Announcements

Project 2 has been posted
— Due Feb 1st at 10:00pm
— Work ALONE!

Help hours
— Monday — Thursday, 7-10pm
— LWSN B146

Quiz solutions will be on newsgroup
Sign up for newsgroup!

We expect you to be reading book. These slides
should be a review

Chapter 3

Flow of Control

Chapter 3

Chapter 3

Outline

Branching Statements

Java Loop Statements
Programming with Loops

The Type vooiean

(optional) Graphics Supplement

Chapter 3

Compound Statements

* To include multiple statements in a branch,
enclose the statements in braces.

if (count < 3)

{
total = 0;

count = 0;

Chapter 3

Using ==, cont.

- -= IS not appropriate for determining if two
objects have the same value.

- if (s1 == s2), Where s1 and sz refer to
strings, determines only if s1 and s2 refer
the a common memory location.

— If s1 and sz refer to strings with identical
sequences of characters, but stored Iin
different memory locations, (s1 == s2) IS
false.

Chapter 3

Multibranch if-else
Statements, cont.

class Grader

import java.util.*;

public class Grader

{
public static void main(String[] args)
{
int score;
char grade;
System.out.printin("Enter your score: ");
Scanner keyboard = new Scanner(System.in);
score = keyboard.nextInt();
if (score >= 90)
grade = 'A';
else if (score >= 80)
grade = 'B';
else if (score >= 70)
grade = 'C';
else if (score >= 60)
grade = 'D';
else
grade = "F'
System.out.println("Score = " + score);
System.out.printin("Grade = " + grade);
}
}

Sample Screen Dialog

Enter your score:

85

Score = 85

Grade = B
Display 3.4

Multibranch if-else Statement

Chapter 3

The switch Statement

* The switcn statement is a mutltiway branch
that makes a decision based on an integral
(integer or character) expression.

* The switch statement begins with the keyword
switch followed by an integral expression in
parentheses called the controlling expression.

Chapter 3 7

The switch Statement, cont.

* A list of cases follows, enclosed in braces.

* Each case consists of the keyword case
followed by

— a constant called the case label
— a colon
— a list of statements.

* The list of cases Is searched in order for a
case label matching the controlling
expression.

Chapter 3

The switch Statement, cont.

* The action associated with a matching
case label is executed.

* |f no match is found, the case labeled
default IS executed.

— The default case is optional, but
recommended, even if it simply prints a
message.

* Repeated case labels are not allowed.

Chapter 3

The switch Statement, cont.

class MultipleBirths

import java.util.*; Sample Screen Dialog 1
public class MultipleBirths .
{ Enter number of babies: 1

public static void main(String[] args) Congratulations.

{
int numberOfBabies;
System.out.print("Enter number of babies: ");
Scanner keyboard = new Scanner(System.in);
numberOfBabies = keyboard.nextInt();

Sample Screen Dialog 2

Enter number of babies: 3
Wow. Triplets.
switch (numberOfBabies) -

L ~Controlliy 8 eXpression
case 1: Sample Screen Dialog 3
case lape) — System.out.println("Congratulations.");

——break; -—k break Enter number of babies: 4
case 2: ‘atemeny Unbelievable.
System.out.printin("Wow. Twins."); 4 babies

break;
case 3:)
System.out.printin("Wow. Triplets."); Sample Screen Dialog 4
break;
REE g Enter number of babies: 6
caca 5 I don't believe you.

System.out.printin("Unbelieveable.");
System.out.printin(numberOfBabies + " babies");
break;

default:
System.out.printin("I don't believe you.");
break;

Display 3.5

A switch Statement

Chapter 3

The switch Statement, cont.

* The action for each case typically ends with
the word vreaxk.

* The optional nreax statement prevents the
consideration of other cases.

* The controlling expression can be anything
that evaluates to an integral type.

Chapter 3 11

The for Statement

* A ror statement executes the body of a loop a
fixed number of times.

* example

for

(count = 1; count < 5; count++)

System.out.println(count) ;

System.out.println (“Done”) ;

Chapter 3

12

Choosing a Loop Statement

* If you know how many times the loop will be
iterated, use a ror lOOp.

* |f you don’t know how many times the loop
will be iterated, but

— 1t could be zero, use a whiie lOOpP
— 1t will be at least once, use a do-while lOOP.

* Generally, a whi1e lOOp is a safe choice.

Chapter 3 13

The break Statement in
Loops
* A reax Statement can be used to end a loop

immediately.

* The breax statement ends only the innermost
loop or switch statement that contains the
break Statement.

* break Statements make loops more difficult to
understand.

* Use vreax statements sparingly (if ever).

Chapter 3 14

The break Statement in
Loops, cont.

class BreakDemo

import java.util.*; Sample Screen Dialog

public class BreakDemo
You may buy ten items, but

{
public static void main(String[] args) the total pricg must not exceed $100.
{ Enter cost of 1tem.#l: $90.93
. . Your total so far is $90.93
int itemNumber; You may purchase up to 9 more items.
double amount, total; Enter cost of item #2: $10.50
Scanner keyboard = new Scanner(System.in); You spent all your money.
. " . — You spent $101.43
System.out.printin("You may buy ten items, but");
System.out.printin("the total price must not exceed $100.");
total = 0;
for (itemNumber = 1; itemNumber <= 10; 1itemNumber++)
{
System.out.print("Enter cost of item#"
+ itemNumber + ": $");
amount = keyboard.nextDouble();
total = total + amount;
if (total >= 100)
{
System.out.printin("You spent all your money.");
—— break;
}
System.out.println("Your total so far is $" + total);
System.out.printin("You may purchase up to "
+ (10 itemNumber) + " more items.");
}
Eg;tem.out.print1n(“You spent $" + total);
}
}

Display 3.13

Ending a Loop with a break Statement

Chapter 3

15

The exit Method

* Sometimes a situation arises that makes
continuing the program pointless.

* A program can be terminated normally by
System.ex1t (0).

* example

if (numberOfWinners == 0)

{

System.out.println(“cannot divide by 07);

System.exit (0);

Chapter 3 16

Programming with Loops:

Outline

The Loop Body
Initializing Statements

* Ending a Loop

Loop Bugs
Tracing Variables

Chapter 3

17

The Loop Body

* To design the loop body, write out the actions
the code must accomplish.

* Then look for a repeated pattern.

— The pattern need not start with the first
action.

— The repeated pattern will form the body of
the loop.

— Some actions may need to be done after
the pattern stops repeating.

Chapter 3 18

Initializing Statements

* Some variables need to have a value before
the loop begins.

— Sometimes this is determined by what is
supposed to happen after one loop
iteration.

— Often variables have an initial value of zero
or one, but not always.

* Other variables get values only while the loop
IS Iterating.

Chapter 3 19

Ending a Loop

* If the number of iterations is known before the
loop starts, the loop is called a count-
controlled loop.

— use a ror loop.

* Asking the user before each iteration if it is
time to end the loop is called the ask-before-

iterating technique.
— appropriate for a small number of iterations

— Use a while lOOp Or @ do-wnile lOOP.

Chapter 3 20

Ending a Loop, cont.

* For large input lists, a sentinel value can be
used to signal the end of the list.

— The sentinel value must be different from
all the other possible inputs.

— A negative number following a long list of
nonnegative exam scores could be
suitable.

90

0
10
-1

Chapter 3

21

Ending a Loop, cont.

* example - reading a list of scores followed by
a sentinel value

int next = keyboard.nextInt ();
while (next >= 0)
{

Process_The Score

next = keyboard.nextInt (),

Chapter 3 22

Ending a Loop, cont.

class ExamAverager

import java.util.*;

Jrx
Determines the average of a list of (nonnegative) exam scores.
Repeats for more exams until the user says she/he is finished.

public class ExamAverager

Sample Screen Dialog

{
public static void main(String[] args) This program computes the average of
{ a Tist of (nonnegative) exam scores.
System.out.printin("This program computes the average of");
System.out.println("a Tist of (nonnegative) exam scores."); Enter all the scores to be averaged.
double sum; Enter a negative number after
int numberOfStudents; you have entered all the scores.
double next; 100
String answer; 90
Scanner keyboard = new Scanner(System.in); 100
do 20
{ -1
System.out.printin(); The average is 95.0
System.out.printin("Enter all the scores to be averaged."); Want to average another exam?
System.out.println("Enter a negative number after™); Enter yes or no.
System.out.printIn("you have entered all the scores."); yes
zﬁ:b:rg%smdents ~0; Enter all the scores to be averaged.
next = keyboard.nextDouble(); Enter a negative number after
while (next >= 0) you have entered all the scores.
{ 90
sum = sum + next; 70
numberOfStudents++; 80
next = keyboard.nextDouble(); =1
1 The average is 80.0
if (numberOfStudents > 0) Want to average another exam?
System.out.printin("The average is " Enter yes or no.
+ (sum/numberOfStudents)); no
else
System.out.printin("No scores to average.");
System.out.printin("Want to average another exam?");
System.out.printin("Enter yes or no.");
answer = keyboard.next();
}while (answer.equalsIgnoreCase("yes"));
}
}

Display 3.14

Nested Loops

Chapter 3

23

Nested Loops

* The body of a loop can contain any kind of
statements, including another loop.

* In the previous example

— the average score was computed using a
while lOOP.

— This whi1le lOOp was placed inside a do-while
loop so the process could be repeated for
other sets of exam scores.

Chapter 3 24

Declaring Variables Outside
Loop Bodies

* The declaration of variables inside a loop
body is repeated with each execution of the
loop body.

— This can be inefficient, depending on the
compiler.

* |t the declaration of variables can be moved
outside the loop body, generally it is
appropriate to do so.

Chapter 3 25

Loop Bugs

* common loop bugs

— unintended infinite loops

— off-by-one errors

— testing equality of floating-point numbers
* subtle infinite loops

— The loop may terminate for some input
values, but not for others.

— For example, you can't get out of debt
when the monthly penalty exceeds the
monthly payment.

Chapter 3 26

Subtle Infinite Loops

* Verify that the monthly payment exceeds the
penalty, for example, before entering a loop
to determine the number of payments
needed to get out of debit.

1f (payment <= penalty)

System.out.println (“payment is too
small”);

else

{

Chapter 3

27

Off-by-One Errors

* The loop body is repeated one too many
times or one too few times.
* examples

- < Is used when <= should be used or <= is
used when < should be used

— using the index of the last character of a
string instead of the length of the string (or
vice versa)

* easy to overlook

Chapter 3 28

Testing Equality of Floating-
point Numbers

- —— works satisfactorily for integers and
characters.

* ——is not reliable for floating-point numbers
(which are approximate quantities).

— Use <= or >=rather than == or '-.

Chapter 3 29

Tracing Variables

* Tracing variables means watching the
variables change while the program is
running.

— Simply insert temporary output statements
In your program to print of the values of
variables of interest

— or, learn to use the debugging facility that
may be provided by your system.

Chapter 3 30

Tracing Variables, cont.

int time;
for (time = 1; time <= 4; time++)
System.out.printin("One more time.");

1nt result = 1;

1nt count;

for (count = 1; count <= 5; count++)
result = 2*result;

NRER O R OO

Chapter 3 31

The Type boolean

* Boolean Expressions and Variables
* Truth Tables and Precedence Rules
* Input and Output of Boolean Values

Chapter 3 32

The Type boolean, cont.

* The type booiean IS @ primitive type with only
two values: true and raise.

* Boolean variables can make programs more
readable.

1f (systemsAreOK)

Instead of

1f((temperature <= 100) && (thrust >= 12000)
&& (cabinPressure > 30) && ...)

Chapter 3 33

Boolean Expressions and
Variables

* Variables, constants, and expressions of type
boolean all evaluate to either true Or faise.

* A boolean variable can be given the value of
a boolean expression by using an assignment
operator.

boolean isPositive = (number > 0);

if (isPositive) ...

Chapter 3 34

Naming Boolean Variables

* Choose names such as ispositive OrF
systemsAreOk.

* Avoid names such as numpbersign Of

systemStatus.

Chapter 3

35

ruth Tables

&& (and)
Value of Value of Resulting Value of
A B A&&B

true true true

true false false

false true false

false false false

[l (o)
Value of Value of Resulting Value of
A B Al|B
true true true
true false true
false true true
false false false
! (not)
Value of Resulting Value of
1C4)
true false
false true
Display 3.15

Truth Tables for Boolean Operators

Chapter 3

36

Precedence Rules

* Parentheses should be used to indicate the
order of operations.

* When parentheses are omitted, the order of
operation is determined by precedence rules.

Chapter 3 37

Precedence Rules, cont.

* Operations with higher precedence are
performed before operations with lower
precedence.

* Operations with equal precedence are done
left-to-right (except for unary operations which
are done right-to-left).

Chapter 3 38

Precedence Rules, cont.

Highest Precedence
First: the unary operators +, —, ++, ——, and !
Second: the binary arithmetic operators *, /, %
Third: the binary arithmetic operators +, —
Fourth: the boolean operators <, >, <=, >=
Fifth: the boolean operators ==, !=
Sixth: the boolean operator &
Seventh: the boolean operator |
Eighth: the boolean operator &&
Ninth: the boolean operator | |

Lowest Precedence

Display 3.16

Precedence Rules

Chapter 3

39

Precedence Rules, cont.

* |n what order are the operations
performed?

score < min/2 - 10 || score > 90

score < (min/2) - 10 || score > 90
score < ((min/2) - 10) || score > 90
(score < ((min/2) - 10)) || score > 90
(score < ((min/2) - 10)) || (score > 90)

Chapter 3 40

Short-circuit Evaluation

* Sometimes only part of a boolean expression
needs to be evaluated to determine the value
of the entire expression.

— If the first operand associated with an || is
true, the expression IS true.

— If the first operand associated with an «s is
false, the expression is raise.

* This is called short-circuit or lazy evaluation.

Chapter 3 41

Short-circuit Evaluation, cont.

 Short-circuit evaluation is not only efficient,
sometimes it is essential!

* A run-time error can result, for example, from
an attempt to divide by zero.
if ((number != 0) && (sum/number > 5))

* Complete evaluation can be achieved by
substituting s for s or | for .

Chapter 3 42

Input and Output of Boolean
Values

* example

boolean boo = false;
System.out.println (boo);

System.out.print (“Enter a boolean value: “);
Scanner keyboard = new Scanner (System.in);
boo = keyboard.nextBoolean() ;

System.out.println (boo) ;

Chapter 3 43

Input and Output of Boolean

Values, cont.
* dialog

false

Enter a boolean wvalue: true

TLrue

Chapter 3

44

Using a Boolean Variable to
End a Loop

* example

boolean numberslLeftToRead = true
while (numbersLeftToRead)
{
next = keyboard.nextInt ()
if (next < 0)
numberslLeftToRead = false;
else

Process Next Number

Chapter 3

45

Using a Boolean Variable to
End a Loop, cont

class BooleanDemo

import java.util.*; next = keyboard.nextInt();

if (next < 0)

VAt numbersLeft = false;
ITlustrates the use of a boolean variable to control Toop ending. else
* sum = sum + next;
public class BooleanDemo }
{
public static void main(String[] args) System.out.printin("The sum of the numbers is "
{ }
System.out.printin("Enter nonnegative numbers."); }
System.out.printin("Place a negative number at the end");
System.out.printin("to serve as an end marker."); Sample Screen Dialog
int next, sum = 0; Enter nonnegative numbers.
boolean numbersLeft = true; Place a negative number at the end
Scanner keyboard = new Scanner(System.in); 6. BEFVE a5 G Bhd MAPRER:
while (numbersLeft) 123 -1
{ The sum of the numbers is 6
Display 3.17

Use of a Boolean Variable to End a Loop

+ sum);

Chapter 3

46

(optional) Graphics
Supplement: Outline

* Specifying a Drawing Color

* The drawString Method
* A joptionrane YES/No Window

Chapter 3

47

Specifying a Drawing Color

* When drawing a shape inside an applet’s
paint Method, think of the drawing being done
with a pen that can change colors.

* The method setco10r changes the color of the
“pen.
canvas.setColor (Color . .YELLOW) ;
* Drawings done later appear on top of
drawings done earlier.

Chapter 3 48

Specifying a Drawing Color,

Color.
Color.
Color.
Color.
Color.
Color.
Color.

cont.
BLACK Color.MAGENTA
BLUE Color.ORANGE
CYAN Color.PINK
DARK_GRAY Color.RED
GRAY Color.WHITE
GREEN Color.YELLOW
LIGHT_GRAY

Display 3.19

Predefined Colors

Chapter 3

49

Specifying a Drawing Color,
cont.

Resulting Applet

import javax.swing.
import java.awt.*;

public class YellowFace extends JApplet
f v v Applet Viewer: YellowFace classg@
public static final int FACE_DIAMETER = 200;

public static final int X_FACE = 100; Applet
public static final int Y_FACE = 50

public static final int EYE_WIDTH = 10;

public static final int EYE_HEIGHT = 20;

public static final int X_RIGHT_EYE = 155;
public static final int Y_RIGHT_EYE = 95;

public static final int X_LEFT_EYE = 230;

public static final int Y_LEFT_EYE = Y_RIGHT_EYE;

public static final int NOSE_DIAMETER = 1
pubTic static final int X_NOSE = 195;//Center of nose will be at 200
public static final int Y_NOSE = 135;

public static final int MOUTH_WIDTH = 100;
public static final int MOUTH_HEIGHT = 50;
public static final int X_MOUTH = 150;
public static final int Y_MOUTH = 175;
public static final int MOUTH_START_ANGLE = 180; Applet started
public static final int MOUTH_DEGREES_SHOWN = 180;

50

o that
o f13130 i

e is dr
dyellow STE4 T on top o

pubTlic void paint(Graphics canvas) Al
The filleC o awings

{ the other d
//Draw face circle:
canvas.setColor(Color.YELLOW) ;
canvas.fi110val(X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);
canvas.setColor(Color.BLACK) ;
canvas.drawOval (X_FACE, Y_FACE, FACE_DIAMETER, FACE_DIAMETER);

/Draw eyes:
canvas.setColor(Color.BLUE) ;
canvas.fi110val(X_RIGHT_EYE, Y_RIGHT_EYE, EYE_WIDTH, EYE_HEIGHT);
canvas.fi110val (X_LEFT_EYE, Y_LEFT_EYE, EYE_WIDTH, EYE_HEIGHT);

//Draw nose:

canvas.setColor(Color.BLACK) ;

canvas.fi110val(X_NOSE, Y_NOSE, NOSE_DIAMETER, NOSE_DIAMETER);

//Draw mouth:

canvas.setColor(Color.RED) ;

canvas.drawArc (X_MOUTH, Y_MOUTH, MOUTH_WIDTH, MOUTH_HEIGHT,
MOUTH_START_ANGLE, MOUTH_DEGREES_SHOWN) ;

Display 3.18
Adding Color

Chapter 3

Programming Example

class MultipleFaces

import javax.swing.*;

import java.awt.*;

public class MultipleFaces extends JApplet

{
public static final int FACE_DIAMETER = 50;
public static final int X_FACEO = 10;
public static final int Y_FACEO = 5;

public static final int EYE_WIDTH = 5;
public static final int EYE_HEIGHT = 10;
pubTlic static final int X_RIGHT_EYEO = 20;
public static final int Y_RIGHT_EYEO = 15;

public static final int X_LEFT_EYEO = 45;

public static final int Y_LEFT_EYEO = Y_RIGHT_EYEO;

public static final int NOSE_DIAMETER = 5;
pubTlic static final int X_NOSEO = 32;
public static final int Y_NOSEO = 25;

public static final int MOUTH_WIDTH = 30;

public static final int MOUTH_HEIGHTO = O0;

public static final int X_MOUTHO = 20;

public static final int Y_MOUTHO = 35;

public static final int MOUTH_START_ANGLE = 180;
public static final int MOUTH_DEGREES_SHOWN = 180;

public void paint(Graphics canvas)

TNt 13
for (i = 0; i < 5; i++)
{//Draw one face:

}

Display 3.20

//Draw

face circle:

if (i%2 == 0)//if i is even
{//Make face yellow
canvas.setColor(Color.YELLOW) ;
canvas.fil10val (X_FACEO + 50%*i, Y_FACEO + 30%*1i,

}
canvas
canvas

//Draw

canvas.
.fi110val (X_RIGHT_EYEO + 50%i, Y_RIGHT_EYEO + 30%*i,

canvas

canvas.

//Draw

canvas.
.fi110val(X_NOSEO + 50*i, Y_NOSEO + 30*1i,

canvas

//Draw
canvas

canvas.

FACE_DIAMETER, FACE_DIAMETER);

.setColor(Color.BLACK);
.drawOval (X_FACEO + 50*i, Y_FACEO + 30*1i,

FACE_DIAMETER, FACE_DIAMETER);

eyes:
setColor(Color.BLUE);

EYE_WIDTH, EYE_HEIGHT);

fi110val (X_LEFT_EYEO + 50%*i, Y_LEFT_EYEO + 30*1,
EYE_WIDTH, EYE_HEIGHT);

nose:

setColor(Color.BLACK);

NOSE_DIAMETER, NOSE_DIAMETER);
mouth:

.setColor(Color.RED);

drawArc(X_MOUTHO + 50%i, Y_MOUTHO + 30%i,
MOUTH_WIDTH, MOUTH_HEIGHTO + 3*i,
MOUTH_START_ANGLE, MOUTH_DEGREES_SHOWN) ;

An Applet that Uses Looping and Branching

Chapter 3

51

Programming Example, cont.

class MultipleFaces, contd.

pa Afte
Vi e E—— ’v.f/l(rr/m last jre,,, ..
alye i is s ;(II/{)/ 3

//Draw blushing face:
7 .

//Draw kissing face: ”“WHZCZ;ZZ?5W$1mc B

//Draw face circle: e

canvas.setColor(Color.BLACK);

canvas.drawOval (X_FACEO + 50%*i, Y_FACEO + 30*1i,

FACE_DIAMETER, FACE_DIAMETER);

//Draw face circle:

canvas.setColor(Color.PINK);

canvas.fil10val (X_FACEO + 50*i, Y_FACEO + 30%*i,
FACE_DIAMETER, FACE_DIAMETER);

canvas.setColor(Color.BLACK) ;

canvas.drawOval (X_FACEO + 50*i, Y_FACEO + 30%*i,
FACE_DIAMETER, FACE_DIAMETER);

//Draw eyes:

canvas.setColor(Color.BLUE);

canvas.fi110val (X_RIGHT_EYEO + 50%*i, Y_RIGHT_EYEO + 30%*i,
EYE_WIDTH, EYE_HEIGHT);

canvas.fi110val (X_LEFT_EYEO + 50%*i, Y_LEFT_EYEO + 30%*i,
EYE_WIDTH, EYE_HEIGHT);

//Draw eyes:
canvas.setColor(Color.BLUE);
canvas.fil10val (X_RIGHT_EYEO + 50%*i, Y_RIGHT_EYEO + 30%*i,
EYE_WIDTH, EYE_HEIGHT);
canvas.fill0val(X_LEFT_EYEO + 50*i, Y_LEFT_EYEO + 30%*i,
EYE_WIDTH, EYE_HEIGHT);

//Draw nose:

canvas.setColor(Color.BLACK);

canvas.fi110val (X_NOSEO + 50*i, Y_NOSEO + 30%*1i,
NOSE_DIAMETER, NOSE_DIAMETER);

//Draw mouth in shape of a kiss:

//Draw nose:
canvas.setColor(Color.BLACK);
canvas.fil10val (X_NOSEO + 50%*i, Y_NOSEO + 30%*i,

canvas.setColor(Color.RED
: : NOSE_DIAMETER, NOSE_DIAMETER);

canvas.fil10val (X_MOUTHO + 50%*i + 10, Y_MOUTHO + 30%*i,

Draw h:
MOUTH_WIDTH 20, MOUTH_WIDTH 20); //Draw meuth

//Add text: canvas.setColor(Color.RED);
e T canvas.drawArc(X_MOUTHO + 50%i, Y_MOUTHO + 30%i, MOUTH_WIDTH,
X_FACEO + 50%i + FACE_DIAMETER, Y_FACEO + 30%1); MOUTH_HEICHTO + 3*4,//i == 4 is the smile

MOUTH_START_ANGLE, MOUTH_DEGREES_SHOWN) ;
//Add text:
canvas.drawString("Tee Hee.",
X_FACEO + 50*i + FACE_DIAMETER, Y_FACEO + 30%i);

Display 3.20

An Applet that Uses Looping and Branching

Chapter 3

Programming Example, cont.

Resulting Applet
< Applet Viewer: MultipleFaces.class Q@@

Applet started.

Display 3.20
Class MultipleFaces

Chapter 3

53

The drawString Method

* similar to other drawing methods, but used to

“draw” text

canvas.drawString (“Hello”,10,20);

* syntax
Graphics_Object.drawString(String, X, Y);

Chapter 3

54

A JOptionPane Yes/No
Window

* used to present the user with a yes/no
question

* The window contains

— the question text
— two buttons labeled ves and wo.

Chapter 3

55

A JOptionPane Yes/No
Window, cont.

* example

int answer =
JOptionPane.showConfirmDialog(null,

“End program?”, “Want to end?”,
JOptionPane.YES_NO_OPTION) ;

1f (answer == JOptionPane.YES_OPTION)
System.exit (0);
else

System.out.println(“once more”);

Chapter 3

56

A JOptionPane Yes/No
Window, cont.

Want to end?

End program?

Mo |

Display 3.21
An Applet that Uses Looping and Branching

Chapter 3 57

A JOptionPane Yes/No
Window, cont.

* JOptionPane.showConfirmDialog F€tUrnsS an int
value named either ves_orpTION Or NO_OPTION,

but you do not need to think of them as ints.

The second argument (“End program?” In our
example) appears in the window.

The third argument (“want to end?” IN OUr
example) is displayed as the title of the
window.

Chapter 3

58

A JOptionPane Yes/No
Window, cont.

* The last argument (soptionpane.YES_NO_OPTION
in our example) requests a window with yes
and no buttons.

* The first argument (nu11 In our example)
affects the placement of the window on the
screen.

— Simply use nu11 for now.

Chapter 3

59

Summary

You have learned about Java branching
statements.

You have learned about loops.
You have learned about the type voo1ean.

(optional) You have learned to use color and
the JOptionPane yeS/nO window.

Chapter 3

60

