomial time then P = NP.

Algorithms – NP-Completeness 17-8

Circuit Satisfiability

A circuit consists of:

inputs

wires

logic gates: ∧ (AND), ∨ (OR), ¬ (NOT)

output

∧

¬ ∧

∨∨∧

1 0 Inputs

Output

Algorithms – NP-Completeness 17-9

Circuit Satisfiability (cntd)

The output computed by a circuit is defined in the natural way

A circuit is said to be satisfiable if there are values of the inputs such

that the output is 1

The Circuit Satisfiability Problem

Instance:

A circuit C

Objective:

Is C satisfiable?

Algorithms – NP-Completeness 17-10

Circuit Satisfiability: NP-Completeness

Proof (Idea)

We have to reduce every problem X ∈ NP to Circuit Satisfiability

Use the fact that X has an efficient certifier B(⋅,⋅)

The main idea is that the work of any algorithm on inputs of fixed

length can be simulated by a circuit

Simulation is in the sense that there is a circuit that outputs 1 if and

only if the algorithm outputs “yes”

Moreover, the number of gates (size) of the circuit is O(running time

of the algorithm)

Theorem (Cook, Levin)

Circuit Satisfiability is NP-complete

Algorithms – NP-Completeness 17-11

Circuit Satisfiability: NP-Completeness (cntd)

In order to decide if s ∈ X, we have to check if there is a string t of

length p(|s|) such that B(s,t) outputs “yes”

We use Circuit Satisfiability as a black box as follows:

Consider B(⋅,⋅) as an algorithm on n + p(n) bits

Transform B(s,⋅) into a circuit C(s) with s `hardwired’, and p(|s|)

inputs for possible t

Ask if C(s) is satisfiable.

If yes, there is a required t, and therefore s ∈ X

If not, there is no t such that B(s,t) = “yes”, hence s ∉ X

QED

Algorithms – NP-Completeness 17-12

Example

Construction below creates a circuit C whose inputs can be set so that

C outputs 1 iff graph G has an independent set of size 2.

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)

∧

¬

u-v

∨

1

∨

∨

∧

u-w

0

∧

v-w

1

∧

u

?

∧

v

?

∧

w

?

∧

∨

set of size 2?

both endpoints of some edge

have been chosen?

independent set?










2

n

u

v w

G = (V, E), n = 3

Algorithms – NP-Completeness 17-13

Proving NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,

others are much easier

Recipe to establish NP-completeness of problem Y.

Step 1. Show that Y is in NP.

Step 2. Choose an NP-complete problem X.

Step 3. Prove that X ≤ Y.

Algorithms – NP-Completeness 17-14

Proving NP-Completeness

Lemma

If X is an NP-complete problem, and Y is a problem in NP with the

property that X ≤ Y then Y is NP-complete.

Proof

Let W be any problem in NP. Then W ≤ X ≤ Y.

By transitivity, W ≤ Y.

Hence Y is NP-complete.

QED

Algorithms – NP-Completeness 17-15

3-SAT: NP-Completeness

Proof

Suffices to show that CIRCUIT-SAT ≤ 3-SAT since 3-SAT is in NP.

Let C be any circuit.

Create a 3-SAT variable for each circuit element i.

Theorem

3-SAT is NP-complete

∨

∧

¬

0 ? ?

output
x0

x2x1

x3x4x5

ix

Algorithms – NP-Completeness 17-16

3-SAT: NP-Completeness

Make circuit compute correct values at each node:

⇒ add 2 clauses:

⇒ add 3 clauses:

⇒ add 3 clauses:

Hard-coded input values and output value.

⇒ add 1 clause:

⇒ add 1 clause:

Final step: turn clauses of length < 3 into

clauses of length exactly 3.

QED

32 xx ¬=

541 xxx ∨=

210 xxx ∧=

3232 , xxxx ∨∨

5415141 , , xxxxxxx ∨∨∨∨

2102010 , , xxxxxxx ∨∨∨∨

05 =x

10 =x

5x

0x ∨

∧

¬

0 ? ?

output
x0

x2x1

x3x4x5

Algorithms – NP-Completeness 17-17

Hamiltonian Cycle

The Hamiltonian Cycle Problem

Instance: An undirected graph G = (V, E)

Objective: Does there exist a simple cycle Γ that contains every

node in V.

YES: vertices and faces of a dodecahedron.

Algorithms – NP-Completeness 17-18

Hamiltonian Cycle

1

3

5

1'

3'

2

4

2'

4'

NO: bipartite graph with odd number of nodes.

Algorithms – NP-Completeness 17-19

Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle Problem

Instance: A directed graph G = (V, E)

Objective: Does there exist a simple directed cycle Γ that

contains every node in V.

Lemma

Directed Hamiltonian Cycle ≤ Hamiltonian Cycle.

Proof

Given a directed graph G = (V, E) with n nodes, construct an

undirected graph G' with 3n nodes.

Algorithms – NP-Completeness 17-20

Directed Hamiltonian Cycle

We show that G has a Hamiltonian cycle iff G' does.

⇒

Suppose G has a directed Hamiltonian cycle Γ.

Then G' has an undirected Hamiltonian cycle (same order).

v

a

b

c

d

e

G

vin

aout

bout

cout

din

ein

G'

v vout

Algorithms – NP-Completeness 17-21

Directed Hamiltonian Cycle

⇐

Suppose G' has an undirected Hamiltonian cycle Γ'.

Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, …

…, B, R, G, B, R, G, B, R, G, B, …

Blue nodes in Γ‘ make up directed Hamiltonian cycle Γ in G, or

reverse of one.

QED

Algorithms – NP-Completeness 17-22

Ham-Cycle: NP-Completeness

Proof

Given an instance Φ of 3-SAT, we construct an instance of Directed

Hamiltonian Cycle that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.

First, create graph that has Hamiltonian cycles which correspond

in a natural way to possible truth assignments.

Given 3-SAT instance Φ with n variables and k clauses.

Construct G to have 2n Hamiltonian cycles.

Intuition: traverse path i from left to right ⇔ set variable

Theorem

3-SAT ≤ Directed Hamiltonian Cycle

n2
n2

ix

1=ix

Algorithms – NP-Completeness 17-23

Ham-Cycle: NP-Completeness

s

t

3k + 3

x1

x2

x3

Algorithms – NP-Completeness 17-24

Ham-Cycle: NP-Completeness

Given 3-SAT instance Φ with n variables and k clauses.

For each clause: add a node and 6 edges.

ix

s

t

clause nodeclause node3211
VV xxxC =

3212
VV xxxC =

x1

x2

x3

Algorithms – NP-Completeness 17-25

Ham-Cycle: NP-Completeness

Claim.

Φ is satisfiable iff G has a Hamiltonian cycle.

⇒

Suppose 3-SAT instance has satisfying assignment x*.

Then, define Hamiltonian cycle in G as follows:

if , traverse row i from left to right

if , traverse row i from right to left

for each clause , there will be at least one row i in which we are

going in "correct" direction to splice node into tour

1*
=ix

0*
=ix

iC

iC

Algorithms – NP-Completeness 17-26

Proving NP-Completeness

⇐

Suppose G has a Hamiltonian cycle Γ.

If Γ enters clause node , it must depart on mate edge.

Thus, nodes immediately before and after are connected by an

edge e in G

removing from cycle, and replacing it with edge e yields

Hamiltonian cycle on G – { }

Continuing in this way, we are left with Hamiltonian cycle Γ' in

G – { }.

Set iff Γ' traverses row i left to right.

Since Γ visits each clause node , at least one of the paths is

traversed in "correct" direction, and each clause is satisfied.

iC

iC

iC

iC

kCCC ,,, 21 K

1*
=ix

iC

