
Chapter 5

Edge Detection

The early stages of vision processing identify features in images that are
relevant to estimating the structure and properties of objects in a scene.
Edges are one such feature. Edges are significant local changes in the image
and are important features for analyzing images. Edges typically occur on
the boundary between two different regions in an image. Edge detection is
frequently the first step in recovering information from images. Due to its
importance, edge detection continues to be an active research area. This
chapter covers only the detection and localization of edges. Basic concepts
in edge detection will be discussed. Several common edge detectors will be
used to illustrate the basic issues in edge detection. Algorithms for combining
edges into contours are discussed in Chapter 6.

An edge in an image is a significant local change in the image intensity,
usually associated with a discontinuity in either the image intensity or the
first derivative of the image intensity. Discontinuities in the image intensity
can be either (1) step discontinuities, where the image intensity abruptly
changes from one value on one side of the discontinuity to a different value
on the opposite side, or (2) line discontinuities, where the image intensity
abruptly changes value but then returns to the starting value within some
short distance. However, step and line edges are rare in real images. Because
of low-frequency components or the smoothing introduced by most sensing
devices, sharp discontinuities rarely exist in real signals. Step edges become
ramp edges and line edges become roof edges, where intensity changes are
not instantaneous but occur over a finite distance. Illustrations of these edge
profiles are shown in Figure 5.1.

140

5. EDGE DETECTION 141

Step

Ramp

Line

Roof

Figure 5.1: One-dimensional edge profiles.

It is also possible for an edge to have both step and line characteristics.
For example, a surface that changes orientation from one flat surface to
another will produce a step edge; but if the surface has a specular component
of reflectance and if the surface corner is rounded, there can be a highlight due
to the specular component as the surface orientation of the rounded corner
passes the precise angle for specular reflection. The edge profile generated
by such a situation looks like a step edge with a superimposed line edge.
There are also edges associated with changes in the first derivative of the
image intensity. For example, mutual reflection from the sides of a concave
corner generate roof edges. Edges are important image features since they
may correspond to significant features of objects in the scene. For example,
the boundary of an object usually produces step edges because the image
intensity of the object is different from the image intensity of the background.

This chapter will deal almost exclusively with step edges, although many
of the ideas can be adapted to other types of image intensity changes. The
profile of an ideal step edge and the profile of a real image that provides
some examples of step edges are displayed in Figure 5.2. By definition, an
edge is a significant local change in the image intensity. The plot shows step

-- --

142 CHAPTER 5. EDGE DETECTION

Figure 5.2: (a) The top half of the connecting rod image. (b) The profile of an
ideal step change in image intensity is plotted to show that the edges are not
perfectly sharp and the image is corrupted by noise. The plot is a horizontal
slice through the circular portion of the connecting rod corresponding to the
bottom edge of the partial rod image shown above.

changes in image intensity that are edges because the changes are significant
and local. The plot also shows changes that are not edges, because they
violate part of the definition. The changes due to noise are not edges even
though the changes are local, because the changes are not significant. The
changes due to shading, such as the ramp on the right side of the plot, are not
edges even though the changes are significant, because the changes are not
local. Real images are very noisy. It is difficult to develop an edge detection
operator that reliably finds step edges and is immune to noise.

Before we discuss important considerations in edge detection operators,
some terms must be carefully defined.

Definition 5.1 An edge point is a point in an image with coordinates [i,j]
at the location of a significant local intensity change in the image.

Definition 5.2 An edge fragment corresponds to the i and j coordinates of
an edge and the edge orientation e, which may be the gradient angle.

20

40
..I

-..-

60

80

100 1-

120

50 100 150 200 250

(a)

250

200

150

100

50

00 50 100 150 200 250

(b)

5.1. GRADIENT 143

Definition 5.3 An edgedetectoris an algorithmthat producesa set of edges
{edgepoints or edge fragments} from an image.

Definition 5.4 A contour is a list of edgesor the mathematicalcurve that
models the list of edges.

Definition 5.5 Edge linking is the process of forming an ordered list of edges
from an unordered list. By convention, edges are ordered by traversal in a
clockwise direction.

Definition 5.6 Edge following is the process of searching the {filtered} image
to determine contours.

The coordinates of an edge point may be the integer row and column
indices of the pixel where the edge was detected, or the coordinates of the
edge location at subpixel resolution. The edge coordinates may be in the co-
ordinate system of the original image, but more likely are in the coordinate
system of the image produced by the edge detection filter since filtering may
translate or scale image coordinates. An edge fragment may be conceptual-
ized as a small line segment about the size of a pixel, or as a point with an
orientation attribute. The term edgeis commonlyused for either edgepoints
or edge fragments.

The edge set produced by an edge detector can be partitioned into two
subsets: correct edges, which correspond to edges in the scene, and false
edges, which do not correspond to edges in the scene. A third set of edges
can be defined as those edges in the scene that should have been detected.
This is the set of missing edges. The false edges are called false positives,
and the missing edges are called false negatives.

The difference between edge linking and edge followingis that edge linking
takes as input an unordered set of edges produced by an edge detector and
forms an ordered list of edges. Edge following takes as input an image and
produces an ordered list of edges. Edge detection uses local information to
decide if a pixel is an edge, while edge following can use global information.

5.1 Gradient

Edge detection is essentially the operation ofdetecting significant local changes
in an image. In one dimension, a step edge is associated with a local peak in

144 CHAPTER 5. EDGE DETECTION

the first derivative. The gradient is a measure of change in a function, and
an image can be considered to be an array of samples of some continuous
function of image intensity. By analogy, significant changes in the gray values
in an image can be detected by using a discrete approximation to the gradient.
The gradient is the two-dimensional equivalent of the first derivative and is
defined as the vector

(5.1)

There are two important properties associated with the gradient: (1) the
vector G[j(x, y)] points in the direction of the maximum rate of increase of
the function j(x, y), and (2) the magnitude of the gradient, givenby

G[J(x, y)] = VG~ + G~, (5.2)

equals the maximum rate of increase of j (x, y) per unit distance in the di-
rection G. It is common practice, however, to approximate the gradient
magnitude by absolute values:

(5.3)

or

G[j(x, y)] ~ max(IGxl, IGyl).

From vector analysis, the direction of the gradient is defined as:

(5.4)

a(x, y) = tan-1 (~:) (5.5)

where the angle a is measured with respect to the x axis.
Note that the magnitude of the gradient is actually independent of the

direction of the edge. Such operators are called isotropic operators.

Numerical Approximation

For digital images, the derivatives in Equation 5.1 are approximated by dif-
ferences. The simplest gradient approximation is

Gx rv j[i,j + 1]- j[i,j] (5.6)

5.2. STEPS IN EDGE DETECTION 145

Gy '" j[i, j] - j[i + 1, j]. (5.7)

Remember that j corresponds to the x direction and i to the negative y
direction. These can be implemented with simple convolution masks as shown
below:

(5.8)

When computing an approximation to the gradient, it is critical that the
x and y partial derivatives be computed at exactly the same position in space.
However, using the above approximations, Gx is actually the approximation
to the gradient at the interpolated point [i,j + ~] and Gy at [i + ~,j] . For
this reason, 2 x 2 first differences, rather than 2 x 1 and 1 x 2 masks, are
often used for the x and y partial derivatives:

(5.9)

Now, the positions about which the gradients in the x and y directions are
calculated are the same. This point lies between all four pixels in the 2 x 2
neighborhood at the interpolated point [i + ~,j + ~]. This fact may lead to
some confusion. Therefore, an alternative approach is to use a 3 x 3 neigh-
borhood and calculate the gradient about the center pixel. These methods
are discussed in Section 5.2.

5.2 Steps in Edge Detection

Algorithms for edge detection contain three steps:

Filtering: Since gradient computation based on intensity values of only two
points are susceptible to noise and other vagaries in discrete compu-
tations, filtering is commonly used to improve the performance of an
edge detector with respect to noise. However, there is a trade-off be-
tween edge strength and noise reduction. More filtering to reduce noise
results in a loss of edge strength.

146 CHAPTER 5. EDGE DETECTION

Enhancement: In order to facilitate the detection of edges, it is essential
to determine changes in intensity in the neighborhood of a point. En-
hancement emphasizes pixels where there is a significant change in local
intensity values and is usually performed by computing the gradient
magnitude.

Detection: We only want points with strong edge content. However, many
points in an image have a nonzero value for the gradient, and not all
of these points are edges for a particular application. Therefore, some
method should be used to determine which points are edge points.
Frequently, thresholding provides the criterion used for detection.

Examples at the end of this section will clearly illustrate each of these steps
using various edge detectors. Many edge detection algorithms include a
fourth step:

Localization: The location of the edge can be estimated with subpixel res-
olution if required for the application. The edge orientation can also
be estimated.

It is important to note that detection merely indicates that an edge is
present near a pixel in an image, but does not necessarily provide an accu-
rate estimate of edge location or orientation. The errors in edge detection
are errors of misclassification: false edges and missing edges. The errors in
edge estimation are modeled by probability distributions for the location and
orientation estimates. We distinguish between edge detection and estimation
because these steps are performed by different calculations and have different
error models.

Many edge detectors have been developed in the last two decades. Here
we will discuss some commonly used edge detectors. As will be clear, edge
detectors differ in use of the computational approach in one or more of the
above three steps. We will discuss the implications of these steps after we
have discussed the edge detectors.

5.2.1 Roberts Operator

The Roberts cross operator provides a simple approximation to the gradient
magnitude:

G [J[i,j]] = IJ[i,j] - J[i + l,j + 1]1+ IJ[i + l,j] - J[i,j + 1]1. (5.10)

--

5.2. STEPS IN EDGE DETECTION 147

Using convolution masks, this becomes

(5.11)

where Gx and Gy are calculated using the following masks:

Gx= ~ Gy= ~
ITE] rn

As with the previous 2 x 2 gradient operator, the differences are com-
puted at the interpolated point [i + ~,j + ~]. The Roberts operator is an
approximation to the continuous gradient at that point and not at the point
[i,j] as might be expected. The results of Roberts edge detector are shown
in the figures at the end of this section.

(5.12)

5.2.2 Sobel Operator

As mentioned previously, a way to avoid having the gradient calculated about
an interpolated point between pixels is to use a 3 x 3 neighborhood for the
gradient calculations. Consider the arrangement of pixels about the pixel [i,j]
shown in Figure 5.3. The Sobel operator is the magnitude of the gradient
computed by

M = 182 + 82V x y'

where the partial derivatives are computed by

8x = (a2 + ca3 + a4) - (ao + ca7 + a6)

8y = (ao + cal + a2) - (a6 + ca5 + a4)

with the constant c = 2.
Like the other gradient operators, 8x and 8y can be implemented using

convolution masks:

(5.13)

(5.14)

(5.15)

8 =Y
(5.16)

Note that this operator places an emphasis on pixels that are closer to the
center of the mask. The figures at the end of this section show the perfor-
mance of this operator. The Sobel operator is one of the most commonly
used edge detectors.

-1 0 1

-2 0 2

-1 0 1

1 2 1

0 0 0

-1 -2 -1

148 CHAPTER 5. EDGE DETECTION

Figure 5.3: The labeling of neighborhood pixels used to explain the Sobel
and Prewitt operators [186].

5.2.3 Prewitt Operator

The Prewitt operator uses the same equations as the Sobel operator, except
that the constant c = 1. Therefore:

Sx = S =y (5.17)

Note that, unlike the Sobel operator, this operator does not place any em-
phasis on pixels that are closer to the center of the masks. The performance
of this edge detector is also shown in the figures at the end of this section.

5.2.4 Comparison

We now compare the different edge detectors discussed so far. The com-
parisons will be presented according to the first three steps described at the
beginning of this section: filtering, enhancement, and detection. The estima-
tion step will not be shown here. In addition, we will give results of edge
detection on noisy images for two specific cases-one utilizing the filtering
step and one omitting the filtering step. Results of edge detection using
varying amounts of filtering will also be given.

For each of the following four figures, the sum of the absolute values of
the x and y components of the gradient was used as the gradient magnitude
(Equation 5.3). The filter used was the 7 x 7 Gaussian filter described in the

ao al a2

a7 [i,j] a3

a6 a5 a4

-1 0 1

-1 0 1

-1 0 1

1 1 1

0 0 0

-1 -1 -1

5.3. SECOND DERIVATIVE OPERATORS 149

previous chapter. The threshold values used for detection are given in the
captions.

Figure 5.4 shows results of all the edge detection methods discussed so far,
from the simple 1 x 2 gradient approximation up to the Prewitt operator.
Figure 5.5 shows the results of the edge detectors when the filtering step
is omitted. The next set of images (Figure 5.6) shows the results of edge
detection on the same image now with additive Gaussian noise, (J= 12. The
filter used was the same Gaussian filter as used in the previous figure. The
final series of images (Figure 5.7) shows the results of edge detection on the
same noisy image. However, for these images the filtering step was again
omitted. Note the many false edges detected as a result of the noise.

5.3 Second Derivative Operators

The edge detectors discussed earlier computed the first derivative and, if it
was above a threshold, the presence of an edge point was assumed. This
results in detection of too many edge points. (Notice the thick lines after
thresholding in Figures 5.4 to 5.7.) A better approach would be to find only
the points that have local maxima in gradient values and consider them edge
points, as shown in Figure 5.8. This means that at edge points, there will be
a peak in the first derivative and, equivalently, there will be a zero crossing
in the second derivative. Thus, edge points may be detected by finding the
zero crossings of the second derivative of the image intensity.

Ther:e are two operators in two dimensions that correspond to the second
derivative: the Laplacian and second directional derivative.

5.3.1 Laplacian Operator

The second derivative of a smoothed step edge is a function that crosses
zero at the location of the edge (see Figure 5.8). The Laplacian is the
two-dimensional equivalent of the second derivative. The formula for the
Laplacian of a function f (x, y) is

(5.18)

150

(d)

(f)

CHAPTER 5. EDGE DETECTION

(c)

(e)

Figure 5.4: A comparison of variousedge detectors.(a) Original image. (b)

Filtered image. (c) Simple gradient using 1 x 2 and 2 x 1 masks, T = 32.

(d) Gradient using 2 x 2 masks, T = 64. (e) Roberts cross operator, T = 64.

(f)Sobel operator, T = 225. (g)Prewitt operator,T = 225. .

5.3. SECOND DERIVATIVE OPERATORS

L,
(a)

(c)

(e)

151

(b)

(d)

(f)

Figure 5.5: A comparison of various edge detectors without filtering. (a)
Original image. (b) Simple gradient using 1 x 2 and 2 x 1 masks, T = 64.
(c) Gradient using 2 x 2 masks, T = 64. (d) Roberts cross operator, T = 64.
(e) Sobel operator, T = 225. (f) Prewitt operator, T = 225.

152

(b)

(d)

(f)

CHAPTER 5. EDGE DETECTION

(e)

f'- - ~

~CJ~

\":~

.

'

, .
\'

(g)

Figure 5.6: A comparisonof various edge detectors on a noisy image. (a)
Noisy image. (b) Filtered image. (c) Simplegradient using 1 x 2 and 2 x 1
masks, T = 32. (d) Gradient using 2 x 2 masks, T = 64. (e) Roberts
cross operator, T = 64. (f) Sobel operator, T = 225. (g) Prewitt operator,
T = 225.

5.3. SECOND DERIVATNE OPERATORS

(a)

(c)

(e)

153

(b)

(d)

(f)

Figure 5.7: A comparison of various edge detectors on a noisy image without
filtering. (a) Noisy image. (b) Simple gradient using 1 x 2 and 2 x 1 masks,
T = 64. (c) Gradient using 2 x 2 masks, T = 128. (d) Roberts cross operator,
T = 64. (e) Sobel operator, T = 225. (f) Prewitt operator, T = 225.

154 CHAPTER 5. EDGE DETECTION

f (x, y)
x

f'(x, y)
threshold

a b
x

"
(f x,y)

x

Figure 5.8: If a threshold is used for detection of edges, all points between
a and b will be marked as edge pixels. However, by removing points that
are not a local maximum in the first derivative, edges can be detected more

accurately. This local maximum in the first derivative corresponds to a zero
crossing in the second derivative.

The second derivatives along the x and y directions are approximated using
difference equations:

However, this approximation is centered about the pixel [i,j + 1]. Therefore,
by replacing j with j - 1, we obtain

~~ = j[i,j + 1]- 2j[i,j] + j[i,j - 1], (5.24)

{)2j {)Gx
(5.19)- =-

{)x2 {)x

() (J[i,j + 1] - j[i,j])
(5.20)-

{)x
() j[i,j + 1] {)f[i,j]

(5.21)- -
{)x {)x

(J[i,j + 2]- j[i,j + 1])- (J[i,j + 1]- j[i,j]) (5.22)

- j[i,j + 2] - 2j[i,j + 1]+ j[i,j]. (5.23)

5.3. SECOND DERIVATIVE OPERATORS 155

which is the desired approximation to the second partial derivative centered
about [i,j]. Similarly,

a2f

ay2 = f[i + 1,j] - 2f[i,j] + f[i - 1,j]. (5.25)

By combining these two equations into a single operator, the following mask
can be used to approximate the Laplacian:

(5.26)

Sometimes it is desired to give more weight to the center pixels in the neigh-
borhood. An approximation to the Laplacian which does this is

(5.27)

The Laplacian operator signals the presence of an edge when the output of
the operator makes a transition through zero. Trivial zeros (uniform zero
regions) are ignored. In principle, the zero crossing location can be esti-
mated to subpixel resolution using linear interpolation, but the result may
be inaccurate due to noise.

Consider the example shown in Figure 5.9. This figure shows the result
of the Laplacian on an image with a simple step edge. A single row of the
resulting image is:

In this example, the zero crossing, corresponding to the edge in the original
image, lies halfway between the two center pixels. The edge should be marked
at either the pixel to the left or the pixel to the right of the edge, as long
as it is marked consistently throughout the image. In most cases, however,
the zero crossing rarely lies exactly between two pixels, and the actual edge

0 1 0

1 -4 1

0 1 0

1 4 1

4 -20 4

1 4 1

156 CHAPTER 5. EDGE DETECTION

A sample image containing a vertical step edge.

location must be determined by interpolating the pixel values on either side
of the zero crossing.

Now consider the example in Figure 5.10. This figure shows the response
of the Laplacian to a ramp edge. A single row of the output of the Laplacian
IS

The zero crossing directly corresponds to a pixel in the image. Again, this
is an ideal situation, and the actual edge location should be determined by
interpolation.

5.3.2 Second Directional Derivative

The second directional derivative is the second derivative computed in the
direction of the gradient. The operator is implementedusing the formula

a2 {;!xx + 2!x!y!xy + !;!yy
an2 - F; + !;

(5.28)

2 2 2 2 2 8 8 8 8 8
2 2 2 2 2 8 8 8 8 8
2 2 2 2 2 8 8 8 8 8
2 2 2 2 2 8 8 8 8 8
2 2 2 2 2 8 8 8 8 8
2 2 2 2 2 8 8 8 8 8

0 0 0 6 -6 0 0 0
0 0 0 6 -6 0 0 0
0 0 0 6 -6 0 0 0
0 0 0 6 -6 0 0 0

Figure 5.9: The response of the Laplacian to a vertical step edge.

5.4. LAPLACIAN OF GAUSSIAN 157

A sample image containing a vertical ramp edge.

Figure 5.10: The response of the Laplacian to a vertical ramp edge.

The Laplacian and second directional derivative operators are not used
frequently in machine vision since any operator involving two derivatives is
affected by noise more than an operator involving a single derivative. Even
very small local peaks in the first derivative will result in zero crossings in
the second derivative. To avoid the effect of noise, powerful filtering meth-
ods must be used. In the following section, we discuss an approach which
combines Gaussian filtering with the second derivative for edge detection.

5.4 Laplacian of Gaussian

As mentioned above, edge points detected by finding the zero crossings of the
second derivative of the image intensity are very sensitive to noise. Therefore,
it is desirable to filter out the noise before edge enhancement. To do this,
the Laplacian of Gaussian (LoG), due to Marr and Hildreth [164],combines
Gaussian filtering with the Laplacian for edge detection.

2 2 2 2 2 5 8 8 8 8
2 2 2 2 2 5 8 8 8 8
2 2 2 2 2 5 8 8 8 8
2 2 2 2 2 5 8 8 8 8
2 2 2 2 2 5 8 8 8 8
2 2 2 2 2 5 8 8 8 8

0 0 o 3 0 -3 0 0
o 0 o 3 0 -3 0 0
o 0 o 3 0 -3 0 0
0 0 o 3 0 -3 0 0

158 CHAPTER 5. EDGE DETECTION

The fundamental characteristics of the Laplacian of Gaussian edge detec-
tor are

1. The smoothing filter is a Gaussian.

2. The enhancement step is the second derivative (Laplacian in two di-
mensions) .

3. The detection criterion is the presence of a zero crossing in the second
derivative with a corresponding large peak in the first derivative.

4. The edge location can be estimated with subpixel resolution using linear
interpolation.

In this approach,. an image should first be convolved with a Gaussian
filter. (We discuss Gaussian filtering in more detail in Section 5.6.) This
step smooths an image and reduces noise. Isolated noise points and small
structures will be filtered out. Since the smoothing will result in spreading
of edges, the edge detector considers as edges only those pixels that have
locally maximum gradient. This is achieved by using zero crossings of the
second derivative. The Laplacian is used as the approximation of the second
derivative in 2-D because it is an isotropic operator. To avoid detection of in-
significant edges, only the zero crossings whose corresponding first derivative
is above some threshold are selected as edge points.

The output of the LoG operator, h(x, y), is obtained by the convolution
operation

h(x, y) = \72 [(g(x, y) * j(x, y)] . (5.29)

Using the derivative rule for convolution,

h(x, y) = [\72g(x,y)] * j(x, y), (5.30)

where

(
x2 + y2 _2(}2

)
(x2+l)

\72g(x, y) = (}4 e- 20" (5.31)

is commonly called the Mexican hat operator (shown in Figure 5.11). Thus,
the following two methods are mathematically equivalent:

1. Convolve the image with a Gaussian smoothing filter and compute the
Laplacian of the result.

5.4. LAPLACIAN OF GAUSSIAN 159

0.5

.().1
10

0.1

04

0.3

0.2

0.1

10

-4>._\0 -8 -6 ... -2 10

Figure 5.11: The inverted Laplacian of Gaussian function, (j = 2, in one and
two dimensions.

2. Convolve the image with the linear filter that is the Laplacian of the
Gaussian filter.

If the first method is adopted, Gaussian smoothing masks such as those
described in Section 4.5.5 may be used. Typical masks to directly implement
the LoG are given in Figure 5.12. In Figure 5.13 we show the result of
applying the Laplacian of Gaussian operator and detection of zero crossings.
For a discussion on efficient methods to implement the Laplacian of Gaussian,
see [117].

At the beginning of Section 5.2, we stated that filtering (usually smooth-
ing), enhancement, and detection were the three steps in edge detection. This
is still true for edge detection using the Laplacian of Gaussian. Smoothing is
performed with a Gaussian filter, enhancement is done by transforming edges
into zero crossings, and detection is done by detecting the zero crossings.

It can be shown that the slope of the zero crossing depends on the contrast
of the change in image intensity across the edge. The problem of combining
edges obtained by applying different-size operators to images remains. In
the above approach, edges at a particular resolution are obtained. To obtain
real edges in an image, it may be necessary to combine information from
operators at several filter sizes.

160 CHAPTER 5. EDGE DETECTION

5 x 5 Laplacian of Gaussian mask

17 x 17 Laplacian of Gaussian mask

Figure 5.12: Some useful Laplacian of Gaussian masks [146].

0 0 -1 0 0
0 -1 -2 -1 0

-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

0 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0
0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 0
0 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0 0
0 -1 -1 -2 -3 -3 -3 -2 -3 -2 -3 -3 -3 -2 -1 -1 0
0 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0

-1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -1 -1
-1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
-1 -1 -3 -3 -3 4 12 21 24 21 12 4 -3 -3 -3 -1 -1
-1 -1 -3 -3 -2 2 10 18 21 18 10 2 -2 -3 -3 -1 -1
-1 -1 -3 -3 -3 0 4 10 12 10 4 0 -3 -3 -3 -1 -1
0 -1 -2 -3 -3 -3 0 2 4 2 0 -3 -3 -3 -2 -1 0
0 -1 -1 -2 -3 -3 -3 -2 -3 -2 -3 -3 -3 -2 -1 -1 0
0 0 -1 -1 -2 -3 -3 -3 -3 -3 -3 -3 -2 -1 -1 0 0
0 0 -1 -1 -1 -2 -3 -3 -3 -3 -3 -2 -1 -1 -1 0 0
0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0
0 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0

5.4. LAPLACIAN OF GAUSSIAN

161

Figure 5.13: Results of the Laplacian of Gaussian edge detector.

Scale Space

The Gaussian smoothing operation results in the blurring of edges and other
sharp discontinuities in an image. The amount of blurring depends on the
value of (J. A larger (J results in better noise filtering but at the same time
loses important edge information, which affects the performance of an edge
detector. If a small filter is used, there is likely to be more noise due to

insufficient averaging. For large filters, edges which are close to Ef8.Chother
may get merged by smoothing and may be detected as only a single edge. In
general, small filters result in too many noise points and large filters result in
dislocation of edges and even false edges. The exact size of the filter cannot
be determined without knowing the size and location of objects in an image.

Many approaches are being developed which apply filtering masks of mul-
tiple sizes and then analyze the behavior of edges at these different scales of
filtering. The basic idea in these approaches is to exploit the fact that at
higher scales, larger filtering masks result in robust but displaced edges. The
location of these edges can be determined at smaller scales.

162 CHAPTER 5. EDGE DETECTION

5.5 Image Approximation

An image is an array of samples of a continuous function. Most ideas about
images are discussed in the continuous domain and then the desired prop-
erties are computed using discrete approximations. If we can estimate the
continuous function from which the image samples were taken, then we may
be able to compute image properties from the estimated function. This may
allow the computation of edge location to subpixel precision.

Let
z = f(x,y) (5.32)

be a continuous image intensity function like the one shown in Figure 5.14.
The task is to reconstruct this continuous function from the sampled gray
values. For complex images, the continuous image intensity function may
contain extremely high powers of x and y. This makes reconstruction of
the original function extremely difficult, if not impossible. Therefore, we
try to model the image as a simple piecewise analytical function. Now the
task becomes the reconstruction of the individual piecewise functions, or
facets. In other words, try to find simple functions which best approximate
the intensity values only in the local neighborhood of each pixel. This is
illustrated in Figure 5.15. This approximation is called the facet model [102].
Figure 5.16 shows the coordinate system for the facet model using 5 x 5
neighborhoods.

The continuous image intensity function is approximated locally at every
pixel in the image. For an n Xm image, you will obtain n. m approximating
functions, each valid only about a specific pixel in the image. These functions,
and not the pixel values, are used to locate edges in the image.

A variety of analytical functions of varying complexity can be used to
approximate image intensities. Often for simple images, piecewise constant
or piecewise bilinear functions are adequate approximations of the intensity
values. However, for images with more complex regions, biquadratic, bicubic,
and even higher-power functions are used. For this example, we will model
the image neighborhood as the following bicubic polynomial:

f(x, y) = k1 + k2x + k3y + k4X2+ k5xy + k6y2

+ k7X3 + k8x2y + kgxy2 + klOy3 (5.33)

5.5. IMAGE APPROXIMATION 163

300

200

o
60

60

100

Figure 5.14: A graphical representation of the continuous image intensity
function.

Figure 5.15: An illustration of an approximated function within a 5 x 5
neighborhood.

164 CHAPTER 5. EDGE DETECTION

y

x

Figure 5.16: An example of the coordinate system for the facet model using
a 5 x 5 neighborhood. The continuous -intensity function is approximated
at every pixel location only within this neighborhood. The array indices are
marked on the pixels for clarity. Note that pixel [i,j] lies in the center of the
neighborhood.

where x and yare coordinates with respect to (0,0), the center of the image
plane neighborhood that is being approximated (see Figure 5.16).

The goal now is to calculate the coefficients ki in Equation 5.33 for each
approximating function. Use least-squares methods to compute the coeffi-
cients ki using singular-value decomposition, or, if you are using a 5 x 5
neighborhood, use the masks shown in Figure 5.17 to directly compute the
coefficients for the bicubic approximation.!

To detect edges, use the fact that edge points occur at relative extrema
in the first directional derivative of the function approximating the image
intensity in the neighborhood of a pixel. The presence of relative extrema in
the first derivative will result in a zero crossing in the second derivative in
the direction of the first derivative.

The first derivative in the direction e is given by

, of. of.
fe(x, y) = ox cose+ oy sm e. (5.34)

1For a complete discussion of the construction of these masks, refer to [103, chap. 8].

4

I I I,- 1 I

--
--

[i,j-2J [i,j-1] 8-
(0,0) -

[i+1,j]
-

[i+2,jJ
J

166 CHAPTER 5. EDGE DETECTION

The second directional derivative in the direction (j is given by

t" ()
82 f 2 (j 2 82f

(j
.

(j 82 f . 2 (j ()
J() X, Y = 8x2 cos + 8x8y cos sm + 8y2 sm . 5.35

Since the local image intensity was approximated by a bicubic polynomial,
the angle (j may be chosen to be the angle of the approximating plane. This
will result in

. k3

sm (j = J (5.36)k~+ k§
k2

cos (j = J' (5.37)k~+ k§

At a point (xo, Yo), the second directional derivative in the direction (j is given
by

f~'(xo, Yo) = 2 (3k7cos2(j+ 2ks sin (jcos (j+ kgsin2(j)Xo

+ 2 (ks cos2(j+ 2kgsin (jcos (j+ 3klOsin2(j)Yo

+ 2 (k4cos2(j+ ks sin (jcos (j+ k6sin2(j). (5.38)

Since we are considering points only on the line in the direction (j,Xo = Pcos (j
and Yo = Psin (j. Substituting this in the above, we get

f~' (xo, Yo) = 6 (klO sin3 (j + kg sin2 (jcos (j + ks sin (jcos2 (j + k7 cos3 (j) p

+ 2 (k6 sin2(j+ ks sin (jcos (j+ k4cos2(j) (5.39)

= Ap + B. (5.40)

Thus, there is an edge at (xo, Yo) in the image if for some p, Ipl < Powhere
Po is the length of the side of a pixel,

f~'(xo, Yo;p) = 0 (5.41)

and

f~(xo, Yo;p) i= O. (5.42)

In other words, mark the pixel as an edge pixel if the location of the edge
falls within the boundaries of the pixel (see Figure 5.18). However, do not
mark the pixel as an edge pixel if the point lies outside the pixel boundaries
as shown in Figure 5.19. The results of this operator are shown in Figure
5.20.

5.5. IMAGE APPROXIMATION 167

y

(xo, Yo)
".

p

~-
(0,0)

x

Figure 5.18: An enlarged view of the pixel at the center of the approximated
function. (xo, Yo) is the location ofthe edge as determined by Equations 5.41
and 5.42. This pixel will be marked as an edge pixel since the location of the
edge falls within its boundaries.

y

(xo, Yo)

(0,0)

Figure 5.19: An enlarged view of the pixel at the center ofthe approximated
function. This pixel will not be marked as an edge pixel since the location
of the edge does not fall within the pixel boundaries.

168 CHAPTER 5. EDGE DETECTION

Figure 5.20: Edges obtained with facet model edge detector.

5.6 Gaussian Edge Detection

The essential idea in detecting step edges is to find points in the sampled im-
age that have locally large gradient magnitudes. Much of the research work
in step edge detection is devoted to finding numerical approximations to the
gradient that are suitable for use with real images. The step edges in real
images are not perfectly sharp since the edges are smoothed by the low-pass
filtering inherent in the optics of the camera lens and the bandwidth limita-
tions in the camera electronics. The images are also severely corrupted by
noise from the camera and unwanted detail in the scene. An approximation
to the image gradient must be able to satisfy two conflicting requirements:
(1) the approximation must suppress the effects of noise, and (2) the approx-
imation must locate the edge as accurately as possible. There is a trade-off
between noise suppression and localization. An edge detection operator can
reduce noise by smoothing the image, but this will add uncertainty to the
location of the edge; or the operator can have greater sensitivity to the pres-
ence of edges, but this will increase the sensitivity of the operator to noise.
The type of linear operator that provides the best compromise between noise
immunity and localization, while retaining the advantages of Gaussian fil-
tering, is the first derivative of a Gaussian. This operator corresponds to

5.6. GAUSSIAN EDGE DETECTION 169

smoothing an image with a Gaussian function and then computing the gra-
dient. The gradient can be numerically approximated by using the standard
finite-difference approximation for the first partial derivatives in the x and
y directions listed in Section 5.1. The operator that is the combination of a
Gaussian smoothing filter and a gradient approximation is not rotationally
symmetric. The operator is symmetric along the edge and antisymmetric
perpendicular to the edge (along the line of the gradient). This means that
the operator is sensitive to the edge in the direction of steepest change, but
is insensitive to the edge and acts as a smoothing operator in the direction
along the edge.

5.6.1 Canny Edge Detector

The Canny edge detector is the first derivative of a Gaussian and closely
approximates the operator that optimizes the product of signal-to-noise ratio
and localization. The Canny edge detection algorithm is summarized by the
following notation. Let I[i, j] denote the image. The result from convolving
the image with a Gaussian smoothing filter using separable filtering is an
array of smoothed data,

Sri, j] = G[i, j; 0"]* I[i, j], (5.43)

where 0"is the spread of the Gaussian and controls the degree of smoothing.
The gradient of the smoothed array Sri, j] can be computed using the 2 x 2

first-difference approximations (Section 5.1) to produce two arrays P[i,j] and
Q[i, j] for the x and y partial derivatives:

P[i,j] ~ (S[i,j + 1] - S[i,j]

+ Sri + 1,j + 1] - Sri + 1,j])/2

Q[i,j] ~ (S[i,j] - Sri + 1,j]
+ S[i,j + 1]- Sri + 1,j + 1])/2.

(5.44)

(5.45)

The finite differences are averaged over the 2 x 2 square so that the x and y
partial derivatives are computed at the same point in the image. The mag-
nitude and orientation of the gradient can be computed from the standard
formulas for rectangular-to-polar conversion:

M[i,j]

B[i,j]
VP[i,jj2 + Q[i,jj2

- arctan(Q[i,j],P[i,j]),
(5.46)
(5.47)

--- - -

170 CHAPTER 5. EDGE DETECTION

where the arctan function takes two arguments and generates an angle over
the entire circle of possible directions. These functions must be computed ef-
ficiently, preferably without using floating-point arithmetic. It is possible to
compute the gradient magnitude and orientation from the partial derivatives
by table lookup. The arctangent can be computed using mostly fixed-point
arithmetic2 with a few essential floating-point calculations performed in soft-
ware using integer and fixed-point arithmetic [59, chap. 11]. Sedgewick [218,
p. 353] provides an algorithm for an integer approximation to the gradient
angle that may be good enough for many applications.

Nonmaxima Suppression

The magnitude image array M[i, j] will have large values where the image
gradient is large, but this is not sufficient to identify the edges, since the
problem of finding locations in the image array where there is rapid change
has merely been transformed into the problem of finding locations in the
magnitude array M[i, j] that are local maxima. To identify edges, the broad
ridges in the magnitude array must be thinned so that only the magnitudes at
the points of greatest local change remain. This process is called nonmaxima
suppression, which in this case results in thinned edges.

Nonmaxima suppression thins the ridges of gradient magnitude in M[i, j]
by suppressing all values along the line of the gradient that are not peak
values of a ridge. The algorithm begins by reducing the angle of the gradient
8[i, j] to one of the four sectors shown in Figure 5.21,

([i,j] = Sector(8[i,j)). (5.48)

The algorithm passes a 3x3 neighborhood across the magnitude array M[i,j].
At each point, the center element M[i, j] of the neighborhood is compared
with its two neighbors along the line of the gradient given by the sector value
([i, j] at the center of the neighborhood. If the magnitude array value M[i, j]
at the center is not greater than both of the neighbor magnitudes along the
gradient line, then M[i,j] is set to zero. This process thins the broad ridges
of gradient magnitude in M[i, j] into ridges that are only one pixel wide. The

2In this context, fixed-point arithmetic is like integer arithmetic except that the number
carries an implicit scale factor that assumes that the binary point is to the left of the
number. Fixed-point arithmetic can be implemented using integer arithmetic on many
machines.

5.6. GAUSSIAN EDGE DETECTION 171

90

180 o

270

Figure 5.21: The partition of the possible gradient orientations into sectors
for nonmaxima suppression is shown. There are four sectors, numbered 0
to 3, corresponding to the four possible combinations of elements in a 3 x 3
neighborhood that a line must pass through as it passes through the center
of the neighborhood. The divisions of the circle of possible gradient line
orientations are labeled in degrees.

values for the height of the ridge are retained in the nonmaxima-suppressed
magnitude.

Let

N[i, j] = nms(M[i, j], e[i,jD (5.49)

denote the process of nonmaxima suppression. The nonzero values in N[i, j]
correspond to the amount of contrast at a step change in the image intensity.
In spite of the smoothing performed as the first step in edge detection, the
nonmaxima-suppressed magnitude image N[i, j] will contain many false edge
fragments caused by noise and fine texture. The contrast of the false edge
fragments is small.

Thresholding

The typical procedure used to reduce the number of false edge fragments
in the nonmaxima-suppressed gradient magnitude is to apply a threshold to
N[i,j]. All values below the threshold are changed to zero. The result of
applying a threshold to the nonmaxima-suppressed magnitude is an array

172 CHAPTER 5. EDGE DETECTION

of the edges detected in the image I[i, j]. There will still be some false
edges because the threshold 7 was too low (false positives), and portions
of actual contours may be missing (false negatives) due to softening of the
edge contrast by shadows or because the threshold 7 was too high. Selecting
the proper threshold is difficult and involves some trial and error. A more
effective thresholding scheme uses two thresholds.

The double thresholding algorithm takes the nonmaxima-suppressed im-
age, N[i,j], and applies two thresholds 71 and 72, with 72~ 271, to produce
two thresholded edge images Tdi,j] and T2[i,j]. Since image T2 was formed
with a higher threshold, it will contain fewer false edges; but T2 may have
gaps in the contours (too many false negatives). The double thresholding
algorithm links the edges in T2 into contours. When it reaches the end of
a contour, the algorithm looks in T1 at the locations of the 8-neighbors for
edges that can be linked to the contour. The algorithm continues to gather
edges from T1 until the gap has been bridged to an edge in T2. The algorithm
performs edge linking as a by-product of thresholding and resolves some of
the problems with choosing a threshold. The Canny edge detection algorithm
is outlined in Algorithm 5.!.

The edge detection algorithm presented in this section has been run on
several test images. Figure 5.22 shows the image of a connecting rod. Figures
5.23 and 5.24 present the results of applying the edge detection algorithm
summarized in this section to the test image in Figure 5.22. In Figure 5.23,
a 7 x 7 Gaussian filter was used to smooth the image before computing the
gradient; in Figure 5.24, a 31 x 31 Gaussian filter was used. The nonmaxima-
suppressed gradient magnitude for the smaller filter size exhibits excellent
fine detail in the edges but suffers from excessive unwanted edge fragments

Algorithm 5.1 Canny Edge Detection

1. Smooth the image with a Gaussian filter.

2. Compute the gradient magnitude and orientation using finite-difference
approximations for the partial derivatives.

3. Apply nonmaxima suppression to the gradient magnitude.

4. Use the double thresholding algorithm to detect and link edges.

5.7. SUBPIXEL LOCATION ESTIMATION 173

1

-.

Figure 5.22: A test image of a connecting rod. The image was acquired by a
Reticon 256 x 256 area CCD array camera.

due to noise and fine texture. For the larger filter size, there are fewer
unwanted edge fragments, but much of the detail in the edges has been lost.
This illustrates the trade-off between edge localization and noise immunity.

5.7 Subpixel Location Estimation

In many applications, it is necessary to estimate the location of an edge to
better than the spacing between pixels (subpixel resolution). The methods
for obtaining subpixel resolution for gradient and second-order edge detection
algorithms are very different and will be considered separately.

First, consider the output of a second-order edge detector such as the
Laplacian of Gaussian. The edge is signaled by a zero crossing between
pixels. In principle, the edge position can be computed to subpixel resolution
by using linear interpolation. In practice, the output of second-order edge
detection schemes, even with Gaussian presmoothing, is too noisy to allow
any simple interpolation method to provide accurate results.

Obtaining subpixel resolution in edge location after edge detection with a
gradient-based scheme is both practical and efficient. The result of applying a
Gaussian smoothing filter and first derivative to an ideal step edge is a profile
that is exactly the same shape as the Gaussian filter used for smoothing. If

174 CHAPTER 5. EDGE DETECTION

(a)

Figure 5.23: The result of edge detection applied to the test image from
Figure 5.22 with a 7 x 7 Gaussian smoothing filter. The picture in part (a) is
a gray level image of the result after smoothing with a Gaussian smoothing
filter, computing the gradient approximation, and suppressing nonmaxima.
The weak edge fragments due to noise and fine texture do not show up clearly.
Part (b) is a plot of the image from part (a) with every pixel that was greater
than zero drawn in black. This plot shows the weak edge fragments that are
present in the result of edge detection but do not show up clearly in a gray
level display of the results.

the step edge is not ideal but makes a gradual transition from one level to
another, then the result of Gaussian smoothing and a first derivative can be
approximated by a broader Gaussian.

Consider a set of measurements drawn from a normal distribution. The
center of the bell-shaped curve corresponds to the mean value of the normal
distribution, which can be estimated by averaging the measurements. Now
suppose that a histogram of the measurements, rather than the raw measure-
ments themselves, is all the information that is available. The mean can be
estimated by dividing the sum of the values for the centers of the histogram
buckets, weighted by the number of entries in each bucket, by the area of the
histogram. By analogy, the location of an edge can be estimated to subpixel
resolution by averaging along the profile in the output of the Gaussian edge

5.7. SUBPIXEL LOCATION ESTIMATION

(a)

175

(b)

Figure 5.24: The result of edge detection applied to the test image from
Figure 5.22. A 31 x 31 Gaussian filter was used to smooth the image, fol-
lowed by computation of the gradient approximation and then nonmaxima
suppression. Part (a) displays the nonmaxima-suppressed result as a gray
level image. Note how the large smoothing filter has rounded the edges. Part
(b) plots the results to show all of the edge fragments.

detector. To compute the edge location to subpixel resolution, take samples
of the magnitude of the Gaussian edge detector output (without nonmaxima
suppression) along"the gradient direction to either side of the edge until the
gradient magnitude falls below a threshold. Use the samples of the gradient
magnitude 9i as weights to compute the weighted sum of the position di along
the gradient. The subpixel correction to the position of the edge along the
gradient direction is given by

(5.50)

where di is the distance of a pixel along the gradient from the pixel where
the edge was detected, and 9i is the gradient magnitude.

176 CHAPTER 5. EDGE DETECTION

A simpler algorithm that is probably as effective is to compute the posi-
tion (bX,by) of the edge to subpixel resolution, relative to the pixel where the
edge was detected, by applying a first moment calculation to the magnitude
of the gradient of the Gaussian edge detector. The correction can be added
to the coordinates of the pixel to provide a more accurate estimate of edge
location.

The algorithm for computing the average along the profile of gradient
magnitude, though more complex, has the advantage that the profile can be
compared with the ideal profile using statistical techniques and the results of
this comparison can be used as the criterion for edge detection. If the profile
is not close to a Gaussian, the edge does not correspond to the ideal step
model. It may not be possible in this case to accurately estimate the edge
location using the techniques presented in this section.

In Chapter 12, we will present methods for calibrating the coordinate
system of the image. The integer coordinates of a pixel [i,j] can be mapped
to coordinates (x, y) in the image plane of the camera. The correction to the
edge location provided by either of the methods for estimating edge location
to subpixel resolution described above is added to the (x, y) coordinates of
the pixel to obtain the precise location of the edge in the image plane. This
precise, calibrated value is what is needed for measuring feature dimensions.

5.8 Edge Detector Performance

Measures for evaluating the performance of edge detectors have been for-
mulated by Abdou and Pratt [1] and DeMicheli, Caprile, Ottonello, and
Torre [66]. The criteria to consider in evaluating the performance of an edge
detector include

1. Probability of false edges

2. Probability of missing edges

3. Error in estimation of the edge angle

4. Mean square distance of the edge estimate from the true edge

5. Tolerance to distorted edges and other features such as corners and
junctions

5.8.EDGE DETECTOR PERFORMANCE 177

The first two criteria concern the performance of an algorithm as a detector
of edges. The second two criteria concern the performance of an algorithm as
an estimator of the edge location and orientation. The last criterion concerns
the tolerance of the edge algorithm to edges that depart from the ideal model
used to formulate the algorithm.

5.8.1 Methods for Evaluating Performance

The performance of an edge detector can be evaluated in two stages: count
the number of false and missing edges and measure the variance (or error
distribution) for the estimated location and orientation.

For a test case, select a synthetic image where the true edges are known
to lie along a contour that can be modeled by a curve with a simple mathe-
matical formula-for example, a filled rectangle where the boundary contour
can be modeled by line segments or two filled rectangles where the gap be-
tween them is known. Count the number of correct, missing, and false edges
by comparing the results of the edge detector with the original (synthetic)
image. This is a harder task than it appears to be. The results vary with the
threshold, smoothing filter size, interactions between edges, and other fac-
tors. If you run an edge detector Qverthe test image with no added noise, no
smoothing, and no interactions between edges, then you should get a perfect
set of edges (no missing or false edges). Use this set of edges as the standard
for comparison.

Now consider the edges obtained from a test case that has added noise, or
other distortions in the image that create missing or false edges. Compute a
one-to-one match of edges in the test image to edges in the standard, based on
the criterion of Euclidean distance. Ideally, we should use a proper matching
algorithm such as the method for the disparity analysis of images presented
in Section 14.3.Edgestoo far fromthe edgesin the standard are falseedges;
edges that pair closely with one edge in the standard are correct. After this
procedure, the edges in the standard that are not paired with one edge in
the test case are missing edges.

This procedure tests an edge detector based only on its ability to indicate
the presence or absence of edges, but says nothing about how accurately the
edge locations or orientations are estimated. Compare the locations and
orientations of edges in the set of correct edges (computed above) with the
original test image. This comparison requires that the model of the test

178 CHAPTER 5. EDGE DETECTION

case be available. For the filled rectangle, the model is the line segments
that make up the sides of the rectangle. The edge locations and orientations
must be compared with a mathematical description of the model of the scene
contours. For each edge with location (x, y), how far is this location from the
true location? What is the difference between the orientation of the edge and
the orientation of the true curve? The edge location (x, y) could correspond
to any point along the contour, but the closest point along the contour is
used as the corresponding point, and the distance between the edge point
and the closest point is computed. For a line segment, use the formulas in
Section 6.4. Estimate the error distribution from a histogram of location
errors, or tabulate the sum of the squared error and divide by n - 1, where
n is the number of edges, to estimate the variance (refer to the formula in
Appendix B). The orientation error of an edge is measured by comparing the
orientation of the edge fragment with the angle of the normal to the curve
that models the scene contour, evaluated at the closest point to the edge
point.

5.8.2 Figure of Merit

One method to judge the performance of edge detectors is to look at an edge
image and subjectively evaluate the performance. However, this does not
provide an objective measure of performance. To quantitatively evaluate the
performance of various edge detectors, we should formulate a criterion that
may help in judging the relative performance under controlled conditions.
We observe that in the response of an edge detector, there can be three
types of errors:

. Missing valid edges

. Errors in localizing edges

. Classification of noise as edges

A figure of merit for an edge detector should consider these three errors.
One such figure of merit, called Pratt's figure of merit [196], is:

(5.51)

5.9. SEQUENTIAL METHODS 179

where lA, i[, d, and a are detected edges, the ideal edges, the distance
between the actual and ideal edges, and a design constant used to penalize
displaced edges, respectively.

Note that since this figure involves missing edge points, location of edge
points, and false edge points, it can be applied only to a limited class of
images. One may generate known objects of controlled contrast at known
location and then use the above figure of merit. It is a common practice to
evaluate the performance for synthetic images by introducing random noise
in images. A plot of signal-to-noise ratio against the figure of merit gives the
degradation in the performance of the detector.

5.9 Sequential Methods

All the edge detectors described above are parallel in nature: they can be
applied at a single pixel, using local information, independent of the result
at other pixels. In practice, the performance of such edge detectors may not
be acceptable due to too many missing edges. The edges detected by such
detectors have to be linked to form boundaries of objects. Missing edges
result in breaks in the boundaries. Several methods have been suggested
to improve the performance of edge detection and linking. Such approaches
include edge following, relaxation, and boundary tracking. We will discuss
relaxation in a later chapter.

Edge following tries to use information from the neighborhood of an edge
point to improve the performance of an edge detector. This approach .may
also be used to thin edges from a simple edge detector response. The basic
approach is that an edge point looks at its neighbors. If the direction of an
edge is compatible with that of its neighbors, the edges are linked; incom-
patible edges are removed and, by looking at a large neighborhood, one may
fill in missing edges.

The edge following algorithm scans an image to find a strong edge used
as a starting point for following the boundary of an object. Depending on
the direction of the edge, the edge detector is applied to extend the edge in
the proper direction. One may implement the tracking operation, shown in
Figure 5.25, either without backtracking or with backtracking. Using this
approach, even very weak edge segments of an object may be detected.

180 CHAPTER 5. EDGE DETECTION

Figure 5.25: An illustration of edge following.

5.10 Line Detection

Up to this point, this chapter has discussed only how to detect step edges in
images. Lines are also very important features that may have to be detected.
A line can be modeled as two edges with opposite polarity that are close .

together, separated by less distance than the width of the smoothing filter.
Edge detection filters are designed to respond to step edges and do not

provide a meaningful response to lines. A separate algorithm must be used to
detect lines, and this line detection algorithm will not provide a meaningful
response to step edges. One outstanding problem in machine vision is how
to combine edge and line detection in a single system.

Lines can be detected with a modified version of the Canny algorithm:
perform nonmaxima suppression on the smoothed image instead of the gra-
dient magnitude. A line is the derivative of a step, so the derivative step in
the Canny algorithm is unnecessary.

FURTHER READING 181

Further Reading

Edge detection has been one of the most popular research areas since the
early days of computer vision. Roberts [202]and Sobel [225]present two
early edge detectors that are still commonly used. Some other edge detectors
that were popular in the early days were by Prewitt [198],Hueckel [116],and
Frei and Chen [84]. Many statistical [258]and several filtering approaches
have also been used for edge detection. Algorithms based on the Laplacian of
Gaussian [164]and based on the gradient of Gaussian [53]were very popular
in the 1980s. The Laplacian of Gaussian edge detection scheme [164]is still
dominant in models of biological edge detection. Haralick [102]presented an
edge detection scheme based on the second directional derivative. His scheme
incorporated a form of image smoothing based on approximating the image
with local surface patches.

Although edge detection using Guassian filters of different scales was in-
troduced earlier, it began to receive considerable attention after the paper
by Witkin [253]. The papers by Yuille and Poggio [260, 261] provided key
theoretical results in this area. Another paper, by Hummel [118], provided
additional results. Shah, Sood, and Jain [220] and Lu and Jain [159, 160]
studied interaction among edges at different scales and developed a reason-
ing methodology for detecting edges in scale space. Edge focusing is another
approach to edge detection in scale space [25].

Another class of edge detection algorithms searches the image or a filtered
version of the image for patterns of image intensity that may be edges. These
algorithms combine edge detection with edge linking. The analysis of the
patterns of image intensity can be very elaborate, and these algorithms are
usually used only in situations where it is necessary to find edges in images
with very poor quality. A good treatment of this is provided in [74].

Though many edge detectors have been developed, there is still no well-
defined metric to help in selecting the appropriate edge detector for an appli-
cation. Lack of a performance measure makes judicious selection of an edge
detector for a particular application a difficult problem. Some discussion of
this may be found in [103, 196].

182 CHAPTER 5. EDGE DETECTION

Exercises

5.1 What is an edge? How does it relate to the boundary of an object?
How does it relate to the boundary of a region?

5.2 How can an edge be modeled in an image? Which is the most commonly
used model in edge detection? Why?

5.3 What is an isotropic edge detector? How can you implement it?

5.4 What is a directional edge detector? How can you implement it? Where
will you use a directional edge detector? Give edge detector masks for
detecting edges oriented at 45° and -450.

5.5 Name all the steps required in edge detection. Can you implement an
edge detector by skipping one or more of these steps? How?

5.6 Why is the Laplacian not a good edge operator?

5.7 Describe the Laplacian of Gaussian edge detector. Considering different
steps in edge detection, show how the Laplacian is not a good edge
operator, but the Laplacian of Gaussian is.

5.8 How can you select the correct size of the operator in the LoG opera-
tors? What factors should you consider in selecting the proper size of
the operator? Can you have an automatic selection algorithm?

5.9 What is the facet model of an image? How can you use it for edge
detection? Can you use this model for region growing also?

5.10 Compare the Gaussian edge detector with the Laplacian of Gaussian.
Use all steps in edge detection and compare what the two operators
do at these steps. Where is the difference? Do you think that their
performances will differ significantly? Explain clearly the difference
and the effect of the difference in edge detection.

5.11 Can edges be located at subpixel resolution? How? Is there any par-
ticular approach that will be more suitable for this? Consider subpixel
edge location estimation for the gradient, Laplacian, and facet models.
Compare the different estimation problems.

EXERCISES 183

5.12 To select a particular edge detector in a machine vision application, we
should know the comparative performance of edge detectors in the type
of application that we are faced with. How can we compare performance
of various edge detectors in an objective manner? List all important
factors in edge detection and then define a performance measure that
can be effectively evaluated.

5.13 What is edge tracking? What factors must be considered in edge track-
ing?

5.14 The equation for the sloped planar facet model is obtained by setting
all terms above k3 to zero, yielding

The error in this approximation is given by

I I

E2 = L L (k3i + k2j + k1- g[i,jJ)2.
i=-l j=-l

For the case 1 = 1, estimate the parameters k1, k2, and k3 for the
sloped facet model that best approximates the gray levels in the 3 x 3
neighborhood given below.

J ·
i -1 0 1

j~1

What is the magnitude of the gradient?

5.15 Suppose that an image is smoothed with an n x n Gaussian filter. Dur-
ing smoothing, the square filter window is moved across the image. The
pixel at position [i,j] in the upper left corner of the window is replaced
by the smoothed value. After smoothing, the gradient magnitude is
computed using the approximations in Section 5.1. As the 2 x 2 oper-
ators are moved across the smoothed image, the pixel at position [i, j]

5 7 9
3 7 7
1 3 5

184 CHAPTER 5. EDGE DETECTION

in the upper left corner of the window is replaced by the gradient mag-
nitude. After edge detection, the edge location (Xij, Yij) for each edge
pixel is computed to subpixel resolution. Where is the edge location in
the coordinate system of the original (unsmoothed) image?

Computer Projects

5.1 Implement the Roberts, Sobel, and Prewitt operators. Apply these
to various images. Do you get edges where you expect them? Manu-
ally identify several edge segments and note their locations. Compare
the locations of edge segments given by your program with manually
marked edges. Are you satisfied? Can you improve your program to
do better? Change the threshold values for your detection step and see

. the results.

5.2 Generate a synthetic image that contains one or more known objects
with clear, known intensity discontinuities. You should know the loca-
tions of these discontinuities precisely. The rest of the image should be
without edges. Use any graphics technique or cut and paste using im-
age processing programs. Use this image to do systematic experiments
with different edge detectors. Apply the edge detector to the image
and obtain all edges.

Define a measure to evaluate the performance of an edge detector and
use that in all experiments. What factors would you consider in defining
the performance measure? Repeat your experiment by adding noise.
You can systematically add random noise using a random number gen-
erator . You may also want to systematically change the intensity values
of the objects and background. Change the threshold values for your
detection step and see the results.

5.3 Develop a test-bed to generate or acquire images for evaluating the per-
formance measure that you defined in the above exercise. Apply each
edge detector that you studied in this chapter, and plot the perfor-
mance of various edge detectors by varying the parameters controlling
the quality of images. These curves represent performance character-
istics of edge detectors and may be useful in selecting a suitable edge
detector for your application.

COMPUTER PROJECTS 185

5.4 In many applications computational time should also be considered in
selecting the proper edge detector. Compute the time requirement,
using theoretical and experimental analysis, for each edge detector.
Based on the performance measure you defined and determined and
the time requirement, develop a general guideline for selecting an edge
detector in different applications.

5.5 Facet model edge detection:

a. Using the gradient-based edge detection method with sloped pla-
nar facets (see Exercise 5.14), detect edges in an image of your
choice. Specifically, you should do the following:

. Calculate k}, k2, and k3 at each pixel.

. Calculate the gradient at each pixel.

. Identify pixels at which the gradient is above some threshold.

b. Add Gaussian noise to the above images and detect the edges as
in part a.

5.6 Detect edges using the cubic facet approximation. In particular, you
should do the following:

. Find the cubic fit coefficients k} to klO at each pixel.

. Find the gradient angle a.

. Find the subpixel deviation p at which the second derivative is
zero.

. Find if the zero crossing occurs within the boundary of the pixel.

. Confirm that the first derivative is nonzero and the third derivative

is negative.

. Mark all such pixels as 255 and reset the others to zero.

