NP and NP-Completeness

Design and Analysis of Algorithms

Andrei Bulatov

Efficient Certification

By a "solution" of a decision problem X we understand a certificate witnessing that an instance is a "yes"-instance

We say that an algorithm B is an efficient certifier for a problem X if

- B is a polynomial time algorithm that takes two input arguments: instance s and a certificate t
- there is polynomial p such that for every string s, we have $s \in X$ if and only if there exists a string t such that $|t| \le p(|s|)$ and B(s,t) = yes

The class of problems having an efficient certifier is denoted by NP

Certifying vs. Solving Certifying and brute force

Efficient Certification: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \le |s|$.

Certifier.

Check if t > 1 and t < s
If yes, check if t is a divisor of s

Instance. s = 437,669.

Certificate. t = 541 or 809. $437,669 = 541 \times 809$

Conclusion. COMPOSITES is in NP.

Efficient Certification: 3-SAT

SAT. Given a CNF formula Φ , is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables. Certifier. Check that each clause in Φ has at least one true literal. Example

$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$
instance s

$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$
 certificate t

Conclusion. SAT is in NP.

Efficient Certification: Hamilton Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

NP

P is the class of problems for which there is a polynomial time algorithm NP is the class of problems for which there is an efficient certifier

3-SAT, Independent Set, Vertex Cover, problems about feasible circulations are in NP

Lemma

 $P \subseteq NP$

Proof

Certifier is a solution algorithm that runs with empty certificate.

NP-Completeness

What are the most difficult problems in NP?

A problem X is said to be NP-complete if

- (i) $X \in NP$
- (ii) for any $Y \in NP$, we have $Y \leq X$

Lemma

If an NP-complete problem solvable in polynomial time then P = NP.

Inputs

Circuit Satisfiability

A circuit consists of:

inputs

wires

logic gates: \land (AND), \lor (OR), \neg (NOT)

output

Circuit Satisfiability (cntd)

The output computed by a circuit is defined in the natural way

A circuit is said to be satisfiable if there are values of the inputs such that the output is 1

The Circuit Satisfiability Problem

Instance:

A circuit C

Objective:

Is C satisfiable?

Circuit Satisfiability: NP-Completeness

Theorem (Cook, Levin)

Circuit Satisfiability is NP-complete

Proof (Idea)

We have to reduce every problem $X \in NP$ to Circuit Satisfiability Use the fact that X has an efficient certifier $B(\cdot,\cdot)$

The main idea is that the work of any algorithm on inputs of fixed length can be simulated by a circuit

Simulation is in the sense that there is a circuit that outputs 1 if and only if the algorithm outputs "yes"

Moreover, the number of gates (size) of the circuit is O(running time of the algorithm)

Circuit Satisfiability: NP-Completeness (cntd)

In order to decide if $s \in X$, we have to check if there is a string t of length p(|s|) such that B(s,t) outputs "yes"

We use Circuit Satisfiability as a black box as follows:

Consider $B(\cdot,\cdot)$ as an algorithm on n + p(n) bits

Transform $B(s,\cdot)$ into a circuit C(s) with s 'hardwired', and p(|s|) inputs for possible t

Ask if C(s) is satisfiable.

If yes, there is a required t, and therefore $s \in X$

If not, there is no t such that B(s,t) = "yes", hence $s \notin X$

QED

Example

Construction below creates a circuit C whose inputs can be set so that C outputs 1 iff graph G has an independent set of size 2.

 $\binom{n}{2}$ hard-coded inputs (graph description) n inputs (nodes in independent set)

Proving NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others are much easier

Recipe to establish NP-completeness of problem Y.

Step 1. Show that Y is in NP.

Step 2. Choose an NP-complete problem X.

Step 3. Prove that $X \leq Y$.

Proving NP-Completeness

Lemma

If X is an NP-complete problem, and Y is a problem in NP with the property that $X \le Y$ then Y is NP-complete.

Proof

Let W be any problem in NP. Then $W \le X \le Y$.

By transitivity, $W \le Y$.

Hence Y is NP-complete.

QED

3-SAT: NP-Completeness

Theorem

3-SAT is NP-complete

Proof

Suffices to show that CIRCUIT-SAT \leq 3-SAT since 3-SAT is in NP. Let C be any circuit.

Create a 3-SAT variable x_i for each circuit element i.

3-SAT: NP-Completeness

Make circuit compute correct values at each node:

$$x_2 = \neg x_3$$
 \Rightarrow add 2 clauses: $x_2 \lor x_3$, $\overline{x_2} \lor \overline{x_3}$
 $x_1 = x_4 \lor x_5$ \Rightarrow add 3 clauses: $x_1 \lor \overline{x_4}$, $x_1 \lor \overline{x_5}$, $\overline{x_1} \lor x_4 \lor x_5$
 $x_0 = x_1 \land x_2$ \Rightarrow add 3 clauses: $\overline{x_0} \lor x_1$, $\overline{x_0} \lor x_2$, $x_0 \lor \overline{x_1} \lor \overline{x_2}$

Hard-coded input values and output value.

$$x_5 = 0 \implies \text{add 1 clause:} \quad \overline{x_5}$$

$$x_0 = 1 \implies \text{add 1 clause:} \quad x_0$$

Final step: turn clauses of length < 3 into clauses of length exactly 3.

Hamiltonian Cycle

The Hamiltonian Cycle Problem

Instance: An undirected graph G = (V, E)

Objective: Does there exist a simple cycle Γ that contains every

node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle Problem

Instance: A directed graph G = (V, E)

Objective: Does there exist a simple directed cycle Γ that

contains every node in V.

Lemma

Directed Hamiltonian Cycle ≤ Hamiltonian Cycle.

Proof

Given a directed graph G = (V, E) with n nodes, construct an undirected graph G' with 3n nodes.

Directed Hamiltonian Cycle

We show that G has a Hamiltonian cycle iff G' does.

Suppose G has a directed Hamiltonian cycle Γ .

Then G' has an undirected Hamiltonian cycle (same order).

Directed Hamiltonian Cycle

Suppose G' has an undirected Hamiltonian cycle Γ '.

 Γ' must visit nodes in G' using one of following two orders:

Blue nodes in Γ make up directed Hamiltonian cycle Γ in G, or reverse of one.

QED

Theorem

3-SAT ≤ Directed Hamiltonian Cycle

Proof

Given an instance Φ of 3-SAT, we construct an instance of Directed Hamiltonian Cycle that has a Hamiltonian cycle iff Φ is satisfiable.

Construction.

First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.

Given 3-SAT instance Φ with n variables x_i and k clauses.

Construct G to have 2n Hamiltonian cycles.

Intuition: traverse path i from left to right \iff set variable $x_i = 1$

Given 3-SAT instance Φ with n variables x_i and k clauses.

Claim.

 Φ is satisfiable iff G has a Hamiltonian cycle.

Suppose 3-SAT instance has satisfying assignment x^* .

Then, define Hamiltonian cycle in G as follows:

if $x_i^* = 1$, traverse row i from left to right

if $x_i^* = 0$, traverse row i from right to left

for each clause C_i , there will be at least one row i in which we are going in "correct" direction to splice node C_i into tour

Proving NP-Completeness

 \Leftarrow

Suppose G has a Hamiltonian cycle Γ .

If Γ enters clause node C_i , it must depart on mate edge.

Thus, nodes immediately before and after $\,C_i\,$ are connected by an edge e in G

removing C_i from cycle, and replacing it with edge e yields Hamiltonian cycle on $G-\{\,C_i\,\}$

Continuing in this way, we are left with Hamiltonian cycle Γ' in $G - \{C_1, C_2, ..., C_k\}$.

Set $x_i^* = 1$ iff Γ' traverses row i left to right.

Since Γ visits each clause node C_i , at least one of the paths is traversed in "correct" direction, and each clause is satisfied.