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Efficient Certification

By a  “solution”  of a decision problem  X  we understand a certificate

witnessing that an instance is a “yes”-instance

We say that an algorithm  B  is an efficient certifier for a problem  X  if

- B  is a polynomial time algorithm that takes two input arguments:  

instance  s  and a certificate  t

- there is polynomial  p  such that for every string  s,  we have         

s ∈ X  if and only if there exists a string  t  such that  |t| ≤ p(|s|)  and  

B(s,t) = yes

The class of problems having an efficient certifier is denoted by NP

Certifying  vs.  Solving

Certifying and brute force
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Efficient Certification: Composite

COMPOSITES.  Given an integer s, is s composite?

Certificate.  A nontrivial factor t of s.  Note that such a certificate exists iff 

s is composite.  Moreover |t| ≤ |s|.

Certifier.  

Instance.  s = 437,669.

Certificate.  t = 541 or 809.

Conclusion.  COMPOSITES is in NP.

437,669 = 541 × 809

Check if  t > 1 and  t < s

If yes,  check if  t  is a divisor of  s
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Efficient Certification: 3-SAT

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate.  An assignment of truth values to the n boolean variables.

Certifier.  Check that each clause in Φ has at least one true literal.

Example

Conclusion.  SAT is in NP.

( ) ( ) ( ) ( )431421321321    xxxxxxxxxxxx ∨∨∧∨∨∧∨∨∧∨∨

1 ,0 ,1 ,1 4321 ==== xxxx

instance s

certificate t
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Efficient Certification: Hamilton Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a 

simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

Certifier.  Check that the permutation contains each node in V exactly 

once, and that there is an edge between each pair of adjacent nodes 

in the permutation.

Conclusion.  HAM-CYCLE is in NP.

instance s certificate t
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NP

P is the class of problems for which there is a polynomial time algorithm

NP is the class of problems for which there is an efficient certifier

3-SAT,  Independent Set,  Vertex Cover, problems about feasible 

circulations  are in  NP

Lemma

P ⊆ NP

Proof

Certifier  is a solution algorithm that runs with empty certificate.
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NP-Completeness

What are the most difficult problems in NP?

A problem  X  is said to be NP-complete if

(i)   X ∈ NP

(ii)   for any  Y ∈ NP,  we have  Y ≤ X

Lemma

If an NP-complete problem solvable in polynomial time then  P = NP.
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Circuit Satisfiability

A  circuit consists of:

inputs

wires

logic gates:  ∧ (AND),  ∨ (OR),  ¬ (NOT)

output

∧

¬ ∧

∨∨∧

1 0 Inputs

Output
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Circuit Satisfiability  (cntd)

The output computed by a circuit is defined in the natural way

A circuit is said to be  satisfiable if there are values of the inputs such 

that the output is  1

The Circuit Satisfiability Problem

Instance:

A circuit  C

Objective:

Is  C  satisfiable?
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Circuit Satisfiability:  NP-Completeness

Proof (Idea)

We have to reduce every problem  X ∈ NP  to  Circuit Satisfiability

Use the fact that  X  has an efficient certifier  B(⋅,⋅)

The main idea is that the work of any algorithm on inputs of fixed 

length can be simulated by a circuit

Simulation is in the sense that there is a circuit that outputs 1  if and 

only if the algorithm outputs  “yes”

Moreover,  the number of gates (size) of the circuit is  O(running time 

of the algorithm)

Theorem (Cook, Levin)

Circuit Satisfiability is  NP-complete
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Circuit Satisfiability:  NP-Completeness (cntd)

In order to decide if  s ∈ X,  we have to check if there is a string  t  of 

length  p(|s|)  such that   B(s,t)  outputs  “yes”

We use  Circuit Satisfiability as a black box as follows:

Consider  B(⋅,⋅)  as an algorithm on  n + p(n)  bits

Transform  B(s,⋅)  into a circuit  C(s)  with  s  `hardwired’, and  p(|s|)  

inputs for  possible  t

Ask if  C(s)  is satisfiable. 

If yes, there is a required  t,  and therefore  s ∈ X

If not, there is no  t  such that  B(s,t) = “yes”,  hence  s ∉ X

QED
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Example

Construction below creates a circuit  C  whose inputs can be set so that 

C  outputs  1  iff graph  G  has an independent set of size 2.

independent set of size 2?

n inputs (nodes in independent set)hard-coded inputs (graph description)

∧

¬

u-v

∨

1

∨

∨

∧

u-w

0

∧

v-w

1

∧

u

?

∧

v

?

∧

w

?

∧

∨

set of size 2?

both endpoints of some edge 

have been chosen?

independent set?










2

n

u

v w

G = (V, E), n = 3
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Proving NP-Completeness

Remark.  Once we establish first "natural" NP-complete problem,

others are much easier

Recipe to establish NP-completeness of problem Y.

Step 1.  Show that Y is in NP.

Step 2.  Choose an NP-complete problem X.

Step 3.  Prove that X ≤ Y. 
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Proving NP-Completeness

Lemma  

If X is an NP-complete problem, and Y is a problem in NP with the 

property that X ≤ Y then Y is NP-complete.

Proof

Let W be any problem in NP.  Then W ≤ X ≤ Y.

By transitivity, W ≤ Y. 

Hence Y is NP-complete.  

QED
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3-SAT:  NP-Completeness

Proof

Suffices to show that  CIRCUIT-SAT ≤ 3-SAT  since  3-SAT is in  NP.

Let  C  be any circuit.

Create a 3-SAT variable       for each circuit element i.

Theorem

3-SAT  is  NP-complete

∨

∧

¬

0 ? ?

output
x0

x2x1

x3x4x5

ix
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3-SAT:  NP-Completeness

Make circuit compute correct values at each node:

⇒ add 2 clauses:

⇒ add 3 clauses:

⇒ add 3 clauses:

Hard-coded input values and output value.

⇒ add 1 clause:

⇒ add 1 clause:

Final step:  turn clauses of length < 3 into

clauses of length exactly 3.

QED

32 xx ¬=

541 xxx ∨=

210 xxx ∧=

3232    , xxxx ∨∨

5415141    ,    , xxxxxxx ∨∨∨∨

2102010    ,   , xxxxxxx ∨∨∨∨

05 =x

10 =x

5x

0x ∨

∧

¬

0 ? ?

output
x0

x2x1

x3x4x5
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Hamiltonian Cycle

The Hamiltonian Cycle Problem

Instance:   An undirected graph G = (V, E)

Objective: Does there exist a simple cycle  Γ that contains every 

node in  V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.
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Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle Problem

Instance:   A directed graph G = (V, E)

Objective: Does there exist a simple directed  cycle  Γ that 

contains every node in  V.

Lemma

Directed Hamiltonian Cycle ≤ Hamiltonian Cycle.

Proof

Given a directed graph G = (V, E)  with  n  nodes,  construct an 

undirected graph G' with 3n nodes.
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Directed Hamiltonian Cycle

We show that  G  has a Hamiltonian cycle iff  G'  does.

⇒

Suppose  G  has a directed Hamiltonian cycle  Γ.

Then  G'  has an undirected Hamiltonian cycle (same order).

v

a

b

c

d

e

G

vin

aout

bout

cout

din

ein

G'

v vout
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Directed Hamiltonian Cycle

⇐

Suppose  G'  has an undirected Hamiltonian cycle  Γ'.

Γ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 

…, B, R, G, B, R, G, B, R, G, B, … 

Blue nodes in  Γ‘  make up directed Hamiltonian cycle  Γ in  G,  or 

reverse of one.   

QED
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Ham-Cycle: NP-Completeness

Proof

Given an instance  Φ of  3-SAT,  we construct an instance of  Directed 

Hamiltonian Cycle that has a Hamiltonian cycle iff  Φ is satisfiable.

Construction.  

First, create graph that has        Hamiltonian cycles which correspond 

in a natural way to        possible truth assignments.

Given 3-SAT instance  Φ with  n  variables       and  k  clauses.

Construct  G  to have  2n  Hamiltonian cycles.

Intuition:  traverse path  i  from left to right   ⇔ set variable      

Theorem

3-SAT  ≤ Directed Hamiltonian Cycle

n2
n2

ix

1=ix
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Ham-Cycle: NP-Completeness

s

t

3k + 3

x1

x2

x3
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Ham-Cycle: NP-Completeness

Given 3-SAT instance  Φ with  n  variables        and  k  clauses.

For each clause:   add a node and 6 edges.

ix

s

t

clause nodeclause node3211
VV xxxC =

3212
VV xxxC =

x1

x2

x3
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Ham-Cycle: NP-Completeness

Claim.   

Φ is satisfiable iff G has a Hamiltonian cycle.

⇒

Suppose 3-SAT instance has satisfying assignment  x*.

Then, define Hamiltonian cycle in G as follows:

if             , traverse row i  from left to right

if             , traverse row i from right to left

for each clause      , there will be at least one row i in which we are   

going in "correct" direction to splice node        into tour

1*
=ix

0*
=ix

iC

iC
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Proving NP-Completeness

⇐

Suppose  G  has a Hamiltonian cycle  Γ.

If  Γ enters clause node     , it must depart on mate edge.

Thus, nodes immediately before and after       are connected by an 

edge  e  in  G

removing       from cycle, and replacing it with edge  e  yields 

Hamiltonian cycle on  G – {      }

Continuing in this way, we are left with Hamiltonian cycle  Γ'  in

G – {                         }.

Set              iff  Γ'  traverses row  i  left to right.

Since  Γ visits each clause node     , at least one of the paths is 

traversed in "correct" direction, and each clause is satisfied.

iC

iC

iC

iC

kCCC ,,, 21 K

1*
=ix

iC


