Algorithms — NP-Completeness 17-1

NP and NP-Completeness

Design and Analysis of Algorithms
Andrei Bulatov

Algorithms — NP-Completeness

Efficient Certification

By a “solution” of a decision problem X we understand a certificate
witnessing that an instance is a “yes’-instance

We say that an algorithm B is an efficient certifier for a problem X if

- B is a polynomial time algorithm that takes two input arguments:

iInstance s and a certificate t

- there is polynomial p such that for every string s, we have
s € X ifand only if there exists a string t such that |t| < p(|s|) and
B(s,t) = yes

The class of problems having an efficient certifier is denoted by NP

Certifying vs. Solving
Certifying and brute force

17-2

Algorithms — NP-Completeness 17-3

Efficient Certification: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate exists iff
s is composite. Moreover [t| <|s|.

Certifier.

Checkif t>1and t<s
If yes, checkif t is a divisor of s

Instance. s =437,669.
Certificate. t =541 or 809. 437,669 = 541 x 809

Conclusion. COMPOSITES is in NP.

Algorithms — NP-Completeness

Efficient Certification: 3-SAT

SAT. Given a CNF formula &, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in ® has at least one true literal.
Example

(.x_l\/xZ \/.X3)/\(.xl \/g\/.xg)/\(xl \/x2 \/X4) /\(xl \/.X3 \/X4)
instance s
X1—= 1, Xo= 1, X3= O, Xq4= 1

certificate t

Conclusion. SAT s in NP.

17-4

Algorithms — NP-Completeness 17-5

Efficient Certification: Hamilton Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly
once, and that there is an edge between each pair of adjacent nodes
in the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

Algorithms — NP-Completeness 17-6

NP

P Is the class of problems for which there is a polynomial time algorithm
NP is the class of problems for which there is an efficient certifier

3-SAT, Independent Set, Vertex Cover, problems about feasible
circulations are in NP

Lemma
Pc NP

Proof
Certifier is a solution algorithm that runs with empty certificate.

Algorithms — NP-Completeness 17-7

NP-Completeness

What are the most difficult problems in NP?

A problem X is said to be NP-complete if
() Xe NP
(i) forany Y e NP, we have Y<X

Lemma
If an NP-complete problem solvable in polynomial time then P = NP.

Algorithms — NP-Completeness 17-8

Circuit Satisfiability

A circuit consists of:
inputs
wires
logic gates: A (AND), v (OR), — (NOT)
output

Algorithms — NP-Completeness 17-9

Circuit Satisfiability (cntd)

The output computed by a circuit is defined in the natural way

A circuit is said to be satisfiable if there are values of the inputs such
that the output is 1

The Circuit Satisfiability Problem
Instance:

A circuit C
Objective:

Is C satisfiable?

Algorithms — NP-Completeness 17-10

Circuit Satisfiability: NP-Completeness

Theorem (Cook, Levin)
Circuit Satisfiability is NP-complete

Proof (Idea)
We have to reduce every problem X € NP to Circuit Satisfiability
Use the fact that X has an efficient certifier B(:,-)

The main idea is that the work of any algorithm on inputs of fixed
length can be simulated by a circuit

Simulation is in the sense that there is a circuit that outputs 1 if and
only if the algorithm outputs “yes”

Moreover, the number of gates (size) of the circuit is O(running time
of the algorithm)

Algorithms — NP-Completeness 17-11

Circuit Satisfiability: NP-Completeness (cntd)

In order to decide if s € X, we have to check if there is a string t of
length p(|s|) suchthat B(s,t) outputs “yes”

We use Circuit Satisfiability as a black box as follows:
Consider B(-,-) as an algorithm on n + p(n) bits

Transform B(s,) into a circuit C(s) with s "hardwired’, and p(|s|)
inputs for possible t

Ask if C(s) is satisfiable.
If yes, there is a required t, and therefore s e X
If not, there is no t such that B(s,t) = “yes”, hence s ¢ X
QED

Algorithms — NP-Completeness

Example

Construction below creates a circuit C whose inputs can be set so that
C outputs 1 iff graph G has an independent set of size 2.

independent set of size 27?

both endpoints of some edge
have been chosen?

set of size 27

(nj hard-coded inputs (graph description) n inputs (nodes in independent set)

17-12

Algorithms — NP-Completeness 17-13

Proving NP-Completeness

Remark. Once we establish first "natural” NP-complete problem,
others are much easier

Recipe to establish NP-completeness of problem Y.
Step 1. Show that Y is in NP.

Step 2. Choose an NP-complete problem X.

Step 3. Prove that X <.

Algorithms — NP-Completeness 17-14

Proving NP-Completeness

Lemma

If Xis an NP-complete problem, and Y is a problem in NP with the
property that X <Y then Y is NP-complete.

Proof
Let W be any problem in NP. Then W< X <Y,
By transitivity, W <Y.
Hence Y is NP-complete.
QED

Algorithms — NP-Completeness 17-15

3-SAT: NP-Completeness

Theorem
3-SAT is NP-complete

Proof

Suffices to show that CIRCUIT-SAT < 3-SAT since 3-SAT isin NP.
Let C be any circuit.

Create a 3-SAT variable x; for each circuit element i.

output

Algorithms — NP-Completeness 17-16

3-SAT: NP-Completeness

Make circuit compute correct values at each node:
X, =13 = add2clauses: x,vx;, x,vx3
X =X4VXs = add 3clauses; x;Va, XVXs, XVa,vis

Xg =X AXy, = add 3clauses: xovx;, XgVXy, XoVX VX,

Hard-coded input values and output value. output 3
x5 =0 = add 1 clause: xs
X4 X9
xo =1 = add 1clause: x,
Xs X4 X3
Final step: turn clauses of length < 3 into 0 7 ?

clauses of length exactly 3.

Algorithms — NP-Completeness 17-17

Hamiltonian Cycle

The Hamiltonian Cycle Problem
Instance: An undirected graph G = (V, E)

Objective: Does there exist a simple cycle I" that contains every
node in V.

YES: vertices and faces of a dodecahedron.

Algorithms — NP-Completeness 17-18

Hamiltonian Cycle

NO: bipartite graph with odd number of nodes.

Algorithms — NP-Completeness 17-19

Directed Hamiltonian Cycle

The Directed Hamiltonian Cycle Problem
instance: A directed graph G = (V, E)

Objective: Does there exist a simple directed cycle I" that
contains every node in V.

Lemma
Directed Hamiltonian Cycle < Hamiltonian Cycle.

Proof

Given a directed graph G = (V, E) with n nodes, construct an
undirected graph G' with 3n nodes.

Algorithms — NP-Completeness 17-20

Directed Hamiltonian Cycle

0. O

G G'

We show that G has a Hamiltonian cycle iff G' does.

—

Suppose G has a directed Hamiltonian cycle T.

Then G' has an undirected Hamiltonian cycle (same order).

Algorithms — NP-Completeness 17-21

Directed Hamiltonian Cycle

—
Suppose G' has an undirected Hamiltonian cycle T
I must visit nodes in G' using one of following two orders:

..B,G,R/B,GR,BGR,B, ..
..B,R,GB,RGBR,G,B, ..

Blue nodes in T make up directed Hamiltonian cycle I" in G, or
reverse of one.

QED

Algorithms — NP-Completeness 17-22

Ham-Cycle: NP-Completeness

Theorem
3-SAT < Directed Hamiltonian Cycle

Proof

Given an instance & of 3-SAT, we construct an instance of Directed
Hamiltonian Cycle that has a Hamiltonian cycle iff & is satisfiable.

Construction.

First, create graph that has 2" Hamiltonian cycles which correspond
in a natural way to 2" possible truth assignments.

Given 3-SAT instance & with n variables x; and k clauses.
Construct G to have 2n Hamiltonian cycles.
Intuition: traverse path i from left toright < set variable x; =1

Algorithms — NP-Completeness 17-23

Ham-Cycle: NP-Completeness

e e . e e
w 2
v .

Ny
3k +3

A

v

Algorithms — NP-Completeness 17-24

Ham-Cycle: NP-Completeness

Given 3-SAT instance & with n variables x; and k clauses.
For each clause: add a node and 6 edges.

clause node clause node

) -l-,//l
/]
=

h_w X
wy—l 1

Algorithms — NP-Completeness 17-25

Ham-Cycle: NP-Completeness

Claim.
d s satisfiable iff G has a Hamiltonian cycle.

—
Suppose 3-SAT instance has satisfying assignment x*.
Then, define Hamiltonian cycle in G as follows:

if x; =1, traverse row i from left to right
if x;k = (0, traverse row i from right to left

for each clause C;, there will be at least one row i in which we are
going in "correct” direction to splice node C; into tour

Algorithms — NP-Completeness 17-26

Proving NP-Completeness

—
Suppose G has a Hamiltonian cycle T.
If " enters clause node C;, it must depart on mate edge.

Thus, nodes immediately before and after C; are connected by an
edge e in G

removing C; from cycle, and replacing it with edge e yields
Hamiltonian cycle on G—-{C; }

Continuing in this way, we are left with Hamiltonian cycle I™ in
G-{C,,C,,....,C, }.

Set x;k =1 iff I" traverses row i left to right.

Since I visits each clause node C;, at least one of the paths is
traversed in "correct” direction, and each clause is satisfied.

